1
|
Miao J, Zhang Y, Su C, Zheng Q, Guo J. Insulin-Like Growth Factor Signaling in Alzheimer's Disease: Pathophysiology and Therapeutic Strategies. Mol Neurobiol 2024:10.1007/s12035-024-04457-1. [PMID: 39240280 DOI: 10.1007/s12035-024-04457-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia among the elderly population, posing a significant public health challenge due to limited therapeutic options that merely delay cognitive decline. AD is associated with impaired energy metabolism and reduced neurotrophic signaling. The insulin-like growth factor (IGF) signaling pathway, crucial for central nervous system (CNS) development, metabolism, repair, cognition, and emotion regulation, includes IGF-1, IGF-2, IGF-1R, IGF-2R, insulin receptor (IR), and six insulin-like growth factor binding proteins (IGFBPs). Research has identified abnormalities in IGF signaling in individuals with AD and AD models. Dysregulated expression of IGFs, receptors, IGFBPs, and disruptions in downstream phosphoinositide 3-kinase-protein kinase B (PI3K/AKT) and mitogen-activated protein kinase (MAPK) pathways collectively increase AD susceptibility. Studies suggest modulating the IGF pathway may ameliorate AD pathology and cognitive decline. This review explores the CNS pathophysiology of IGF signaling in AD progression and assesses the potential of targeting the IGF system as a novel therapeutic strategy. Further research is essential to elucidate how aberrant IGF signaling contributes to AD development, understand underlying molecular mechanisms, and evaluate the safety and efficacy of IGF-based treatments.
Collapse
Affiliation(s)
- Jie Miao
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yanli Zhang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Department of Neurology, Sixth Hospital of Shanxi Medical University (General Hospital of Tisco), Taiyuan, 030001, Shanxi, China
| | - Chen Su
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Qiandan Zheng
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Junhong Guo
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
2
|
Palma-Lara I, García Alonso-Themann P, Pérez-Durán J, Godínez-Aguilar R, Bonilla-Delgado J, Gómez-Archila D, Espinosa-García AM, Nolasco-Quiroga M, Victoria-Acosta G, López-Ornelas A, Serrano-Bello JC, Olguín-García MG, Palacios-Reyes C. Potential Role of Protein Kinase FAM20C on the Brain in Raine Syndrome, an In Silico Analysis. Int J Mol Sci 2023; 24:ijms24108904. [PMID: 37240249 DOI: 10.3390/ijms24108904] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
FAM20C (family with sequence similarity 20, member C) is a serine/threonine-specific protein kinase that is ubiquitously expressed and mainly associated with biomineralization and phosphatemia regulation. It is mostly known due to pathogenic variants causing its deficiency, which results in Raine syndrome (RNS), a sclerosing bone dysplasia with hypophosphatemia. The phenotype is recognized by the skeletal features, which are related to hypophosphorylation of different FAM20C bone-target proteins. However, FAM20C has many targets, including brain proteins and the cerebrospinal fluid phosphoproteome. Individuals with RNS can have developmental delay, intellectual disability, seizures, and structural brain defects, but little is known about FAM20C brain-target-protein dysregulation or about a potential pathogenesis associated with neurologic features. In order to identify the potential FAM20C actions on the brain, an in silico analysis was conducted. Structural and functional defects reported in RNS were described; FAM20C targets and interactors were identified, including their brain expression. Gene ontology of molecular processes, function, and components was completed for these targets, as well as for potential involved signaling pathways and diseases. The BioGRID and Human Protein Atlas databases, the Gorilla tool, and the PANTHER and DisGeNET databases were used. Results show that genes with high expression in the brain are involved in cholesterol and lipoprotein processes, plus axo-dendritic transport and the neuron part. These results could highlight some proteins involved in the neurologic pathogenesis of RNS.
Collapse
Affiliation(s)
- Icela Palma-Lara
- Laboratorio de Morfología Celular y Molecular, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | | | - Javier Pérez-Durán
- Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México 11000, Mexico
| | | | - José Bonilla-Delgado
- Unidad de Investigación, Hospital Regional de Ixtapaluca, Ixtapaluca 56530, Mexico
- Departamento de Biotecnología, Escuela de Ingeniería y Ciencias, Instituto Tecnológico de Monterrey, Toluca de Lerdo 50110, Mexico
| | - Damián Gómez-Archila
- Departamento de Oncología Quirúrgica, Hospital de Gineco-Obstetricia 3, Centro Médico Nacional "La Raza", Ciudad de México 02990, Mexico
| | | | - Manuel Nolasco-Quiroga
- Coordinación de Enseñanza e Investigación, Clínica Hospital Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Huauchinango 73177, Mexico
| | | | - Adolfo López-Ornelas
- División de Investigación, Hospital Juárez de México, Ciudad de México 11340, Mexico
| | - Juan Carlos Serrano-Bello
- Departamento de Patología Clínica y Experimental, Hospital Infantil de México Federico Gómez, Ciudad de México 06720, Mexico
| | | | - Carmen Palacios-Reyes
- División de Investigación, Hospital Juárez de México, Ciudad de México 11340, Mexico
| |
Collapse
|
3
|
Bickel MA, Csik B, Gulej R, Ungvari A, Nyul-Toth A, Conley SM. Cell non-autonomous regulation of cerebrovascular aging processes by the somatotropic axis. Front Endocrinol (Lausanne) 2023; 14:1087053. [PMID: 36755922 PMCID: PMC9900125 DOI: 10.3389/fendo.2023.1087053] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023] Open
Abstract
Age-related cerebrovascular pathologies, ranging from cerebromicrovascular functional and structural alterations to large vessel atherosclerosis, promote the genesis of vascular cognitive impairment and dementia (VCID) and exacerbate Alzheimer's disease. Recent advances in geroscience, including results from studies on heterochronic parabiosis models, reinforce the hypothesis that cell non-autonomous mechanisms play a key role in regulating cerebrovascular aging processes. Growth hormone (GH) and insulin-like growth factor 1 (IGF-1) exert multifaceted vasoprotective effects and production of both hormones is significantly reduced in aging. This brief overview focuses on the role of age-related GH/IGF-1 deficiency in the development of cerebrovascular pathologies and VCID. It explores the mechanistic links among alterations in the somatotropic axis, specific macrovascular and microvascular pathologies (including capillary rarefaction, microhemorrhages, impaired endothelial regulation of cerebral blood flow, disruption of the blood brain barrier, decreased neurovascular coupling, and atherogenesis) and cognitive impairment. Improved understanding of cell non-autonomous mechanisms of vascular aging is crucial to identify targets for intervention to promote cerebrovascular and brain health in older adults.
Collapse
Affiliation(s)
- Marisa A. Bickel
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Boglarka Csik
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Anna Ungvari
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Adam Nyul-Toth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Department of Public Health, Semmelweis University, Budapest, Hungary
- Institute of Biophysics, Biological Research Centre, Eötvös Lorand Research Network (ELKH), Szeged, Hungary
| | - Shannon M. Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
4
|
Khezri MR, Yousefi K, Esmaeili A, Ghasemnejad-Berenji M. The Role of ERK1/2 Pathway in the Pathophysiology of Alzheimer's Disease: An Overview and Update on New Developments. Cell Mol Neurobiol 2023; 43:177-191. [PMID: 35038057 DOI: 10.1007/s10571-022-01191-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/06/2022] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder worldwide. Several findings suggest that correcting the dysregulated signaling pathways may offer a potential therapeutic approach in this disease. Extracellular signal-regulated kinase 1/2 (ERK1/2), a member of the mitogen-activated protein kinase family, plays a major role in regulation of cell proliferation, autophagy process, and protein synthesis. The available literature suggests dysregulated ERK1/2 in AD patients with potential implications in the multifaceted underlying pathologies of AD, including amyloid-β plaque formation, tau phosphorylation, and neuroinflammation. In this regard, in the current review, we aim to summarize the reports on the potential roles of ERK1/2 in AD pathophysiology.
