1
|
Liang Z, Zhuang H, Cao X, Ma G, Shen L. Subcellular proteomics insights into Alzheimer's disease development. Proteomics Clin Appl 2024; 18:e2200112. [PMID: 37650321 DOI: 10.1002/prca.202200112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/27/2023] [Accepted: 08/12/2023] [Indexed: 09/01/2023]
Abstract
Alzheimer's disease (AD), one of the most common dementias, is a neurodegenerative disease characterized by cognitive impairment and decreased judgment function. The expected number of AD patient is increasing in the context of the world's advancing medical care and increasing human life expectancy. Since current molecular mechanism studies on AD pathogenesis are incomplete, there is no specific and effective therapeutic agent. Mass spectrometry (MS)-based unbiased proteomics studies provide an effective and comprehensive approach. Many advances have been made in the study of the mechanism, diagnostic markers, and drug targets of AD using proteomics. This paper focus on subcellular level studies, reviews studies using proteomics to study AD-associated mitochondrial dysfunction, synaptic, and myelin damage, the protein composition of amyloid plaques (APs) and neurofibrillary tangles (NFTs), changes in tissue extracellular vehicles (EVs) and exosome proteome, and the protein changes in ribosomes and lysosomes. The methods of sample separation and preparation and proteomic analysis as well as the main findings of these studies are involved. The results of these proteomics studies provide insights into the pathogenesis of AD and provide theoretical resource and direction for future research in AD, helping to identify new biomarkers and drugs targets for AD.
Collapse
Affiliation(s)
- Zhiyuan Liang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
| | - Hongbin Zhuang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
| | - Xueshan Cao
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
- College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, P. R. China
| | - Guanwei Ma
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, P. R. China
| | - Liming Shen
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, P. R. China
| |
Collapse
|
2
|
Petrushanko IY, Mitkevich VA, Makarov AA. Effect of β-amyloid on blood-brain barrier properties and function. Biophys Rev 2023; 15:183-197. [PMID: 37124923 PMCID: PMC10133432 DOI: 10.1007/s12551-023-01052-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 03/13/2023] [Indexed: 05/02/2023] Open
Abstract
The deposition of beta-amyloid (Aβ) aggregates in the brain, accompanied by impaired cognitive function, is a characteristic feature of Alzheimer's disease (AD). An important role in this process is played by vascular disorders, in particular, a disturbance of the blood-brain barrier (BBB). The BBB controls the entry of Aβ from plasma to the brain via the receptor for advanced glycation end products (RAGE) and the removal of brain-derived Aβ via the low-density lipoprotein receptor-related protein (LRP1). The balance between the input of Aβ to the brain from the periphery and its output is disturbed during AD. Aβ changes the redox-status of BBB cells, which in turn changes the functioning of mitochondria and disrupts the barrier function of endothelial cells by affecting tight junction proteins. Aβ oligomers have the greatest toxic effect on BBB cells, and oligomers are most rapidly transferred by transcytosis from the brain side of the BBB to the blood side. Both the cytotoxic effect of Aβ and the impairment of barrier function are partly due to the interaction of Aβ monomers and oligomers with membrane-bound RAGE. AD therapies based on the disruption of this interaction or the creation of decoys for Aβ are being developed. The question of the transfer of various Aβ isoforms through the BBB is important, since it can influence the development of AD. It is shown that the rate of input of Aβ40 and Aβ42 from the blood into the brain is different. The actual question of the transfer of pathogenic Aβ isoforms with post-translational modifications or mutations through the BBB still remains open.
Collapse
Affiliation(s)
- Irina Yu. Petrushanko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir A. Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander A. Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
3
|
Abyadeh M, Gupta V, Chitranshi N, Gupta V, Wu Y, Saks D, Wander Wall R, Fitzhenry MJ, Basavarajappa D, You Y, Salekdeh GH, Haynes PA, Graham SL, Mirzaei M. Mitochondrial dysfunction in Alzheimer's disease - a proteomics perspective. Expert Rev Proteomics 2021; 18:295-304. [PMID: 33874826 DOI: 10.1080/14789450.2021.1918550] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mitochondrial dysfunction is involved in Alzheimer's disease (AD) pathogenesis. Mitochondria have their own genetic material; however, most of their proteins (∼99%) are synthesized as precursors on cytosolic ribosomes, and then imported into the mitochondria. Therefore, exploring proteome changes in these organelles can yield valuable information and shed light on the molecular mechanisms underlying mitochondrial dysfunction in AD. Here, we review AD-associated mitochondrial changes including the effects of amyloid beta and tau protein accumulation on the mitochondrial proteome. We also discuss the relationship of ApoE genetic polymorphism with mitochondrial changes, and present a meta-analysis of various differentially expressed proteins in the mitochondria in AD.Area covered: Proteomics studies and their contribution to our understanding of mitochondrial dysfunction in AD pathogenesis.Expert opinion: Proteomics has proven to be an efficient tool to uncover various aspects of this complex organelle, which will broaden our understanding of mitochondrial dysfunction in AD. Evidently, mitochondrial dysfunction is an early biochemical event that might play a central role in driving AD pathogenesis.
Collapse
Affiliation(s)
- Morteza Abyadeh
- Cell Science Research Center, Department of Molecular Systems Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran Iran
| | - Vivek Gupta
- Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| | - Nitin Chitranshi
- Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, VIC, Australia
| | - Yunqi Wu
- Australian Proteome Analysis Facility, Macquarie University, Macquarie Park, NSW Australia
| | - Danit Saks
- Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| | - Roshana Wander Wall
- Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| | - Matthew J Fitzhenry
- Australian Proteome Analysis Facility, Macquarie University, Macquarie Park, NSW Australia
| | - Devaraj Basavarajappa
- Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| | - Yuyi You
- Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| | - Ghasem H Salekdeh
- Department of Molecular Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - Paul A Haynes
- Department of Molecular Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - Stuart L Graham
- Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| | - Mehdi Mirzaei
- Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| |
Collapse
|
4
|
Mitoproteomics: Tackling Mitochondrial Dysfunction in Human Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1435934. [PMID: 30533169 PMCID: PMC6250043 DOI: 10.1155/2018/1435934] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022]
Abstract
Mitochondria are highly dynamic and regulated organelles that historically have been defined based on their crucial role in cell metabolism. However, they are implicated in a variety of other important functions, making mitochondrial dysfunction an important axis in several pathological contexts. Despite that conventional biochemical and molecular biology approaches have provided significant insight into mitochondrial functionality, innovative techniques that provide a global view of the mitochondrion are still necessary. Proteomics fulfils this need by enabling accurate, systems-wide quantitative analysis of protein abundance. More importantly, redox proteomics approaches offer unique opportunities to tackle oxidative stress, a phenomenon that is intimately linked to aging, cardiovascular disease, and cancer. In addition, cutting-edge proteomics approaches reveal how proteins exert their functions in complex interaction networks where even subtle alterations stemming from early pathological states can be monitored. Here, we describe the proteomics approaches that will help to deepen the role of mitochondria in health and disease by assessing not only changes to mitochondrial protein composition but also alterations to their redox state and how protein interaction networks regulate mitochondrial function and dynamics. This review is aimed at showing the reader how the application of proteomics approaches during the last 20 years has revealed crucial mitochondrial roles in the context of aging, neurodegenerative disorders, metabolic disease, and cancer.
