1
|
Heredia L, Murcia-Mejía M, Torrente M. Dataset on the quality of life and neurocognitive effects of prophylactic cranial irradiation, with and without hippocampal avoidance, in small-cell lung cancer patients. Data Brief 2025; 58:111197. [PMID: 39758519 PMCID: PMC11699478 DOI: 10.1016/j.dib.2024.111197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/28/2024] [Indexed: 01/07/2025] Open
Abstract
This article presents data collected from 15 patients diagnosed with small-cell lung cancer who received prophylactic cranial irradiation (PCI), with or without hippocampal avoidance. Patient assessments included two specific questionnaires related to quality of life and an extensive neurocognitive evaluation. The evaluation covered various domains: verbal short-term memory, working memory, visuoconstructive abilities, visuospatial memory, semantic memory, verbal fluency, cognitive flexibility, inhibitory control, selective and divided attention, and processing speed. Assessments were conducted prior to PCI and at 3, 6, 12, and 24 months post-treatment. Despite the limited sample size due to challenges in patient recruitment and comprehensive follow-up, the data presented may help to identify the neuropsychological domains most affected in this population and can be useful in the design of future larger-scale studies. At present, there is limited information regarding the neuropsychological profiles of these patients and most studies focus on only one or two neuropsychological domains, typically emphasizing working memory assessments.
Collapse
Affiliation(s)
- Luis Heredia
- Rovira i Virgili University, Department of Psychology, Research Center for Behavior Assessment (CRAMC), Tarragona, Spain
- Rovira i Virgili University, Center for Environmental, Food and Toxicological Technology (TECNATOX), Laboratory of Toxicology and Environmental Health (LTSM), School of Medicine, Reus, Spain
| | - Mauricio Murcia-Mejía
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Reus, Tarragona, Spain
| | - Margarita Torrente
- Rovira i Virgili University, Department of Psychology, Research Center for Behavior Assessment (CRAMC), Tarragona, Spain
- Rovira i Virgili University, Center for Environmental, Food and Toxicological Technology (TECNATOX), Laboratory of Toxicology and Environmental Health (LTSM), School of Medicine, Reus, Spain
| |
Collapse
|
2
|
Winter SF, Gardner MM, Karschnia P, Vaios EJ, Grassberger C, Bussière MR, Nikolic K, Pongpitakmetha T, Ehret F, Kaul D, Boehmerle W, Endres M, Shih HA, Parsons MW, Dietrich J. Unique brain injury patterns after proton vs photon radiotherapy for WHO grade 2-3 gliomas. Oncologist 2024; 29:e1748-e1761. [PMID: 39126664 PMCID: PMC11630789 DOI: 10.1093/oncolo/oyae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/26/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Central nervous system (CNS) injury following brain-directed radiotherapy remains a major challenge. Proton radiotherapy (PRT) minimizes radiation to healthy brain, potentially limiting sequelae. We characterized CNS radiotoxicity, including radiation-induced leukoencephalopathy (RIL), brain tissue necrosis (TN), and cerebral microbleeds (CMB), in glioma patients treated with PRT or photons (XRT). PATIENTS AND METHODS Thirty-four patients (19 male; median age 39.6 years) with WHO grade 2-3 gliomas treated with partial cranial radiotherapy (XRT [n = 17] vs PRT[n = 17]) were identified and matched by demographic/clinical criteria. Radiotoxicity was assessed longitudinally for 3 years post-radiotherapy via serial analysis of T2/FLAIR- (for RIL), contrast-enhanced T1- (for TN), and susceptibility (for CMB)-weighted MRI sequences. RIL was rated at whole-brain and hemispheric levels using a novel Fazekas scale-informed scoring system. RESULTS The scoring system proved reliable (ICC > 0.85). Both groups developed moderate-to-severe RIL (62%[XRT]; 71%[PRT]) within 3 years; however, XRT was associated with persistent RIL increases in the contralesional hemisphere, whereas contralesional hemispheric RIL plateaued with PRT at 1-year post-radiotherapy (t = 2.180; P = .037). TN rates were greater with PRT (6%[XRT] vs 18%[PRT]; P = ns). CMB prevalence (76%[XRT]; 71%[PRT]) and burden (mean #CMB: 4.0[XRT]; 4.2[PRT]) were similar; however, XRT correlated with greater contralesional hemispheric CMB burden (27%[XRT]; 17%[PRT]; X2 = 4.986; P = .026), whereas PRT-specific CMB clustered at the radiation field margin (X2 = 14.7; P = .002). CONCLUSIONS CNS radiotoxicity is common and progressive in glioma patients. Injury patterns suggest radiation modality-specificity as RIL, TN, and CMB exhibit unique spatiotemporal differences following XRT vs PRT, likely reflecting underlying dosimetric and radiobiological differences. Familiarity with such injury patterns is essential to improve patient management. Prospective studies are needed to validate these findings and assess their impacts on neurocognitive function.