Collapse
Affiliation(s)
- Mohammad Rafi Khezri
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Keyvan Yousefi
- Department of Molecular and Cellular Pharmacology, University of Miami-Miller School of Medicine, Miami, FL, USA.
| | - Ayda Esmaeili
- Clinical Pharmacy Department, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Morteza Ghasemnejad-Berenji
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran. .,Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran. .,Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, PO Box: 5715799313, Urmia, Iran.
| |
Collapse
|
5
|
Down-Regulation of Insulin Like Growth Factor 1 Involved in Alzheimer’s Disease via MAPK, Ras, and FoxO Signaling Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8169981. [PMID: 35571248 PMCID: PMC9096571 DOI: 10.1155/2022/8169981] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/07/2022] [Accepted: 04/19/2022] [Indexed: 11/18/2022]
Abstract
The inability to halt or even delay the course of Alzheimer's disease (AD) forces the development of new molecular signatures and therapeutic strategies. Insulin like growth factor 1 (IGF1) is a promising target for AD treatment, yet exact mechanisms of AD ascribed to IGF1 remain elusive. Herein, gene expression profiles of 195 samples were analyzed and 19,245 background genes were generated, among which 4,424 differentially expressed genes (DEGs) were overlapped between AD/control and IGF1-low/high groups. Based on such DEGs, seven co-expression modules were established by weight gene correlation network analysis (WGCNA). The turquoise module had the strongest correlation with AD and IGF1-low expression, the DEGs of which were enriched in GABAergic synapse, long-term potentiation, mitogen-activated protein kinase (MAPK), Ras, and forkhead box O (FoxO) signaling pathways. Furthermore, cross-talking pathways of IGF1, including MAPK, Ras, and FoxO signaling pathways were identified in the protein-protein interaction network. According to the area under the curve (AUC) analysis, down-regulation of IGF1 exhibited good diagnostic performance in AD prediction. Collectively, our findings highlight the involvement of low IGF1 in AD pathogenesis via MAPK, Ras, and FoxO signaling pathways, which might advance strategies for the prevention and therapy of AD based on IGF1 target.
Collapse
|
6
|
Metformin in Alzheimer’s disease: An overview of potential mechanisms, preclinical and clinical findings. Biochem Pharmacol 2022; 197:114945. [DOI: 10.1016/j.bcp.2022.114945] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 12/13/2022]
|
7
|
Liang YY, Zhang LD, Luo X, Wu LL, Chen ZW, Wei GH, Zhang KQ, Du ZA, Li RZ, So KF, Li A. All roads lead to Rome - a review of the potential mechanisms by which exerkines exhibit neuroprotective effects in Alzheimer's disease. Neural Regen Res 2021; 17:1210-1227. [PMID: 34782555 PMCID: PMC8643060 DOI: 10.4103/1673-5374.325012] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Age-related neurodegenerative disorders such as Alzheimer’s disease (AD) have become a critical public health issue due to the significantly extended human lifespan, leading to considerable economic and social burdens. Traditional therapies for AD such as medicine and surgery remain ineffective, impractical, and expensive. Many studies have shown that a variety of bioactive substances released by physical exercise (called “exerkines”) help to maintain and improve the normal functions of the brain in terms of cognition, emotion, and psychomotor coordination. Increasing evidence suggests that exerkines may exert beneficial effects in AD as well. This review summarizes the neuroprotective effects of exerkines in AD, focusing on the underlying molecular mechanism and the dynamic expression of exerkines after physical exercise. The findings described in this review will help direct research into novel targets for the treatment of AD and develop customized exercise therapy for individuals of different ages, genders, and health conditions.
Collapse
Affiliation(s)
- Yi-Yao Liang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University; Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education, Guangzhou, Guangdong Province, China
| | - Li-Dan Zhang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University; Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education, Guangzhou, Guangdong Province, China
| | - Xi Luo
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University; Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education, Guangzhou, Guangdong Province, China
| | - Li-Li Wu
- Department of Medical Ultrasonics, Third Affiliated Hospital of Sun Yat-sen University; Guangdong Key Laboratory of Liver Disease Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zhao-Wei Chen
- Department of Clinical Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong Province, China
| | - Guang-Hao Wei
- Department of Clinical Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong Province, China
| | - Kai-Qing Zhang
- Department of Clinical Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong Province, China
| | - Ze-An Du
- Department of Clinical Medicine, International School, Jinan University, Guangzhou, Guangdong Province, China
| | - Ren-Zhi Li
- International Department of the Affiliated High School of South China Normal University, Guangzhou, Guangdong Province, China
| | - Kwok-Fai So
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University; Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong Province; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Ang Li
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University; Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong Province, China
| |
Collapse
|
8
|
Herrero-Labrador R, Trueba-Saiz A, Martinez-Rachadell L, Fernandez de Sevilla ME, Zegarra-Valdivia JA, Pignatelli J, Diaz-Pacheco S, Fernandez AM, Torres Aleman I. Circulating Insulin-Like Growth Factor I is Involved in the Effect of High Fat Diet on Peripheral Amyloid β Clearance. Int J Mol Sci 2020; 21:ijms21249675. [PMID: 33352990 PMCID: PMC7766006 DOI: 10.3390/ijms21249675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/11/2023] Open
Abstract
Obesity is a risk factor for Alzheimer’s disease (AD), but underlying mechanisms are not clear. We analyzed peripheral clearance of amyloid β (Aβ) in overweight mice because its systemic elimination may impact brain Aβ load, a major landmark of AD pathology. We also analyzed whether circulating insulin-like growth factor I (IGF-I) intervenes in the effects of overweight as this growth factor modulates brain Aβ clearance and is increased in the serum of overweight mice. Overweight mice showed increased Aβ accumulation by the liver, the major site of elimination of systemic Aβ, but unaltered brain Aβ levels. We also found that Aβ accumulation by hepatocytes is stimulated by IGF-I, and that mice with low serum IGF-I levels show reduced liver Aβ accumulation—ameliorated by IGF-I administration, and unchanged brain Aβ levels. In the brain, IGF-I favored the association of its receptor (IGF-IR) with the Aβ precursor protein (APP), and at the same time, stimulated non-amyloidogenic processing of APP in astrocytes, as indicated by an increased sAPPα/sAPPβ ratio after IGF-I treatment. Since serum IGF-I enters into the brain in an activity-dependent manner, we analyzed in overweight mice the effect of brain activation by environmental enrichment (EE) on brain IGF-IR phosphorylation and its association to APP, as a readout of IGF-I activity. After EE, significantly reduced brain IGF-IR phosphorylation and APP/IGF-IR association were found in overweight mice as compared to lean controls. Collectively, these results indicate that a high-fat diet influences peripheral clearance of Aβ without affecting brain Aβ load. Increased serum IGF-I likely contributes to enhanced peripheral Aβ clearance in overweight mice, without affecting brain Aβ load probably because its brain entrance is reduced.
Collapse
Affiliation(s)
- Raquel Herrero-Labrador
- Cajal Institute, CSIC, 28002 Madrid, Spain; (R.H.-L.); (A.T.-S.); (L.M.-R.); (M.E.F.d.S.); (J.A.Z.-V.); (J.P.); (S.D.-P.); (A.M.F.)
- Ciberned, 28029 Madrid, Spain
| | - Angel Trueba-Saiz
- Cajal Institute, CSIC, 28002 Madrid, Spain; (R.H.-L.); (A.T.-S.); (L.M.-R.); (M.E.F.d.S.); (J.A.Z.-V.); (J.P.); (S.D.-P.); (A.M.F.)
- Ciberned, 28029 Madrid, Spain
| | - Laura Martinez-Rachadell
- Cajal Institute, CSIC, 28002 Madrid, Spain; (R.H.-L.); (A.T.-S.); (L.M.-R.); (M.E.F.d.S.); (J.A.Z.-V.); (J.P.); (S.D.-P.); (A.M.F.)
