1
|
Bhat AM, Mohapatra BC, Luan H, Mushtaq I, Chakraborty S, Kumar S, Wu W, Nolan B, Dutta S, Storck MD, Schott M, Meza JL, Lele SM, Lin MF, Cook LM, Corey E, Morrissey C, Coulter DW, Rowley MJ, Natarajan A, Datta K, Band V, Band H. GD2 and its biosynthetic enzyme GD3 synthase promote tumorigenesis in prostate cancer by regulating cancer stem cell behavior. Sci Rep 2024; 14:13523. [PMID: 38866755 PMCID: PMC11169677 DOI: 10.1038/s41598-024-60052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 04/18/2024] [Indexed: 06/14/2024] Open
Abstract
While better management of loco-regional prostate cancer (PC) has greatly improved survival, advanced PC remains a major cause of cancer deaths. Identification of novel targetable pathways that contribute to tumor progression in PC could open new therapeutic options. The di-ganglioside GD2 is a target of FDA-approved antibody therapies in neuroblastoma, but the role of GD2 in PC is unexplored. Here, we show that GD2 is expressed in a small subpopulation of PC cells in a subset of patients and a higher proportion of metastatic tumors. Variable levels of cell surface GD2 expression were seen on many PC cell lines, and the expression was highly upregulated by experimental induction of lineage progression or enzalutamide resistance in CRPC cell models. GD2high cell fraction was enriched upon growth of PC cells as tumorspheres and GD2high fraction was enriched in tumorsphere-forming ability. CRISPR-Cas9 knockout (KO) of the rate-limiting GD2 biosynthetic enzyme GD3 Synthase (GD3S) in GD2high CRPC cell models markedly impaired the in vitro oncogenic traits and growth as bone-implanted xenograft tumors and reduced the cancer stem cell and epithelial-mesenchymal transition marker expression. Our results support the potential role of GD3S and its product GD2 in promoting PC tumorigenesis by maintaining cancer stem cells and suggest the potential for GD2 targeting in advanced PC.
Collapse
Affiliation(s)
- Aaqib M Bhat
- Eppley Institute for Research in Cancer and Allied Diseases, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Bhopal C Mohapatra
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Haitao Luan
- Eppley Institute for Research in Cancer and Allied Diseases, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA
| | - Insha Mushtaq
- Eppley Institute for Research in Cancer and Allied Diseases, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA
- Departments of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Incyte Corporation, Wilmington, DE, USA
| | - Sukanya Chakraborty
- Eppley Institute for Research in Cancer and Allied Diseases, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Siddhartha Kumar
- Eppley Institute for Research in Cancer and Allied Diseases, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA
| | - Wangbin Wu
- Eppley Institute for Research in Cancer and Allied Diseases, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA
| | - Ben Nolan
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Samikshan Dutta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Matthew D Storck
- Eppley Institute for Research in Cancer and Allied Diseases, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA
| | - Micah Schott
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jane L Meza
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Subodh M Lele
- Departments of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ming-Fong Lin
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Leah M Cook
- Departments of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Donald W Coulter
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
- Incyte Corporation, Wilmington, DE, USA
| | - M Jordan Rowley
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Vimla Band
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA.
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Departments of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
2
|
Bhat AM, Mohapatra BC, Luan H, Mushtaq I, Chakraborty S, Kumar S, Wu W, Nolan B, Dutta S, Stock MD, Schott M, Meza JL, Lele SM, Lin MF, Cook LM, Corey E, Morrissey C, Coulter DW, Rowley J, Natarajan A, Datta K, Band V, Band H. GD2 and its biosynthetic enzyme GD3 synthase promote tumorigenesis in prostate cancer by regulating cancer stem cell behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.18.533299. [PMID: 36993422 PMCID: PMC10055271 DOI: 10.1101/2023.03.18.533299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
While better management of loco-regional prostate cancer (PC) has greatly improved survival, advanced PC remains a major cause of cancer deaths. Identification of novel targetable pathways that contribute to tumor progression in PC could open new therapeutic options. The di-ganglioside GD2 is a target of FDA-approved antibody therapies in neuroblastoma, but the role of GD2 in PC is unexplored. Here, we show that GD2 is expressed in a small subpopulation of PC cells in a subset of patients and a higher proportion of metastatic tumors. Variable levels of cell surface GD2 expression were seen on many PC cell lines, and the expression was highly upregulated by experimental induction of lineage progression or enzalutamide resistance in CRPC cell models. GD2high cell fraction was enriched upon growth of PC cells as tumorspheres and GD2high fraction was enriched in tumorsphere-forming ability. CRISPR-Cas9 knockout (KO) of the rate-limiting GD2 biosynthetic enzyme GD3 Synthase (GD3S) in GD2high CRPC cell models markedly impaired the in vitro oncogenic traits and growth as bone-implanted xenograft tumors and reduced the cancer stem cell (CSC) and epithelial-mesenchymal transition (EMT) marker expression. Our results support the potential role of GD3S and its product GD2 in promoting PC tumorigenesis by maintaining cancer stem cells and suggest the potential for GD2 targeting in advanced PC.
Collapse
|
3
|
Santilli F, Fabrizi J, Pulcini F, Santacroce C, Sorice M, Delle Monache S, Mattei V. Gangliosides and Their Role in Multilineage Differentiation of Mesenchymal Stem Cells. Biomedicines 2022; 10:biomedicines10123112. [PMID: 36551867 PMCID: PMC9775755 DOI: 10.3390/biomedicines10123112] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/10/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022] Open
Abstract
Gangliosides (GGs) are a glycolipid class present on Mesenchymal Stem Cells (MSCs) surfaces with a critical appearance role in stem cell differentiation, even though their mechanistic role in signaling and differentiation remains largely unknown. This review aims to carry out a critical analysis of the predictive role of gangliosides as specific markers of the cellular state of undifferentiated and differentiated MSCs, towards the osteogenic, chondrogenic, neurogenic, and adipogenic lineage. For this reason, we analyzed the role of GGs during multilineage differentiation processes of several types of MSCs such as Umbilical Cord-derived MSCs (UC-MSCs), Bone Marrow-derived MSCs (BM-MSCs), Dental Pulp derived MSCs (DPSCs), and Adipose derived MSCs (ADSCs). Moreover, we examined the possible role of GGs as specific cell surface markers to identify or isolate specific stem cell isotypes and their potential use as additional markers for quality control of cell-based therapies.