Collapse
Affiliation(s)
- Sebastian F Winter
- Division of Neuro-Oncology, Mass General Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
- Department of Neurology with Experimental Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, 10117 Berlin, Germany
| | - Melissa M Gardner
- Division of Neuro-Oncology, Mass General Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
- Department of Psychiatry, Psychology Assessment Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Philipp Karschnia
- Division of Neuro-Oncology, Mass General Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
- Department of Neurosurgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Eugene J Vaios
- Department of Radiation Oncology, Duke Cancer Institute, Durham, NC 27710, United States
| | - Clemens Grassberger
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Marc R Bussière
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Katarina Nikolic
- Department of Neurology, Universitätsklinikum St. Pölten, 3100 Sankt Pölten, Austria
| | - Thanakit Pongpitakmetha
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, 10330 Bangkok, Thailand
- Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, 10330 Bangkok, Thailand
| | - Felix Ehret
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, 13353 Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, a partnership between DKFZ and Charité – Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - David Kaul
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, 13353 Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, a partnership between DKFZ and Charité – Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Wolfgang Boehmerle
- Department of Neurology with Experimental Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Matthias Endres
- Department of Neurology with Experimental Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Center for Stroke Research Berlin, 10117 Berlin, Germany
- ExcellenceCluster NeuroCure, 10117 Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Partner Site Berlin, 10117 Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, 10117 Berlin, Germany
- German Centre for Mental Health (DZPH), Partner Site Berlin, 10117 Berlin, Germany
| | - Helen A Shih
- Division of Neuro-Oncology, Mass General Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Michael W Parsons
- Division of Neuro-Oncology, Mass General Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
- Department of Psychiatry, Psychology Assessment Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Jorg Dietrich
- Division of Neuro-Oncology, Mass General Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| |
Collapse
|
3
|
Chen M, Sun Z, Pan J, Xu Y, Wang Y, Chen M, Hu X. The impact of Prophylactic cranial irradiation on the prognosis of patients with limited-stage small cell lung cancer in the MRI era. Radiat Oncol 2024; 19:162. [PMID: 39543706 PMCID: PMC11566379 DOI: 10.1186/s13014-024-02557-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024] Open
Abstract
PURPOSES To evaluate the impact of prophylactic cranial irradiation (PCI) on the prognosis of patients with limited-stage small cell lung cancer (SCLC) in the era of MRI surveillance. METHODS Limited-stage SCLC patients with complete remission (CR) or partial remission (PR) of tumor after definitive chemo-radiotherapy (CRT) were retrospectively analyzed. Survival data were calculated by Kaplan-Meier methods, Cox proportional hazards model was applied for multivariate prognostic analysis. RESULTS Between June 2002 and January 2017, 620 patients with limited-stage SCLC were accrued in our study. After CRT, 228 (36.8%) patients achieved CR, of whom, 29 patients did not receive PCI, among the rest 199 patients, 172 (86.4%) received brain MRI to exclude brain metastasis (BM) before PCI. With a median follow-up time of 25.6 months, the cumulative BM rate was 17.1% and 37.9% in patients who received or did not receive PCI (P = 0.011). The median survival time was 30.2 months and 30.5 months, respectively and the 1 -, 3 -, 5-year survival rates were 93.7%, 42.9%, 35.8% and 83.4%, 46.5%, 41.9%, respectively (P = 0.98). Multivariate analysis indicated that baseline KPS ≥ 90 was a favorable independent prognostic factor for OS in CR patients (HR: 0.33, 95% CI: 0.23-0.46, P = 0.000). After CRT, 392 (63.2%) patients achieved PR, 53 cases did not receive PCI and 310 (91.4%) of the remaining 339 patients received brain MRI before PCI. With a median follow-up time of 15.5 months, the cumulative brain metastasis rate was 12.7% and 46.2% respectively (P = 0.000). The median survival time was 25.7 months and 18.6 months, respectively. The 1 -, 3 -, and 5-year survival rates were 87.6%, 40.2%, 29.2% and 75.7%, 16.7%, 10.3% (P = 0.000). Baseline KPS ≥ 90 (HR: 0.32, 95% CI: 0.25-0.41, P = 0.000) and PCI (HR: 0.57, 95% CI: 0.41-0.79, P = 0.001) were favorable prognostic factors for OS in PR patients. CONCLUSIONS In this study, PCI significantly reduced the incidence of BM in patients with limited-stage SCLC who were evaluated as CR and PR after CRT, but it has no significantly positive impact on overall survival in CR patients. Further prospective randomized studies were warranted.
Collapse
Affiliation(s)
- Mengyuan Chen
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, P. R. China
| | - Zehua Sun
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, P. R. China
| | - Jingcong Pan
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, P. R. China
| | - Yujin Xu
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, P. R. China
| | - Yuezhen Wang
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, P. R. China
| | - Ming Chen
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P. R. China.
- United Laboratory of Frontier Radiotherapy Technology of Sun Yat-Sen University & Chinese Academy of Sciences Ion Medical Technology Co, Ltd, Guangzhou, P. R. China.
| | - Xiao Hu
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, P. R. China.
| |
Collapse
|
4
|
Winter SF, Vaios EJ, Shih HA, Grassberger C, Parsons MW, Gardner MM, Ehret F, Kaul D, Boehmerle W, Endres M, Dietrich J. Mitigating Radiotoxicity in the Central Nervous System: Role of Proton Therapy. Curr Treat Options Oncol 2023; 24:1524-1549. [PMID: 37728819 DOI: 10.1007/s11864-023-01131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/21/2023]
Abstract
OPINION STATEMENT Central nervous system (CNS) radiotoxicity remains a challenge in neuro-oncology. Dose distribution advantages of protons over photons have prompted increased use of brain-directed proton therapy. While well-recognized among pediatric populations, the benefit of proton therapy among adults with CNS malignancies remains controversial. We herein discuss the role of protons in mitigating late CNS radiotoxicities in adult patients. Despite limited clinical trials, evidence suggests toxicity profile advantages of protons over conventional radiotherapy, including retention of neurocognitive function and brain volume. Modelling studies predict superior dose conformality of protons versus state-of-the-art photon techniques reduces late radiogenic vasculopathies, endocrinopathies, and malignancies. Conversely, potentially higher brain tissue necrosis rates following proton therapy highlight a need to resolve uncertainties surrounding the impact of variable biological effectiveness of protons on dose distribution. Clinical trials comparing best photon and particle-based therapy are underway to establish whether protons substantially improve long-term treatment-related outcomes in adults with CNS malignancies.
Collapse
Affiliation(s)
- Sebastian F Winter
- Department of Neurology and MGH Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany.
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, 10117, Berlin, Germany.
| | - Eugene J Vaios
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Helen A Shih
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Clemens Grassberger
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael W Parsons
- Department of Psychiatry, Psychology Assessment Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Melissa M Gardner
- Department of Psychiatry, Psychology Assessment Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Felix Ehret
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, 10117, Berlin, Germany
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Kaul
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfgang Boehmerle
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - Matthias Endres
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
- Center for Stroke Research Berlin, Berlin, Germany
- ExcellenceCluster NeuroCure, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), partner site Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Jorg Dietrich
- Department of Neurology and MGH Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Song ZH, Liu J, Wang XF, Simó R, Zhang C, Zhou JB. Impact of ectopic fat on brain structure and cognitive function:A systematic review and meta-analysis from observational studies. Front Neuroendocrinol 2023:101082. [PMID: 37414372 DOI: 10.1016/j.yfrne.2023.101082] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Ectopic fat, defined as a specific organ or compartment with the accumulation of fat tissue surrounding organs, is highly associated with obesity which has been identified as a risk factor for cognitive impairment and dementia. However, the relationship between ectopic fat and changes in brain structure or cognition is yet to be elucidated. Here, we investigated the effects of ectopic fat on brain structure and cognitive function via systemic review and meta-analysis. A total of 22 studies were included, encompassing 1,003,593 participants-obtained from electronic databases up to July 9, 2022. We found ectopic that fat was associated with decreased total brain volume and increased lateral ventricle volume. In addition, ectopic was associated with decreased cognitive scores and negatively correlated with cognitive function. More specifically, dementia development was correlated with increased levels of visceral fat. Overall, our data suggest that increased ectopic fat is associated with prominent structural changes in the brain and cognitive decline, an effect driven mainly by increases in visceral fat, while subcutaneous fat may be protective. Our results suggest that patients with increased visceral fat are at risk of developing cognitive impairment and, therefore, represent a subset of population in whom appropriate and timely preventive measures could be implemented.