- Ciberned, 28029 Madrid, Spain
| | - Mᵃ Estrella Fernandez de Sevilla
- Cajal Institute, CSIC, 28002 Madrid, Spain; (R.H.-L.); (A.T.-S.); (L.M.-R.); (M.E.F.d.S.); (J.A.Z.-V.); (J.P.); (S.D.-P.); (A.M.F.)
- Ciberned, 28029 Madrid, Spain
| | - Jonathan A. Zegarra-Valdivia
- Cajal Institute, CSIC, 28002 Madrid, Spain; (R.H.-L.); (A.T.-S.); (L.M.-R.); (M.E.F.d.S.); (J.A.Z.-V.); (J.P.); (S.D.-P.); (A.M.F.)
- Ciberned, 28029 Madrid, Spain
- Universidad Nacional de San Agustín de Arequipa, 04001 Arequipa, Peru
| | - Jaime Pignatelli
- Cajal Institute, CSIC, 28002 Madrid, Spain; (R.H.-L.); (A.T.-S.); (L.M.-R.); (M.E.F.d.S.); (J.A.Z.-V.); (J.P.); (S.D.-P.); (A.M.F.)
- Ciberned, 28029 Madrid, Spain
| | - Sonia Diaz-Pacheco
- Cajal Institute, CSIC, 28002 Madrid, Spain; (R.H.-L.); (A.T.-S.); (L.M.-R.); (M.E.F.d.S.); (J.A.Z.-V.); (J.P.); (S.D.-P.); (A.M.F.)
| | - Ana M. Fernandez
- Cajal Institute, CSIC, 28002 Madrid, Spain; (R.H.-L.); (A.T.-S.); (L.M.-R.); (M.E.F.d.S.); (J.A.Z.-V.); (J.P.); (S.D.-P.); (A.M.F.)
- Ciberned, 28029 Madrid, Spain
| | - Ignacio Torres Aleman
- Cajal Institute, CSIC, 28002 Madrid, Spain; (R.H.-L.); (A.T.-S.); (L.M.-R.); (M.E.F.d.S.); (J.A.Z.-V.); (J.P.); (S.D.-P.); (A.M.F.)
- Ciberned, 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
9
|
Yossef RR, Al-Yamany MF, Saad MA, El-Sahar AE. Neuroprotective effects of vildagliptin on drug induced Alzheimer's disease in rats with metabolic syndrome: Role of hippocampal klotho and AKT signaling pathways. Eur J Pharmacol 2020; 889:173612. [PMID: 33035520 DOI: 10.1016/j.ejphar.2020.173612] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022]
Abstract
Growing evidences suggest the presence of several similarities in the molecular mechanisms underlying the neurodegenerative diseases and metabolic abnormalities. Adults who develop Metabolic Syndrome (MS) are at a higher risk of developing Alzheimer's disease (AD). Pharmacological agents, like dipeptidyl peptidase-4 (DPP-4) inhibitors that increase the levels of glucagon like peptide 1 (GLP-1) and ameliorate symptoms of MS, have become an auspicious candidate as disease modifying agents in the treatment of AD. The present study investigates the beneficial effects of Vildagliptin, a DPP-4 inhibitor in counteracting cognitive decline in different models of dementia targeting the AKT, JAK/STAT signaling pathways and hippocampal Klotho expression, to judge the neuroprotective, anti-apoptotic and anti-inflammatory effects of the drug. Cognitive decline was induced by either administration of high fat high sugar (HFHS) diet for 45 days alone, or with oral administration of AlCl3 (100 mg/kg/day) for 60 days. Rats were orally administered Vildagliptin (10 mg/kg) for 60 days along with AlCl3 administration. Vildagliptin treatment improved spatial memory and activities in morris water maze (MWM) test and open field test respectively. Results revealed an increase of both hippocampal klotho and Bcl-2 expressions along with an increase in both AKT and ERK1/2 phosphorylation. In contrast, Vildagliptin treatment decreased hippocampal contents of inflammatory, apoptotic and oxidative stress biomarkers as TNF-α, caspase-3 and FOXO1 along with restoring metabolic abnormalities. A significant decrease in BAX expressions with JAK2/STAT3 inhibition was observed. These findings demonstrate that the neuroprotective role of vildagliptin is possibly via modulating Klotho protein together with AKT pathway.
Collapse
Affiliation(s)
- Rasha R Yossef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Giza, Egypt.
| | - Mohamed F Al-Yamany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | | | - Ayman E El-Sahar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
10
|
Huichalaf CH, Al-Ramahi I, Park KW, Grunke SD, Lu N, de Haro M, El-Zein K, Gallego-Flores T, Perez AM, Jung SY, Botas J, Zoghbi HY, Jankowsky JL. Cross-species genetic screens to identify kinase targets for APP reduction in Alzheimer's disease. Hum Mol Genet 2020; 28:2014-2029. [PMID: 30753434 DOI: 10.1093/hmg/ddz034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 01/07/2019] [Accepted: 02/01/2019] [Indexed: 12/12/2022] Open
Abstract
An early hallmark of Alzheimer's disease is the accumulation of amyloid-β (Aβ), inspiring numerous therapeutic strategies targeting this peptide. An alternative approach is to destabilize the amyloid beta precursor protein (APP) from which Aβ is derived. We interrogated innate pathways governing APP stability using a siRNA screen for modifiers whose own reduction diminished APP in human cell lines and transgenic Drosophila. As proof of principle, we validated PKCβ-a known modifier identified by the screen-in an APP transgenic mouse model. PKCβ was genetically targeted using a novel adeno-associated virus shuttle vector to deliver microRNA-adapted shRNA via intracranial injection. In vivo reduction of PKCβ initially diminished APP and delayed plaque formation. Despite persistent PKCβ suppression, the effect on APP and amyloid diminished over time. Our study advances this approach for mining druggable modifiers of disease-associated proteins, while cautioning that prolonged in vivo validation may be needed to reveal emergent limitations on efficacy.
Collapse
Affiliation(s)
| | - Ismael Al-Ramahi
- Department of Molecular and Human Genetics.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | | | | | - Nan Lu
- Department of Molecular and Human Genetics.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Maria de Haro
- Department of Molecular and Human Genetics.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Karla El-Zein
- Department of Molecular and Human Genetics.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Tatiana Gallego-Flores
- Department of Molecular and Human Genetics.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Alma M Perez
- Department of Molecular and Human Genetics.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | | | - Juan Botas
- Department of Molecular and Human Genetics.,Department of Molecular and Cellular Biology.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Huda Y Zoghbi
- Department of Neuroscience.,Department of Molecular and Human Genetics.,Department of Pediatrics.,Department of Neurology.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA
| | - Joanna L Jankowsky
- Department of Neuroscience.,Department of Molecular and Cellular Biology.,Department of Neurology.,Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
11
|
Sokol DK, Maloney B, Westmark CJ, Lahiri DK. Novel Contribution of Secreted Amyloid-β Precursor Protein to White Matter Brain Enlargement in Autism Spectrum Disorder. Front Psychiatry 2019; 10:165. [PMID: 31024350 PMCID: PMC6469489 DOI: 10.3389/fpsyt.2019.00165] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/06/2019] [Indexed: 12/27/2022] Open
Abstract
The most replicated neuroanatomical finding in autism is the tendency toward brain overgrowth, especially in younger children. Research shows that both gray and white matter are enlarged. Proposed mechanisms underlying brain enlargement include abnormal inflammatory and neurotrophic signals that lead to excessive, aberrant dendritic connectivity via disrupted pruning and cell adhesion, and enlargement of white matter due to excessive gliogenesis and increased myelination. Amyloid-β protein precursor (βAPP) and its metabolites, more commonly associated with Alzheimer's disease (AD), are also dysregulated in autism plasma and brain tissue samples. This review highlights findings that demonstrate how one βAPP metabolite, secreted APPα, and the ADAM family α-secretases, may lead to increased brain matter, with emphasis on increased white matter as seen in autism. sAPPα and the ADAM family α-secretases contribute to the anabolic, non-amyloidogenic pathway, which is in contrast to the amyloid (catabolic) pathway known to contribute to Alzheimer disease. The non-amyloidogenic pathway could produce brain enlargement via genetic mechanisms affecting mRNA translation and polygenic factors that converge on molecular pathways (mitogen-activated protein kinase/MAPK and mechanistic target of rapamycin/mTOR), promoting neuroinflammation. A novel mechanism linking the non-amyloidogenic pathway to white matter enlargement is proposed: α-secretase and/or sAPPα, activated by ERK receptor signaling activates P13K/AKt/mTOR and then Rho GTPases favoring myelination via oligodendrocyte progenitor cell (OPC) activation of cofilin. Applying known pathways in AD to autism should allow further understanding and provide options for new drug targets.