Collapse
Affiliation(s)
- Francesca Santilli
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, Angelo Maria Ricci 35A, 02100 Rieti, Italy
| | - Jessica Fabrizi
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, Angelo Maria Ricci 35A, 02100 Rieti, Italy
- Department of Experimental Medicine, Sapienza University, Regina Elena 324, 00161 Rome, Italy
| | - Fanny Pulcini
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Vetoio, 67100 L’Aquila, Italy
| | - Costantino Santacroce
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, Angelo Maria Ricci 35A, 02100 Rieti, Italy
| | - Maurizio Sorice
- Department of Experimental Medicine, Sapienza University, Regina Elena 324, 00161 Rome, Italy
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Vetoio, 67100 L’Aquila, Italy
- Correspondence: (S.D.M.); (V.M.)
| | - Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, Angelo Maria Ricci 35A, 02100 Rieti, Italy
- Correspondence: (S.D.M.); (V.M.)
| |
Collapse
|
4
|
Hohenwallner K, Troppmair N, Panzenboeck L, Kasper C, El Abiead Y, Koellensperger G, Lamp LM, Hartler J, Egger D, Rampler E. Decoding Distinct Ganglioside Patterns of Native and Differentiated Mesenchymal Stem Cells by a Novel Glycolipidomics Profiling Strategy. JACS AU 2022; 2:2466-2480. [PMID: 36465531 PMCID: PMC9709940 DOI: 10.1021/jacsau.2c00230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 06/17/2023]
Abstract
Gangliosides are an indispensable glycolipid class concentrated on cell surfaces with a critical role in stem cell differentiation. Nonetheless, owing to the lack of suitable methods for scalable analysis covering the full scope of ganglioside molecular diversity, their mechanistic properties in signaling and differentiation remain undiscovered to a large extent. This work introduces a sensitive and comprehensive ganglioside assay based on liquid chromatography, high-resolution mass spectrometry, and multistage fragmentation. Complemented by an open-source data evaluation workflow, we provide automated in-depth lipid species-level and molecular species-level annotation based on decision rule sets for all major ganglioside classes. Compared to conventional state-of-the-art methods, the presented ganglioside assay offers (1) increased sensitivity, (2) superior structural elucidation, and (3) the possibility to detect novel ganglioside species. A major reason for the highly improved sensitivity is the optimized spectral readout based on the unique capability of two parallelizable mass analyzers for multistage fragmentation. We demonstrated the high-throughput universal capability of our novel analytical strategy by identifying 254 ganglioside species. As a proof of concept, 137 unique gangliosides were annotated in native and differentiated human mesenchymal stem cells including 78 potential cell-state-specific markers and 38 previously unreported gangliosides. A general increase of the ganglioside numbers upon differentiation was observed as well as cell-state-specific clustering based on the ganglioside species patterns. The combination of the developed glycolipidomics assay with the extended automated annotation tool enables comprehensive in-depth ganglioside characterization as shown on biological samples of interest. Our results suggest ganglioside patterns as a promising quality control tool for stem cells and their differentiation products. Additionally, we believe that our analytical workflow paves the way for probing glycolipid-based biochemical processes shedding light on the enigmatic processes of gangliosides and glycolipids in general.
Collapse
Affiliation(s)
- Katharina Hohenwallner
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
- Vienna
Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna 1090, Austria
| | - Nina Troppmair
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
- Vienna
Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna 1090, Austria
| | - Lisa Panzenboeck
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
- Vienna
Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna 1090, Austria
| | - Cornelia Kasper
- Institute
of Cell and Tissue Culture Technologies, University of Natural Resources and Life Sciences, Vienna 1190, Austria
| | - Yasin El Abiead
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Gunda Koellensperger
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Leonida M. Lamp
- Institute
of Pharmaceutical Sciences, University of
Graz, Graz 8010, Austria
| | - Jürgen Hartler
- Institute
of Pharmaceutical Sciences, University of
Graz, Graz 8010, Austria
- Field
of Excellence BioHealth − University
of Graz, Graz 8010, Austria
| | - Dominik Egger
- Institute
of Cell and Tissue Culture Technologies, University of Natural Resources and Life Sciences, Vienna 1190, Austria
| | - Evelyn Rampler
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| |
Collapse
|
5
|
Kwak DH, Park JH, Choi ES, Park SH, Lee SY, Lee S. Ganglioside GD1a enhances osteogenesis by activating ERK1/2 in mesenchymal stem cells of Lmna mutant mice. Aging (Albany NY) 2022; 14:9445-9457. [PMID: 36375476 PMCID: PMC9792213 DOI: 10.18632/aging.204378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022]
Abstract
Mutations in Lmna usually cause a series of human disorders, such as premature aging syndrome (progeria) involving the skeletal system. Gangliosides are known to be involved in cell surface differentiation and proliferation of stem cells. However, the role of gangliosides in Lmna dysfunctional mesenchymal stem cells (MSCs) is unclear. Therefore, Ganglioside's role in osteogenesis of Lmna dysfunctional MSCs analyzed. As a result of the analysis, it was confirmed that the expression of ganglioside GD1a was significantly reduced in MSCs derived from LmnaDhe/+ mice and in MSCs subjected to Lamin A/C knockdown using siRNA. Osteogenesis-related bone morphogenetic protein-2 and Osteocalcin protein, and gene expression were significantly decreased due to Lmna dysfunction. A result of treating MSCs with Lmna dysfunction with ganglioside GD1a (3 μg/ml), significantly increased bone differentiation in ganglioside GD1a treatment to Lmna-mutated MSCs. In addition, the level of pERK1/2, related to bone differentiation mechanisms was significantly increased. Ganglioside GD1a was treated to Congenital progeria LmnaDhe/+ mice. As a result, femur bone volume in ganglioside GD1a-treated LmnaDhe/+ mice was more significantly increased than in the LmnaDhe/+ mice. Therefore, it was confirmed that the ganglioside GD1a plays an important role in enhancing osteogenic differentiation in MSC was a dysfunction of Lmna.
Collapse
Affiliation(s)
- Dong Hoon Kwak
- Department of Pharmacology, School of Medicine, Wonkwang University, Iksan, Jeollabuk-do 54538, Republic of Korea
- Brain Research Institute, Wonkwang University, Iksan, Jeollabuk-do 54538, Republic of Korea
| | - Ji Hye Park
- Department of Pharmacology, School of Medicine, Wonkwang University, Iksan, Jeollabuk-do 54538, Republic of Korea
- Brain Research Institute, Wonkwang University, Iksan, Jeollabuk-do 54538, Republic of Korea
| | - Eul Sig Choi
- Department of Pharmacology, School of Medicine, Wonkwang University, Iksan, Jeollabuk-do 54538, Republic of Korea
- Brain Research Institute, Wonkwang University, Iksan, Jeollabuk-do 54538, Republic of Korea
| | - Seong Hyun Park
- Department of Pharmacology, School of Medicine, Wonkwang University, Iksan, Jeollabuk-do 54538, Republic of Korea
- Brain Research Institute, Wonkwang University, Iksan, Jeollabuk-do 54538, Republic of Korea
| | - Seo-Yeon Lee
- Department of Pharmacology, School of Medicine, Wonkwang University, Iksan, Jeollabuk-do 54538, Republic of Korea
- Brain Research Institute, Wonkwang University, Iksan, Jeollabuk-do 54538, Republic of Korea
| | - Seoul Lee
- Department of Pharmacology, School of Medicine, Wonkwang University, Iksan, Jeollabuk-do 54538, Republic of Korea
- Brain Research Institute, Wonkwang University, Iksan, Jeollabuk-do 54538, Republic of Korea
| |
Collapse
|
6
|
Olszewski C, Maassen J, Guenther R, Skazik-Voogt C, Gutermuth A. Mechanotransductive Differentiation of Hair Follicle Stem Cells Derived from Aged Eyelid Skin into Corneal Endothelial-Like Cells. Stem Cell Rev Rep 2021; 18:1668-1685. [PMID: 34515937 PMCID: PMC9209348 DOI: 10.1007/s12015-021-10249-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 11/25/2022]
Abstract
Corneal endothelial insufficiency is one of the leading causes of blindness. The main contemporary treatment for corneal blindness is endothelial keratoplasty, which, however, is unsatisfactory as a medical therapy due to the lack of donor corneas and graft rejection. Therefore, autologous stem cell-based corneal endothelial tissue substitutes may be a promising alternative to conventional grafts in the future. To address the age of most patients suffering from corneal endothelial deficiencies, we investigated the presence and potential of hair-derived stem cells from older tissue donors. Our studies revealed the presence of pluripotency- and neural crest-associated markers in tissue sections from blepharoplasty patients aged 50 to 80 years. In vitro outgrowths from eyelid hair follicles on collagen-coated tissue culture plates revealed a weak decrease in stem-cell potency. In contrast, cells within the spheres that spontaneously formed from the adherent cell layer retained full stem-cell potency and could be differentiated into cells of the ecto- meso and endodermal lineages. Although these highly potent hair follicle derived stem cells (HFSC) were only very slightly expandable, they were able to recognize the biomimicry of the Descemet’s-like topography and differentiate into corneal endothelial-like cells. In conclusion, HFSCs derived from epidermal skin of eyelid biopsies are a promising cell source to provide autologous corneal endothelial replacement for any age group of patients.