Collapse
|
5
|
Chen M, Lee HK, Moo L, Hanlon E, Stein T, Xia W. Common proteomic profiles of induced pluripotent stem cell-derived three-dimensional neurons and brain tissue from Alzheimer patients. J Proteomics 2018; 182:21-33. [PMID: 29709615 DOI: 10.1016/j.jprot.2018.04.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/03/2018] [Accepted: 04/24/2018] [Indexed: 01/21/2023]
Abstract
We established a unique platform for proteomic analysis of cultured three-dimensional (3D) neurons and brain tissue from Alzheimer's disease (AD) patients. We collected peripheral blood mononuclear cells (PBMC), converted PBMC to induced pluripotent stem cell (iPSC) lines, and differentiated the iPSC into human 3D neuro-spheroids. The postmortem brain tissue from the superior frontal cortex, inferior frontal cortex and cerebellum area of the AD patients was compared to the same regions from the control subjects. Proteomic analysis of 3D neuro-spheroids derived from AD subjects revealed the alteration of a number of proteins involved in axon growth, mitochondrial function, and antioxidant defense. Similar analysis of post-mortem AD brain tissue revealed significant alteration in proteins involved in oxidative stress, neuro-inflammation, along with proteins related to axonal injury. These results clearly indicate that the dysfunction of 3D neurons from AD patients in our in vitro environment is comparable to the post-mortem AD brain tissue in vivo. In conclusion, our study revealed a number of candidate proteins that have important implications in AD pathogenesis and supports the notion that the iPSC-derived 3D neuronal system functions as a model to examine novel aspects of AD pathology. SIGNIFICANCE In this study, we present a unique platform for proteomic analysis of induced pluripotent stem cell-derived three dimensional (3D) neurons and compare the results to those from three regions of post-mortem brain tissue from Alzheimer's disease patients and normal control subjects. Our results show that the dysfunction of 3D neurons from AD patients in our in vitro environment is comparable to the post-mortem AD brain tissue in vivo. Our results revealed several candidate proteins that have important implications in AD pathogenesis.
Collapse
Affiliation(s)
- Mei Chen
- Geriatric Research Education and Clinical Center, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA, United States; Department of Environmental Health, Harvard T H Chan School of Public Health, Boston, MA, United States
| | - Han-Kyu Lee
- Geriatric Research Education and Clinical Center, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA, United States
| | - Lauren Moo
- Geriatric Research Education and Clinical Center, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA, United States
| | - Eugene Hanlon
- Office of Research and Development, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA, United States
| | - Thor Stein
- Geriatric Research Education and Clinical Center, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA, United States; Department of Pathology, Boston University School of Medicine, Boston, MA, United States
| | - Weiming Xia
- Geriatric Research Education and Clinical Center, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA, United States; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States.
| |
Collapse
|
6
|
Wang H, Muiznieks LD, Ghosh P, Williams D, Solarski M, Fang A, Ruiz-Riquelme A, Pomès R, Watts JC, Chakrabartty A, Wille H, Sharpe S, Schmitt-Ulms G. Somatostatin binds to the human amyloid β peptide and favors the formation of distinct oligomers. eLife 2017. [PMID: 28650319 PMCID: PMC5505701 DOI: 10.7554/elife.28401] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The amyloid β peptide (Aβ) is a key player in the etiology of Alzheimer disease (AD), yet a systematic investigation of its molecular interactions has not been reported. Here we identified by quantitative mass spectrometry proteins in human brain extract that bind to oligomeric Aβ1-42 (oAβ1-42) and/or monomeric Aβ1-42 (mAβ1-42) baits. Remarkably, the cyclic neuroendocrine peptide somatostatin-14 (SST14) was observed to be the most selectively enriched oAβ1-42 binder. The binding interface comprises a central tryptophan within SST14 and the N-terminus of Aβ1-42. The presence of SST14 inhibited Aβ aggregation and masked the ability of several antibodies to detect Aβ. Notably, Aβ1-42, but not Aβ1-40, formed in the presence of SST14 oligomeric assemblies of 50 to 60 kDa that were visualized by gel electrophoresis, nanoparticle tracking analysis and electron microscopy. These findings may be relevant for Aβ-directed diagnostics and may signify a role of SST14 in the etiology of AD. DOI:http://dx.doi.org/10.7554/eLife.28401.001 Treating Alzheimer’s disease and related dementias is one of the major challenges currently facing healthcare providers worldwide. A hallmark of the disease is the formation of large deposits of a specific molecule, known as amyloid beta (Aβ), in the brain. However, more and more research suggests that smaller and particularly toxic amyloid beta clumps – often referred to as oligomeric Aβ – appear as an early sign of Alzheimer’s disease. To understand how the formation of these smaller amyloid beta clumps triggers other aspects of the disease, it is important to identify molecules in the human brain that oligomeric Aβ binds to. To this end, Wang et al. attached amyloid beta or oligomeric Aβ molecules to microscopically small beads. The beads were then exposed to human brain extracts in a test tube, which allowed molecules in the extracts to bind to the amyloid beta or oligomeric Aβ. The samples were then spun at high speed, meaning that the beads and any other molecules bound to them sunk and formed pellets at the bottom of the tubes. Each pellet was then analyzed to see which molecules it contained. The experiments identified more than a hundred human brain proteins that can bind to amyloid beta. One of them, known as somatostatin, selectively binds to oligomeric Aβ. Wang et al. were able to determine the structural features of somatostatin that control this binding. Finally, in further experiments performed in test tubes, Wang et al. noticed that smaller oligomeric Aβ clumps were more likely to form than larger amyloid beta deposits when somatostatin was present. This could signify a previously unrecognized role of somatostatin in the development of Alzheimer’s disease. Further studies are now needed to confirm whether the presence of somatostatin in the brain favors the formation of smaller, toxic oligomeric Aβ clumps over large innocuous amyloid beta deposits. If so, new treatments could be developed that aim to reduce oligomeric Aβ levels in the brain by preventing somatostatin from interacting with amyloid beta molecules. Wang et al. also suggest that somatostatin could be used in diagnostic tests to detect abnormal levels of oligomeric Aβ in the brain or body fluids of people who have Alzheimer’s disease. DOI:http://dx.doi.org/10.7554/eLife.28401.002
Collapse
Affiliation(s)
- Hansen Wang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Lisa D Muiznieks
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - Punam Ghosh
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Declan Williams
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Michael Solarski
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Andrew Fang
- Department of Biochemistry, University of Alberta, Edmonton, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada
| | - Alejandro Ruiz-Riquelme
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Régis Pomès
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Avi Chakrabartty
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Holger Wille
- Department of Biochemistry, University of Alberta, Edmonton, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada
| | - Simon Sharpe
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| |
Collapse
|
7
|
Physiological and Pathological Roles of 15-Deoxy-Δ12,14-Prostaglandin J2 in the Central Nervous System and Neurological Diseases. Mol Neurobiol 2017; 55:2227-2248. [PMID: 28299574 DOI: 10.1007/s12035-017-0435-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 02/03/2017] [Indexed: 12/29/2022]
|
8
|
Butterfield DA, Palmieri EM, Castegna A. Clinical implications from proteomic studies in neurodegenerative diseases: lessons from mitochondrial proteins. Expert Rev Proteomics 2016; 13:259-74. [PMID: 26837425 DOI: 10.1586/14789450.2016.1149470] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mitochondria play a key role in eukaryotic cells, being mediators of energy, biosynthetic and regulatory requirements of these cells. Emerging proteomics techniques have allowed scientists to obtain the differentially expressed proteome or the proteomic redox status in mitochondria. This has unmasked the diversity of proteins with respect to subcellular location, expression and interactions. Mitochondria have become a research 'hot spot' in subcellular proteomics, leading to identification of candidate clinical targets in neurodegenerative diseases in which mitochondria are known to play pathological roles. The extensive efforts to rapidly obtain differentially expressed proteomes and unravel the redox proteomic status in mitochondria have yielded clinical insights into the neuropathological mechanisms of disease, identification of disease early stage and evaluation of disease progression. Although current technical limitations hamper full exploitation of the mitochondrial proteome in neurosciences, future advances are predicted to provide identification of specific therapeutic targets for neurodegenerative disorders.