Collapse
Affiliation(s)
- Deborah K. Sokol
- Pediatrics Section, Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Bryan Maloney
- Indiana Alzheimers Disease Center, Department of Psychiatry, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Cara J. Westmark
- Department of Neurology, University of Wisconsin, Madison, WI, United States
| | - Debomoy K. Lahiri
- Indiana Alzheimers Disease Center, Department of Psychiatry, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
12
|
Li XG, Wang YB. SRPK1 gene silencing promotes vascular smooth muscle cell proliferation and vascular remodeling via inhibition of the PI3K/Akt signaling pathway in a rat model of intracranial aneurysms. CNS Neurosci Ther 2018; 25:233-244. [PMID: 30101479 DOI: 10.1111/cns.13043] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/20/2018] [Accepted: 07/15/2018] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Intracranial aneurysm (IA) is a life threatening cerebrovascular disease characterized by phenotypic modulation of vascular smooth muscle cells (VSMCs) and loss of vessel cells. In addition to environmental factors, genetic factors have been proposed to be a critical factor in the onset and progression of IA. The present study investigates the effects of serine-arginine protein kinase 1 (SRPK1) on VSMC proliferation and apoptosis both in vivo and in vitro, as well as its role in vascular remodeling in vivo through PI3 K/Akt signaling in IA. METHODS Differentially expressed genes related to IA were initially identified using microarray analysis. Immunohistochemistry was conducted to determine SRPK1 expression in the vascular walls in IA and normal cerebral vascular walls. TUNEL staining were applied to observe cell apoptosis patterns of VSMCs. VSMC proliferation and apoptosis in vitro were detected by cell counting kit-8 (CCK8) assay and flow cytometry. The expressions of SRPK1, PI3 K/Akt signaling pathway- and apoptosis-related genes were evaluated by RT-qPCR and Western blot analysis. RESULTS Microarray data of GSE36791 and GSE54083 were analyzed to determine the selection of SRPK1 gene. The vascular walls in IA rat models produced high levels of SRPK1 expression and an activated PI3 K/Akt signaling pathway. VSMCs treated with siRNA-SRPK1 exhibited enhanced cell proliferation, repressed cell apoptosis, and increased vascular remodeling, all of which suggest the inhibition of the PI3 K/AKT pathway. Notably, PI3 K/AKT pathway reversed the effect of SRPK1 silencing. CONCLUSION Our results show that siRNA-mediated silencing of SRPK1 gene inhibits VSMC apoptosis, and increases VSMCs proliferation and vascular remodeling in IA via the PI3 K/Akt signaling pathway. Our findings provide a novel intervention target for the molecular treatment of IA.
Collapse
Affiliation(s)
- Xin-Guo Li
- Department of Neurosurgery, the First Hospital of China Medical University, Shenyang, China
| | - Yi-Bao Wang
- Department of Neurosurgery, the First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
13
|
Amyloid precursor protein and amyloid precursor-like protein 2 in cancer. Oncotarget 2017; 7:19430-44. [PMID: 26840089 PMCID: PMC4991393 DOI: 10.18632/oncotarget.7103] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/23/2016] [Indexed: 12/22/2022] Open
Abstract
Amyloid precursor protein (APP) and its family members amyloid precursor-like protein 1 (APLP1) and amyloid precursor-like protein 2 (APLP2) are type 1 transmembrane glycoproteins that are highly conserved across species. The transcriptional regulation of APP and APLP2 is similar but not identical, and the cleavage of both proteins is regulated by phosphorylation. APP has been implicated in Alzheimer's disease causation, and in addition to its importance in neurology, APP is deregulated in cancer cells. APLP2 is likewise overexpressed in cancer cells, and APLP2 and APP are linked to increased tumor cell proliferation, migration, and invasion. In this present review, we discuss the unfolding account of these APP family members’ roles in cancer progression and metastasis.
Collapse
|
14
|
Mendivil-Perez M, Soto-Mercado V, Guerra-Librero A, Fernandez-Gil BI, Florido J, Shen YQ, Tejada MA, Capilla-Gonzalez V, Rusanova I, Garcia-Verdugo JM, Acuña-Castroviejo D, López LC, Velez-Pardo C, Jimenez-Del-Rio M, Ferrer JM, Escames G. Melatonin enhances neural stem cell differentiation and engraftment by increasing mitochondrial function. J Pineal Res 2017; 63. [PMID: 28423196 DOI: 10.1111/jpi.12415] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/13/2017] [Indexed: 12/25/2022]
Abstract
Neural stem cells (NSCs) are regarded as a promising therapeutic approach to protecting and restoring damaged neurons in neurodegenerative diseases (NDs) such as Parkinson's disease and Alzheimer's disease (PD and AD, respectively). However, new research suggests that NSC differentiation is required to make this strategy effective. Several studies have demonstrated that melatonin increases mature neuronal markers, which reflects NSC differentiation into neurons. Nevertheless, the possible involvement of mitochondria in the effects of melatonin during NSC differentiation has not yet been fully established. We therefore tested the impact of melatonin on NSC proliferation and differentiation in an attempt to determine whether these actions depend on modulating mitochondrial activity. We measured proliferation and differentiation markers, mitochondrial structural and functional parameters as well as oxidative stress indicators and also evaluated cell transplant engraftment. This enabled us to show that melatonin (25 μM) induces NSC differentiation into oligodendrocytes and neurons. These effects depend on increased mitochondrial mass/DNA/complexes, mitochondrial respiration, and membrane potential as well as ATP synthesis in NSCs. It is also interesting to note that melatonin prevented oxidative stress caused by high levels of mitochondrial activity. Finally, we found that melatonin enriches NSC engraftment in the ND mouse model following transplantation. We concluded that a combined therapy involving transplantation of NSCs pretreated with pharmacological doses of melatonin could efficiently restore neuronal cell populations in PD and AD mouse models depending on mitochondrial activity promotion.
