1
|
Wan Q, Luo S, Lu Q, Guan C, Zhang H, Deng Z. Protective effects of puerarin on metabolic diseases: Emphasis on the therapeutical effects and the underlying molecular mechanisms. Biomed Pharmacother 2024; 179:117319. [PMID: 39197190 DOI: 10.1016/j.biopha.2024.117319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024] Open
Abstract
Metabolic diseases (MetD) such as diabetes mellitus, obesity, and hyperlipidemia have become global health challenges. As a naturally occurring plant component, puerarin has been verified to possess a wide range of pharmacological effects including lowering blood glucose, improving insulin resistance, and regulating lipid metabolism, which has attracted extensive attention in recent years, and its potential in the treatment of MetD has been highly acclaimed. In addition, puerarin has exhibited antioxidant, anti-inflammatory, and cardiovascular protective effects, which are of great significance in the prevention and treatment of MetD. This article comprehensively summarizes the research progress of puerarin in the treatment of MetD and explores its pharmacological mechanisms, clinical applications, and future perspectives. More importantly, this review provided a list of the involved molecular mechanims in treating MetD of puerarin. Taking into account these conclusions, it may provide a strong foundation for the optimized use of puerarin in the treatment of patients suffering from MetD.
Collapse
Affiliation(s)
- Qiang Wan
- Department of Medical Cardiology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang 330006, China; Clinical Medical College, Jiangxi University of Chinese Medicine, Nanchang 330006, China.
| | - Sang Luo
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Qiwen Lu
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Chengyan Guan
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Hao Zhang
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Zhiyan Deng
- Department of Gastroenterology, Jinhua TCM Hospital Affiliated to Zhejiang Chinese Medical University, Jinhua 321017, China.
| |
Collapse
|
2
|
Yuan J, Wang Y, Gao J, Zhang X, Xing J. Eicosapentaenoic Acid Alleviates Inflammatory Response and Insulin Resistance in Pregnant Mice With Gestational Diabetes Mellitus. Physiol Res 2024; 73:57-68. [PMID: 38466005 PMCID: PMC11019622 DOI: 10.33549/physiolres.935113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/13/2023] [Indexed: 04/26/2024] Open
Abstract
This study investigated the effect of eicosapentaenoic acid (EPA) on insulin resistance in pregnant mice with gestational diabetes mellitus (GDM) and underlying mechanism. C57BL/6 mice fed with a high-fat diet for 4 weeks and the newly gestated were selected and injected with streptozotocin for GDM modeling. We demonstrated that the fasting insulin levels (FINS) and insulin sensitivity index (ISI) in serum and blood glucose level were significantly higher in GDM group than in normal control (NC) group. The low or high dose of EPA intervention reduced these levels, and the effect of high dose intervention was more significant. The area under the curve in GDM group was higher than that of NC group, and then gradually decreased after low or high dose of EPA treatment. The serum levels of TC, TG and LDL were increased in GDM group, while decreased in EPA group. GDM induced down-regulation of HDL level, and the low or high dose of EPA gradually increased this level. The levels of p-AKT2Ser, p-IRS-1Tyr, GLUT4, and ratios of pIRS-1Tyr/IRS-1 and pAKT2Ser/AKT2 in gastrocnemius muscle were reduced in GDM group, while low or high dose of EPA progressively increased these alterations. GDM enhanced TLR4, NF-kappaB p65, IL-1beta, IL-6 and TNF-alpha levels in placental tissues, and these expressions were declined at different dose of EPA, and the decrease was greater at high dose. We concluded that EPA receded the release of inflammatory factors in the placental tissues by inhibiting the activation of TLR4 signaling, thereby alleviating the IR.
Collapse
Affiliation(s)
- J Yuan
- Department of Obstetrics and Gynecology, North China University of Science and Technology Affiliated Hospital, Lubei District, Tangshan, Hebei, People's Republic of China.
| | | | | | | | | |
Collapse
|
3
|
Qiu S, Wu X, Wu Q, Jin X, Li H, Roy R. Pharmacological Action of Baicalin on Gestational Diabetes Mellitus in Pregnant Animals Induced by Streptozotocin via AGE-RAGE Signaling Pathway. Appl Biochem Biotechnol 2024; 196:1636-1651. [PMID: 37436545 DOI: 10.1007/s12010-023-04586-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 07/13/2023]
Abstract
OBJECTIVE Baicalin (BC) is a flavonoid reported to have various pharmacological activities, including antioxidant, anti-cancer, anti-inflammatory, anti-allergy, immune regulation, and anti-diabetic. This study examines the probable mechanism for gestational diabetes mellitus (GDM) brought on by streptozotocin (STZ) and the impact of BC on fetal development via AGEs (advanced serum glycation end products) and RAGE (the role of advanced glycation end products). MATERIAL AND METHOD STZ has been used in the current experimental study to induce diabetes mellitus in pregnant animals (gestational diabetes mellitus). GDM pregnant animals were separated into five groups and were treated with BC in a dose-dependent pattern for 19 days. At the end of the experiment, the fetus and blood samples were drawn from all the pregnant rats to assess the biochemical parameter as well as AGE-RAGE. RESULT Administration of BC at varying doses leads to enhancement in the weight of the fetus body and placenta while gestational diabetic pregnant animals induced by STZ had a lower weight of the fetus body and placenta. The dose-dependent pattern of BC also enhanced fasting insulin (FINS), high-density lipoprotein (HDL), serum insulin, and hepatic glycogen. It also significantly enhanced the content of the antioxidant profile and pro-inflammatory cytokines and modulated the gene expression (VCAM- 1, p65, EGFR, MCP-1, 1NOX2, and RAGE) in various tissues in gestational diabetes mellitus pregnant rats. CONCLUSION Baicalin demonstrated the potential impact on the embryo's development via the AGE-RAGE signaling pathway in STZ-induced GDM pregnant animals.