Collapse
Affiliation(s)
- Christian Olszewski
- Fraunhofer Institute for Production Technology, Steinbachstraße 17, 52074, Aachen, Germany
| | - Jessika Maassen
- Fraunhofer Institute for Production Technology, Steinbachstraße 17, 52074, Aachen, Germany
| | - Rebecca Guenther
- Fraunhofer Institute for Production Technology, Steinbachstraße 17, 52074, Aachen, Germany
| | - Claudia Skazik-Voogt
- Fraunhofer Institute for Production Technology, Steinbachstraße 17, 52074, Aachen, Germany
| | - Angela Gutermuth
- Fraunhofer Institute for Production Technology, Steinbachstraße 17, 52074, Aachen, Germany.
| |
Collapse
|
7
|
Tocci A. The safety of VASA pos presumptive adult ovarian stem cells. Reprod Biomed Online 2021; 43:587-597. [PMID: 34474974 DOI: 10.1016/j.rbmo.2021.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 01/16/2023]
Abstract
Isolation and characterization of presumptive human adult ovarian stem cells (OSC) has broken the long standing dogma of the absence of postnatal neo-oogenesis. Human adult OSC have been immunosorted by antibodies reacting against the RNA helicase VASA and have been reported to engraft into appropriate stem cell niches to promote neo-oogenesis. Analysis of published research, however, questions some of the findings on isolation, characterization, in-vitro self-renewal and clinical safety of the presumptive human adult OSC. In the present study, human VASApos embryo-fetal primordial germ cells and presumptive adult OSC are shown to share several pluripotency and early germ cell markers not ascertained in the initial characterization of adult OSC. A new hypothesis is made that the restoration of fertility claimed to result from presumptive human adult OSC may be attributed instead to VASApos embryo-fetal primordial germ cell remnants in the adult ovary, or alternatively to earlier VASAneg germ cells generated by in-vitro de-differentiation of the presumptive OSC. The suggested hypotheses have extensive implications for the practice and safety of adult OSC in the development of new treatments aimed at rescuing the ovarian reserve.
Collapse
Affiliation(s)
- Angelo Tocci
- Gruppo Donnamed, Reproductive Medicine Unit Via Cassia 1110 00189, Rome, Italy.
| |
Collapse
|
8
|
Chowdhury S, Ghosh S. Cancer Stem Cells. Stem Cells 2021. [DOI: 10.1007/978-981-16-1638-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Valid Presumption of Shiga Toxin-Mediated Damage of Developing Erythrocytes in EHEC-Associated Hemolytic Uremic Syndrome. Toxins (Basel) 2020; 12:toxins12060373. [PMID: 32512916 PMCID: PMC7354503 DOI: 10.3390/toxins12060373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
The global emergence of clinical diseases caused by enterohemorrhagic Escherichia coli (EHEC) is an issue of great concern. EHEC release Shiga toxins (Stxs) as their key virulence factors, and investigations on the cell-damaging mechanisms toward target cells are inevitable for the development of novel mitigation strategies. Stx-mediated hemolytic uremic syndrome (HUS), characterized by the triad of microangiopathic hemolytic anemia, thrombocytopenia, and acute renal injury, is the most severe outcome of an EHEC infection. Hemolytic anemia during HUS is defined as the loss of erythrocytes by mechanical disruption when passing through narrowed microvessels. The formation of thrombi in the microvasculature is considered an indirect effect of Stx-mediated injury mainly of the renal microvascular endothelial cells, resulting in obstructions of vessels. In this review, we summarize and discuss recent data providing evidence that HUS-associated hemolytic anemia may arise not only from intravascular rupture of erythrocytes, but also from the extravascular impairment of erythropoiesis, the development of red blood cells in the bone marrow, via direct Stx-mediated damage of maturing erythrocytes, leading to “non-hemolytic” anemia.
Collapse
|
10
|
Ganglioside GM3 Up-Regulate Chondrogenic Differentiation by Transform Growth Factor Receptors. Int J Mol Sci 2020; 21:ijms21061967. [PMID: 32183071 PMCID: PMC7139639 DOI: 10.3390/ijms21061967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 03/12/2020] [Indexed: 12/21/2022] Open
Abstract
Mesenchymal stem cells, also known as multipotent stromal progenitor cells, can differentiate into cells of mesodermal lineage. Gangliosides are sialic acid-conjugated glycosphingolipids that are believed to regulate cell differentiation and several signaling molecules. These molecules are localized in glycosphingolipid-enriched microdomains on the cell surface and are regulated by glycosphingolipid composition. Transforming growth factor-beta (TGF-β) signaling plays a critical role in chondrogenic differentiation. However, the role of gangliosides in chondrogenesis is not understood. In this study, the relationship between the ganglioside GM3 and TGF-β activation, during chondrogenic differentiation, was investigated using an aggregate culture of human synovial membrane-derived mesenchymal stem cells. We showed that the gangliosides GM3 and GD3 were expressed after the chondrogenic differentiation of hSMSC aggregates. To test whether GM3 affected the chondrogenic differentiation of hSMSC aggregates, we used GM3 treatment during chondrogenic differentiation. The results showed that the group treated with 5 μM GM3 had higher expression of chondrogenic specific markers, increased toluidine blue, and safranin O staining, and increased accumulation of glycosaminoglycans compared with the untreated group. Furthermore, GM3 treatment enhanced TGF-β signaling via SMAD 2/3 during the chondrogenic differentiation of hSMSC aggregates. Taken together, our results suggested that GM3 may be useful in developing therapeutic agents for cell-based articular cartilage regeneration in articular cartilage disease.