Collapse
Affiliation(s)
- Miguel Mendivil-Perez
- Faculty of Medicine, Medical Research Center, Universidad de Antioquia, Medellin, Colombia
| | - Viviana Soto-Mercado
- Faculty of Medicine, Medical Research Center, Universidad de Antioquia, Medellin, Colombia
| | - Ana Guerra-Librero
- Medical Research Institute, Health Sciences Technology Park, Universidad de Granada, Granada, Spain
| | - Beatriz I Fernandez-Gil
- Medical Research Institute, Health Sciences Technology Park, Universidad de Granada, Granada, Spain
| | - Javier Florido
- Medical Research Institute, Health Sciences Technology Park, Universidad de Granada, Granada, Spain
| | - Ying-Qiang Shen
- Medical Research Institute, Health Sciences Technology Park, Universidad de Granada, Granada, Spain
| | - Miguel A Tejada
- Medical Research Institute, Health Sciences Technology Park, Universidad de Granada, Granada, Spain
| | - Vivian Capilla-Gonzalez
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Universitat de Valencia, Valencia, Spain
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Seville, Spain
| | - Iryna Rusanova
- Medical Research Institute, Health Sciences Technology Park, Universidad de Granada, Granada, Spain
- Faculty of Medicine, Department of Physiology, Universidad de Granada, Granada, Spain
| | - José M Garcia-Verdugo
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Universitat de Valencia, Valencia, Spain
| | - Darío Acuña-Castroviejo
- Medical Research Institute, Health Sciences Technology Park, Universidad de Granada, Granada, Spain
- Faculty of Medicine, Department of Physiology, Universidad de Granada, Granada, Spain
- CIBERFES, Biosanitary Research Institute, Complejo Hospitalario de Granada, Granada, Spain
| | - Luis Carlos López
- Medical Research Institute, Health Sciences Technology Park, Universidad de Granada, Granada, Spain
- Faculty of Medicine, Department of Physiology, Universidad de Granada, Granada, Spain
- CIBERFES, Biosanitary Research Institute, Complejo Hospitalario de Granada, Granada, Spain
| | - Carlos Velez-Pardo
- Faculty of Medicine, Medical Research Center, Universidad de Antioquia, Medellin, Colombia
| | | | - José M Ferrer
- CIBERFES, Biosanitary Research Institute, Complejo Hospitalario de Granada, Granada, Spain
| | - Germaine Escames
- Medical Research Institute, Health Sciences Technology Park, Universidad de Granada, Granada, Spain
- Faculty of Medicine, Department of Physiology, Universidad de Granada, Granada, Spain
- CIBERFES, Biosanitary Research Institute, Complejo Hospitalario de Granada, Granada, Spain
| |
Collapse
|
15
|
Muche A, Arendt T, Schliebs R. Oxidative stress affects processing of amyloid precursor protein in vascular endothelial cells. PLoS One 2017; 12:e0178127. [PMID: 28617802 PMCID: PMC5472258 DOI: 10.1371/journal.pone.0178127] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/09/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Oxidative stress is thought to be a key player in the pathogenesis of neurodegenerative dementia, including Alzheimer's disease (AD). It has been assumed that oxidative stress contributes to the ß-amyloid deposition in cerebral blood vessels. METHODS In order to prove this hypothesis, we examined the effect of oxidative stress on the processing of amyloid precursor protein (APP) in primary endothelial cells (EC) derived from cerebral cortical tissue of transgenic Tg2576 mice. Following exposure of EC by 1 μM hydrogen peroxide for up to 48 hours, formation and secretion of APP cleavage products sAPPα and sAPPß into the culture medium as well as the expression of endothelial APP were assessed. RESULTS Oxidative stress resulted in enhanced secretion of sAPPß into the culture medium as compared to controls (absence of hydrogen peroxide), which was accompanied by an increased APP expression, induction of VEGF synthesis, nitric oxide and oxygen free radicals productions, and differential changes of endothelial phospo-p42/44 MAPK expression. CONCLUSION The data suggest that oxidative stress may represent a major risk factor in causing Aß deposition in the brain vascular system by initiating the amyloidogenic route of endothelial APP processing. The enhanced β-secretase activity following oxidative stress exposure, possibly promoted by phosphorylation of p42/44 MAPK.
Collapse
Affiliation(s)
- Abebe Muche
- Department of Human Anatomy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
- * E-mail:
| | - Thomas Arendt
- Paul Flechsig Institute for Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Reinhard Schliebs
- Paul Flechsig Institute for Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| |
Collapse
|
16
|
Jiang G, Wang C, Zhang J, Liu H. Mediation of insulin growth factor-1 in Alzheimer's disease and the mechanism of PRNP genetic expression and the PI3K/Akt signaling pathway. Exp Ther Med 2017; 13:2763-2766. [PMID: 28587338 PMCID: PMC5450607 DOI: 10.3892/etm.2017.4320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 02/28/2017] [Indexed: 12/14/2022] Open
Abstract
The aim of the study was to examine the mediation of insulin growth factor-1 (IGF-1) in Alzheimer's disease (AD), as well as the underlying mechanism of the PRNP genetic expression and PI3K/Akt signaling pathway. The Aβ25-35-incubated rat adrenal pheochromocytoma cell (PC12) in vitro was established, constituting the AD model. Different doses (0, 20, 40 and 80 ng/ml) of IGF-1 were used in PC12 cells and the level of PRNP mRNA was tested after 24 h using the quantitative PCR method and the level of APP protein was assessed using western blot analysis. PC12 cells were divided into the control group (PC12 cells without Aβ25-35 treatment), model group (PC12 cells with Aβ25-35 treatment), IGF-1 80 ng/ml group, IGF-1 80 ng/ml+PI3K inhibitor LY294002 25 µmol/l group, and IGF-1 80 ng/ml+LY294002 50 µmol/l group, whose PRNP mRNA level and Akt, pAkt and APP protein level were tested 24 h later. As the dose of IGF-1 increases, the expression levels of PRNP mRNA and APP protein were more highly expressed. The difference between them was significant (P<0.05). In addition, regarding Akt protein, the expression levels of PRNP mRNA, APP protein and pAkt protein in the IGF-1 groups were significantly higher than those in the control and model groups. With the LY concentration increasing, the levels of expression of the three substances gradually decreased significantly (P<0.05). In conclusion, IGF-I can mediate the expression of the PRNP gene and APP protein through the PI3K/Akt signaling pathway, in a rat model.
Collapse
Affiliation(s)
- Guohong Jiang
- Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Changming Wang
- Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Jun Zhang
- Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Haijun Liu
- Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
17
|
Millan MJ. Linking deregulation of non-coding RNA to the core pathophysiology of Alzheimer's disease: An integrative review. Prog Neurobiol 2017; 156:1-68. [PMID: 28322921 DOI: 10.1016/j.pneurobio.2017.03.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 03/09/2017] [Accepted: 03/09/2017] [Indexed: 02/06/2023]
Abstract
The human genome encodes a vast repertoire of protein non-coding RNAs (ncRNA), some specific to the brain. MicroRNAs, which interfere with the translation of target mRNAs, are of particular interest since their deregulation has been implicated in neurodegenerative disorders like Alzheimer's disease (AD). However, it remains challenging to link the complex body of observations on miRNAs and AD into a coherent framework. Using extensive graphical support, this article discusses how a diverse panoply of miRNAs convergently and divergently impact (and are impacted by) core pathophysiological processes underlying AD: neuroinflammation and oxidative stress; aberrant generation of β-amyloid-42 (Aβ42); anomalies in the production, cleavage and post-translational marking of Tau; impaired clearance of Aβ42 and Tau; perturbation of axonal organisation; disruption of synaptic plasticity; endoplasmic reticulum stress and the unfolded protein response; mitochondrial dysfunction; aberrant induction of cell cycle re-entry; and apoptotic loss of neurons. Intriguingly, some classes of miRNA provoke these cellular anomalies, whereas others act in a counter-regulatory, protective mode. Moreover, changes in levels of certain species of miRNA are a consequence of the above-mentioned anomalies. In addition to miRNAs, circular RNAs, piRNAs, long non-coding RNAs and other types of ncRNA are being increasingly implicated in AD. Overall, a complex mesh of deregulated and multi-tasking ncRNAs reciprocally interacts with core pathophysiological mechanisms underlying AD. Alterations in ncRNAs can be detected in CSF and the circulation as well as the brain and are showing promise as biomarkers, with the ultimate goal clinical exploitation as targets for novel modes of symptomatic and course-altering therapy.
Collapse
Affiliation(s)
- Mark J Millan
- Centre for Therapeutic Innovation in Neuropsychiatry, institut de recherche Servier, 125 chemin de ronde, 78290 Croissy sur Seine, France.
| |
Collapse
|
18
|
Zhou YL, Liu SQ, Yuan B, Lu N. The expression of insulin-like growth factor-1 in senior patients with diabetes and dementia. Exp Ther Med 2016; 13:103-106. [PMID: 28123476 PMCID: PMC5244895 DOI: 10.3892/etm.2016.3961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 10/31/2016] [Indexed: 12/16/2022] Open
Abstract
This study was conducted to investigate the expression of insulin-like growth factor-1 (IGF-1) in elderly patients with diabetes and dementia and to analyze the expression mechanism. A total of 30 senior patients with diabetes and dementia (group A), 30 senior patients with dementia but no diabetes (group B), 30 senior patients with diabetes but no dementia (group C), and 30 healthy seniors (group D) were continuously selected. The ELISA method was used to test the level of serum IGF-1, β-amyloid peptide (Aβ) and the phosphorylation of immunohistochemical staining of microtubule associated protein (tau protein). Western blot analysis was utilized to test the level of prion protein (PrP), forkhead transcription factor O (FOXO) subfamily protein, p-PI3K and p-Akt. The levels of IGF-1, Aβ, tau protein positive rate, PrP, FOXO protein, p-PI3K, and p-Akt in group A were significantly higher than that in group B, which was higher than in groups C and D. The results between groups A and B, but not groups C and D, were statistically significant (P<0.05). IGF-1 was highly expressed in senior patients with diabetes and dementia. Thus, IGF-1 can adjust the expression of PrP and FOXO through p-PI3K/Akt pathway and further impact the formation of Aβ and tau protein, leading to dementia.