Collapse
Affiliation(s)
- Shuqiong Qiu
- Zhucheng Maternal and Child Health Center, No. 343 Dongguan Street, Zhucheng, Weifang, Shandong, 262200, People's Republic of China
| | - Xiaojie Wu
- Department of Obstetrics and Gynecology, The West District of Qingdao Municipal Hospital (Group), No. 2, Chaocheng Road, 266001, Qingdao, Shandong, People's Republic of China
| | - Qingke Wu
- Anser Science Joint Laboratory Platform, Jinan, 250000, People's Republic of China
| | - Xin Jin
- Anser Science Joint Laboratory Platform, Jinan, 250000, People's Republic of China
| | - Huirong Li
- Shandong Provincial Third Hospital, Shandong University, Tianqiao District, No.11 Wuyingshan Middle, RoadShandong Province, Jinan, 250031, People's Republic of China.
| | - Rupak Roy
- SHRM Biotechnologies Pvt. Ltd, Kolkata, India
| |
Collapse
|
4
|
Zhao L, Chang Q, Cong Z, Zhang Y, Liu Z, Zhao Y. Effects of dietary polyphenols on maternal and fetal outcomes in maternal diabetes. Food Funct 2023; 14:8692-8710. [PMID: 37724008 DOI: 10.1039/d3fo02048g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
The incidences of short-term or long-term adverse maternal and fetal outcomes caused by maternal diabetes are increasing. Due to toxicity or side effects, economic pressures, and other problems associated with injections or oral hypoglycemic drugs, many researchers have investigated natural treatment methods. Polyphenols can protect against chronic pathologies by regulating numerous physiological processes and provide many health benefits. Moreover, polyphenols have anti-diabetic properties and can be used to treat diabetic complications. Diets rich in polyphenols are beneficial to pregnant women with diabetes. Here, we review the epidemiological and experimental evidence on the impact of dietary polyphenols on maternal and fetal outcomes in pregnant women with diabetes, and the effects of polyphenols on biological changes and possible mechanisms. Previous data (mainly from in vitro and animal experiments) showed that polyphenols can alleviate gestational diabetes mellitus and diabetic embryopathy by reducing maternal hyperglycemia and insulin resistance, alleviating inflammation and oxidative stress, and regulating related signaling pathways. Although polyphenols have shown many health benefits, further research is needed to better understand the complex interactions between polyphenols and maternal diabetes.
Collapse
Affiliation(s)
- Lu Zhao
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Qing Chang
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China.
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhangzhao Cong
- Department of Teaching Affairs, China Medical University, Shenyang, China
| | - Yalin Zhang
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Zhuxi Liu
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Yuhong Zhao
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China.
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Okami H, Kawaharada R, Yoshizaki H, Toriumi A, Tsutsumi S, Nakamura A. Maternal n-7 Unsaturated Fatty Acids Protect the Fetal Brain from Neuronal Degeneration in an Intrauterine Hyperglycemic Animal Model. Nutrients 2023; 15:3434. [PMID: 37571372 PMCID: PMC10421171 DOI: 10.3390/nu15153434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
We previously reported that glycation induces insulin resistance in the hearts of newborn pups from a gestational diabetes mellitus (GDM) rat model. Administration of n-3 unsaturated fatty acids suppressed glycation and improved signaling in GDM rat pups. In this study, we investigated their effects on cranial neurons using the GDM rat model and PC12 cells derived from rat adrenal pheochromocytomas. Additionally, we examined whether n-3 and n-7 unsaturated fatty acids (cis-palmitoleic acid [CPA] and trans-palmitoleic acid [TPA]) ameliorate the detrimental effects of high glucose exposure on rats. In the neonatal cerebrum of GDM rats, increased levels of advanced glycation end products (AGEs) inhibited Akt phosphorylation; however, CPA and TPA intake during pregnancy ameliorated these abnormalities. Furthermore, exposure to high-glucose-induced apoptosis in PC12 cells compared to the cells cultured in control glucose. PC12 cells exposed to high-glucose with fatty acids exhibited reduced AGE production and apoptosis induction compared to the high-glucose group. These findings suggest that a hyperglycemic environment during pregnancy promotes AGE formation in brain neuronal proteins and induces apoptosis. Both TPA and CPA mitigated these abnormalities; however, CPA is cytotoxic, highlighting its safety in pregnant women.
Collapse
Affiliation(s)
- Haruka Okami
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan;
| | - Ritsuko Kawaharada
- Department of Health and Nutrition, Takasaki University of Health and Welfare, Takasaki 370-0033, Japan;
| | - Hitomi Yoshizaki
- Department of Bioregulatory Science (Physiology), Nippon Medical School, Tokyo 113-8602, Japan;
| | - Akiyo Toriumi
- Department of Public Health, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan;
| | - Saki Tsutsumi
- Department of Neurophysiology & Neural Repair, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan;
| | - Akio Nakamura
- Department of Molecular Nutrition, Faculty of Human Life Sciences, Jissen Women’s University, Hino 191-8510, Japan
| |
Collapse
|
6
|
Rani R, Chitme H, Sharma AK. Effect of Tinospora cordifolia on gestational diabetes mellitus and its complications. Women Health 2023:1-11. [PMID: 37080903 DOI: 10.1080/03630242.2023.2197083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Ayurvedic system of medicine uses giloy or guduchi, also known as Tinospora cordifolia (TC), to treat diabetes and related diseases like hyperglycemia and hyperlipididemia. However, its usage in gestational diabetes mellitus (GDM) is not well studied. The primary objective of the study was to examine the effects of water extract of TC called satva, essential oil, and hydroalcoholic (HA) extract on GDM and its complications and to explore their mechanism of action using mice model. We used streptozotocin-induced diabetes in pregnant mice as murine model and tested TC preparations for anti-GDM activities. Blood glucose, insulin, litter size, and placental weight were assessed. ELISA method was used to measure plasma insulin level to compute homeostatic model assessment of insulin resistance (HOMA-IR), quantitative insulin sensitivity check index (QUICKI), and homeostatic model assessment for assessing beta cell function (HOMA-Beta) levels to estimate insulin resistance, insulin sensitivity, and beta cell function respectively. TC-treated groups had significantly higher serum insulin levels, QUICKI, average litter size, and lower placental weight (p < .001). TC oil and HA extract increased pancreatic beta cell activity according to the level of HOMA-Beta. TC lowered placenta weight and increased litter size significantly compared to control group. Our findings suggest that TC preparations preserve pancreatic beta cells, increase insulin production, decrease insulin resistance, and improve beta cell function, hence preventing GDM. TC preparations also reduced placental weight and increased litter size in mice. Based on these results, we recommend the clinical trial and testing of TC preparations for management of GDM and associated complications. Refer graphical abstract (Figure S1).