Collapse
|
11
|
Piña-Medina AG, Díaz NF, Molina-Hernández A, Mancilla-Herrera I, Camacho-Arroyo I. Effects of progesterone on the cell number of gliomaspheres derived from human glioblastoma cell lines. Life Sci 2020; 249:117536. [PMID: 32165211 DOI: 10.1016/j.lfs.2020.117536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/27/2020] [Accepted: 03/06/2020] [Indexed: 12/19/2022]
Abstract
AIMS The malignancy of the Glioblastomas (GBM), the most frequent and aggressive brain tumors, have been associated with the presence of glioma stem cells (GSCs) which can form gliomaspheres (GS) in vitro. Progesterone (P) increases the proliferation, migration, and invasion of GBM cell lines through the interaction with its intracellular receptor (PR). However, it is unknown if the PR is expressed and the possible effects of P in the formation/differentiation of GS. MAIN METHODS GS were grown from U251 and U87 cell lines by selective culture with serum-free neural stem cell medium. GSCs were identified by the detection of Sox2, Ki67, Nestin, CD133, and CD15 by immunofluorescence. Additionally, the relative expression of PROM1, NES, SOX2, OLIG2, EZH2, BMI1 and PR genes was evaluated by RT-qPCR. The GS were treated with P, and the number of cells was quantified. By RT-PCR the βIII-TUB and GFAP differentiation genes were evaluated. KEY FINDINGS GS were maintained until passage four. The expression of all GSCs markers was significantly higher in GS as compared with the basal culture of U251 and U87 cells. We demonstrated for the first time that PR is expressed in GS and this expression was higher as compared with the U251 and U87 cells in basal conditions. Also, we observed that P increased the number of cells derived primary gliomaspheres (GS1) from the U251 line, as well as the expression of the neuronal differentiation marker βIII-TUB. SIGNIFICANCE These results suggest the participation of P in the growth of GSCs.
Collapse
Affiliation(s)
- Ana G Piña-Medina
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México (UNAM), 04510 Ciudad de México, Mexico
| | - Néstor F Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", 11000 Ciudad de México, Mexico
| | - Anayansi Molina-Hernández
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", 11000 Ciudad de México, Mexico
| | - Ismael Mancilla-Herrera
- Departamento de Infectología e Inmunología, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", 11000 Ciudad de México, Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacán, 04510 Ciudad de México, Mexico.
| |
Collapse
|
12
|
Ruggiero FM, Rodríguez-Walker M, Daniotti JL. Exploiting the internalization feature of an antibody against the glycosphingolipid SSEA-4 to deliver immunotoxins in breast cancer cells. Immunol Cell Biol 2020; 98:187-202. [PMID: 31916611 DOI: 10.1111/imcb.12314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 11/16/2019] [Accepted: 01/06/2020] [Indexed: 01/02/2023]
Abstract
The stage-specific embryonic antigen-4 (SSEA-4) is a cell surface glycosphingolipid antigen expressed in early stages of human development. This surface marker is downregulated during the differentiation process but is found re-expressed in several types of tumors, including breast cancer. This feature makes SSEA-4 an attractive target for the development of therapeutic antibodies against tumors. In this work, we first studied the binding and intracellular fate of the monoclonal antibody MC-813-70 directed against SSEA-4. MC-813-70 was found to be rapidly internalized into triple-negative breast cancer cells following binding to its target at the plasma membrane, and to accumulate in acidic organelles, most likely lysosomes. Given the internalization feature of MC-813-70, we next tested whether the antibody was able to selectively deliver the saporin toxin inside SSEA-4-expressing cells. Results show that the immunotoxin complex was properly endocytosed and able to reduce cell viability of breast cancer cells in vitro, either alone or in combination with chemotherapeutic drugs. Our findings indicate that the MC-813-70 antibody has the potential to be developed as an alternative targeted therapeutic agent for cancer cells expressing the SSEA-4 glycolipid.
Collapse
Affiliation(s)
- Fernando M Ruggiero
- Centro de Investigaciones en Química Biológica, de Córdoba (CIQUIBIC), CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina.,Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Macarena Rodríguez-Walker
- Centro de Investigaciones en Química Biológica, de Córdoba (CIQUIBIC), CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina.,Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Jose L Daniotti
- Centro de Investigaciones en Química Biológica, de Córdoba (CIQUIBIC), CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina.,Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
13
|
Baeza-Kallee N, Bergès R, Soubéran A, Colin C, Denicolaï E, Appay R, Tchoghandjian A, Figarella-Branger D. Glycolipids Recognized by A2B5 Antibody Promote Proliferation, Migration, and Clonogenicity in Glioblastoma Cells. Cancers (Basel) 2019; 11:cancers11091267. [PMID: 31466399 PMCID: PMC6769647 DOI: 10.3390/cancers11091267] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/20/2019] [Accepted: 08/24/2019] [Indexed: 02/07/2023] Open
Abstract
A2B5+ cells isolated from human glioblastomas exhibit cancer stem cell properties. The A2B5 epitope belongs to the sialoganglioside family and is synthetized by the ST8 alpha-N-acetyl-neuraminidase α-2,8-sialyltransferase 3 (ST8SIA3) enzyme. Glycolipids represent attractive targets for solid tumors; therefore, the aim of this study was to decipher A2B5 function in glioblastomas. To this end, we developed cell lines expressing various levels of A2B5 either by genetically manipulating ST8SIA3 or by using neuraminidase. The overexpression of ST8SIA3 in low-A2B5-expressing cells resulted in a dramatic increase of A2B5 immunoreactivity. ST8SIA3 overexpression increased cell proliferation, migration, and clonogenicity in vitro and tumor growth when cells were intracranially grafted. Conversely, lentiviral ST8SIA3 inactivation in low-A2B5-expressing cells resulted in reduced proliferation, migration, and clonogenicity in vitro and extended mouse survival. Furthermore, in the shST8SIA3 cells, we found an active apoptotic phenotype. In high-A2B5-expressing cancer stem cells, lentiviral delivery of shST8SIA3 stopped cell growth. Neuraminidase treatment, which modifies the A2B5 epitope, impaired cell survival, proliferation, self-renewal, and migration. Our findings prove the crucial role of the A2B5 epitope in the promotion of proliferation, migration, clonogenicity, and tumorigenesis, pointing at A2B5 as an attractive therapeutic target for glioblastomas.
Collapse
Affiliation(s)
| | - Raphaël Bergès
- Aix Marseille University, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Aurélie Soubéran
- Aix Marseille University, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Carole Colin
- Aix Marseille University, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Emilie Denicolaï
- Aix Marseille University, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Romain Appay
- Aix Marseille University, CNRS, INP, Inst Neurophysiopathol, Marseille, France
- Service d'Anatomie Pathologique et de Neuropathologie, Hôpital de la Timone, AP-HM, Marseille, France
| | | | - Dominique Figarella-Branger
- Aix Marseille University, CNRS, INP, Inst Neurophysiopathol, Marseille, France.