Collapse
Affiliation(s)
- Yan-Ling Zhou
- Department of Neurology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Shu-Qing Liu
- Department of Neurology, Linglong Yingcheng Hospital, Zhaoyuan, Shandong 265400, P.R. China
| | - Bin Yuan
- Department of Neurology, Affiliated Hospital of Heze Medical College, Heze, Shandong 274000, P.R. China
| | - Ning Lu
- Department of Geriatric Medicine, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| |
Collapse
|
19
|
Wang J, Li N, Ma J, Gu Z, Yu L, Fu X, Liu X, Wang J. Effects of an amyloid-beta 1-42 oligomers antibody screened from a phage display library in APP/PS1 transgenic mice. Brain Res 2016; 1635:169-79. [PMID: 26820640 PMCID: PMC4801032 DOI: 10.1016/j.brainres.2016.01.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/01/2016] [Accepted: 01/17/2016] [Indexed: 01/05/2023]
Abstract
We screened anti-Aβ1-42 antibodies from a human Alzheimer's disease (AD) specific single chain variable fragment (scFv) phage display library and assessed their effects in APP/PS1 transgenic mice. Reverse transcription-PCR was used to construct the scFv phage display library, and screening identified 11A5 as an anti-Aβ1-42 antibody. We mixed 11A5 and the monoclonal antibody 6E10 with Aβ1-42 and administered the mixture to Sprague-Dawley rats via intracerebroventricular injection. After 30 days, rats injected with the antibody/Aβ1-42 mixture and those injected with Aβ1-42 alone were tested on the Morris water maze. We also injected 11A5 and 6E10 into APP/PS1 transgenic mice and assessed the concentrations of Aβ in brain and peripheral blood by ELISA at 1-month intervals for 3 months. Finally we evaluated behavior changes in the Morris water maze. Rats injected with Aβ1-42 and mixed antibodies showed better performance in the Morris water maze than did rats injected with Aβ1-42 alone. In APP/PS1 transgenic mice, Aβ concentration was lower in the brains of the antibody-treated group than in the control group, but higher in the peripheral blood. The antibody-treated mice also exhibited improved behavioral performance in the Morris water maze. In conclusion, anti-Aβ1-42 antibodies (11A5) screened from the human scFv antibody phage display library promoted the efflux or clearance of Aβ1-42 and effectively decreased the cerebral Aβ burden in an AD mouse model.
Collapse
Affiliation(s)
- Jianping Wang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Nan Li
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, China
| | - Jun Ma
- Department of Gastroenterology, The second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, China
| | - Zhiqiang Gu
- Department of Radiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Lie Yu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xiaojie Fu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xi Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
20
|
Lee IS, Jung K, Kim IS, Lee H, Kim M, Yun S, Hwang K, Shin JE, Park KI. Human neural stem cells alleviate Alzheimer-like pathology in a mouse model. Mol Neurodegener 2015; 10:38. [PMID: 26293123 PMCID: PMC4546205 DOI: 10.1186/s13024-015-0035-6] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/10/2015] [Indexed: 12/14/2022] Open
Abstract
Background Alzheimer’s disease (AD) is an inexorable neurodegenerative disease that commonly occurs in the elderly. The cognitive impairment caused by AD is associated with abnormal accumulation of amyloid-β (Aβ) and hyperphosphorylated tau, which are accompanied by inflammation. Neural stem cells (NSCs) are self-renewing, multipotential cells that differentiate into distinct neural cells. When transplanted into a diseased brain, NSCs repair and replace injured tissues after migration toward and engraftment within lesions. We investigated the therapeutic effects in an AD mouse model of human NSCs (hNSCs) that derived from an aborted human fetal telencephalon at 13 weeks of gestation. Cells were transplanted into the cerebral lateral ventricles of neuron-specific enolase promoter-controlled APPsw-expressing (NSE/APPsw) transgenic mice at 13 months of age. Results Implanted cells extensively migrated and engrafted, and some differentiated into neuronal and glial cells, although most hNSCs remained immature. The hNSC transplantation improved spatial memory in these mice, which also showed decreased tau phosphorylation and Aβ42 levels and attenuated microgliosis and astrogliosis. The hNSC transplantation reduced tau phosphorylation via Trk-dependent Akt/GSK3β signaling, down-regulated Aβ production through an Akt/GSK3β signaling-mediated decrease in BACE1, and decreased expression of inflammatory mediators through deactivation of microglia that was mediated by cell-to-cell contact, secretion of anti-inflammatory factors generated from hNSCs, or both. The hNSC transplantation also facilitated synaptic plasticity and anti-apoptotic function via trophic supplies. Furthermore, the safety and feasibility of hNSC transplantation are supported. Conclusions These findings demonstrate the hNSC transplantation modulates diverse AD pathologies and rescue impaired memory via multiple mechanisms in an AD model. Thus, our data provide tangible preclinical evidence that human NSC transplantation could be a safe and versatile approach for treating AD patients. Electronic supplementary material The online version of this article (doi:10.1186/s13024-015-0035-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Il-Shin Lee
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 120-752, South Korea.
| | - Kwangsoo Jung
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 120-752, South Korea.
| | - Il-Sun Kim
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 120-752, South Korea.
| | - Haejin Lee
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 120-752, South Korea.
| | - Miri Kim
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 120-752, South Korea.
| | - Seokhwan Yun
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 120-752, South Korea.
| | - Kyujin Hwang
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 120-752, South Korea.
| | - Jeong Eun Shin
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 120-752, South Korea.
| | - Kook In Park
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 120-752, South Korea. .,Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 120-752, South Korea.
| |
Collapse
|
21
|
Shibasaki S, Kitano S, Karasaki M, Tsunemi S, Sano H, Iwasaki T. Blocking c-Met signaling enhances bone morphogenetic protein-2-induced osteoblast differentiation. FEBS Open Bio 2015; 5:341-7. [PMID: 25941631 PMCID: PMC4415006 DOI: 10.1016/j.fob.2015.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 04/02/2015] [Accepted: 04/17/2015] [Indexed: 01/09/2023] Open
Abstract
Role of c-Met signaling in osteoblast differentiation was investigated. Osteoblast differentiation was determined by ALP and osteocalcin production by C2C12 and MC3T3-E1 cells. c-Met signaling negatively regulates osteoblast differentiation. Blocking c-Met signaling might serve as a therapeutic strategy for rheumatoid arthritis.