Collapse
Affiliation(s)
- Zhi-Hui Song
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jing Liu
- Department of Pharmacy, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, People's Republic of China
| | - Xiao-Feng Wang
- Department of Clinical Pharmacy, Xilingol Mongolian Hospital, Xilinhot, Inner Mongolia Autonomous Region, People's Republic of China
| | - Rafael Simó
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM). Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Endocrinology and Nutrition Department. Hospital Universitari Vall d'Hebron. Diabetes and Metabolism Research Unit, Vall d'Hebron Institut de Recerca (VHIR). Universitat Autònoma de Barcelona. Passeig de la Vall d'Hebron, 119. 08035 Barcelona, Spain
| | - Chao Zhang
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, People's Republic of China.
| | - Jian-Bo Zhou
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, People's Republic of China.
| |
Collapse
|
6
|
Li B, Yabluchanskiy A, Tarantini S, Allu SR, Şencan-Eğilmez I, Leng J, Alfadhel MAH, Porter JE, Fu B, Ran C, Erdener SE, Boas DA, Vinogradov SA, Sonntag WE, Csiszar A, Ungvari Z, Sakadžić S. Measurements of cerebral microvascular blood flow, oxygenation, and morphology in a mouse model of whole-brain irradiation-induced cognitive impairment by two-photon microscopy and optical coherence tomography: evidence for microvascular injury in the cerebral white matter. GeroScience 2023; 45:1491-1510. [PMID: 36792820 PMCID: PMC10400746 DOI: 10.1007/s11357-023-00735-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/17/2023] [Indexed: 02/17/2023] Open
Abstract
Whole-brain irradiation (WBI, also known as whole-brain radiation therapy) is a mainstay treatment modality for patients with multiple brain metastases. It is also used as a prophylactic treatment for microscopic tumors that cannot be detected by magnetic resonance imaging. WBI induces a progressive cognitive decline in ~ 50% of the patients surviving over 6 months, significantly compromising the quality of life. There is increasing preclinical evidence that radiation-induced injury to the cerebral microvasculature and accelerated neurovascular senescence plays a central role in this side effect of WBI. To better understand this side effect, male C57BL/6 mice were first subjected to a clinically relevant protocol of fractionated WBI (5 Gy, two doses per week, for 4 weeks). Nine months post the WBI treatment, we applied two-photon microscopy and Doppler optical coherence tomography to measure capillary red-blood-cell (RBC) flux, capillary morphology, and microvascular oxygen partial pressure (PO2) in the cerebral somatosensory cortex in the awake, head-restrained, WPI-treated mice and their age-matched controls, through a cover-glass-sealed chronic cranial window. Thanks to the extended penetration depth with the fluorophore - Alexa680, measurements of capillary blood flow properties (e.g., RBC flux, speed, and linear density) in the cerebral subcortical white matter were enabled. We found that the WBI-treated mice exhibited a significantly decreased capillary RBC flux in the white matter. WBI also caused a significant reduction in capillary diameter, as well as a large (although insignificant) reduction in segment density at the deeper cortical layers (e.g., 600-700 μm), while the other morphological properties (e.g., segment length and tortuosity) were not obviously affected. In addition, we found that PO2 measured in the arterioles and venules, as well as the calculated oxygen saturation and oxygen extraction fraction, were not obviously affected by WBI. Lastly, WBI was associated with a significant increase in the erythrocyte-associated transients of PO2, while the changes of other cerebral capillary PO2 properties (e.g., capillary mean-PO2, RBC-PO2, and InterRBC-PO2) were not significant. Collectively, our findings support the notion that WBI results in persistent cerebral white matter microvascular impairment, which likely contributes to the WBI-induced brain injury and cognitive decline. Further studies are warranted to assess the WBI-induced changes in brain tissue oxygenation and malfunction of the white matter microvasculature as well.
Collapse
Affiliation(s)
- Baoqiang Li
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, 1083, Hungary
| | - Srinivasa Rao Allu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ikbal Şencan-Eğilmez
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
- Biophotonics Research Center, Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ji Leng
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Mohammed Ali H Alfadhel
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Jason E Porter
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Buyin Fu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Sefik Evren Erdener
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - David A Boas
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - William E Sonntag
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, 1083, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, 1083, Hungary.
| | - Sava Sakadžić
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| |
Collapse
|
7
|
Maragkoudakis E, Kouloulias V, Grenzelia M, Kougioumtzopoulou A, Zygogianni A, Ramfidis V, Charpidou A. Impact of Hippocampal Avoidance - Prophylactic Cranial Irradiation in Small Cell Lung Cancer Patients. CANCER DIAGNOSIS & PROGNOSIS 2022; 2:279-284. [PMID: 35530654 PMCID: PMC9066538 DOI: 10.21873/cdp.10105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/14/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND/AIM Prophylactic cranial irradiation (PCI) is a well-established treatment of small cell lung cancer (SCLC) patients following response to initial chemoradiotherapy. The benefit of PCI does, however, come at the cost of cognitive decline. This has been attributed to radiation-induced toxicity at the hippocampus, a crucial anatomic area for cognition. Modern radiotherapy techniques allow dose reduction at the hippocampal region. In this review, the safety profile, effect on cognition, and changes on brain imaging modalities of hippocampal avoidance-PCI (HA-PCI) will be presented, aiming to identify a potential clinical rationale for SCLC patients. MATERIALS AND METHODS A systematic review of the literature was performed in Pubmed, Cochrane library databases and ClinicalTrials.gov with no past date limitations until 07/01/2022. Principles as outlined in the preferred reporting items for systematic reviews and meta-analysis (PRISMA) statement were followed. RESULTS Eight studies published from 2015 to 2021 were included. CONCLUSION HA-PCI is safe, yet its effect on neurocognition and imaging remains unclear, as studies have shown contradictory results.