- Service d'Anatomie Pathologique et de Neuropathologie, Hôpital de la Timone, AP-HM, Marseille, France.
| |
Collapse
|
14
|
Bottai D, Adami R, Ghidoni R. The crosstalk between glycosphingolipids and neural stem cells. J Neurochem 2018; 148:698-711. [PMID: 30269334 DOI: 10.1111/jnc.14600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 09/13/2018] [Accepted: 09/18/2018] [Indexed: 01/19/2023]
Abstract
Until a few years ago, the majority of cell functions were envisioned as the result of protein and DNA activity. The cell membranes were considered as a mere structure of support and/or separation. In the last years, the function of cell membranes has, however, received more attention and their components of lipid nature have also been depicted as important cell mediators and the membrane organization was described as an important determinant for membrane-anchored proteins activity. In particular, because of their high diversity, glycosphingolipids offer a wide possibility of regulation. Specifically, the role of glycosphingolipids, in the fine-tuning of neuron activity, has recently received deep attention. For their pivotal role in vertebrate and mammals neural development, neural stem cells regulation is of main interest especially concerning their further functions in neurological pathology progression and treatment. Glycosphingolipids expression present a developmental regulation. In this view, glycosphingolipids can hold an important role in neural stem cells features because of their heterogeneity and their consequent capacity for eclectic interaction with other cell components.
Collapse
Affiliation(s)
- Daniele Bottai
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Raffaella Adami
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Riccardo Ghidoni
- Department of Health Sciences, University of Milan, Milan, Italy
| |
Collapse
|
15
|
Ariga T. The Pathogenic Role of Ganglioside Metabolism in Alzheimer's Disease-Cholinergic Neuron-Specific Gangliosides and Neurogenesis. Mol Neurobiol 2018; 54:623-638. [PMID: 26748510 DOI: 10.1007/s12035-015-9641-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia with clinical symptoms that include deficits in memory, judgment, thinking, and behavior. Gangliosides are present on the outer surface of plasma membranes and are especially abundant in the nervous tissues of vertebrates. Ganglioside metabolism, especially the cholinergic neuron-specific gangliosides, GQ1bα and GT1aα, is altered in mouse model of AD and patients with AD. Thus, alterations in ganglioside metabolism may participate in several events related to the pathogenesis of AD. Increased expressions of GT1aα may reflect cholinergic neurogenesis. Most changes in ganglioside metabolism occur in the specific brain areas and their lipid rafts. Targeting ganglioside metabolism in lipid rafts may represent an underexploited opportunity to design novel therapeutic strategies for AD.
Collapse
Affiliation(s)
- Toshio Ariga
- Department of Neuroscience and Regenerative Medicine, Institute of Neuroscience, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA. .,Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Chiyoda-ku, Tokyo, 101-8308, Japan.
| |
Collapse
|
16
|
Abstract
This review begins by attempting to recount some of the pioneering discoveries that first identified the presence of gangliosides in the nervous system, their structures and topography. This is presented as prelude to the current emphasis on physiological function, about which much has been learned but still remains to be elucidated. These areas include ganglioside roles in nervous system development including stem cell biology, membranes and organelles within neurons and glia, ion transport mechanisms, receptor modulation including neurotrophic factor receptors, and importantly the pathophysiological role of ganglioside aberrations in neurodegenerative disorders. This relates to their potential as therapeutic agents, especially in those conditions characterized by deficiency of one or more specific gangliosides. Finally we attempt to speculate on future directions ganglioside research is likely to take so as to capitalize on the impressive progress to date.
Collapse
Affiliation(s)
- Robert Ledeen
- Division of Neurochemistry, Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, USA.
| | - Gusheng Wu
- Division of Neurochemistry, Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
17
|
Ludwig K, Kornblum HI. Molecular markers in glioma. J Neurooncol 2017; 134:505-512. [PMID: 28233083 DOI: 10.1007/s11060-017-2379-y] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/29/2017] [Indexed: 02/08/2023]
Abstract
Gliomas are the most malignant and aggressive form of brain tumors, and account for the majority of brain cancer related deaths. Malignant gliomas, including glioblastoma are treated with radiation and temozolomide, with only a minor benefit in survival time. A number of advances have been made in understanding glioma biology, including the discovery of cancer stem cells, termed glioma stem cells (GSC). Some of these advances include the delineation of molecular heterogeneity both between tumors from different patients as well as within tumors from the same patient. Such research highlights the importance of identifying and validating molecular markers in glioma. This review, intended as a practical resource for both clinical and basic investigators, summarizes some of the more well-known molecular markers (MGMT, 1p/19q, IDH, EGFR, p53, PI3K, Rb, and RAF), discusses how they are identified, and what, if any, clinical relevance they may have, in addition to discussing some of the specific biology for these markers. Additionally, we discuss identification methods for studying putative GSC's (CD133, CD15, A2B5, nestin, ALDH1, proteasome activity, ABC transporters, and label-retention). While much research has been done on these markers, there is still a significant amount that we do not yet understand, which may account for some conflicting reports in the literature. Furthermore, it is unlikely that the investigator will be able to utilize one single marker to prospectively identify and isolate GSC from all, or possibly, any gliomas.
Collapse
Affiliation(s)
- Kirsten Ludwig
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.,Department of Psychiatry and Biobehavioral Research, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Harley I Kornblum
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA. .,Department of Psychiatry and Biobehavioral Research, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA. .,Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
18
|
Xu J, Hardin H, Zhang R, Sundling K, Buehler D, Lloyd RV. Stage-Specific Embryonic Antigen-1 (SSEA-1) Expression in Thyroid Tissues. Endocr Pathol 2016; 27:271-275. [PMID: 27550342 PMCID: PMC5107349 DOI: 10.1007/s12022-016-9448-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Stage-specific embryonic antigen-1 (SSEA-1), also known as CD15, is a member of a cluster of differentiation antigens that have been identified in various normal tissues and in different types of cancers including papillary and medullary thyroid carcinoma. SSEA-1 may be expressed in normal stem cells and cancer stem-like cells. To evaluate the potential diagnostic and prognostic utility of SSEA-1 in thyroid tumors, we analyzed the expression of SSEA-1 in normal and neoplastic thyroid tissues by immunohistochemistry (IHC) using a tissue microarray with 158 different tissue cores. To evaluate the potential utility of SSEA-1 as a surface marker, we also assessed the expression of SSEA-1 in thyroid cell lines by flow cytometric analysis. SSEA-1 immunoreactivity was identified in malignant thyroid follicular epithelial cancers but not in the benign thyroid tissues. Anaplastic thyroid (ATC) (80 %) and conventional papillary thyroid carcinoma (PTC) (60.7 %) showed significantly higher percentage of cases that were SSEA-1 immunoreactive than follicular variant of papillary thyroid carcinoma (FVPTC) (20.6 %) and follicular carcinoma (FCA) (32.1 %). Flow cytometric analysis of cultured thyroid cell lines showed that a small subpopulation of ATC and PTC thyroid tumor cells had SSEA-1 immunoreactivity which may represent thyroid cancer stem-like cells. The ATC cells expressed more SSEA-1 immunoreactive cells than the PTC cell lines. Our findings suggest that expression of SSEA-1 immunoreactivity in thyroid neoplasms was associated with more aggressive thyroid carcinomas. SSEA-1 is a marker that detects malignant thyroid neoplasms in formalin-fixed paraffin-embedded thyroid tissue sections and may be a useful marker for thyroid cancer stem-like cells.