Collapse
Affiliation(s)
- Ritu Rani
- Faculty of Pharmacy, DIT University, Dehradun, India
| | | | | |
Collapse
|
7
|
Deckmann I, Santos-Terra J, Martel F, Vieira Carletti J. Common pregnancy complications and polyphenols intake: an overview. Crit Rev Food Sci Nutr 2023; 64:5924-5957. [PMID: 36597650 DOI: 10.1080/10408398.2022.2160960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
During pregnancy, the body undergoes a great amount of changes in order to support a healthy developing fetus. In this context, maternal dietary supplementation is widely encouraged to provide adequate nutrition for the newborn. In the past few years, studies have emerged highlighting the benefits of polyphenols intake during pregnancy. Indeed, despite differences among reports, such as experimental model, polyphenol employed, dosage and regimen of administration, there is no doubt that the ingestion of these molecules has a protective effect in relation to three pregnancy-associated diseases or conditions: preeclampsia, gestational diabetes and fetal growth restriction. In this review, we describe the effects of different polyphenols and polyphenol-rich extracts or juices on the main outcomes of these common pregnancy-associated complications, obtained in human, animal and in vitro studies. Therefore, this work provides a critical analysis of the literature, and a summary of evidences, from which future research using polyphenols can be designed and evaluated.
Collapse
Affiliation(s)
- Iohanna Deckmann
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Júlio Santos-Terra
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Fátima Martel
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Jaqueline Vieira Carletti
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
8
|
Ameliorative Effects of Bifidobacterium animalis subsp. lactis J-12 on Hyperglycemia in Pregnancy and Pregnancy Outcomes in a High-Fat-Diet/Streptozotocin-Induced Rat Model. Nutrients 2022; 15:nu15010170. [PMID: 36615827 PMCID: PMC9824282 DOI: 10.3390/nu15010170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Bifidobacterium, a common probiotic, is widely used in the food industry. Hyperglycemia in pregnancy has become a common disease that impairs the health of the mother and can lead to adverse pregnancy outcomes, such as preeclampsia, macrosomia, fetal hyperinsulinemia, and perinatal death. Currently, Bifidobacterium has been shown to have the potential to mitigate glycolipid derangements. Therefore, the use of Bifidobacterium-based probiotics to interfere with hyperglycemia in pregnancy may be a promising therapeutic option. We aimed to determine the potential effects of Bifidobacterium animalis subsp. lactis J-12 (J-12) in high-fat diet (HFD)/streptozotocin (STZ)-induced rats with hyperglycemia in pregnancy (HIP) and respective fetuses. We observed that J-12 or insulin alone failed to significantly improve the fasting blood glucose (FBG) level and oral glucose tolerance; however, combining J-12 and insulin significantly reduced the FBG level during late pregnancy. Moreover, J-12 significantly decreased triglycerides and total cholesterol, relieved insulin and leptin resistance, activated adiponectin, and restored the morphology of the maternal pancreas and hepatic tissue of HIP-induced rats. Notably, J-12 ingestion ameliorated fetal physiological parameters and skeletal abnormalities. HIP-induced cardiac, renal, and hepatic damage in fetuses was significantly alleviated in the J-12-alone intake group, and it downregulated hippocampal mRNA expression of insulin receptor (InsR) and insulin-like growth factor-1 receptor (IGF-1R) and upregulated AKT mRNA on postnatal day 0, indicating that J-12 improved fetal neurological health. Furthermore, placental tissue damage in rats with HIP appeared to be in remission in the J-12 group. Upon exploring specific placental microbiota, we observed that J-12 affected the abundance of nine genera, positively correlating with FBG and leptin in rats and hippocampal mRNA levels of InsR and IGF-1R mRNA in the fetus, while negatively correlating with adiponectin in rats and hippocampal levels of AKT in the fetus. These results suggest that J-12 may affect the development of the fetal central nervous system by mediating placental microbiota via the regulation of maternal-related indicators. J-12 is a promising strategy for improving HIP and pregnancy outcomes.
Collapse
|
9
|
Wu C, Cao L, Liu M, Zhang W, Chen H, Wang R, Liu C, He Z. Exploring the mechanisms underlying the therapeutic effect of the drug pair Rhubarb-Coptis in diabetic nephropathy using network pharmacology and molecular docking analysis. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1343. [PMID: 36660658 PMCID: PMC9843313 DOI: 10.21037/atm-22-5550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/30/2022] [Indexed: 12/28/2022]
Abstract
Background To use network pharmacology to explore the mechanism of the drug pair Rhubarb-Coptis in the treatment of diabetic nephropathy (DN). Methods The Traditional Chinese Medicine Systems Pharmacology (TCMSP) database was used to screen active ingredients of drug pair Rhubarb-Coptis. Targets were obtained using the TCMSP and SwissTargetPrediction databases. DN disease targets were extracted from the Online Mendelian Inheritance in Man (OMIM), GeneCards, and Therapeutic Target database (TTD) databases. A "drug-compound-target" network and protein-protein interaction (PPI) network were constructed and analyzed through the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database and Cytoscape software. Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed in the Database for Annotation, Visualization, and Integrated Discovery (DAVID) database. Molecular docking was performed using AutoDock Vina and PyMOL software. Results A total of 30 active components and 609 targets of Rhubarb-Coptis were screened out, and 98 common targets of DN and Rhubarb-Coptis were obtained. Quercetin, berberine, epiruberine, epautin, and moupinamide were the main active components in the treatment of DN. The STAT3, CTNNB1, PIK3R1, PIK3CA, and TP53 genes were identified as the potential 5 key targets. The GO enrichment analysis showed that these 5 key targets mainly involved in inflammation, oxidative stress, and apoptosis. KEGG enrichment analysis showed that the pathways were mainly enriched in the AGE-RAGE and HIF-1 signaling pathways. Molecular docking revealed that the 5 key targets could combine well with their corresponding active compounds. Conclusions This study expounds the therapeutic effect of Rhubarb-Coptis on DN from a holistic perspective, and provides a valuable basis for clinical application and academic research.