Collapse
Affiliation(s)
- D Allan Butterfield
- a Department of Chemistry, and Sanders-Brown Center on Aging , University of Kentucky , Lexington , KY , USA
| | - Erika M Palmieri
- b Department of Biosciences, Biotechnologies and Biopharmaceutics , University of Bari 'Aldo Moro' , Bari , Italy
| | - Alessandra Castegna
- b Department of Biosciences, Biotechnologies and Biopharmaceutics , University of Bari 'Aldo Moro' , Bari , Italy
| |
Collapse
|
9
|
Chen X, Li J, Hou J, Xie Z, Yang F. Mammalian mitochondrial proteomics: insights into mitochondrial functions and mitochondria-related diseases. Expert Rev Proteomics 2014; 7:333-45. [DOI: 10.1586/epr.10.22] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
Villa RF, Ferrari F, Gorini A. Functional Proteomics Related to Energy Metabolism of Synaptosomes from Different Neuronal Systems of Rat Hippocampus during Aging. J Proteome Res 2013; 12:5422-35. [DOI: 10.1021/pr400834g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Roberto F. Villa
- Department of Biology and
Biotechnology - Laboratory of Pharmacology and Molecular Medicine
of Central Nervous System, University of Pavia, Via Ferrata, 9, 27100 Pavia, Italy
| | - Federica Ferrari
- Department of Biology and
Biotechnology - Laboratory of Pharmacology and Molecular Medicine
of Central Nervous System, University of Pavia, Via Ferrata, 9, 27100 Pavia, Italy
| | - Antonella Gorini
- Department of Biology and
Biotechnology - Laboratory of Pharmacology and Molecular Medicine
of Central Nervous System, University of Pavia, Via Ferrata, 9, 27100 Pavia, Italy
| |
Collapse
|
11
|
Kadakkuzha BM, Puthanveettil SV. Genomics and proteomics in solving brain complexity. MOLECULAR BIOSYSTEMS 2013; 9:1807-21. [PMID: 23615871 PMCID: PMC6425491 DOI: 10.1039/c3mb25391k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The human brain is extraordinarily complex, composed of billions of neurons and trillions of synaptic connections. Neurons are organized into circuit assemblies that are modulated by specific interneurons and non-neuronal cells, such as glia and astrocytes. Data on human genome sequences predicts that each of these cells in the human brain has the potential of expressing ∼20 000 protein coding genes and tens of thousands of noncoding RNAs. A major challenge in neuroscience is to determine (1) how individual neurons and circuitry utilize this potential during development and maturation of the nervous system, and for higher brain functions such as cognition, and (2) how this potential is altered in neurological and psychiatric disorders. In this review, we will discuss how recent advances in next generation sequencing, proteomics and bioinformatics have transformed our understanding of gene expression and the functions of neural circuitry, memory storage, and disorders of cognition.
Collapse
Affiliation(s)
- Beena M Kadakkuzha
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida 130 Scripps Way, Jupiter, FL 33458, USA
| | | |
Collapse
|
12
|
Butterfield DA, Perluigi M, Reed T, Muharib T, Hughes CP, Robinson RAS, Sultana R. Redox proteomics in selected neurodegenerative disorders: from its infancy to future applications. Antioxid Redox Signal 2012; 17:1610-55. [PMID: 22115501 PMCID: PMC3448942 DOI: 10.1089/ars.2011.4109] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 11/21/2011] [Accepted: 11/23/2011] [Indexed: 12/12/2022]
Abstract
Several studies demonstrated that oxidative damage is a characteristic feature of many neurodegenerative diseases. The accumulation of oxidatively modified proteins may disrupt cellular functions by affecting protein expression, protein turnover, cell signaling, and induction of apoptosis and necrosis, suggesting that protein oxidation could have both physiological and pathological significance. For nearly two decades, our laboratory focused particular attention on studying oxidative damage of proteins and how their chemical modifications induced by reactive oxygen species/reactive nitrogen species correlate with pathology, biochemical alterations, and clinical presentations of Alzheimer's disease. This comprehensive article outlines basic knowledge of oxidative modification of proteins and lipids, followed by the principles of redox proteomics analysis, which also involve recent advances of mass spectrometry technology, and its application to selected age-related neurodegenerative diseases. Redox proteomics results obtained in different diseases and animal models thereof may provide new insights into the main mechanisms involved in the pathogenesis and progression of oxidative-stress-related neurodegenerative disorders. Redox proteomics can be considered a multifaceted approach that has the potential to provide insights into the molecular mechanisms of a disease, to find disease markers, as well as to identify potential targets for drug therapy. Considering the importance of a better understanding of the cause/effect of protein dysfunction in the pathogenesis and progression of neurodegenerative disorders, this article provides an overview of the intrinsic power of the redox proteomics approach together with the most significant results obtained by our laboratory and others during almost 10 years of research on neurodegenerative disorders since we initiated the field of redox proteomics.
Collapse
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Jiang Y, Wang X. Comparative mitochondrial proteomics: perspective in human diseases. J Hematol Oncol 2012; 5:11. [PMID: 22424240 PMCID: PMC3337254 DOI: 10.1186/1756-8722-5-11] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 03/18/2012] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are the most complex and the most important organelles of eukaryotic cells, which are involved in many cellular processes, including energy metabolism, apoptosis, and aging. And mitochondria have been identified as the "hot spot" by researchers for exploring relevant associated dysfunctions in many fields. The emergence of comparative proteomics enables us to have a close look at the mitochondrial proteome in a comprehensive and effective manner under various conditions and cellular circumstances. Two-dimensional electrophoresis combined with mass spectrometry is still the most popular techniques to study comparative mitochondrial proteomics. Furthermore, many new techniques, such as ICAT, MudPIT, and SILAC, equip researchers with more flexibilities inselecting proper methods. This article also reviews the recent development of comparative mitochondrial proteomics on diverse human diseases. And the results of mitochondrial proteomics enhance a better understanding of the pathogenesis associated with mitochondria and provide promising therapeutic targets.
Collapse
Affiliation(s)
- Yujie Jiang
- Department of Hematology, Provincial Hospital affiliated to Shandong University, Jinan, China
| | | |
Collapse
|
14
|
Yamamoto Y, Takase K, Kishino J, Fujita M, Okamura N, Sakaeda T, Fujimoto M, Yagami T. Proteomic identification of protein targets for 15-deoxy-Δ(12,14)-prostaglandin J2 in neuronal plasma membrane. PLoS One 2011; 6:e17552. [PMID: 21445266 PMCID: PMC3060826 DOI: 10.1371/journal.pone.0017552] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Accepted: 02/04/2011] [Indexed: 01/05/2023] Open
Abstract
15-deoxy-Δ(12,14)-prostaglandin J(2) (15d-PGJ(2)) is one of factors contributed to the neurotoxicity of amyloid β (Aβ), a causative protein of Alzheimer's disease. Type 2 receptor for prostaglandin D(2) (DP2) and peroxysome-proliferator activated receptorγ (PPARγ) are identified as the membrane receptor and the nuclear receptor for 15d-PGJ(2), respectively. Previously, we reported that the cytotoxicity of 15d-PGJ(2) was independent of DP2 and PPARγ, and suggested that 15d-PGJ(2) induced apoptosis through the novel specific binding sites of 15d-PGJ(2) different from DP2 and PPARγ. To relate the cytotoxicity of 15d-PGJ(2) to amyloidoses, we performed binding assay [(3)H]15d-PGJ(2) and specified targets for 15d-PGJ(2) associated with cytotoxicity. In the various cell lines, there was a close correlation between the susceptibilities to 15d-PGJ(2) and fibrillar Aβ. Specific binding sites of [(3)H]15d-PGJ(2) were detected in rat cortical neurons and human bronchial smooth muscle cells. When the binding assay was performed in subcellular fractions of neurons, the specific binding sites of [(3)H]15d-PGJ(2) were detected in plasma membrane, nuclear and cytosol, but not in microsome. A proteomic approach was used to identify protein targets for 15d-PGJ(2) in the plasma membrane. By using biotinylated 15d-PGJ(2), eleven proteins were identified as biotin-positive spots and classified into three different functional proteins: glycolytic enzymes (Enolase2, pyruvate kinase M1 (PKM1) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH)), molecular chaperones (heat shock protein 8 and T-complex protein 1 subunit α), cytoskeletal proteins (Actin β, F-actin-capping protein, Tubulin β and Internexin α). GAPDH, PKM1 and Tubulin β are Aβ-interacting proteins. Thus, the present study suggested that 15d-PGJ(2) plays an important role in amyloidoses not only in the central nervous system but also in the peripheral tissues.