Collapse
Affiliation(s)
- Jin Xu
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Heather Hardin
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Ranran Zhang
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Kaitlin Sundling
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Darya Buehler
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Ricardo V Lloyd
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA.
| |
Collapse
|
19
|
Yagi H, Kato K. Functional roles of glycoconjugates in the maintenance of stemness and differentiation process of neural stem cells. Glycoconj J 2016; 34:757-763. [PMID: 27350557 DOI: 10.1007/s10719-016-9707-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/16/2016] [Accepted: 06/16/2016] [Indexed: 12/11/2022]
Abstract
Neural stem cells (NSCs) possess a high proliferative potential and capacity for self-renewal with retention of multipotency to differentiate into brain-forming cells. NSCs have gained a considerable attention because of their potential application in treatment strategies on the basis of transplantation for neurodegenerative disorders and nerve injuries. Although several signaling pathways have been reportedly involved in the fate determination process of NSCs, the molecular mechanisms underlying the maintenance of neural cell stemness and differentiation process remain largely unknown. Glycoconjugates expressed in the NSC niche in the brain offer markers of NSCs; moreover, they serve as cell regulators, which are actively involved in the modulation of signal transduction. The glycans function on NCS surfaces by recruiting growth factor receptors to specific microdomains as components of glycolipids, thereby mediating the ligand-receptor interactions both indirectly and directly as components of proteoglycans and interacting with specific lectin-type receptors as components of ligand glycoproteins. In this review, we outline current knowledge of the possible functional mechanisms of glycoconjugates to determine cell fates, which are associated with their expression pattern and structural characteristic features.
Collapse
Affiliation(s)
- Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan. .,Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki Institute for Integrative Bioscience, 5-1 Higashiyama Myodaiji, Okazaki, 444-8787, Japan.
| |
Collapse
|
20
|
Glycolipid GD3 and GD3 synthase are key drivers for glioblastoma stem cells and tumorigenicity. Proc Natl Acad Sci U S A 2016; 113:5592-7. [PMID: 27143722 DOI: 10.1073/pnas.1604721113] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The cancer stem cells (CSCs) of glioblastoma multiforme (GBM), a grade IV astrocytoma, have been enriched by the expressed marker CD133. However, recent studies have shown that CD133(-) cells also possess tumor-initiating potential. By analysis of gangliosides on various cells, we show that ganglioside D3 (GD3) is overexpressed on eight neurospheres and tumor cells; in combination with CD133, the sorted cells exhibit a higher expression of stemness genes and self-renewal potential; and as few as six cells will form neurospheres and 20-30 cells will grow tumor in mice. Furthermore, GD3 synthase (GD3S) is increased in neurospheres and human GBM tissues, but not in normal brain tissues, and suppression of GD3S results in decreased GBM stem cell (GSC)-associated properties. In addition, a GD3 antibody is shown to induce complement-dependent cytotoxicity against cells expressing GD3 and inhibition of GBM tumor growth in vivo. Our results demonstrate that GD3 and GD3S are highly expressed in GSCs, play a key role in glioblastoma tumorigenicity, and are potential therapeutic targets against GBM.
Collapse
|
21
|
Höfner T, Klein C, Eisen C, Rigo-Watermeier T, Haferkamp A, Sprick MR. Protein profile of basal prostate epithelial progenitor cells--stage-specific embryonal antigen 4 expressing cells have enhanced regenerative potential in vivo. J Cell Mol Med 2016; 20:721-30. [PMID: 26849468 PMCID: PMC5125324 DOI: 10.1111/jcmm.12785] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 12/13/2015] [Indexed: 02/05/2023] Open
Abstract
The long‐term propagation of basal prostate progenitor cells ex vivo has been very difficult in the past. The development of novel methods to expand prostate progenitor cells in vitro allows determining their cell surface phenotype in greater detail. Mouse (Lin−Sca‐1+CD49f+ Trop2high‐phenotype) and human (Lin−CD49f+TROP2high) basal prostate progenitor cells were expanded in vitro. Human and mouse cells were screened using 242 anti‐human or 176 antimouse monoclonal antibodies recognizing the cell surface protein profile. Quantitative expression was evaluated at the single‐cell level using flow cytometry. Differentially expressed cell surface proteins were evaluated in conjunction with the known CD49f+/TROP2high phenotype of basal prostate progenitor cells and characterized by in vivo sandwich‐transplantation experiments using nude mice. The phenotype of basal prostate progenitor cells was determined as CD9+/CD24+/CD29+/CD44+/CD47+/CD49f+/CD104+/CD147+/CD326+/Trop2high of mouse as well as human origin. Our analysis revealed several proteins, such as CD13, Syndecan‐1 and stage‐specific embryonal antigens (SSEAs), as being differentially expressed on murine and human CD49f+TROP2+ basal prostate progenitor cells. Transplantation experiments suggest that CD49f+TROP2highSSEA‐4high human prostate basal progenitor cells to be more potent to regenerate prostate tubules in vivo as compared with CD49f+TROP2high or CD49f+TROP2highSSEA‐4low cells. Determination of the cell surface protein profile of functionally defined murine and human basal prostate progenitor cells reveals differentially expressed proteins that may change the potency and regenerative function of epithelial progenitor cells within the prostate. SSEA‐4 is a candidate cell surface marker that putatively enables a more accurate identification of the basal PESC lineage.
Collapse
Affiliation(s)
- Thomas Höfner
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany.,Department of Urology, University Hospital Frankfurt, Frankfurt, Germany
| | - Corinna Klein
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Christian Eisen
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Teresa Rigo-Watermeier
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Axel Haferkamp
- Department of Urology, University Hospital Frankfurt, Frankfurt, Germany
| | - Martin R Sprick
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
22
|
KARAÇALI S. Human embryonic stem cell N-glycan features relevant to pluripotency. Turk J Biol 2016. [DOI: 10.3906/biy-1509-57] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
23
|
Schengrund CL. Gangliosides: glycosphingolipids essential for normal neural development and function. Trends Biochem Sci 2015; 40:397-406. [DOI: 10.1016/j.tibs.2015.03.007] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 11/25/2022]
|
24
|
Azevedo-Pereira RL, Morrot A, Machado GS, Paredes BD, Rodrigues DDC, de Carvalho ACC, Mendez-Otero R. Expression of ganglioside 9-O acetyl GD3 in undifferentiated embryonic stem cells. Cell Biol Int 2015; 39:121-7. [PMID: 25045067 DOI: 10.1002/cbin.10335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 06/25/2014] [Indexed: 02/05/2023]
Abstract
Embryonic stem cells (ES cells) express a transient and heterogeneous pattern of molecules, which suggests a notable mechanism to control self-renewal avoid the differentiation into germ layers. We show that 9-O-acetyl GD3 (9OacGD3), a highly expressed b-series ganglioside in neural stem (NS) cells, is expressed in undifferentiated mouse ES cells in a heterogeneous fashion. After sorting, undifferentiated 9OacGD3(+) ES cell population had higher levels of nestin and Sox2 mRNA than the 9OacGD3(-) cells. Even with elevated expression of these neural transcription factors, 9OacGD3(+) cells did not give rise to more neural progenitors than 9OacGD3(-) cells. Expression of 9OacGD3 was recovered from 9OacGD3(-) cell population, demonstrating that expression of this ganglioside in mouse embryonic stem cells is transient, and does not reflect cell fate. Our findings show that the ganglioside 9OacGD3 is expressed heterogeneously and transiently in ES cells, and this expression corresponds to higher levels of Sox2 and Nestin transcripts.