We previously demonstrated that blocking hepatocyte growth factor (HGF) receptor/c-Met signaling inhibited arthritis and articular bone destruction in mouse models of rheumatoid arthritis (RA). In the present study, we investigated the role of c-Met signaling in osteoblast differentiation using the C2C12 myoblast cell line derived from murine satellite cells and the MC3T3-E1 murine pre-osteoblast cell line. Osteoblast differentiation was induced by treatment with bone morphogenetic protein (BMP)-2 or osteoblast-inducer reagent in the presence or absence of either HGF antagonist (NK4) or c-Met inhibitor (SU11274). Osteoblast differentiation was confirmed by Runx2 expression, and alkaline phosphatase (ALP) and osteocalcin production by the cells. Production of ALP, osteocalcin and HGF was verified by enzyme-linked immunosorbent assay. Runx2 expression was confirmed by reverse transcription-PCR analysis. The phosphorylation status of ERK1/2, AKT, and Smads was determined by Western blot analysis. Both NK4 and SU11274 enhanced Runx2 expression, and ALP and osteocalcin production but suppressed HGF production in BMP-2-stimulated C2C12 cells. SU11274 also enhanced ALP and osteocalcin production in osteoblast-inducer reagent-stimulated MC3T3-E1 cells. SU11274 inhibited ERK1/2 and AKT phosphorylation in HGF-stimulated C2C12 cells. This result suggested that ERK and AKT were functional downstream of the c-Met signaling pathway. However, both mitogen-activated protein kinase/ERK kinase (MEK) and phosphatidylinositol 3-kinase (PI3K) inhibitor suppressed osteocalcin and HGF production in BMP-2-stimulated C2C12 cells. Furthermore, SU11274, MEK, and PI3K inhibitor suppressed Smad phosphorylation in BMP-2-stimulated C2C12 cells. These results indicate that although the c-Met-MEK-ERK-Smad and c-Met-PI3K-AKT-Smad signaling pathways positively regulate osteoblast differentiation, c-Met signaling negatively regulates osteoblast differentiation, independent of the MEK-ERK-Smad and PI3K-AKT-Smad pathways. Therefore, blocking c-Met signaling might serve as a therapeutic strategy for the repair of destructed bone in patients with RA.
Collapse
Affiliation(s)
- Seiji Shibasaki
- General Education Center, Hyogo University of Health Sciences, 1-3-6 Minatojima, Chuo-ku, Kobe, Hyogo 650-8530, Japan ; Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Sachie Kitano
- Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Miki Karasaki
- Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Sachi Tsunemi
- General Education Center, Hyogo University of Health Sciences, 1-3-6 Minatojima, Chuo-ku, Kobe, Hyogo 650-8530, Japan
| | - Hajime Sano
- Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Tsuyoshi Iwasaki
- Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan ; Division of Pharmacotherapy, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, 1-3-6 Minatojima, Chuo-ku, Kobe, Hyogo 650-8530, Japan
| |
Collapse
|
22
|
Zhang X, Zhang L, Cheng X, Guo Y, Sun X, Chen G, Li H, Li P, Lu X, Tian M, Qin J, Zhou H, Jin G. IGF-1 promotes Brn-4 expression and neuronal differentiation of neural stem cells via the PI3K/Akt pathway. PLoS One 2014; 9:e113801. [PMID: 25474202 PMCID: PMC4256305 DOI: 10.1371/journal.pone.0113801] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/30/2014] [Indexed: 12/16/2022] Open
Abstract
Our previous studies indicated that transcription factor Brn-4 is upregulated in the surgically denervated hippocampus in vivo, promoting neuronal differentiation of hippocampal neural stem cells (NSCs) in vitro. The molecules mediating Brn-4 upregulation in the denervated hippocampus remain unknown. In this study we examined the levels of insulin-like growth factor-1 (IGF-1) in hippocampus following denervation. Surgical denervation led to a significant increase in IGF-1 expression in vivo. We also report that IGF-1 treatment on NSCs in vitro led to a marked acceleration of Brn-4 expression and cell differentiation down neuronal pathways. The promotion effects were blocked by PI3K-specific inhibitor (LY294002), but not MAPK inhibitor (PD98059); levels of phospho-Akt were increased by IGF-1 treatment. In addition, inhibition of IGF-1 receptor (AG1024) and mTOR (rapamycin) both attenuated the increased expression of Brn-4 induced by IGF-1. Together, the results demonstrated that upregulation of IGF-1 induced by hippocampal denervation injury leads to activation of the PI3K/Akt signaling pathway, which in turn gives rise to upregulation of the Brn-4 and subsequent stem cell differentiation down neuronal pathways.
Collapse
Affiliation(s)
- Xinhua Zhang
- Department of Anatomy, Nantong University, Nantong, Jiangsu, China
| | - Lei Zhang
- Department of Anatomy, Nantong University, Nantong, Jiangsu, China
| | - Xiang Cheng
- Department of Anatomy, Nantong University, Nantong, Jiangsu, China
| | - Yuxiu Guo
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xiaohui Sun
- Vasculocardiology Department, Nantong Rehibilitation Hosptital Agings, Nantong, Jiangsu, China
| | - Geng Chen
- Department of Anatomy, Nantong University, Nantong, Jiangsu, China
| | - Haoming Li
- Department of Anatomy, Nantong University, Nantong, Jiangsu, China
| | - Pengcheng Li
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xiaohui Lu
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Meiling Tian
- Department of Anatomy, Nantong University, Nantong, Jiangsu, China
| | - Jianbing Qin
- Department of Anatomy, Nantong University, Nantong, Jiangsu, China
| | - Hui Zhou
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- * E-mail: (GJ); (HZ)
| | - Guohua Jin
- Department of Anatomy, Nantong University, Nantong, Jiangsu, China
- * E-mail: (GJ); (HZ)
| |
Collapse
|
23
|
Zhang H, Gao Y, Qiao P, Zhao F, Yan Y. Fenofibrate reduces amyloidogenic processing of APP in APP/PS1 transgenic mice via PPAR‐α/PI3‐K pathway. Int J Dev Neurosci 2014; 38:223-31. [DOI: 10.1016/j.ijdevneu.2014.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 10/12/2014] [Accepted: 10/21/2014] [Indexed: 11/26/2022] Open
Affiliation(s)
- Hua Zhang
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Ying Gao
- Special WardsThe Affiliated Children's Hospital of Chongqing Medical UniversityChongqing400014China
| | - Pei‐feng Qiao
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Feng‐li Zhao
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Yong Yan
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| |
Collapse
|
24
|
Anitua E, Pascual C, Antequera D, Bolos M, Padilla S, Orive G, Carro E. Plasma rich in growth factors (PRGF-Endoret) reduces neuropathologic hallmarks and improves cognitive functions in an Alzheimer's disease mouse model. Neurobiol Aging 2014; 35:1582-95. [PMID: 24524966 DOI: 10.1016/j.neurobiolaging.2014.01.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 11/05/2013] [Accepted: 01/08/2014] [Indexed: 12/31/2022]
Abstract
Impaired growth factor function is thought to drive many of the alterations observed in Alzheimer's disease (AD) patients. Endogenous regenerative technology, PRGF (plasma rich in growth factor)-Endoret, is designed for the delivery of a complex pool of patient's own active morphogens that may stimulate tissue regeneration. We obtained and characterized PRGF-Endoret preparations from human blood. We used, as experimental approach in vivo, APP/PS1 mice, characterized by age-dependent brain amyloid-β (Aβ) accumulation. Intranasal administration of PRGF-Endoret to APP/PS1 mice resulted in an important decrease in brain Aβ deposition and tau phosphorylation. PRGF-Endoret-treated APP/PS1 mice also showed decreased astrocyte reactivity, and prevented protein synaptic loss. In vitro approaches demonstrated that PRGF-Endoret treatment modulated astrocyte activation, reducing inflammatory responses, and promoted Aβ degradation. Furthermore, PRGF-Endoret stimulated global improvements in anxiety, learning, and memory behaviors. Our findings show that PRGF-Endoret exerts multifunctional and complementary effects that result in the reversal of the broad range of cognitive deficits in AD, suggesting that PRGF-Endoret may hold promise as an innovative therapy in AD.