Collapse
Affiliation(s)
- Yasuhiro Yamamoto
- Division of Physiology, Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Japan
| | - Kenkichi Takase
- Division of Physiology, Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Japan
| | - Junji Kishino
- Discovery Research Laboratories, Shionogi and Co., Ltd., Osaka, Japan
| | - Megumi Fujita
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | - Noboru Okamura
- Discovery Research Laboratories, Shionogi and Co., Ltd., Osaka, Japan
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | - Toshiyuki Sakaeda
- Discovery Research Laboratories, Shionogi and Co., Ltd., Osaka, Japan
- Center for Integrative Education of Pharmacy Frontier, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto, Japan
| | - Masafumi Fujimoto
- Discovery Research Laboratories, Shionogi and Co., Ltd., Osaka, Japan
- Laboratory of Applied Pharmacology, Faculty of Pharmacy, Chiba Institute of Science, Choshi, Japan
| | - Tatsurou Yagami
- Division of Physiology, Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Japan
- Discovery Research Laboratories, Shionogi and Co., Ltd., Osaka, Japan
| |
Collapse
|
15
|
Lynn BC, Wang J, Markesbery WR, Lovell MA. Quantitative changes in the mitochondrial proteome from subjects with mild cognitive impairment, early stage, and late stage Alzheimer's disease. J Alzheimers Dis 2010; 19:325-39. [PMID: 20061648 DOI: 10.3233/jad-2010-1254] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The major barrier to treating or preventing Alzheimer's disease (AD) is its unknown etiology and pathogenesis. Although increasing evidence supports a role for mitochondrial dysfunction in the pathogenesis of AD, there have been few studies that simultaneously evaluate changes in multiple mitochondrial proteins. To evaluate changes in sites of potentially interacting mitochondrial proteins, we applied 2-dimensional liquid chromatography coupled with tandem mass spectrometry and the isotope coded affinity tag method to identify and quantify proteins in mitochondrial enriched fractions isolated from short postmortem interval temporal pole specimens from subjects with mild cognitive impairment (4 subjects pooled), early AD (4 subjects pooled), late-stage AD (8 subjects pooled) and age-matched normal control (7 subjects pooled) subjects. A total of 112 unique, non-redundant proteins were identified and quantified in common to all three stages of disease progression. Overall, patterns of protein change suggest activation of mitochondrial pathways that include proteins responsible for transport and utilization of ATP. These proteins include adenine nucleotide translocase, voltage dependent anion channels, hexokinase, and creatine kinase. Comparison of protein changes throughout the progression of AD suggests the most pronounced changes occur in early AD mitochondria.
Collapse
Affiliation(s)
- Bert C Lynn
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA.
| | | | | | | |
Collapse
|
16
|
Pizzuto R, Paventi G, Atlante A, Passarella S. Pyruvate kinase in pig liver mitochondria. Arch Biochem Biophys 2009; 495:42-8. [PMID: 20026031 DOI: 10.1016/j.abb.2009.12.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 12/11/2009] [Accepted: 12/12/2009] [Indexed: 10/20/2022]
Abstract
The existence of the pyruvate kinase (PK) in pig liver mitochondria was shown by monitoring photometrically the PK reaction in solubilised mitochondria with either phosphoenolpyruvate (PEP) or ADP used as a substrate. In distinction with the cytosolic isoenzyme, the mitochondrial PK showed a sigmoidal dependence on either PEP or ADP concentrations. The occurrence of the mitochondrial PK was confirmed by immunological analysis. Titration with digitonin showed that mPK is restricted to the matrix. PEP addition to mitochondria resulted in reduction of the intramitochondrial NAD(P)+ inhibited by either the non-penetrant thiol reagent mersalyl or by arsenite, an inhibitor of the pyruvate dehydrogenase complex. Citrate/oxaloacetate appearance outside mitochondria also occurred as result of PEP addition to PLM. Taken together these findings support a role for PEP itself in triggering fatty acid synthesis via its mitochondrial metabolism.
Collapse
Affiliation(s)
- Roberto Pizzuto
- Dipartimento di Scienze per la Salute, Università del Molise, via De Sanctis-86100 Campobasso, Italy
| | | | | | | |
Collapse
|
17
|
Wang HQ, Xu YX, Zhao XY, Zhao H, Yan J, Sun XB, Guo JC, Zhu CQ. Overexpression of F0F1-ATP synthase α suppresses mutant huntingtin aggregation and toxicity in vitro. Biochem Biophys Res Commun 2009; 390:1294-8. [DOI: 10.1016/j.bbrc.2009.10.139] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 10/26/2009] [Indexed: 12/14/2022]
|
18
|
Neuroproteomics: understanding the molecular organization and complexity of the brain. Nat Rev Neurosci 2009; 10:635-46. [DOI: 10.1038/nrn2701] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Magherini F, Pieri L, Guidi F, Giangrande C, Amoresano A, Bucciantini M, Stefani M, Modesti A. Proteomic analysis of cells exposed to prefibrillar aggregates of HypF-N. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1243-50. [DOI: 10.1016/j.bbapap.2009.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 04/20/2009] [Accepted: 04/21/2009] [Indexed: 11/30/2022]
|
20
|
Kristofiková Z, Bocková M, Hegnerová K, Bartos A, Klaschka J, Rícný J, Rípová D, Homola J. Enhanced levels of mitochondrial enzyme 17beta-hydroxysteroid dehydrogenase type 10 in patients with Alzheimer disease and multiple sclerosis. MOLECULAR BIOSYSTEMS 2009; 5:1174-9. [PMID: 19756307 DOI: 10.1039/b904799a] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The multifunctional mitochondrial enzyme 17beta-hydroxysteroid dehydrogenase type 10 might play a role in the development of Alzheimer disease via its high-affinity binding to amyloid beta peptides and its neuronal over-expression. It is suggested that the cerebrospinal fluid levels of the enzyme, free or bound to amyloid beta peptides, are a potential specific biomarker of Alzheimer disease. However, mitochondrial dysfunction seems to play a role in many neurological diseases including multiple sclerosis. In this study, the specificity of changes in relation to the enzyme over-expression was evaluated using enzyme-linked immunosorbent and surface plasmon resonance sensors. The data indicated pronounced increases in the enzyme levels, specifically to 179% in multiple sclerosis and to 573% in Alzheimer disease when compared to the age-matched controls. Although the differences between both diseases were statistically significant, enzyme levels do not appear to be a highly specific biomarker of Alzheimer disease. On the other hand, enhancement in levels of the enzyme bound to amyloid beta peptides was only observed in people with Alzheimer disease, which suggests that the complex should be further considered as a possible biomarker. In patients with multiple sclerosis, our results are the first to demonstrate significant changes in enzyme expression and to suggest possible alterations in amyloid beta peptides.
Collapse
Affiliation(s)
- Zdena Kristofiková
- Alzheimer Disease Center, Prague Psychiatric Centre, Ustavní 91, 181 03 Prague 8, Bohnice, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Fu YJ, Xiong S, Lovell MA, Lynn BC. Quantitative proteomic analysis of mitochondria in aging PS-1 transgenic mice. Cell Mol Neurobiol 2009; 29:649-64. [PMID: 19241155 DOI: 10.1007/s10571-009-9359-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 02/03/2009] [Indexed: 12/18/2022]
Abstract
Accumulating evidence suggests mitochondrial alterations are intimately associated with the pathogenesis of Alzheimer's disease (AD). In order to determine if mutations of presenilin-1 (PS-1) affect levels of mitochondrial proteins at different ages we enriched mitochondrial fractions from 3-, 6-, 12-month-old knock-in mice expressing the M146V PS-1 mutation and identified, and quantified proteins using cleavable isotope-coded affinity tag labeling and two-dimensional liquid chromatography/tandem mass spectrometry (2D-LC/MS/MS). Using this approach, 165 non-redundant proteins were identified with 80 of them present in all three age groups. Specifically, at young ages (3 and 6 months), Na(+)/K(+) ATPase and several signal transduction proteins exhibited elevated levels, but dropped dramatically at 12 months. In contrast, components of the oxidative phosporylation pathway (OXPHOS), the mitochondrial permeability transition pore (MPTP), and energy metabolism proteins remained unchanged at 3 months but significantly increased with age. We propose that alterations in calcium homeostasis induced by the PS-1 mutation have a major impact in young animals by inhibiting the function of relevant proteins and inducing compensatory changes. However, in older mice combination of the PS-1 mutation and accumulated oxidative damage results in a functional suppression of OXPHOS and MPTP proteins requiring a compensatory increase in expression levels. In contrast, signal transduction proteins showed decreased levels due to a break down in the compensatory mechanisms. The dysfunction of Na(+)/K(+) ATPase and signal transduction proteins may induce impaired cognition and memory before neurodegeneration occurs.