Collapse
Affiliation(s)
- Ricardo Luiz Azevedo-Pereira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
25
|
Silvestri I, Testa F, Zappasodi R, Cairo CW, Zhang Y, Lupo B, Galli R, Di Nicola M, Venerando B, Tringali C. Sialidase NEU4 is involved in glioblastoma stem cell survival. Cell Death Dis 2014; 5:e1381. [PMID: 25144716 PMCID: PMC4454322 DOI: 10.1038/cddis.2014.349] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/08/2014] [Accepted: 07/09/2014] [Indexed: 01/30/2023]
Abstract
The human sialidase, NEU4, has emerged as a possible regulator of neuronal differentiation and its overexpression has been demonstrated to promote the acquisition of a stem cell-like phenotype in neuroblastoma cells. In this paper, we demonstrated that glioblastoma stem cells (GSCs) isolated from glioblastoma multiforme (GBM) cell lines and patients' specimens as neurospheres are specifically marked by the upregulation of NEU4; in contrast, the expression of NEU4 is very low in non-neurosphere-differentiated GBM cells. We showed that NEU4 silencing by miRNA or a chemical inhibitor of its catalytic activity triggered key events in GSCs, including (a) the activation of the glycogen synthase kinase 3β, with the consequent inhibition of Sonic Hedgehog and Wnt/β-catenin signalling pathways; (b) the decrease of the stem cell-like gene expression and marker signatures, evidenced by the reduction of NANOG, OCT-4, SOX-2, CD133 expression, ganglioside GD3 synthesis, and an altered protein glycosylation profile; and (c) a significant decrease in GSCs survival. Consistent with this finding, increased NEU4 activity and expression induced in the more differentiated GBM cells by the NEU4 agonist thymoquinone increased the expression of OCT-4 and GLI-1. Thus, NEU4 expression and activity appeared to help to determine the molecular signature of GSCs and to be closely connected with their survival properties. Given the pivotal role played by GSCs in GBM lethality, our results strongly suggest that NEU4 inhibition could significantly improve current therapies against this tumour.
Collapse
Affiliation(s)
- I Silvestri
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan), Italy
| | - F Testa
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan), Italy
| | - R Zappasodi
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale per lo Studio e la Cura dei Tumori, Milan, Italy
| | - C W Cairo
- Alberta Glycomics Center, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Y Zhang
- Alberta Glycomics Center, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - B Lupo
- Laboratory of Molecular Pharmacology, Institute for Cancer Research and Treatment (IRCC), Candiolo (Torino), Italy
| | - R Galli
- Neural Stem Cell Biology Unit, Division of Regenerative Medicine Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | - M Di Nicola
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale per lo Studio e la Cura dei Tumori, Milan, Italy
| | - B Venerando
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan), Italy
| | - C Tringali
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan), Italy
| |
Collapse
|
26
|
Eller CH, Yang G, Ouerfelli O, Raines RT. Affinity of monoclonal antibodies for Globo-series glycans. Carbohydr Res 2014; 397:1-6. [PMID: 25163606 DOI: 10.1016/j.carres.2014.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/03/2014] [Accepted: 07/05/2014] [Indexed: 12/31/2022]
Abstract
Globo-series glycans are human cell-surface carbohydrates that include stem-cell marker SSEA-4 and cancer-cell antigen Globo H. These two hexasaccharides differ only in their terminal saccharide: N-acetylneuraminic acid in SSEA-4 and L-fucose in Globo H. Herein, we evaluated the affinity of the monoclonal antibodies α-SSEA-4 and α-GH for the glycans SSEA-4 and Globo H. Using fluorescence polarization, we find that the two monoclonal antibodies have affinity for their cognate glycan in the low nanomolar range, and have negligible affinity for the non-cognate glycan. Using surface plasmon resonance, we find that each cognate affinity is ∼20-fold greater if the glycan is immobilized on a surface rather than free in solution. We conclude that the terminal saccharide plays a dominant role in the ability of monoclonal antibodies to recognize these Globo-series glycans and that the extraordinary specificity of these antibodies supports their use for identifying and sorting stem-cells (α-SSEA-4) and as an agent in cancer immunotherapy (α-GH).
Collapse
Affiliation(s)
- Chelcie H Eller
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706-1544, USA
| | - Guangbin Yang
- Organic Synthesis Core Facility, Molecular Pharmacology & Chemistry Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Ouathek Ouerfelli
- Organic Synthesis Core Facility, Molecular Pharmacology & Chemistry Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Ronald T Raines
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706-1544, USA; Department Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
27
|
Ariga T. Pathogenic role of ganglioside metabolism in neurodegenerative diseases. J Neurosci Res 2014; 92:1227-42. [PMID: 24903509 DOI: 10.1002/jnr.23411] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 04/09/2014] [Accepted: 04/09/2014] [Indexed: 12/13/2022]
Abstract
Ganglioside metabolism is altered in several neurodegenerative diseases, and this may participate in several events related to the pathogenesis of these diseases. Most changes occur in specific areas of the brain and their distinct membrane microdomains or lipid rafts. Antiganglioside antibodies may be involved in dysfunction of the blood-brain barrier and disease progression in these diseases. In lipid rafts, interactions of glycosphingolipids, including ganglioside, with proteins may be responsible for the misfolding events that cause the fibril and/or aggregate processing of disease-specific proteins, such as α-synuclein, in Parkinson's disease, huntingtin protein in Huntington's disease, and copper-zinc superoxide dismutase in amyotrophic lateral sclerosis. Targeting ganglioside metabolism may represent an underexploited opportunity to design novel therapeutic strategies for neurodegeneration in these diseases.