Collapse
Affiliation(s)
- Chunwei Wu
- Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Lei Cao
- Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Miao Liu
- Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Wenlong Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Hailong Chen
- Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Ruolin Wang
- Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Chang Liu
- Department of Integrated Chinese and Western Medicine, Jilin Cancer Hospital, Changchun, China
| | - Ze He
- Department of Endocrinology and Metabolism, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
10
|
Wang D, Bu T, Li Y, He Y, Yang F, Zou L. Pharmacological Activity, Pharmacokinetics, and Clinical Research Progress of Puerarin. Antioxidants (Basel) 2022; 11:2121. [PMID: 36358493 PMCID: PMC9686758 DOI: 10.3390/antiox11112121] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 09/01/2023] Open
Abstract
As a kind of medicine and food homologous plant, kudzu root (Pueraria lobata (Willd.) Ohwi) is called an "official medicine" in Chinese folk medicine. Puerarin is the main active component extracted from kudzu root, and its structural formula is 8-β-D-grapes pyranose-4, 7-dihydroxy isoflavone, with a white needle crystal; it is slightly soluble in water, and its aqueous solution is colorless or light yellow. Puerarin is a natural antioxidant with high health value and has a series of biological activities such as antioxidation, anti-inflammation, anti-tumor effects, immunity improvement, and cardio-cerebrovascular and nerve cell protection. In particular, for the past few years, it has also been extensively used in clinical study. This review focuses on the antioxidant activity of puerarin, the therapy of diverse types of inflammatory diseases, various new drug delivery systems of puerarin, the "structure-activity relationship" of puerarin and its derivatives, and pharmacokinetic and clinical studies, which can provide a new perspective for the puerarin-related drug research and development, clinical application, and further development and utilization.
Collapse
Affiliation(s)
- Di Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tong Bu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yangqian Li
- Asset and Laboratory Management Department, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yueyue He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fan Yang
- Academic Affairs Office, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| |
Collapse
|
11
|
Kwok MK, Leung GM, Xu L, Tse HF, Lam TH, Schooling CM. Effect of puerarin supplementation on cardiovascular disease risk factors: A randomized, double-blind, placebo-controlled, 2-way crossover trial. Biomed Pharmacother 2022; 153:113472. [DOI: 10.1016/j.biopha.2022.113472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 11/15/2022] Open
|
12
|
Shao M, Lu Y, Xiang H, Wang J, Ji G, Wu T. Application of metabolomics in the diagnosis of non-alcoholic fatty liver disease and the treatment of traditional Chinese medicine. Front Pharmacol 2022; 13:971561. [PMID: 36091827 PMCID: PMC9453477 DOI: 10.3389/fphar.2022.971561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/25/2022] [Indexed: 12/01/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease around the world, and it often coexists with insulin resistance-related diseases including obesity, diabetes, hyperlipidemia, and hypertension, which seriously threatens human health. Better prevention and treatment strategies are required to improve the impact of NAFLD. Although needle biopsy is an effective tool for diagnosing NAFLD, this method is invasive and difficult to perform. Therefore, it is very important to develop more efficient approaches for the early diagnosis of NAFLD. Traditional Chinese medicine (TCM) can play a certain role in improving symptoms and protecting target organs, and its mechanism of action needs to be further studied. Metabolomics, the study of all metabolites that is thought to be most closely associated with the patients’ characters, can provide useful clinically biomarkers that can be applied to NAFLD and may open up new methods for diagnosis. Metabolomics technology is consistent with the overall concept of TCM, and it can also be used as a potential mechanism to explain the effects of TCM by measuring biomarkers by metabolomics. Based on PubMed/MEDLINE and other databases, this paper retrieved relevant literature NAFLD and TCM intervention in NAFLD using metabolomics technology in the past 5 years were searched, and the specific metabolites associated with the development of NAFLD and the potential mechanism of Chinese medicine on improving symptoms were summarized.
Collapse
Affiliation(s)
- Mingmei Shao
- Baoshan District Hospital of Intergrated Traditional Chinese and Western Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifei Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongjiao Xiang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Junmin Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Baoshan District Hospital of Intergrated Traditional Chinese and Western Medicine, Shanghai, China
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Guang Ji, , ; Tao Wu, ,
| |
Collapse
|
13
|
Zhou J, Zhang N, Aldhahrani A, Soliman MM, Zhang L, Zhou F. Puerarin ameliorates nonalcoholic fatty liver in rats by regulating hepatic lipid accumulation, oxidative stress, and inflammation. Front Immunol 2022; 13:956688. [PMID: 35958617 PMCID: PMC9359096 DOI: 10.3389/fimmu.2022.956688] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/27/2022] [Indexed: 12/22/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become one of the public health problems globally. The occurrence of NAFLD is usually accompanied by a series of chronic metabolic diseases, with a prevalence rate is 25.24% among adults worldwide. Therefore, NAFLD seriously affects the quality of life in patients and causes a large economic burden. It has been reported that puerarin has the function of lowering the serum lipids, but due to the complexity of NAFLD, the specific mechanism of action has not been clarified. The aim of this study was to evaluate the preventive or ameliorating effects of two doses of puerarin (0.11% and 0.22% in diet) on high-fat and high-fructose diet (HFFD)-induced NAFLD in rats. The rats were fed with HFFD-mixed puerarin for 20 weeks. The results showed that puerarin ameliorated the levels of lipids in the serum and liver. Further exploration of the mechanism found that puerarin ameliorated hepatic lipid accumulation in NAFLD rats by reducing the expression of Srebf1, Chrebp, Acaca, Scd1, Fasn, Acacb, Cd36, Fatp5, Degs1, Plin2, and Apob100 and upregulating the expression of Mttp, Cpt1a, and Pnpla2. At the same time, after administration of puerarin, the levels of antioxidant markers (superoxide dismutase, glutathione peroxidase, and catalase) were significantly increased in the serum and liver, and the contents of serum and hepatic inflammatory factors (interleukin-18, interleukins-1β, and tumor necrosis factor α) were clearly decreased. In addition, puerarin could ameliorate the liver function. Overall, puerarin ameliorated HFFD-induced NAFLD by modulating liver lipid accumulation, liver function, oxidative stress, and inflammation.