Collapse
Affiliation(s)
- You-Jun Fu
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | | | | | | |
Collapse
|
22
|
Ruiz-Romero C, Blanco FJ. Mitochondrial proteomics and its application in biomedical research. MOLECULAR BIOSYSTEMS 2009; 5:1130-42. [DOI: 10.1039/b906296n] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
23
|
Schmidt C, Lepsverdize E, Chi SL, Das AM, Pizzo SV, Dityatev A, Schachner M. Amyloid precursor protein and amyloid beta-peptide bind to ATP synthase and regulate its activity at the surface of neural cells. Mol Psychiatry 2008; 13:953-69. [PMID: 17726461 DOI: 10.1038/sj.mp.4002077] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Amyloid precursor protein (APP) and amyloid beta-peptide (Abeta) have been implicated in a variety of physiological and pathological processes underlying nervous system functions. APP shares many features with adhesion molecules in that it is involved in neurite outgrowth, neuronal survival and synaptic plasticity. It is, thus, of interest to identify binding partners of APP that influence its functions. Using biochemical cross-linking techniques we have identified ATP synthase subunit alpha as a binding partner of the extracellular domain of APP and Abeta. APP and ATP synthase colocalize at the cell surface of cultured hippocampal neurons and astrocytes. ATP synthase subunit alpha reaches the cell surface via the secretory pathway and is N-glycosylated during this process. Transfection of APP-deficient neuroblastoma cells with APP results in increased surface localization of ATP synthase subunit alpha. The extracellular domain of APP and Abeta partially inhibit the extracellular generation of ATP by the ATP synthase complex. Interestingly, the binding sequence of APP and Abeta is similar in structure to the ATP synthase-binding sequence of the inhibitor of F1 (IF(1)), a naturally occurring inhibitor of the ATP synthase complex in mitochondria. In hippocampal slices, Abeta and IF(1) similarly impair both short- and long-term potentiation via a mechanism that could be suppressed by blockade of GABAergic transmission. These observations indicate that APP and Abeta regulate extracellular ATP levels in the brain, thus suggesting a novel mechanism in Abeta-mediated Alzheimer's disease pathology.
Collapse
Affiliation(s)
- C Schmidt
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
Mathy G, Sluse FE. Mitochondrial comparative proteomics: Strengths and pitfalls. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:1072-7. [DOI: 10.1016/j.bbabio.2008.04.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 03/27/2008] [Accepted: 04/22/2008] [Indexed: 01/14/2023]
|
25
|
Pollio G, Hoozemans JJM, Andersen CA, Roncarati R, Rosi MC, van Haastert ES, Seredenina T, Diamanti D, Gotta S, Fiorentini A, Magnoni L, Raggiaschi R, Rozemuller AJM, Casamenti F, Caricasole A, Terstappen GC. Increased expression of the oligopeptidase THOP1 is a neuroprotective response to Abeta toxicity. Neurobiol Dis 2008; 31:145-58. [PMID: 18571100 DOI: 10.1016/j.nbd.2008.04.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 04/03/2008] [Accepted: 04/17/2008] [Indexed: 01/18/2023] Open
Abstract
In a comprehensive proteomics study aiming at the identification of proteins associated with amyloid-beta (Abeta)-mediated toxicity in cultured cortical neurons, we have identified Thimet oligopeptidase (THOP1). Functional modulation of THOP1 levels in primary cortical neurons demonstrated that its overexpression was neuroprotective against Abeta toxicity, while RNAi knockdown made neurons more vulnerable to amyloid peptide. In the TgCRND8 transgenic mouse model of amyloid plaque deposition, an age-dependent increase of THOP1 expression was found in brain tissue, where it co-localized with Abeta plaques. In accordance with these findings, THOP1 expression was significantly increased in human AD brain tissue as compared to non-demented controls. These results provide compelling evidence for a neuroprotective role of THOP1 against toxic effects of Abeta in the early stages of AD pathology, and suggest that the observed increase in THOP1 expression might be part of a compensatory defense mechanism of the brain against an increased Abeta load.
Collapse
Affiliation(s)
- Giuseppe Pollio
- Siena Biotech SpA, Discovery Research, Via Fiorentina 1, 53100 Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Padidar S, Bestwick CS, King TP, Rucklidge GJ, Duncan GJ, Reid MD, Drew JE. Profiling of mitochondrial associated proteins from rat colon. J Cell Biochem 2008; 103:78-97. [PMID: 17497683 DOI: 10.1002/jcb.21391] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mitochondrial dysfunction, damage and mutations of mitochondrial proteins give rise to a range of ill understood patterns of disease. Although there is significant general knowledge of the proteins and the functional processes of the mitochondria, there is little knowledge of difference about how mitochondria respond and how they are regulated in different organs and tissues. Proteomic profiling of mitochondria and associated proteins involved in mitochondrial regulation and trafficking within cells and tissues has the potential to provide insights into mitochondrial dysfunction associated with many human diseases. The rat colon mitoproteome analysis presented here provides a useful tool to assist in identification and interpretation of mitochondrial dysfunction implicated in colon pathogenesis. 2DPAGE followed by LC/MS/MS was used to identify 430 proteins from mitochondrial enriched fractions prepared from rat colon, resulting in 195 different proteins or approximately 50% of the resolved proteins being identified as multiple protein expression forms. Proteins associated with the colon mitoproteome were involved in calcium binding, cell cycle, energy metabolism and electron transport chain, protein folding, protein synthesis and degradation, redox regulation, structural proteins, signalling and transporter and channel proteins. The mitochondrial associated proteins identified in this study of colon tissue complement and are compared with other recently published mitoproteome analyses from other organ tissues, and will assist in revealing potentially organ specific roles of the mitochondria and organ specific disease associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Sara Padidar
- Gut Health Division, Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, Scotland, UK
| | | | | | | | | | | | | |
Collapse
|
27
|
Lee JK, Shin JH, Suh J, Choi IS, Ryu KS, Gwag BJ. Tissue inhibitor of metalloproteinases-3 (TIMP-3) expression is increased during serum deprivation-induced neuronal apoptosis in vitro and in the G93A mouse model of amyotrophic lateral sclerosis: a potential modulator of Fas-mediated apoptosis. Neurobiol Dis 2008; 30:174-85. [PMID: 18316197 DOI: 10.1016/j.nbd.2008.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2007] [Revised: 12/01/2007] [Accepted: 01/08/2008] [Indexed: 01/16/2023] Open
Abstract
Cortical neurons deprived of serum undergo apoptosis that is sensitive to inhibitors of macromolecule synthesis. Proteomic analysis revealed differential expression of 49 proteins in cortical neurons 8 h after serum deprivation. Tissue inhibitor of metalloproteinases-3 (TIMP-3), a pro-apoptotic protein in various cancer cells, was increased during serum deprivation-induced apoptosis (SDIA), but not during necrosis induced by excitotoxicity or oxidative stress. Levels of TIMP-3 were markedly increased in degenerating motor neurons in a transgenic model of familial amyotrophic lateral sclerosis. The TIMP-3 expression was accompanied by increase in Fas-FADD interaction, activated caspase-8, and caspase-3 during SDIA and in vulnerable spinal cord of the ALS mouse. SDIA and activation of the Fas pathway were prevented by addition of an active MMP-3. Timp-3 deletion by RNA interference attenuated SDIA in N2a cells. These findings provide evidence that TIMP-3 is an upstream mediator of neuronal apoptosis and likely contributes to neuronal loss in neurodegenerative diseases such as amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Jae Keun Lee
- Research Institute for Neural Science and Technology, Ajou University School of Medicine, Suwon, South Korea
| | | | | | | | | | | |
Collapse
|
28
|
Characterization of the interaction between Aβ 1–42 and glyceraldehyde phosphodehydrogenase. J Pept Sci 2008; 14:755-62. [DOI: 10.1002/psc.998] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