Collapse
Affiliation(s)
- Emmanouil Maragkoudakis
- National and Kapodistrian University of Athens, 2nd Radiology Department, Radiotherapy Unit, Attikon University Hospital, Athens, Greece
| | - Vasileios Kouloulias
- National and Kapodistrian University of Athens, 2nd Radiology Department, Radiotherapy Unit, Attikon University Hospital, Athens, Greece
| | - Maria Grenzelia
- National and Kapodistrian University of Athens, 1st Radiology Department, Radiotherapy Unit, Aretaieion University Hospital, Athens, Greece
| | - Andromachi Kougioumtzopoulou
- National and Kapodistrian University of Athens, 2nd Radiology Department, Radiotherapy Unit, Attikon University Hospital, Athens, Greece
| | - Anna Zygogianni
- National and Kapodistrian University of Athens, 1st Radiology Department, Radiotherapy Unit, Aretaieion University Hospital, Athens, Greece
| | - Vasileios Ramfidis
- School of Medicine, National & Kapodistrian University, 3rd Department of Medicine, Sotiria General Hospital, Athens, Greece
| | - Andrianni Charpidou
- School of Medicine, National & Kapodistrian University, 3rd Department of Medicine, Sotiria General Hospital, Athens, Greece
| |
Collapse
|
8
|
Tohidinezhad F, Di Perri D, Zegers CML, Dijkstra J, Anten M, Dekker A, Van Elmpt W, Eekers DBP, Traverso A. Prediction Models for Radiation-Induced Neurocognitive Decline in Adult Patients With Primary or Secondary Brain Tumors: A Systematic Review. Front Psychol 2022; 13:853472. [PMID: 35432113 PMCID: PMC9009149 DOI: 10.3389/fpsyg.2022.853472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/07/2022] [Indexed: 12/25/2022] Open
Abstract
Purpose Although an increasing body of literature suggests a relationship between brain irradiation and deterioration of neurocognitive function, it remains as the standard therapeutic and prophylactic modality in patients with brain tumors. This review was aimed to abstract and evaluate the prediction models for radiation-induced neurocognitive decline in patients with primary or secondary brain tumors. Methods MEDLINE was searched on October 31, 2021 for publications containing relevant truncation and MeSH terms related to “radiotherapy,” “brain,” “prediction model,” and “neurocognitive impairments.” Risk of bias was assessed using the Prediction model Risk Of Bias ASsessment Tool. Results Of 3,580 studies reviewed, 23 prediction models were identified. Age, tumor location, education level, baseline neurocognitive score, and radiation dose to the hippocampus were the most common predictors in the models. The Hopkins verbal learning (n = 7) and the trail making tests (n = 4) were the most frequent outcome assessment tools. All studies used regression (n = 14 linear, n = 8 logistic, and n = 4 Cox) as machine learning method. All models were judged to have a high risk of bias mainly due to issues in the analysis. Conclusion Existing models have limited quality and are at high risk of bias. Following recommendations are outlined in this review to improve future models: developing cognitive assessment instruments taking into account the peculiar traits of the different brain tumors and radiation modalities; adherence to model development and validation guidelines; careful choice of candidate predictors according to the literature and domain expert consensus; and considering radiation dose to brain substructures as they can provide important information on specific neurocognitive impairments.
Collapse
Affiliation(s)
- Fariba Tohidinezhad
- Department of Radiation Oncology (Maastro Clinic), School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center, Maastricht, Netherlands
| | - Dario Di Perri
- Department of Radiation Oncology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Catharina M L Zegers
- Department of Radiation Oncology (Maastro Clinic), School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center, Maastricht, Netherlands
| | - Jeanette Dijkstra
- Department of Medical Psychology, School for Mental Health and Neurosciences (MHeNS), Maastricht University Medical Center, Maastricht, Netherlands
| | - Monique Anten
- Department of Neurology, School for Mental Health and Neuroscience (MHeNS), Maastricht University Medical Center, Maastricht, Netherlands
| | - Andre Dekker
- Department of Radiation Oncology (Maastro Clinic), School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center, Maastricht, Netherlands
| | - Wouter Van Elmpt
- Department of Radiation Oncology (Maastro Clinic), School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center, Maastricht, Netherlands
| | - Daniëlle B P Eekers
- Department of Radiation Oncology (Maastro Clinic), School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center, Maastricht, Netherlands
| | - Alberto Traverso
- Department of Radiation Oncology (Maastro Clinic), School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center, Maastricht, Netherlands
| |
Collapse
|
9
|
Xue S, Zeng H, Yan S, Wang Q, Jia X. Prophylactic Cranial Irradiation for Extensive-Stage Small-Cell Lung Cancer: A Controversial Area. Front Oncol 2022; 12:772282. [PMID: 35198438 PMCID: PMC8858935 DOI: 10.3389/fonc.2022.772282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Small-cell lung cancer (SCLC) is a highly aggressive malignant tumor that is prone to lead to the development of brain metastases (BM). The application of prophylactic cranial irradiation (PCI) has been regarded as an important technological advance made in cancer therapy to reduce the occurrence of BM and improve patient survival. The benefits of PCI in the treatment of limited-stage SCLC have been confirmed. However, there has been continuous controversy about the indications and advantages of PCI for extensive-stage SCLC (ES-SCLC) because of the conflicting results from two prospective trials. In this review, we aimed to discuss the relevant controversy and progress made in the clinical application of PCI in ES-SCLC.
Collapse
|
10
|
Schuermann M, Dzierma Y, Nuesken F, Oertel J, Rübe C, Melchior P. Automatic Radiotherapy Planning for Glioblastoma Radiotherapy With Sparing of the Hippocampus and nTMS-Defined Motor Cortex. Front Neurol 2022; 12:787140. [PMID: 35095732 PMCID: PMC8795623 DOI: 10.3389/fneur.2021.787140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
BackgroundNavigated transcranial magnetic stimulation (nTMS) of the motor cortex has been successfully implemented into radiotherapy planning by a number of studies. Furthermore, the hippocampus has been identified as a radiation-sensitive structure meriting particular sparing in radiotherapy. This study assesses the joint protection of these two eloquent brain regions for the treatment of glioblastoma (GBM), with particular emphasis on the use of automatic planning.Patients and MethodsPatients with motor-eloquent brain glioblastoma who underwent surgical resection after nTMS mapping of the motor cortex and adjuvant radiotherapy were retrospectively evaluated. The radiotherapy treatment plans were retrieved, and the nTMS-defined motor cortex and hippocampus contours were added. Four additional treatment plans were created for each patient: two manual plans aimed to reduce the dose to the motor cortex and hippocampus by manual inverse planning. The second pair of re-optimized plans was created by the Auto-Planning algorithm. The optimized plans were compared with the “Original” plan regarding plan quality, planning target volume (PTV) coverage, and sparing of organs at risk (OAR).ResultsA total of 50 plans were analyzed. All plans were clinically acceptable with no differences in the PTV coverage and plan quality metrics. The OARs were preserved in all plans; however, overall the sparing was significantly improved by Auto-Planning. Motor cortex protection was feasible and significant, amounting to a reduction in the mean dose by >6 Gy. The dose to the motor cortex outside the PTV was reduced by >12 Gy (mean dose) and >5 Gy (maximum dose). The hippocampi were significantly improved (reduction in mean dose: ipsilateral >6 Gy, contralateral >4.6 Gy; reduction in maximum dose: ipsilateral >5 Gy, contralateral >5 Gy). While the dose reduction using Auto-Planning was generally better than by manual optimization, the radiated total monitor units were significantly increased.ConclusionConsiderable dose sparing of the nTMS-motor cortex and hippocampus could be achieved with no disadvantages in plan quality. Auto-Planning could further contribute to better protection of OAR. Whether the improved dosimetric protection of functional areas can translate into improved quality of life and motor or cognitive performance of the patients can only be decided by future studies.