Collapse
Affiliation(s)
| | - Consuelo Pascual
- Neuroscience Group, Instituto de Investigacion Hospital 12 de Octubre (i+12), Madrid, Spain; Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Desiree Antequera
- Neuroscience Group, Instituto de Investigacion Hospital 12 de Octubre (i+12), Madrid, Spain; Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Marta Bolos
- Neuroscience Group, Instituto de Investigacion Hospital 12 de Octubre (i+12), Madrid, Spain; Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | | | | | - Eva Carro
- Neuroscience Group, Instituto de Investigacion Hospital 12 de Octubre (i+12), Madrid, Spain; Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
25
|
Muche A, Bürger S, Arendt T, Schliebs R. Hypoxic stress, brain vascular system, and β-amyloid: A primary cell culture study. Nutr Neurosci 2013; 18:1-11. [DOI: 10.1179/1476830513z.000000000112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Li H, Dong H, Li J, Liu H, Liu Z, Li Z. Neuroprotective effect of insulin-like growth factor-1: effects on tyrosine kinase receptor (Trk) expression in dorsal root ganglion neurons with glutamate-induced excitotoxicity in vitro. Brain Res Bull 2013; 97:86-95. [PMID: 23769847 DOI: 10.1016/j.brainresbull.2013.05.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 05/24/2013] [Accepted: 05/28/2013] [Indexed: 12/13/2022]
Abstract
Insulin-like growth factor-1 (IGF-1) may play an important role in regulating the expression of distinct tyrosine kinase receptor (Trk) in primary sensory dorsal root ganglion (DRG) neurons. Glutamate (Glu) is the main excitatory neurotransmitter and induces neuronal excitotoxicity for primary sensory neurons. It is not known whether IGF-1 influences expression of TrkA, TrkB, and TrkC in DRG neurons with excitotoxicity induced by Glu. In the present study, primary cultured DRG neurons with Glu-induced excitotoxicity were used to determine the effects of IGF-1 on TrkA, TrkB, and TrkC expression. The results showed that IGF-1 increased the expression of TrkA and TrkB and their mRNAs, but not TrkC and its mRNA, in primary cultured DRG neurons with excitotoxicity induced by Glu. Interestingly, neither the extracellular signal-regulated protein kinase (ERK1/2) inhibitor PD98059 nor the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 blocked the effect of IGF-1, but both inhibitors together were effective. IGF-1 may play an important role in regulating different Trk receptor expression in DRG neurons through ERK1/2 and PI3K/Akt signaling pathways. The contribution of distinct Trk receptors might be one of the mechanisms that IGF-1 rescues dying neurons from Glu excitotoxic injury. These data imply that IGF-1 signaling might be a potential target on modifying distinct Trk receptor-mediated biological effects of primary sensory neurons with excitotoxicity.
Collapse
Affiliation(s)
- Hao Li
- Department of Anatomy, Shandong University School of Medicine, Jinan 250012, China.
| | | | | | | | | | | |
Collapse
|
27
|
MicroRNA-98 induces an Alzheimer's disease-like disturbance by targeting insulin-like growth factor 1. Neurosci Bull 2013; 29:745-51. [PMID: 23740209 DOI: 10.1007/s12264-013-1348-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 01/16/2013] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by extracellular senile plaques and intracellular neurofibrillary tangles. Many microRNAs (miRs) participate in regulating amyloid β (Aβ) formation and the metabolism of tau protein in the process of AD, and some are up-regulated in AD patients or transgenic models of AD. However, the role of miR-98 in AD remains unclear. Here, we showed that the expression of miR-98 was negatively correlated with the insulin-like growth factor 1 (IGF-1) protein level in APP/PS1 mice. MiR-98 target sites in IGF-1 were confirmed by luciferase assay in HEK293 cells. Overexpression of miR-98 in N2a/APP cells down-regulated the IGF-1 protein level and promoted Aβ production, whereas inhibition of miR-98 in N2a/APP cells up-regulated the IGF-1 protein level and suppressed Aβ production. Furthermore, overexpression of miR-98 in N2a/WT cells increased the phosphorylation of tau, whereas inhibition of miR-98 reduced it. These results suggest that miR-98 increases Aβ formation and tau phosphorylation by inhibiting the translation of IGF-1, which might provide a therapeutic strategy for AD.
Collapse
|
28
|
Shi C, Na N, Zhu X, Xu J. Estrogenic effect of ginsenoside Rg1 on APP processing in post-menopausal platelets. Platelets 2012; 24:51-62. [PMID: 22372534 DOI: 10.3109/09537104.2012.654839] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ginsenoside Rg1, an active component of high abundance in ginseng, has recently been reported to possess neuroprotective properties and also identified as a potent phytoestrogen. However, it is unknown whether Rg1 intervenes in amyloid precursor protein (APP) processing, and whether such intervention is associated with its estrogenic activity. Using human platelets, this study demonstrated that Rg1 promoted α-secretase cleavage of APP via estrogenic activity. The mitogen-activated protein kinases (MAPK)/extracellular signal-regulated kinases (ERK) pathway may be involved in the effect of Rg1 on APP metabolism as a downstream effector of estrogen receptor (ER) extranuclear signaling. Estrogen withdrawal is a risk factor for the onset of Alzheimer's disease (AD). Rg1 exerts estrogenic activity in APP processing in platelets supporting the use of this compound in the prevention of AD, in particular in postmenopausal females.
Collapse
Affiliation(s)
- Chun Shi
- Department of Anatomy, Guangzhou Medical University, Guangzhou 510182, China
| | | | | | | |
Collapse
|
29
|
Shi C, Zheng DD, Fang L, Wu F, Kwong WH, Xu J. Ginsenoside Rg1 promotes nonamyloidgenic cleavage of APP via estrogen receptor signaling to MAPK/ERK and PI3K/Akt. Biochim Biophys Acta Gen Subj 2011; 1820:453-60. [PMID: 22178929 DOI: 10.1016/j.bbagen.2011.12.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 11/28/2011] [Accepted: 12/05/2011] [Indexed: 12/19/2022]
Abstract
BACKGROUND The pathogenic accumulation of amyloid β peptide (Aβ), a natural occurring peptide processed from beta-amyloid precursor protein (APP), is considered to play a key role in the development of Alzheimer's disease (AD). Ginsenoside Rg1, an active component in ginseng, has been identified as a phytoestrogen and also found to be neuroprotective. However, it is unknown whether Rg1-induced estrogenic activity intervenes in APP processing, and improves memory performance. METHODS Using HT22 cells and SH-SY5Y cells stably expressing the Swedish mutant APP (APPsw), this study investigated whether Rg1 intervened in APP metabolism through estrogenic activity. Using the ovariectomized (OVX) rats to mimic age-related changes in postmenopausal females, this study also tested the long-term effect of Rg1 on APP metabolism. RESULTS The in vitro study demonstrated that Rg1 increased extracellular secretion of soluble amyloid precursor protein α (sAPPα), enhanced α-secretase activity and decreased extracellular release of Aβ. These effects of Rg1 could be prevented by inhibitors of protein kinase C (PKC), Extracellular-Signal Regulated Kinase/Mitogen-Activated Protein Kinase (ERK/MAPK) and Phosphoinositide-3 kinase (PI3K)/Akt pathways. Inhibition of endogenous estrogen receptor (ER) activity abrogated Rg1-triggered release of sAPPα, increase of α-secretase activity, and activation of ERK and Akt signaling. In addition, Rg1 promoted phosphorylation of ERα at Ser118 residue. The in vivo study demonstrated that 8-week Rg1 treatment of OVX rats increased sAPPα levels and decreased Aβ content in the hippocampi, and improved the spatial learning and memory. GENERAL SIGNIFICANCE Rg1 might be used to slow or prevent AD, in particular in postmenopausal females.
Collapse
Affiliation(s)
- Chun Shi
- Department of Anatomy, Guangzhou Medical University, Guangzhou 510182, China
| | | | | | | | | | | |
Collapse
|
30
|
The Phosphatidyl Inositol 3 Kinase-Glycogen Synthase Kinase 3β Pathway Mediates Bilobalide-Induced Reduction in Amyloid β-Peptide. Neurochem Res 2011; 37:298-306. [DOI: 10.1007/s11064-011-0612-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Revised: 09/01/2011] [Accepted: 09/20/2011] [Indexed: 01/06/2023]
|
31
|
Bilobalide regulates soluble amyloid precursor protein release via phosphatidyl inositol 3 kinase-dependent pathway. Neurochem Int 2011; 59:59-64. [DOI: 10.1016/j.neuint.2011.03.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 03/30/2011] [Indexed: 01/11/2023]
|