Proteomics of Alzheimer's disease: Unveiling protein dysregulation in complex neuronal systems. Proteomics Clin Appl 2007; 1:1351-61. [DOI: 10.1002/prca.200700323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Indexed: 11/07/2022]
|
30
|
Maloney MT, Bamburg JR. Cofilin-mediated neurodegeneration in Alzheimer's disease and other amyloidopathies. Mol Neurobiol 2007; 35:21-44. [PMID: 17519504 DOI: 10.1007/bf02700622] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 11/30/1999] [Accepted: 09/05/2006] [Indexed: 12/16/2022]
Abstract
Transport defects may arise in various neurodegenerative diseases from failures in molecular motors, microtubule abnormalities, and the chaperone/proteasomal degradation pathway leading to aggresomal-lysosomal accumulations. These defects represent important steps in the neurodegenerative cascade, although in many cases, a clear consensus has yet to be reached regarding their causal relationship to the disease. A growing body of evidence lends support to a link between neurite transport defects in the very early stages of many neurodegenerative diseases and alterations in the organization and dynamics of the actin cytoskeleton initiated by filament dynamizing proteins in the ADF/cofilin family. This article focuses on cofilin, which in neurons under stress, including stress induced by the amyloid-beta (Abeta) 1-42 peptide, undergoes dephosphorylation (activation) and forms rod-shaped actin bundles (rods). Rods inhibit transport, are sites of amyloid precursor protein accumulation, and contribute to the pathology of Alzheimer's disease. Because rods form rapidly in response to anoxia, they could also contribute to synaptic deficits associated with ischemic brain injury (e.g., stroke). Surprisingly, cofilin undergoes phosphorylation (inactivation) in hippocampal neurons treated with Abeta1-40 at high concentrations, and these neurons undergo dystrophic morphological changes, including accumulation of pretangle phosphorylated-tau. Therefore, extremes in phosphoregulation of cofilin by different forms of Abeta may explain much of the Alzheimer's disease pathology and provide mechanisms for synaptic loss and plaque expansion.
Collapse
Affiliation(s)
- Michael T Maloney
- Department of Biochemistry and Molecular Biology, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, CO, USA
| | | |
Collapse
|
31
|
Nilsson A, Sköld K, Sjögren B, Svensson M, Pierson J, Zhang X, Caprioli RM, Buijs J, Persson B, Svenningsson P, Andrén PE. Increased Striatal mRNA and Protein Levels of the Immunophilin FKBP-12 in Experimental Parkinson's Disease and Identification of FKBP-12-Binding Proteins. J Proteome Res 2007; 6:3952-61. [PMID: 17877381 DOI: 10.1021/pr070189e] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
FKBP-12, a 12 kDa FK506-binding protein (neuroimmunophilin), acts as a receptor for the immunosuppressant drug FK506. Neuroimmunophilins, including FKBP-12, are abundant in the brain and have been shown to be involved in reversing neuronal degeneration and preventing cell death. In this report, we have utilized several analytical techniques, such as in situ hybridization, Western blotting, two-dimensional gel electrophoresis, and liquid chromatography electrospray tandem mass spectrometry to study the transcriptional expression as well as protein levels of FKBP-12 in the unilateral 6-hydroxydopamine (6-OHDA) rat model of Parkinson's disease. The FKBP-12 protein was also detected directly on brain tissue sections using mass spectrometry profiling. We found increased levels of FKBP-12 mRNA and protein in the dorsal and middle part of the 6-OHDA lesioned striatum. Thus, these studies clearly demonstrate that FKBP-12 is increased in the brain of a common animal model of Parkinson's disease (PD). Additionally, we have identified potential binding partners to FKBP-12 that may be implicated in the pathophysiology of Parkinson's disease, such as alpha-enolase, 14-3-3 zeta/delta, pyruvate kinase isozymes, and heat shock protein 70, using surface plasmon resonance sensor technology in combination with mass spectrometry. In conclusion, these data strongly suggests that FKBP-12 is altered in an experimental model of PD.
Collapse
Affiliation(s)
- Anna Nilsson
- Laboratory for Biological and Medical Mass Spectrometry, Uppsala University, P.O. Box 583 Biomedical Centre, SE-75123 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Mitochondria are essential organelles for cellular homeostasis. A variety of pathologies including cancer, myopathies, diabetes, obesity, aging and neurodegenerative diseases are linked to mitochondrial dysfunction. Therefore, mapping the different components of mitochondria is of particular interest to gain further understanding of such diseases. In recent years, proteomics-based approaches have been developed in attempts to determine the complete set of mitochondrial proteins in yeast, plants and mammals. In addition, proteomics-based methods have been applied not only to the analysis of protein function in the organelle, but also to identify biomarkers for diagnosis and therapeutic targets of specific pathologies associated with mitochondria. Altogether, it is becoming clear that proteomics is a powerful tool not only to identify currently unknown components of the mitochondrion, but also to study the different roles of the organelle in cellular homeostasis.
Collapse
Affiliation(s)
- Sandrine Da Cruz
- Department of Cellular Biology, University of Geneva, 30 quai E. Ansermet, 1205 Geneva, Switzerland.
| | | | | |
Collapse
|
33
|
Sultana R, Perluigi M, Butterfield DA. Protein oxidation and lipid peroxidation in brain of subjects with Alzheimer's disease: insights into mechanism of neurodegeneration from redox proteomics. Antioxid Redox Signal 2006; 8:2021-37. [PMID: 17034347 DOI: 10.1089/ars.2006.8.2021] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Alzheimer's disease (AD), the leading cause of dementia, involves regionalized neuronal death, synaptic loss, and an accumulation of intraneuronal, neurofibrillary tangles and extracellular senile plaques. Although the initiating causes leading to AD are unknown, a number of previous studies reported the role of oxidative stress in AD brain. Postmortem analysis of AD brain showed elevated markers of oxidative stress including protein nitrotyrosine, carbonyls in proteins, lipid oxidation products, and oxidized DNA bases. In this review, we focus our attention on the role of protein oxidation and lipid peroxidation in the pathogenesis of AD. Particular attention is given to the current knowledge about the redox proteomics identification of oxidatively modified proteins in AD brain.
Collapse
Affiliation(s)
- Rukhsana Sultana
- Department of Chemistry, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| | | | | |
Collapse
|
34
|
Butterfield DA, Perluigi M, Sultana R. Oxidative stress in Alzheimer's disease brain: New insights from redox proteomics. Eur J Pharmacol 2006; 545:39-50. [PMID: 16860790 DOI: 10.1016/j.ejphar.2006.06.026] [Citation(s) in RCA: 253] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 11/28/2005] [Accepted: 06/13/2006] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease, an age-related neurodegenerative disorder, is characterized clinically by a progressive loss of memory and cognitive functions. Neuropathologically, Alzheimer's disease is defined by the accumulation of extracellular amyloid protein deposited senile plaques and intracellular neurofibrillary tangles made of abnormal and hyperphosphorylated tau protein, regionalized neuronal death, and loss of synaptic connections within selective brain regions. Evidence has suggested a critical role for amyloid-beta peptide metabolism and oxidative stress in Alzheimer's disease pathogenesis and progression. Among the other indices of oxidative stress in Alzheimer's disease brain are protein carbonyls and 3-nitrotyrosine, which are the markers of protein oxidation. Thus, in this review, we discuss the application of redox proteomics for the identification of oxidatively modified proteins in Alzheimer's disease brain and also discuss the functions associated with the identified oxidized proteins in relation to Alzheimer's disease pathology. The information obtained from proteomics may be helpful in understanding the molecular mechanisms involved in the development and progression of Alzheimer's disease as well as of other neurodegenerative disorders. Further, redox proteomics may provide potential targets for drug therapy in Alzheimer's disease.