Collapse
Affiliation(s)
- Michaela Schuermann
- Department of Radiotherapy and Radiation Oncology, Saarland University Hospital, Homburg, Germany
- *Correspondence: Michaela Schuermann
| | - Yvonne Dzierma
- Department of Radiotherapy and Radiation Oncology, Saarland University Hospital, Homburg, Germany
| | - Frank Nuesken
- Department of Radiotherapy and Radiation Oncology, Saarland University Hospital, Homburg, Germany
| | - Joachim Oertel
- Faculty of Medicine, Saarland University, Saarbrücken, Germany
- Department of Neurosurgery, Saarland University Hospital, Homburg, Germany
| | - Christian Rübe
- Department of Radiotherapy and Radiation Oncology, Saarland University Hospital, Homburg, Germany
| | - Patrick Melchior
- Department of Radiotherapy and Radiation Oncology, Saarland University Hospital, Homburg, Germany
| |
Collapse
|
11
|
Goksel S, Rakici S. The effect of prophylactic cranial irradiation on brain 18F-fluorodeoxyglucose uptake in small cell lung cancer in the metabolic imaging era. JOURNAL OF RADIATION AND CANCER RESEARCH 2022. [DOI: 10.4103/jrcr.jrcr_60_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
12
|
Boerma M, Davis CM, Jackson IL, Schaue D, Williams JP. All for one, though not one for all: team players in normal tissue radiobiology. Int J Radiat Biol 2021; 98:346-366. [PMID: 34129427 PMCID: PMC8781287 DOI: 10.1080/09553002.2021.1941383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE As part of the special issue on 'Women in Science', this review offers a perspective on past and ongoing work in the field of normal (non-cancer) tissue radiation biology, highlighting the work of many of the leading contributors to this field of research. We discuss some of the hypotheses that have guided investigations, with a focus on some of the critical organs considered dose-limiting with respect to radiation therapy, and speculate on where the field needs to go in the future. CONCLUSIONS The scope of work that makes up normal tissue radiation biology has and continues to play a pivotal role in the radiation sciences, ensuring the most effective application of radiation in imaging and therapy, as well as contributing to radiation protection efforts. However, despite the proven historical value of preclinical findings, recent decades have seen clinical practice move ahead with altered fractionation scheduling based on empirical observations, with little to no (or even negative) supporting scientific data. Given our current appreciation of the complexity of normal tissue radiation responses and their temporal variability, with tissue- and/or organ-specific mechanisms that include intra-, inter- and extracellular messaging, as well as contributions from systemic compartments, such as the immune system, the need to maintain a positive therapeutic ratio has never been more urgent. Importantly, mitigation and treatment strategies, whether for the clinic, emergency use following accidental or deliberate releases, or reducing occupational risk, will likely require multi-targeted approaches that involve both local and systemic intervention. From our personal perspective as five 'Women in Science', we would like to acknowledge and applaud the role that many female scientists have played in this field. We stand on the shoulders of those who have gone before, some of whom are fellow contributors to this special issue.
Collapse
Affiliation(s)
- Marjan Boerma
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Catherine M. Davis
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Isabel L. Jackson
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dörthe Schaue
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jacqueline P. Williams
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
13
|
Ren BX, Huen I, Wu ZJ, Wang H, Duan MY, Guenther I, Bhanu Prakash KN, Tang FR. Early postnatal irradiation-induced age-dependent changes in adult mouse brain: MRI based characterization. BMC Neurosci 2021; 22:28. [PMID: 33882822 PMCID: PMC8061041 DOI: 10.1186/s12868-021-00635-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 04/13/2021] [Indexed: 02/08/2023] Open
Abstract
Background Brain radiation exposure, in particular, radiotherapy, can induce cognitive impairment in patients, with significant effects persisting for the rest of their life. However, the main mechanisms leading to this adverse event remain largely unknown. A study of radiation-induced injury to multiple brain regions, focused on the hippocampus, may shed light on neuroanatomic bases of neurocognitive impairments in patients. Hence, we irradiated BALB/c mice (male and female) at postnatal day 3 (P3), day 10 (P10), and day 21 (P21) and investigated the long-term radiation effect on brain MRI changes and hippocampal neurogenesis. Results We found characteristic brain volume reductions in the hippocampus, olfactory bulbs, the cerebellar hemisphere, cerebellar white matter (WM) and cerebellar vermis WM, cingulate, occipital and frontal cortices, cerebellar flocculonodular WM, parietal region, endopiriform claustrum, and entorhinal cortex after irradiation with 5 Gy at P3. Irradiation at P10 induced significant volume reduction in the cerebellum, parietal region, cingulate region, and olfactory bulbs, whereas the reduction of the volume in the entorhinal, parietal, insular, and frontal cortices was demonstrated after irradiation at P21. Immunohistochemical study with cell division marker Ki67 and immature marker doublecortin (DCX) indicated the reduced cell division and genesis of new neurons in the subgranular zone of the dentate gyrus in the hippocampus after irradiation at all three postnatal days, but the reduction of total granule cells in the stratum granulosun was found after irradiation at P3 and P10. Conclusions The early life radiation exposure during different developmental stages induces varied brain pathophysiological changes which may be related to the development of neurological and neuropsychological disorders later in life.