Collapse
Affiliation(s)
- Jingxuan Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Nanhai Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Adil Aldhahrani
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Liebing Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Feng Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- *Correspondence: Feng Zhou,
| |
Collapse
|
14
|
Understanding of Diabetes in Tibetan, Mongolian, Miao, Dai, Uygur, and Yi Medicine and Collation of Prevention and Cure Medicines. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9308598. [PMID: 35399638 PMCID: PMC8986368 DOI: 10.1155/2022/9308598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/17/2022] [Indexed: 11/18/2022]
Abstract
Diabetes seriously endangers human health and causes a huge economic burden. With the improvement of people's living standard, the prevalence of diabetes is getting higher and higher, and age is becoming younger. It is an increasingly serious global problem. Therefore, it is imperative to find the drugs to treat diabetes. Ethnic medicine is an important part of the world's medicinal treasure house and has its own unique system. This study systematically combined the theoretical understanding of the prevention and treatment of diabetes of Tibetan, Mongolian, Miao, Dai, Uygur, and Yi people by searching the existing literature studies published until 2021, library collection resources (related ethnic monographs, medical books, standards of medicinal materials, etc.), CNKI, PubMed, and other databases and collected and sorted the relevant medicines. A total of 112 kinds of ethnic medicines for the prevention and treatment of diabetes have been discovered, including plant medicines (105 kinds), animal medicines (6 kinds), and fungal medicines (1 kind). The composition of family and genus, medicinal parts, and life forms of medicinal plants were analyzed, and the number of drugs used in the prevention and treatment of diabetes in each ethnic group was statistically analyzed. The results showed that Rosaceae was at the top of the list, and the drugs used in underground parts accounted for 33.90% of the total, and the medicinal plants were mainly herbaceous, and the Mongolians have the largest number of diabetes medicines. In addition, CNKI, PubMed, and other databases selected “medicinal materials name,” “diabetes,” and “hypoglycemia” as keywords, the top 30 medicinal materials reported in existing literature were listed, and their Chinese name, the Latin name of the original plant, family and genus, nationality used, medicinal parts, and active ingredients related to the prevention and treatment of diabetes were introduced in detail. Among the 30 medicines, Astragalus membranaceus, Pueraria lobata, and Coptis chinensis are the most commonly used. Through literature research, this study summarized the existing theories of ethnic medicine for the prevention and treatment of diabetes, collected and sorted out ethnic medicine, clarified the potential mechanism of ethnic medicine, and provided effective data compilation. Ethnic medicine has a long history of treating diabetes, and there are abundant medicinal materials, to provide a new idea and basis for treating diabetes.
Collapse
|
15
|
Zhang X, Zheng S, Li H. Protective Effect of Diosmin Against Streptozotocin-Induced Gestational Diabetes Mellitus via AGEs-RAGE Signalling Pathway. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.363.373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Puerarin Attenuates Obesity-Induced Inflammation and Dyslipidemia by Regulating Macrophages and TNF-Alpha in Obese Mice. Biomedicines 2022; 10:biomedicines10010175. [PMID: 35052852 PMCID: PMC8773888 DOI: 10.3390/biomedicines10010175] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 01/27/2023] Open
Abstract
Obesity causes low-grade inflammation that results in dyslipidemia and insulin resistance. We evaluated the effect of puerarin on obesity and metabolic complications both in silico and in vivo and investigated the underlying immunological mechanisms. Twenty C57BL/6 mice were divided into four groups: normal chow, control (HFD), HFD + puerarin (PUE) 200 mg/kg, and HFD + atorvastatin (ATO) 10 mg/kg groups. We examined bodyweight, oral glucose tolerance test, serum insulin, oral fat tolerance test, serum lipids, and adipocyte size. We also analyzed the percentage of total, M1, and M2 adipose tissue macrophages (ATMs) and the expression of F4/80, tumor necrosis factor-α (TNF-α), C-C motif chemokine ligand 2 (CCL2), CCL4, CCL5, and C-X-C motif chemokine receptor 4. In silico, we identified the treatment-targeted genes of puerarin and simulated molecular docking with puerarin and TNF, M1, and M2 macrophages based on functionally enriched pathways. Puerarin did not significantly change bodyweight but significantly improved fat pad weight, adipocyte size, fat area in the liver, free fatty acids, triglycerides, total cholesterol, and HDL-cholesterol in vivo. In addition, puerarin significantly decreased the ATM population and TNF-α expression. Therefore, puerarin is a potential anti-obesity treatment based on its anti-inflammatory effects in adipose tissue.
Collapse
|
17
|
Zhang L, Liu L, Wang M. Effects of puerarin on chronic inflammation: Focus on the heart, brain, and arteries. Aging Med (Milton) 2021; 4:317-324. [PMID: 34964013 PMCID: PMC8711227 DOI: 10.1002/agm2.12189] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/05/2021] [Accepted: 12/05/2021] [Indexed: 11/23/2022] Open
Abstract
Age-associated increases in physical and mental stress, known as allostatic load, could lead to a chronic low-grade inflammation in the heart, brain, and arteries. This low-grade inflammation potentially contributes to adverse structural and functional remodeling, such as intimal medial thickening, endothelial dysfunction, arterial stiffening, cardiac hypertrophy and ischemia, and cognitive decline. These cellular and tissue remodeling is the fertile soil for the development of age-associated structural and functional disorders in the cardiovascular and cerebrovascular systems in the pathogenesis of obesity, type II diabetes, hypertension, atherosclerosis, heart dysfunction, and cognitive decline. Growing evidence indicates that puerarin, a polyphenol, extracted from Puerara Labota, efficiently alleviates the initiation and progression of obesity, type II diabetes, hypertension, atherosclerosis, cardiac ischemia, cardiac arrythmia, cardiac hypertrophy, ischemic stroke, and cognition decline via suppression of oxidative stress and inflammation. This mini review focuses on recent advances in the effects of puerarin on the oxidative and inflammatory molecular, cellular, tissue events in the heart, brain, and arteries.