Collapse
|
35
|
Vo TD, Palsson BO. Building the power house: recent advances in mitochondrial studies through proteomics and systems biology. Am J Physiol Cell Physiol 2006; 292:C164-77. [PMID: 16885397 DOI: 10.1152/ajpcell.00193.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The emerging field of systems biology seeks to develop novel approaches to integrate heterogeneous data sources for effective analysis of complex living systems. Systemic studies of mitochondria have generated a large number of proteomic data sets in numerous species, including yeast, plant, mouse, rat, and human. Beyond component identification, mitochondrial proteomics is recognized as a powerful tool for diagnosing and characterizing complex diseases associated with these organelles. Various proteomic techniques for isolation and purification of proteins have been developed; each tailored to preserve protein properties relevant to study of a particular disease type. Examples of such techniques include immunocapture, which minimizes loss of posttranslational modification, 4-iodobutyltriphenylphosphonium labeling, which quantifies protein redox states, and surface-enhanced laser desorption ionization-time-of-flight mass spectrometry, which allows sequence-specific binding. With the rapidly increasing number of discovered molecular components, computational models are also being developed to facilitate the organization and analysis of such data. Computational models of mitochondria have been accomplished with top-down and bottom-up approaches and have been steadily improved in size and scope. Results from top-down methods tend to be more qualitative but are unbiased by prior knowledge about the system. Bottom-up methods often require the incorporation of a large amount of existing data but provide more rigorous and quantitative information, which can be used as hypotheses for subsequent experimental studies. Successes and limitations of the studies reviewed here provide opportunities and challenges that must be addressed to facilitate the application of systems biology to larger systems.
Collapse
Affiliation(s)
- Thuy D Vo
- Department of Bioengineering, University of California-San Diego, MC 0412, La Jolla, CA 92093, USA
| | | |
Collapse
|
36
|
Gillardon F. Differential mitochondrial protein expression profiling in neurodegenerative diseases. Electrophoresis 2006; 27:2814-8. [PMID: 16739226 DOI: 10.1002/elps.200500911] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Alterations in mitochondrial structure or function have been described in a variety of human diseases for nearly half a century. The complete sequence of the human mitochondrial genome has been published in 1981. The mitochondrial proteome database however, is still incomplete. Here I give a short review on recent advances to determine the complete set of mitochondrial proteins. The main emphasis is put on gel-based proteomic approaches to identify differentially expressed mitochondrial proteins in neurodegenerative diseases.
Collapse
Affiliation(s)
- Frank Gillardon
- Boehringer Ingelheim Pharma, CNS Research, Biberach, Germany.
| |
Collapse
|
37
|
Ruiz-Romero C, López-Armada MJ, Blanco FJ. Mitochondrial proteomic characterization of human normal articular chondrocytes. Osteoarthritis Cartilage 2006; 14:507-18. [PMID: 16520066 DOI: 10.1016/j.joca.2005.12.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Accepted: 12/17/2005] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Mitochondrial dysfunctions have been associated with apoptosis, aging and osteoarthritis (OA). Chondrocyte mitochondrial proteins are attractive targets for the study of the metabolism of cartilage degradation. The copurification of "contaminating" proteins has been the major problem in all phases of mitochondrial proteome research. Therefore, we set up a procedure for the proteomic analysis of human chondrocyte mitochondrial proteins. METHOD Four types of protein extracts were obtained from primary cultured chondrocytes isolated from healthy donors: (1) initial total chondrocyte extract (CE), (2) cytosol-enriched supernatant fraction (CY), (3) crude mitochondria fraction (CM), and (4) pure mitochondria fraction (PM). Mitochondria were purified by density gradient ultracentrifugation. Mitochondrial proteins were separated by means of two-dimensional gel electrophoresis (2-DE) and silver stained. Protein spots were then identified by mass spectrometry using MALDI-TOF/TOF technology. RESULTS The best 2-DE reference map of mitochondrial proteome was constructed employing PM fraction. Thirty-nine percent of the identified proteins were functionally distributed in the mitochondria, 14% in the endoplasmic reticulum and 36% in the cytoplasm. Examining their biological function, 22% are involved in protein targeting, 12% in signaling, 12% in glycolysis, 10% in RNA, DNA or protein synthesis, 10% in oxidative phosphorylation and 4% in redox. The analysis of mitochondrial Mn-superoxide dismutase (SODM) revealed an age-dependent decrease of this protein. CONCLUSION PM fraction allowed the obtention of a high quality proteomic map for the study of mitochondrial proteins in human articular chondrocytes. This proteomic approach may be also efficient to analyze both quantitative and qualitative modulations of the mitochondrial proteome in human chondrocytes during aging and pathological conditions such as OA.
Collapse
Affiliation(s)
- C Ruiz-Romero
- Osteoarticular and Aging Research Unit, Rheumatology Division, C.H. Universitario Juan Canalejo, Xubias 84 15006-A Coruña, Spain
| | | | | |
Collapse
|
38
|
Ottens AK, Kobeissy FH, Golden EC, Zhang Z, Haskins WE, Chen SS, Hayes RL, Wang KKW, Denslow ND. Neuroproteomics in neurotrauma. MASS SPECTROMETRY REVIEWS 2006; 25:380-408. [PMID: 16498609 DOI: 10.1002/mas.20073] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Neurotrauma in the form of traumatic brain injury (TBI) afflicts more Americans annually than Alzheimer's and Parkinson's disease combined, yet few researchers have used neuroproteomics to investigate the underlying complex molecular events that exacerbate TBI. Discussed in this review is the methodology needed to explore the neurotrauma proteome-from the types of samples used to the mass spectrometry identification and quantification techniques available. This neuroproteomics survey presents a framework for large-scale protein research in neurotrauma, as applied for immediate TBI biomarker discovery and the far-reaching systems biology understanding of how the brain responds to trauma. Ultimately, knowledge attained through neuroproteomics could lead to clinical diagnostics and therapeutics to lessen the burden of neurotrauma on society.
Collapse
Affiliation(s)
- Andrew K Ottens
- Center of Neuroproteomics and Biomarkers Research, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Douette P, Sluse FE. Mitochondrial uncoupling proteins: new insights from functional and proteomic studies. Free Radic Biol Med 2006; 40:1097-107. [PMID: 16545677 DOI: 10.1016/j.freeradbiomed.2005.12.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 12/02/2005] [Accepted: 12/11/2005] [Indexed: 01/20/2023]
Abstract
Mitochondria are the major sites of ATP synthesis through oxidative phosphorylation, a process that is weakened by proton leak. Uncoupling proteins are mitochondrial membrane proteins specialized in inducible proton conductance. They dissipate the proton electrochemical gradient established by the respiratory chain at the expense of reducing substrates. Several physiological roles have been suggested for uncoupling proteins, including roles in the control of the cellular energy balance and in preventive action against oxidative stress. This review focuses on new leads emerging from comparative proteomics about the involvement of uncoupling protein in the mitochondrial physiology. A brief overview on uncoupling proteins and on proteomics applied to mitochondria is also presented herein.