Collapse
Affiliation(s)
- Bo Xu Ren
- Department of Medical Imaging, School of Medicine, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023, Hubei, China
| | - Isaac Huen
- Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research (A*STAR), Singapore, 138667, Singapore
| | - Zi Jun Wu
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Wang
- Radiation Physiology Laboratory, Nuclear Research and Safety Initiative, National University of Singapore, CREATE Tower, 1 CREATE Way #04-01, Singapore, 138602, Singapore
| | - Meng Yun Duan
- Department of Medical Imaging, School of Medicine, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023, Hubei, China
| | - Ilonka Guenther
- Comparative Medicine, Centre for Life Sciences (CeLS), National University of Singapore, #05-02, 28 Medical Drive, Singapore, 117456, Singapore
| | - K N Bhanu Prakash
- Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research (A*STAR), Singapore, 138667, Singapore.
| | - Feng Ru Tang
- Radiation Physiology Laboratory, Nuclear Research and Safety Initiative, National University of Singapore, CREATE Tower, 1 CREATE Way #04-01, Singapore, 138602, Singapore.
| |
Collapse
|
14
|
Redmond KJ, Milano MT, Kim MM, Trifiletti DM, Soltys SG, Hattangadi-Gluth JA. Reducing Radiation-Induced Cognitive Toxicity: Sparing the Hippocampus and Beyond. Int J Radiat Oncol Biol Phys 2021; 109:1131-1136. [PMID: 33714520 DOI: 10.1016/j.ijrobp.2021.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 01/03/2021] [Indexed: 12/25/2022]
Affiliation(s)
- Kristin J Redmond
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland.
| | - Michael T Milano
- Department of Radiation Oncology, University of Rochester, Rochester, New York
| | - Michelle M Kim
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Daniel M Trifiletti
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, Florida
| | - Scott G Soltys
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Jona A Hattangadi-Gluth
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| |
Collapse
|
15
|
Nishie K, Yamamoto S, Yamaga T, Horita N, Mori R, Gouda MA, Hanaoka M. Prophylactic cranial irradiation for extensive-stage small cell lung cancer. Hippokratia 2021. [DOI: 10.1002/14651858.cd014559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kenichi Nishie
- Department of Respiratory Medicine; Iida Municipal Hospital; Iida Japan
| | - Shuhei Yamamoto
- Department of Rehabilitation; Shinshu University Hospital; Matsumoto Japan
| | - Takayoshi Yamaga
- Department of Occupational Therapy; Health Science University; Fujikawaguchiko-machi Japan
| | - Nobuyuki Horita
- Department of Pulmonology; Yokohama City University Graduate School of Medicine; Yokohama Japan
| | - Rintaro Mori
- Graduate School of Medicine; Kyoto University; Kyoto Japan
| | - Mohamed A Gouda
- Department of Clinical Oncology; Faculty of Medicine, Menoufia University; Shebin Al-Kom Egypt
| | - Masayuki Hanaoka
- The First Department of Internal Medicine of Japan; Shinshu University School of Medicine; Matsumoto Japan
| |
Collapse
|
16
|
Chammah SE, Allenbach G, Jumeau R, Boughdad S, Prior JO, Nicod Lalonde M, Schaefer N, Meyer M. Impact of prophylactic cranial irradiation and hippocampal sparing on 18F-FDG brain metabolism in small cell lung cancer patients. Radiother Oncol 2021; 158:200-206. [PMID: 33667589 DOI: 10.1016/j.radonc.2021.02.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND PURPOSE Prophylactic cranial irradiation (PCI) in small-cell lung cancer (SCLC) patients improves survival. However, it is also associated with cognitive impairment, although the underlying mechanisms remain poorly understood. Our study aims to evaluate the impact of PCI and potential benefit of hippocampal sparing (HS) on brain metabolism assessed by 18F-Fluoro-Deoxy-Glucose Positron Emission Tomography/Computed Tomography (18F-FDG PET/CT). MATERIALS AND METHODS We retrospectively included 22 SCLC patients. 50% had hippocampal-sparing (HS) PCI. 18F-FDG PET/CT was performed 144.5 ± 73 days before and 383 ± 451 days after PCI. Brain 18F-FDG PET scans were automatically segmented in 12 regions using Combined-AAL Atlas from MI-Neurology Software (Syngo.Via, Siemens Healthineers). For all atlas regions, we computed SUV Ratio using brainstem as a reference region (SUVR = SUVmean/Brainstem SUVmean) and compared SUVR before and after PCI, using a Wilcoxon test, with a level of significance of p < 0.05. RESULTS We found significant decreases in 18F-FDG brain metabolism after PCI in the basal ganglia (p = 0.004), central regions (p = 0.001), cingulate cortex (p < 0.001), corpus striata (p = 0.003), frontal cortex (p < 0.001), parietal cortex (p = 0.001), the occipital cortex (p = 0.002), precuneus (p = 0.001), lateral temporal cortex (p = 0.001) and cerebellum (p < 0.001). Conversely, there were no significant changes in the mesial temporal cortex (MTC) which includes the hippocampi (p = 0.089). The subgroup who received standard PCI showed a significant decrease in metabolism of the hippocampi (p = 0.033). Contrastingly, the subgroup of patients who underwent HS-PCI showed no significant variation in metabolism of the hippocampi (p = 0.783). CONCLUSION PCI induced a diffuse decrease in 18F-FDG brain metabolism. HS-PCI preserves metabolic activity of the hippocampi.
Collapse
Affiliation(s)
| | - Gilles Allenbach
- Nuclear Medicine and Molecular Imaging Department, CHUV, Lausanne, Switzerland
| | | | - Sarah Boughdad
- Nuclear Medicine and Molecular Imaging Department, CHUV, Lausanne, Switzerland
| | - John O Prior
- Nuclear Medicine and Molecular Imaging Department, CHUV, Lausanne, Switzerland
| | - Marie Nicod Lalonde
- Nuclear Medicine and Molecular Imaging Department, CHUV, Lausanne, Switzerland
| | - Niklaus Schaefer
- Nuclear Medicine and Molecular Imaging Department, CHUV, Lausanne, Switzerland.