Collapse
Affiliation(s)
- Li Zhang
- Department of CardiologyThe First Affiliated Hospital of Guangdong Pharmaceutical UniversityGuangzhouChina
| | - Lisheng Liu
- National Centre for Cardiovascular DiseaseThe Beijing Hypertension League InstituteBeijingChina
| | - Mingyi Wang
- Laboratory of Cardiovascular ScienceIntramural Research ProgramNational Institute on AgingNational Institutes of HealthBRCBaltimoreMarylandUSA
| |
Collapse
|
18
|
Tang Z, Luo T, Huang P, Luo M, Zhu J, Wang X, Lin Q, He Z, Gao P, Liu S. Nuciferine administration in C57BL/6J mice with gestational diabetes mellitus induced by a high-fat diet: the improvement of glycolipid disorders and intestinal dysbacteriosis. Food Funct 2021; 12:11174-11189. [PMID: 34636388 DOI: 10.1039/d1fo02714j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gestational diabetes mellitus (GDM) has become a global health concern as the main result of its contribution to the high risk of adverse pregnancy outcomes for both the mother and fetus. However, there is absence of an ideal and widely acceptable therapy. Nuciferine has previously been shown to exert beneficial effects in various metabolic diseases. This study aimed to investigate the potential therapeutic efficacy of nuciferine on GDM in C57BL/6J mice induced by a high-fat diet (HFD), which has not been reported before. The results showed that nuciferine improved glucose intolerance, reduced lipid accumulation and increased the glycogen content within hepatocytes, and decreased placental lipid and glycogen deposition, thus ameliorating glycolipid disorders in GDM mice. Additionally, nuciferine protected against histological degeneration of metabolism-associated critical organs including the liver, pancreas, and abdominal adipose tissue. Most interestingly, nuciferine could correct intestinal dysbacteriosis in GDM mice, as evidenced by the elevation of probiotic abundances consisting of Akkermansia, Lactobacillus, and Bifidobacterium, which were all negatively correlated with serum and liver triglyceride (TG) and positively associated with hepatic glycogen, and the reduction of conditional pathogen abundances including Escherichia-Shigella and Staphylococcus, and the latter was positively related to serum and liver TG and negatively linked with liver glycogen. Collectively, these findings suggest that nuciferine as a food-borne strategy played important roles in the management of GDM.
Collapse
Affiliation(s)
- Zhuohong Tang
- Department of Pharmacy, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan 528000, China. .,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China. .,Foshan Maternal and Child Health Research Institute, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan 528000, China
| | - Ting Luo
- Nephrology Division, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Peng Huang
- Department of Pharmacy, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan 528000, China.
| | - Mi Luo
- Department of Pharmacy, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan 528000, China.
| | - Jianghua Zhu
- Department of Pharmacy, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan 528000, China.
| | - Xing Wang
- Department of Pharmacy, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan 528000, China.
| | - Qingmei Lin
- Department of Pharmacy, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan 528000, China.
| | - Zihao He
- Department of Pharmacy, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pingming Gao
- Department of Pharmacy, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan 528000, China.
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
19
|
Othman MS, Khaled AM, Al-Bagawi AH, Fareid MA, Ghany RA, Habotta OA, Abdel Moneim AE. Hepatorenal protective efficacy of flavonoids from Ocimum basilicum extract in diabetic albino rats: A focus on hypoglycemic, antioxidant, anti-inflammatory and anti-apoptotic activities. Biomed Pharmacother 2021; 144:112287. [PMID: 34649220 DOI: 10.1016/j.biopha.2021.112287] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/18/2021] [Accepted: 10/05/2021] [Indexed: 02/09/2023] Open
Abstract
Plant derived phytochemical therapy is a bright candidate for treatment of diabetes and its associated complications. Ocimum baslicum is used as an anti-diabetic traditional medicine. Hence, the present study investigated the effect of Hail Ocimum extract (HOE) and its total flavonoids (HOETF) against hepatorenal damage in experimental diabetes induced by high-fat diet (HFD) and injection of streptozotocin (STZ) in rats. Diabetic animals were co-treated daily with HOE, HOETF or metformin (MET) as a standard anti-diabetic drug for four weeks. Compared to controls, HFD/STZ-treatment lead to significant increases in fasting blood glucose, insulin and HOMA-IR levels. Furthermore, diabetic rats had elevated hepatic (ALT and ALP) and kidney functions (urea and creatinine) biomarkers together with disturbed lipid profile and decreased PPAR-γ gene expression. Higher levels of hepatic and renal LPO and NO paralleled with lower levels of GSH and activities of antioxidant enzymes (SOD, CAT, GPx and GR) after HFD/STZ treatment. Additionally, noteworthy inflammatory and apoptotic responses were evident in both organs of diabetic rats as witnessed by augmented levels of TNF-α, IL-1b and Bax levels with declined levels of Bcl-2. Moreover, histological examination of hepatic, renal and pancreatic tissues validated the biochemical findings. On contrary, co-treatment of diabetic animals with HOE or HOETF could decrease glucose and insulin levels together with improvement of lipid markers and alleviation of hepatorenal dysfunction, oxidative injury, inflammatory and apoptotic events. Conclusively, HOE or HOETF could be a promising complementary therapeutic option for the management of diabetic hepatorenal complication owing to their antioxidant, anti-inflammatory; anti-apoptotic properties.
Collapse
Affiliation(s)
- Mohamed S Othman
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha'il, Hail, Saudi Arabia; Faculty of Biotechnology, October University for Modern Science and Arts (MSA), Giza, Egypt.
| | - Azza M Khaled
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha'il, Hail, Saudi Arabia; National Institute of Oceanography and Fisheries, Cairo, Egypt
| | - Amal H Al-Bagawi
- Chemistry Department, Faculty of Science, University of Ha'il, Hail, Saudi Arabia
| | - Mohamed A Fareid
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha'il, Hail, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Reda A Ghany
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha'il, Hail, Saudi Arabia; Chemistry Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed E Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt.