Collapse
Affiliation(s)
- Pierre Douette
- Laboratory of Bioenergetics, Bât. B6C, Allée de la chimie 3, 4000Liège, Belgium
| | | |
Collapse
|
40
|
Wang H, Qian WJ, Chin MH, Petyuk VA, Barry RC, Liu T, Gritsenko MA, Mottaz HM, Moore RJ, Camp Ii DG, Khan AH, Smith DJ, Smith RD. Characterization of the mouse brain proteome using global proteomic analysis complemented with cysteinyl-peptide enrichment. J Proteome Res 2006; 5:361-9. [PMID: 16457602 PMCID: PMC1850945 DOI: 10.1021/pr0503681] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a global proteomic approach for analyzing brain tissue and for the first time a comprehensive characterization of the whole mouse brain proteome. Preparation of the whole brain sample incorporated a highly efficient cysteinyl-peptide enrichment (CPE) technique to complement a global enzymatic digestion method. Both the global and the cysteinyl-enriched peptide samples were analyzed by SCX fractionation coupled with reversed phase LC-MS/MS analysis. A total of 48,328 different peptides were confidently identified (>98% confidence level), covering 7792 nonredundant proteins ( approximately 34% of the predicted mouse proteome). A total of 1564 and 1859 proteins were identified exclusively from the cysteinyl-peptide and the global peptide samples, respectively, corresponding to 25% and 31% improvements in proteome coverage compared to analysis of only the global peptide or cysteinyl-peptide samples. The identified proteins provide a broad representation of the mouse proteome with little bias evident due to protein pI, molecular weight, and/or cellular localization. Approximately 26% of the identified proteins with gene ontology (GO) annotations were membrane proteins, with 1447 proteins predicted to have transmembrane domains, and many of the membrane proteins were found to be involved in transport and cell signaling. The MS/MS spectrum count information for the identified proteins was used to provide a measure of relative protein abundances. The mouse brain peptide/protein database generated from this study represents the most comprehensive proteome coverage for the mammalian brain to date, and the basis for future quantitative brain proteomic studies using mouse models. The proteomic approach presented here may have broad applications for rapid proteomic analyses of various mouse models of human brain diseases.
Collapse
Affiliation(s)
- Haixing Wang
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Sultana R, Newman SF, Abdul HM, Cai J, Pierce WM, Klein JB, Merchant M, Butterfield DA. Protective effect of D609 against amyloid-beta1–42-induced oxidative modification of neuronal proteins: Redox proteomics study. J Neurosci Res 2006; 84:409-17. [PMID: 16634065 DOI: 10.1002/jnr.20876] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Oxidative stress has been implicated in the pathophysiology of a number of diseases, including neurodegenerative disorders such as Alzheimer's disease (AD), a neurodegenerative disorder associated with cognitive decline and enhanced oxidative stress. Amyloid-beta peptide(1-42) (Abeta(1-42)), one of the main component of senile plaques, can induce in vitro and in vivo oxidative damage to neuronal cells through its ability to produce free radicals. The aim of this study was to investigate the protective effect of the xanthate D609 on Abeta(1-42)-induced protein oxidation by using a redox proteomics approach. D609 was recently found to be a free radical scavenger and antioxidant. In the present study, rat primary neuronal cells were pretreated with 50 microM of D609, followed by incubation with 10 microM Abeta(1-42) for 24 hr. In the cells treated with Abeta(1-42) alone, four proteins that were significantly oxidized were identified: glyceraldehyde-3-phosphate dehydrogenase, pyruvate kinase, malate dehydrogenase, and 14-3-3 zeta. Pretreatment of neuronal cultures with D609 prior to Abeta(1-42) protected all the identified oxidized proteins in the present study against Abeta(1-42)-mediated protein oxidation. Therefore, D609 may ameliorate the Abeta(1-42)-induced oxidative modification. We discuss the implications of these Abeta(1-42)-mediated oxidatively modified proteins for AD pathology and for potential therapeutic intervention in this dementing disorder.
Collapse
Affiliation(s)
- Rukhsana Sultana
- Department of Chemistry, University of Kentucky, Lexington, 40506, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Teilum M, Hansson MJ, Dainiak MB, Månsson R, Surve S, Elmér E, Onnerfjord P, Mattiasson G. Binding mitochondria to cryogel monoliths allows detection of proteins specifically released following permeability transition. Anal Biochem 2006; 348:209-21. [PMID: 16310157 DOI: 10.1016/j.ab.2005.08.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Revised: 08/12/2005] [Accepted: 08/19/2005] [Indexed: 10/25/2022]
Abstract
Following proapoptotic signals such as calcium-induced mitochondrial permeability transition or translocation of proapoptotic proteins, mitochondria induce cell death through release of apoptogenic proteins. The mechanism of release and the identity of the released proteins are currently debated. Earlier attempts at identification of the apoptogenic proteins have been hampered by a high nonspecific background. Our aim was to develop a novel method where background release was eliminated, allowing proteins specifically released from mitochondria following proapoptotic stimulation to be identified. Liver mitochondria were immobilized and washed on cryogel monoliths prior to induction of protein release (calcium or Bid/Bax). Immobilized mitochondria exhibited normal morphology and swelling response and retained respiratory activity. The released proteins were collected, concentrated, separated on polyacrylamide gels which were cut into pieces, trypsin-digested, and analyzed using liquid chromatography-tandem mass spectrometry. Control samples contained no protein, and stimulation with calcium and Bid/Bax resulted in identification of 68 and 82 proteins, respectively. We conclude that, in combination with the robust proteomic approach, immobilization on cryogel monoliths is a fruitful approach for studying specific protein release from isolated mitochondria. We propose that this method is a powerful tool to further characterize the role of mitochondria in cell death induction.
Collapse
Affiliation(s)
- M Teilum
- Laboratory for Experimental Brain Research, Wallenberg Neuroscience Center, Lund University, 221 84 Lund, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Proteomics reveals complex protein expression, function, interactions and localization in different phenotypes of neuron. As proteomics, regarded as a highly complex screening technology, moves from a theoretical approach to practical reality, neuroscientists have to determine the most-appropriate applications for this technology. Even though proteomics compliments genomics, it is in sheer contrast to the basically constant genome due to its dynamic nature. Neuroscientists have to surmount difficulties particular to the research in neuroscience; such as limited sample amounts, heterogeneous cellular compositions in samples and the fact that many proteins of interest are hydrophobic proteins. The necessity of exclusive technology, sophisticated software and skilled manpower tops the challenge. This review examines subcellular organelle isolation, protein fractionation and separation using two-dimensional gel electrophoresis (2-DGE) as well as multi-dimensional liquid chromatography (LC) followed by mass spectrometry (MS). The methods for quantifying relative gene product expression between samples (e.g., two-dimensional difference in gel electrophoresis (2D-DIGE), isotope-coded affinity tag (ICAT) and iTRAQ) are elaborated. An overview of the techniques used currently to assign post-translational modification status on a proteomics scale is also evaluated. The feasible coverage of the proteome, ability to detect unique cell components such as post-synaptic densities and membrane proteins, resource requirements and quantitative as well as qualitative reliability of different approaches is also discussed. While there are many challenges in neuroproteomics, this field promises many returns in the future.
Collapse
|
44
|
Howell N, Dykens J, Moos WH. Alzheimer's disease, estrogens, and clinical trials: a case study in drug development for complex disorders. Drug Dev Res 2006. [DOI: 10.1002/ddr.20046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Sultana R, Poon HF, Cai J, Pierce WM, Merchant M, Klein JB, Markesbery WR, Butterfield DA. Identification of nitrated proteins in Alzheimer's disease brain using a redox proteomics approach. Neurobiol Dis 2005; 22:76-87. [PMID: 16378731 DOI: 10.1016/j.nbd.2005.10.004] [Citation(s) in RCA: 277] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 09/08/2005] [Accepted: 10/13/2005] [Indexed: 01/16/2023] Open
Abstract
Nitric oxide (NO) has been implicated in the pathophysiology of a number of neurodegenerative diseases including Alzheimer's disease (AD). In the present study, using a proteomics approach, we identified enolase, glyceraldehyde-3-phosphate dehydrogenase, ATP synthase alpha chain, carbonic anhydrase-II, and voltage-dependent anion channel-protein as the targets of nitration in AD hippocampus, a region that shows a extensive deposition of amyloid beta-peptide, compared with the age-matched control brains. Immunoprecipitation and Western blotting techniques were used to validate the correct identification of these proteins. Our results are discussed in context of the role of oxidative stress as one of the important mechanisms of neurodegeneration in AD.
Collapse
Affiliation(s)
- Rukhsana Sultana
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2005. [PMCID: PMC2447491 DOI: 10.1002/cfg.425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|