| | - Marie Meyer
- Nuclear Medicine and Molecular Imaging Department, CHUV, Lausanne, Switzerland
| |
Collapse
|
17
|
Zhang J, Jin J, Ai Y, Zhu K, Xiao C, Xie C, Jin X. Computer Tomography Radiomics-Based Nomogram in the Survival Prediction for Brain Metastases From Non-Small Cell Lung Cancer Underwent Whole Brain Radiotherapy. Front Oncol 2021; 10:610691. [PMID: 33643912 PMCID: PMC7905101 DOI: 10.3389/fonc.2020.610691] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/14/2020] [Indexed: 12/25/2022] Open
Abstract
Prognostic parameters and models were believed to be helpful in improving the treatment outcome for patients with brain metastasis (BM). The purpose of this study was to investigate the feasibility of computer tomography (CT) radiomics based nomogram to predict the survival of patients with BM from non-small cell lung cancer (NSCLC) treated with whole brain radiotherapy (WBRT). A total of 195 patients with BM from NSCLC who underwent WBRT from January 2012 to December 2016 were retrospectively reviewed. Radiomics features were extracted and selected from pretherapeutic CT images with least absolute shrinkage and selection operator (LASSO) regression. A nomogram was developed and evaluated by integrating radiomics features and clinical factors to predict the survival of individual patient. Five radiomics features were screened out from 105 radiomics features according to the LASSO Cox regression. According to the optimal cutoff value of radiomics score (Rad-score), patients were stratified into low-risk (Rad-score <= −0.14) and high-risk (Rad-score > −0.14) groups. Multivariable analysis indicated that sex, karnofsky performance score (KPS) and Rad-score were independent predictors for overall survival (OS). The concordance index (C-index) of the nomogram in the training cohort and validation cohort was 0.726 and 0.660, respectively. An area under curve (AUC) of 0.786 and 0.788 was achieved for the short-term and long-term survival prediction, respectively. In conclusion, the nomogram based on radiomics features from CT images and clinical factors was feasible to predict the OS of BM patients from NSCLC who underwent WBRT.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Radiotherapy Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Juebin Jin
- Department of Radiotherapy Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yao Ai
- Department of Radiotherapy Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kecheng Zhu
- Department of Radiotherapy Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chengjian Xiao
- Department of Radiotherapy Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Congying Xie
- Department of Radiotherapy Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Radiation and Medical Oncology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiance Jin
- Department of Radiotherapy Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
18
|
Kotecha R, Hall MD. Impact of radiotherapy dosimetric parameters on neurocognitive function in brain tumor patients. Neuro Oncol 2020; 22:1559-1561. [PMID: 32875338 DOI: 10.1093/neuonc/noaa208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida.,Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Matthew D Hall
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida.,Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| |
Collapse
|
19
|
Sharma MB, Jensen K, Amidi A, Eskildsen SF, Johansen J, Grau C. Late toxicity in the brain after radiotherapy for sinonasal cancer: Neurocognitive functioning, MRI of the brain and quality of life. Clin Transl Radiat Oncol 2020; 25:52-60. [PMID: 33024844 PMCID: PMC7530204 DOI: 10.1016/j.ctro.2020.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
Compared with matched normative data, impaired cognitive function was substantial. Several correlations between radiation dose and cognitive impairment were present. Radiation-induced white matter hyperintensities were present in 2/27 participants. One participant displayed radiation-induced necrosis in the temporal lobe. The domains affecting quality of life the most were fatigue and quality of sleep.
Purpose The aim of the study was to evaluate neurocognitive late effects, structural alterations and associations between cognitive impairment and radiation doses as well as cerebral tissue damage after radiotherapy for sinonasal cancer. Furthermore, the aim was to report quality of life (QoL) and self-reported cognitive capacity. Materials and methods Recurrence-free patients previously treated with intensity-modulated radiotherapy with a curative intent were eligible for the study. Study examinations comprised comprehensive neurocognitive testing, MRI of the brain, and self-reported outcomes. Results A total of 27 patients were included. Median age was 67 years (range 47–83). The majority of test outcomes were below normative values in any degree, and 37% of the participants had clinically significant neurocognitive impairment when compared with normative data. Correlations between absorbed doses to specific substructures of the brain and neurocognitive outcomes were present for Wechsler’s Adult Intelligence Scale-digit span and Controlled Oral Word Association Test-S. Structural MRI revealed macroscopic abnormalities in three patients; infarction (n = 1), diffuse white matter intensities (n = 2) and necrosis (n = 1). In the analysis of atrophy of cerebral tissue, no correlations were present with neither radiation dose to cerebral substructures nor neurocognitive impairment. The global QoL of the cohort was 75. The most affected outcomes were ‘fatigue’, ‘insomnia’, and ‘drowsiness’. A total of 59% of participants reported significantly impaired quality of sleep. Self-reported cognitive function revealed that ‘memory’ was the most affected cognitive domain. For the domains of ‘memory’ and ‘language’, self-reported functioning was associated with objectively measured neurocognitive outcomes. Conclusion Cerebral toxicity after radiotherapy for sinonasal cancer was substantial. Clinically significant cognitive impairment was present in more than one third of the participants, and several dose–response associations were present. Furthermore, the presence of macroscopic radiation sequelae indicated considerable impact of radiotherapy on brain tissue.
Collapse
Affiliation(s)
- M B Sharma
- Department of Oncology, Aarhus University Hospital, Palle Juul Jensen Boulevard 99, DK-8200 Aarhus N, Denmark
| | - K Jensen
- Danish Center for Particle Therapy, Aarhus University Hospital, Palle Juul Jensens Boulevard 99, B420, 8200 Aarhus N, Denmark
| | - A Amidi
- Unit for Psychooncology and Health Psychology, Department of Psychology, Aarhus University, Bartholins Allé 9, Build. 1351, 8000 Aarhus C, Denmark
| | - S F Eskildsen
- Center of Functionally Integrative Neuroscience, Aarhus University, Nørrebrogade 44, Build. 1A, 8000 Aarhus C, Denmark
| | - J Johansen
- Department of Oncology, Odense University Hospital, J.B. Winsløvs Vej 4, 5000 Odense, Denmark
| | - C Grau
- Department of Oncology, Aarhus University Hospital, Palle Juul Jensen Boulevard 99, DK-8200 Aarhus N, Denmark.,Danish Center for Particle Therapy, Aarhus University Hospital, Palle Juul Jensens Boulevard 99, B420, 8200 Aarhus N, Denmark
| |
Collapse
|
20
|
Li M, Wang T, Wen P, Wang X, Wu C. Treatment and toxic effects of prophylactic cranial irradiation in stage II-III non-small cell lung cancer: A meta-analysis. Asia Pac J Clin Oncol 2020; 17:e18-e26. [PMID: 32761788 DOI: 10.1111/ajco.13359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 04/14/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To determine the role of prophylactic cranial irradiation (PCI) in non-small cell lung cancer (NSCLC) patients using meta-analysis. METHODS PubMed, Embase, the Cochrane Database of Systematic Review and the China National Knowledge Infrastructure databases were systematically searched for studies published between 1 January 1980 and 31 March 2019. Search terms included "non-small cell lung cancer," "prophylactic cranial irradiation" and "clinical trials." The research data extracted from above studies was analyzed by Review Manager 5.3 and Stata12.0 software. The outcomes included development of brain metastases (BMs), overall survival (OS), disease-free survival (DFS), BMs for different diagnoses, toxicity, quality of life (QoL). RESULTS Fifteen trials (nine RCTs and six non-RCTs) involving 2418 NSCLC patients met the inclusion criteria. There was a significant reduction in the risk of developing BM in patients who received PCI compared with those who did not (95% CI, 0.20-0.37; P < 0.00001). PCI significantly reduced the BM of squamous cell carcinoma (P = 0.02), but not for adenocarcinoma (P = 0.07) and other pathological types (P = 0.29). There was a significant increase in DFS for the PCI compared to the non-PCI group (P = 0.006); however, OS did not significantly differ (P = 0.15). In addition, fatigue significantly increased in the PCI group (P = 0.0002). Cognitive disturbance showed no significant difference between PCI and non-PCI groups (P = 0.06). CONCLUSION This study showed that, compared with non-PCI, PCI significantly decreased the incidence of NSCLC BM and improved the DFS of patients, and reduced the BM rate from squamous cell carcinoma. However, it showed no effect on OS and the BM rate of adenocarcinoma and other pathological types of tumors. There were limited data concerning PCI-related toxicity and QoL.