| |
Collapse
|
20
|
Li Y, Xie H, Zhang H. Protective effect of sinomenine against inflammation and oxidative stress in gestational diabetes mellitus in female rats via TLR4/MyD88/NF-κB signaling pathway. J Food Biochem 2021; 45:e13952. [PMID: 34636046 DOI: 10.1111/jfbc.13952] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/08/2021] [Accepted: 08/15/2021] [Indexed: 01/15/2023]
Abstract
Gestational diabetes mellitus (GDM) is a dangerous complication of pregnancy which is induced via dysfunction in glucose metabolism during pregnancy. Sinomenine (SM) has already proved an antidiabetic effect against streptozotocin (STZ)-induced diabetes mellitus (DM) in rats. In this protocol, we examined the protective effect of SM against STZ-induced GDM in rats. Wistar rats were divided into three groups and STZ (40 mg/kg) was used to induce GDM. At the end of the experimental protocol, bodyweight, pub weight, and survival rate were estimated. Blood glucose level (BGL), fasting insulin (FINS), free fatty acid (FFA), Hemoglobin A1C (HbA1c), and C-peptide were measured. Lipid, antioxidant, inflammatory cytokines, and inflammatory mediators were also determined. RT-PCR was used for estimation of the role of TLR4/MyD88/NF-κB signaling pathway. SM treatment significantly (p < .001) reduced BGL, hepatic glycogen, and improved the levels of FINS, C-peptide, FFA, and HbA1c. SM significantly (p < .001) suppressed the levels of total cholesterol (TC), low-density lipoprotein (LDL), triglycerides (TG), coronary artery index (CAI), very low-density lipoprotein (VLDL), atherogenic index (AI), and boosted high-density lipoprotein (HDL) levels. SM significantly (p < .001) decreased the lipid peroxidation (LPO) level and enhanced glutathione peroxidase (GPx), total antioxidant capacity (TAC), glutathione S-transferase (GST), superoxide dismutase (SOD), respectively. It reduced the levels of inflammatory cytokines including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and inflammatory mediators viz., nuclear kappa B factors (NF-κB). SM significantly (p < .001) reduced the mRNA expression of Myd88, NLRP3, TLR4, and NF-κB, which were boosted in the GDM group rats. These findings suggest that SM could be a probable drug to be used for treating GDM via inhibition of the TLR4 signaling pathway. PRACTICAL APPLICATIONS: It is well known that gestational diabetes mellitus (GDM) is a dangerous health problem during the pregnancy. SM reduced the glucose level; boosted the level of fasting insulin (FINS) and bodyweight. SM significantly improved the number of pubs and their survival rates. SM suppressed oxidative stress and inflammation via activation of TLR4/MyD88/NF-κB signaling pathway. According to our research, SM can be used as a preventive drug in the treatment of GDM during pregnancy.
Collapse
Affiliation(s)
- Yanbing Li
- Department of obstetrics, The Third Hospital of Jinan, Jinan, China
| | - Hongqin Xie
- Department of obstetrics, The Third Hospital of Jinan, Jinan, China
| | - Huiya Zhang
- Department of Obstetrics and Gynecology, Xian XD Group Hospital, Xi'an, China
| |
Collapse
|
21
|
Xuemei L, Qiu S, Chen G, Liu M. Myrtenol alleviates oxidative stress and inflammation in diabetic pregnant rats via TLR4/MyD88/NF-κB signaling pathway. J Biochem Mol Toxicol 2021; 35:e22904. [PMID: 34477272 DOI: 10.1002/jbt.22904] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/30/2021] [Accepted: 08/20/2021] [Indexed: 01/17/2023]
Abstract
Gestational diabetes mellitus (GDM) is a special kind of diabetes that arises only during pregnancy. A woman with GDM has a higher risk of developing type-2 diabetes and other metabolic diseases. In this exploration, we intended to scrutinize the therapeutic actions of Myrtenol against the streptozotocin (STZ)-provoked GDM in rats. GDM was provoked in the pregnant rats via injecting the 1% of STZ (25 mg/kg) and then treated with the 50 mg/kg of myrtenol. The glucose level and bodyweight of animals were noted. The lipid profile, that is, total cholesterol, triglycerides, low-density lipoprotein, and high-density lipoprotein (HDL) was determined by respective kits. The lipid peroxidation and antioxidants status were examined using assay kits. The status of proinflammatory markers was investigated by assay kits. The messenger RNA (mRNA) expressions of TLR4/MyD88/NF-κB signaling proteins were studied by reverse transcription polymerase chain reaction analysis. The hepatic and pancreatic tissues were examined microscopically. Myrtenol treatment notably decreased the status of blood glucose and lipid profile and improved the HDL in the GDM rats. The status of lipid peroxidation and inflammatory markers were substantially reduced by the myrtenol and it enhanced the antioxidants status of GDM animals. Myrtenol treatment remarkably downregulated the mRNA expressions of TLR4/MyD88/NF-κB signaling proteins. The histological findings also proved the therapeutic actions of myrtenol. Altogether, the findings of this investigation unveiled the therapeutic actions of the myrtenol against the STZ-provoked GDM in rats. Myrtenol could be a promising therapeutic agent to treat GDM in the future.
Collapse
Affiliation(s)
- Liu Xuemei
- Department of Gynaecology and Obstetrics, Jinan City People's Hospital, Jinan, China
| | - Shengjie Qiu
- Department of Clinical Laboratory, People's Hospital of Jiulongpo District, Chongqing, China
| | - Guiying Chen
- Department of Obstetrics and Gynecology, Tai'an Central Hospital, Tai'an, China
| | - Mingyuan Liu
- Department of Obstetrics, Jinan Maternal and Child Health Care Hospital, Jinan, China
| |
Collapse
|
22
|
Barro L, Hsiao JT, Chen CY, Chang YL, Hsieh MF. Cytoprotective Effect of Liposomal Puerarin on High Glucose-Induced Injury in Rat Mesangial Cells. Antioxidants (Basel) 2021; 10:antiox10081177. [PMID: 34439425 PMCID: PMC8388880 DOI: 10.3390/antiox10081177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022] Open
Abstract
In diabetic patients, high glucose and high oxidative states activate gene expression of transforming growth factor beta (TGF-β) and further translocate Smad proteins into the nucleus of renal cells. This signal pathway is characterized as the onset of diabetic nephropathy. Puerarin is an active ingredient extracted from Pueraria lobata as an anti-hyperglycemic and anti-oxidative agent. However, the poor oral availability and aqueous solubility limit its pharmaceutical applications. The present paper reports the liposomal puerarin and its protective effect on high glucose-injured rat mesangial cells (RMCs). The purity of puerarin extracted from the root of plant Pueraria lobata was 83.4% as determined by the high-performance liquid chromatography (HPLC) method. The liposomal puerarin was fabricated by membrane hydration followed by ultrasound dispersion and membrane extrusion (pore size of 200 nm). The fabricated liposomes were examined for the loading efficiency and contents of puerarin, the particle characterizations, the radical scavenge and the protective effect in rat mesangial cells, respectively. When the liposomes were subjected to 20 times of membrane extrusion, the particle size of liposomal puerarin can be reduced to less than 200 nm. When liposomal puerarin in RMCs in high glucose concentration (33 mM) was administered, the over-expression of TGF-β and the nuclear translocation of Smad 2/3 proteins was both inhibited. Therefore, this study successfully prepared the liposomal puerarin and showed the cytoprotective effect in RMCs under high glucose condition.