Collapse
Affiliation(s)
- Meng Li
- Department of Radiation Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Taifang Wang
- Department of Radiation Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ping Wen
- Department of Radiation Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiang Wang
- Department of Radiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chunli Wu
- Department of Radiation Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
21
|
Abi Jaoude J, Adib E, Kayali M, Khabsa J, Akl EA, Zeidan Y. Prophylactic cranial irradiation for patients with limited-stage small cell lung cancer. Hippokratia 2020. [DOI: 10.1002/14651858.cd013701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Elio Adib
- Faculty of Medicine; American University of Beirut; Beirut Lebanon
| | - Majd Kayali
- Department of Radiation Oncology; American University of Beirut Medical Center; Beirut Lebanon
| | - Joanne Khabsa
- Clinical Research Institute; American University of Beirut Medical Center; Beirut Lebanon
| | - Elie A Akl
- Department of Internal Medicine; American University of Beirut Medical Center; Beirut Lebanon
| | - Youssef Zeidan
- Department of Radiation Oncology; American University of Beirut Medical Center; Beirut Lebanon
| |
Collapse
|
22
|
Prophylactic cranial irradiation in extensive disease small cell lung cancer: An endless debate. Crit Rev Oncol Hematol 2019; 143:95-101. [DOI: 10.1016/j.critrevonc.2019.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 12/25/2022] Open
|
23
|
Bilous M, Serdjebi C, Boyer A, Tomasini P, Pouypoudat C, Barbolosi D, Barlesi F, Chomy F, Benzekry S. Quantitative mathematical modeling of clinical brain metastasis dynamics in non-small cell lung cancer. Sci Rep 2019; 9:13018. [PMID: 31506498 PMCID: PMC6736889 DOI: 10.1038/s41598-019-49407-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/23/2019] [Indexed: 12/25/2022] Open
Abstract
Brain metastases (BMs) are associated with poor prognosis in non-small cell lung cancer (NSCLC), but are only visible when large enough. Therapeutic decisions such as whole brain radiation therapy would benefit from patient-specific predictions of radiologically undetectable BMs. Here, we propose a mathematical modeling approach and use it to analyze clinical data of BM from NSCLC. Primary tumor growth was best described by a gompertzian model for the pre-diagnosis history, followed by a tumor growth inhibition model during treatment. Growth parameters were estimated only from the size at diagnosis and histology, but predicted plausible individual estimates of the tumor age (2.1-5.3 years). Multiple metastatic models were further assessed from fitting either literature data of BM probability (n = 183 patients) or longitudinal measurements of visible BMs in two patients. Among the tested models, the one featuring dormancy was best able to describe the data. It predicted latency phases of 4.4-5.7 months and onset of BMs 14-19 months before diagnosis. This quantitative model paves the way for a computational tool of potential help during therapeutic management.
Collapse
Affiliation(s)
- M Bilous
- MONC team, Inria Bordeaux Sud-Ouest, Talence, France
- Institut de Mathématiques de Bordeaux, Bordeaux University, Talence, France
| | - C Serdjebi
- SMARTc Unit, Center for Research on Cancer of Marseille (CRCM), Inserm UMR 1068, CNRS UMR 7258, Aix-Marseille University U105, Marseille, France
| | - A Boyer
- SMARTc Unit, Center for Research on Cancer of Marseille (CRCM), Inserm UMR 1068, CNRS UMR 7258, Aix-Marseille University U105, Marseille, France
- Multidisciplinary Oncology and Therapeutic Innovations Department and CRCM, Inserm UMR 1068, CNRS UMR 7258, Assistance Publique Hôpitaux de Marseille, Aix Marseille University, Marseille, France
| | - P Tomasini
- Multidisciplinary Oncology and Therapeutic Innovations Department and CRCM, Inserm UMR 1068, CNRS UMR 7258, Assistance Publique Hôpitaux de Marseille, Aix Marseille University, Marseille, France
| | - C Pouypoudat
- Radiation oncology department, Haut-Lévêque Hospital, Pessac, France
| | - D Barbolosi
- SMARTc Unit, Center for Research on Cancer of Marseille (CRCM), Inserm UMR 1068, CNRS UMR 7258, Aix-Marseille University U105, Marseille, France
| | - F Barlesi
- SMARTc Unit, Center for Research on Cancer of Marseille (CRCM), Inserm UMR 1068, CNRS UMR 7258, Aix-Marseille University U105, Marseille, France
- Multidisciplinary Oncology and Therapeutic Innovations Department and CRCM, Inserm UMR 1068, CNRS UMR 7258, Assistance Publique Hôpitaux de Marseille, Aix Marseille University, Marseille, France
| | - F Chomy
- Clinical oncology department, Institut Bergonié, Bordeaux, France
| | - S Benzekry
- MONC team, Inria Bordeaux Sud-Ouest, Talence, France.
- Institut de Mathématiques de Bordeaux, Bordeaux University, Talence, France.
| |
Collapse
|