Collapse
Affiliation(s)
- Lassina Barro
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan 320, Taiwan; (L.B.); (J.-T.H.); (C.-Y.C.); (Y.-L.C.)
| | - Jui-Ting Hsiao
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan 320, Taiwan; (L.B.); (J.-T.H.); (C.-Y.C.); (Y.-L.C.)
| | - Chu-Yin Chen
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan 320, Taiwan; (L.B.); (J.-T.H.); (C.-Y.C.); (Y.-L.C.)
| | - Yu-Lung Chang
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan 320, Taiwan; (L.B.); (J.-T.H.); (C.-Y.C.); (Y.-L.C.)
- Department of Urology, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 320, Taiwan
| | - Ming-Fa Hsieh
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan 320, Taiwan; (L.B.); (J.-T.H.); (C.-Y.C.); (Y.-L.C.)
- Correspondence: ; Tel.: +886-3265-4550
| |
Collapse
|
23
|
Studies of the Anti-Diabetic Mechanism of Pueraria lobata Based on Metabolomics and Network Pharmacology. Processes (Basel) 2021. [DOI: 10.3390/pr9071245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Diabetes mellitus (DM), as a chronic disease caused by insulin deficiency or using obstacles, is gradually becoming a principal worldwide health problem. Pueraria lobata is one of the traditional Chinese medicinal and edible plants, playing roles in improving the cardiovascular system, lowering blood sugar, anti-inflammation, anti-oxidation, and so on. Studies on the hypoglycemic effects of Pueraria lobata were also frequently reported. To determine the active ingredients and related targets of Pueraria lobata for DM, 256 metabolites were identified by LC/MS non targeted metabonomics, and 19 active ingredients interacting with 51 DM-related targets were screened. The results showed that puerarin, quercetin, genistein, daidzein, and other active ingredients in Pueraria lobata could participate in the AGE-RAGE signaling pathway, insulin resistance, HIF-1 signaling pathway, FoxO signaling pathway, and MAPK signaling pathway by acting on VEGFA, INS, INSR, IL-6, TNF and AKT1, and may regulate type 2 diabetes, inflammation, atherosis and diabetes complications, such as diabetic retinopathy, diabetic nephropathy, and diabetic cardiomyopathy.
Collapse
|
24
|
Zheng Y, Ding Q, Wei Y, Gou X, Tian J, Li M, Tong X. Effect of traditional Chinese medicine on gut microbiota in adults with type 2 diabetes: A systematic review and meta-analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 88:153455. [PMID: 33478831 DOI: 10.1016/j.phymed.2020.153455] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/30/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Despite advances in research on type 2 diabetes mellitus (T2DM) with the development of science and technology, the pathogenesis and treatment response of T2DM remain unclear. Recent studies have revealed a significant role of the microbiomein the development of T2DM, and studies have found that the gut microbiota may explain the therapeutic effect of traditional Chinese medicine (TCM), a primary branch of alternative and complementary medicine, in the treatment of T2DM. The aim of this study was to systematically review all randomized controlled trials (RCTs) on TCM for gut microbiota to assess the effectiveness and safety of TCM in T2DM patients. METHODS All RCTs investigating the effects of TCM interventions on modulating gut microbiota and improving glucose metabolism in the treatment of T2DM adults were included. Meta-analyses were conducted when sufficient data were available, other results were reported narratively. The study protocol was pre-specified, documented, and published in PROSPERO (registration no. CRD42020188043). RESULTS Five studies met the eligibility criteria ofthe systematic review. All five studies reported the effects of TCM interventions on the gut microbiota modulation and blood glucose control. There were statistically significant improvements in HbA1c (mean difference [MD]: -0.69%; [95% CI -0.24, -0.14]; p = 0.01, I2 = 86%), fasting blood glucose (MD: -0.87 mmol/l; [95% CI -1.26, -0.49]; p < 0.00001, I2 = 75%) and 2-h postprandial blood glucose(MD: -0.83mmol/l; [95% CI: -1.01, -0.65]; p < 0.00001, I2 = 0%). In addition, there were also statistically significant improvements in homeostasis model assessment of insulin resistance (HOMA-IR) (standardized mean difference [SMD]: -0.99, [95% CI -1.25 to -0.73]; p < 0.00001, I2 = 0%) and homeostasis model assessment of β-cell function (HOMA-β) (SMD: 0.54, [95% CI 0.21 to 0.87]; p = 0.001, I2 = 0%).There was a significant change in the relative abundance of bacteria in the genera Bacteroides (standardized mean difference [SMD] 0.87%; [95% CI 0.58, 1.16], however, the change in Enterococcus abundance was not statistically significant (SMD: -1.71%; [95% CI: -3.64, 0.23]; p = 0.08) when comparing TCM supplementaltreatment with comparator groups. Other changes in the gut microbiota, including changes in the relative abundances of some probiotics and opportunistic pathogens at various taxon levels, and changes in diversity matrices (α and β), were significant by narrative analysis. However, insufficient evidences were found to support that TCM intervention had an effect on inflammation. CONCLUSION TCM had the effect of modulating gut microbiota and improving glucose metabolisms in T2DM patients. Although the results of the included studies are encouraging, further well-conducted studies on TCM interventions targeting the gut microbiota are needed.
Collapse
Affiliation(s)
- Yujiao Zheng
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Qiyou Ding
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Wei
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaowen Gou
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaxing Tian
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Li
- Molecular Biology Laboratory, Guanganmen Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China.
| | - Xiaolin Tong
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|