Collapse
Affiliation(s)
- Toshio Ariga
- Institute of Molecular Medicine and Genetics, Institute of Neuroscience, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| |
Collapse
|
28
|
Kawanabe N, Fukushima H, Ishihara Y, Yanagita T, Kurosaka H, Yamashiro T. Isolation and characterization of SSEA-4-positive subpopulation of human deciduous dental pulp cells. Clin Oral Investig 2014; 19:363-71. [DOI: 10.1007/s00784-014-1260-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 05/13/2014] [Indexed: 01/07/2023]
|
29
|
Can arthroscopically harvested synovial stem cells be preferentially sorted using stage-specific embryonic antigen 4 antibody for cartilage, bone, and adipose regeneration? Arthroscopy 2014; 30:352-61. [PMID: 24581260 DOI: 10.1016/j.arthro.2013.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 12/12/2013] [Accepted: 12/16/2013] [Indexed: 02/06/2023]
Abstract
PURPOSE The aim of this study was to investigate the relation between stage-specific embryonic antigen 4 (SSEA4) expression and synovium-derived stem cell (SDSC) lineage differentiation. METHODS Human SDSCs were collected during arthroscopic surgery from 4 young patients with anterior cruciate ligament injuries. Passage 2 SDSCs were sorted by fluorescence-activated cell sorting using phycoerythrin-conjugated monoclonal antibody against SSEA4 into 3 groups: SSEA4(+) cells, SSEA4(-) cells, and unsorted control cells. After 1 more passage, expanded cells from each group were evaluated for SSEA4 expression by use of flow cytometry as well as multilineage differentiation capacities, including chondrogenesis, adipogenesis, and osteogenesis, using biochemical analysis, histologic analysis, immunostaining, and real-time polymerase chain reaction. RESULTS After cell sorting, 1 more passage expansion decreased SSEA4(+) cells from 99.8% to 79.2% and increased SSEA4(-) cells from 4.4% to 53.3% compared with 70.3% in the unsorted cell population. SSEA4(-) SDSCs with a lower cell proliferation exhibited higher chondrogenic potential (in terms of the ratio of glycosaminoglycan to DNA [P < .001] and COL2A1 [type II collagen] messenger RNA [mRNA] [P < .001]) and adipogenic potential (in terms of oil red O staining and quantitative assay [P = .007], LPL [lipoprotein lipase] mRNA [P = .005], and CEBP [CCAAT/enhancer-binding protein alpha] mRNA [P = .010]). In contrast, SSEA4(+) SDSCs retained cell expansion and enhanced osteogenic capacity, as evidenced by intense calcium deposition stained by alizarin red S and a significantly elevated expression of OPN (osteopontin) mRNA (P = .007). CONCLUSIONS In this study, for the first time, we showed the benefit of using the surface marker SSEA4 in SDSCs to preferentially sort a mixed population of cells. SSEA4(+) SDSCs indicated a strong potential for osteogenesis rather than chondrogenesis and adipogenesis. CLINICAL RELEVANCE SDSC-based mesenchymal tissue regeneration can be easily achieved by arthroscopic harvesting followed by quick cell sorting.
Collapse
|
30
|
Bergante S, Torretta E, Creo P, Sessarego N, Papini N, Piccoli M, Fania C, Cirillo F, Conforti E, Ghiroldi A, Tringali C, Venerando B, Ibatici A, Gelfi C, Tettamanti G, Anastasia L. Gangliosides as a potential new class of stem cell markers: the case of GD1a in human bone marrow mesenchymal stem cells. J Lipid Res 2014; 55:549-60. [PMID: 24449473 PMCID: PMC3934739 DOI: 10.1194/jlr.m046672] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 01/19/2014] [Indexed: 01/01/2023] Open
Abstract
Owing to their exposure on the cell surface and the possibility of being directly recognized with specific antibodies, glycosphingolipids have aroused great interest in the field of stem cell biology. In the search for specific markers of the differentiation of human bone marrow mesenchymal stem cells (hBMSCs) toward osteoblasts, we studied their glycosphingolipid pattern, with particular attention to gangliosides. After lipid extraction and fractionation, gangliosides, metabolically (3)H-labeled in the sphingosine moiety, were separated by high-performance TLC and chemically characterized by MALDI MS. Upon induction of osteogenic differentiation, a 3-fold increase of ganglioside GD1a was observed. Therefore, the hypothesis of GD1a involvement in hBMSCs commitment toward the osteogenic phenotype was tested by comparison of the osteogenic propensity of GD1a-highly expressing versus GD1a-low expressing hBMSCs and direct addition of GD1a in the differentiation medium. It was found that either the high expression of GD1a in hBMSCs or the addition of GD1a in the differentiation medium favored osteogenesis, providing a remarkable increase of alkaline phosphatase. It was also observed that ganglioside GD2, although detectable in hBMSCs by immunohistochemistry with an anti-GD2 antibody, could not be recognized by chemical analysis, likely reflecting a case, not uncommon, of molecular mimicry.
Collapse
Affiliation(s)
- Sonia Bergante
- Departments of Biomedical Sciences for Health, and University of Milan, Segrate (Milan), Italy
- Laboratory of Stem Cells for Tissue Engineering, Scientific Institute for Research, Hospitalization and Health Care (IRCCS) Policlinico San Donato, San Donato (Milan), Italy
| | - Enrica Torretta
- Departments of Biomedical Sciences for Health, and University of Milan, Segrate (Milan), Italy
| | - Pasquale Creo
- Laboratory of Stem Cells for Tissue Engineering, Scientific Institute for Research, Hospitalization and Health Care (IRCCS) Policlinico San Donato, San Donato (Milan), Italy
| | - Nadia Sessarego
- IRCCS Istituto Clinico Humanitas, Rozzano (Milan), Italy; and
| | - Nadia Papini
- Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan), Italy
| | - Marco Piccoli
- Laboratory of Stem Cells for Tissue Engineering, Scientific Institute for Research, Hospitalization and Health Care (IRCCS) Policlinico San Donato, San Donato (Milan), Italy
| | - Chiara Fania
- Departments of Biomedical Sciences for Health, and University of Milan, Segrate (Milan), Italy
| | - Federica Cirillo
- Laboratory of Stem Cells for Tissue Engineering, Scientific Institute for Research, Hospitalization and Health Care (IRCCS) Policlinico San Donato, San Donato (Milan), Italy
| | - Erika Conforti
- Laboratory of Stem Cells for Tissue Engineering, Scientific Institute for Research, Hospitalization and Health Care (IRCCS) Policlinico San Donato, San Donato (Milan), Italy
| | - Andrea Ghiroldi
- Laboratory of Stem Cells for Tissue Engineering, Scientific Institute for Research, Hospitalization and Health Care (IRCCS) Policlinico San Donato, San Donato (Milan), Italy
| | - Cristina Tringali
- Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan), Italy
| | - Bruno Venerando
- Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan), Italy
| | | | - Cecilia Gelfi
- Departments of Biomedical Sciences for Health, and University of Milan, Segrate (Milan), Italy
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR, Cefalù (Palermo) and Segrate (Milan), Italy
| | - Guido Tettamanti
- Laboratory of Stem Cells for Tissue Engineering, Scientific Institute for Research, Hospitalization and Health Care (IRCCS) Policlinico San Donato, San Donato (Milan), Italy
| | - Luigi Anastasia
- Departments of Biomedical Sciences for Health, and University of Milan, Segrate (Milan), Italy
- Laboratory of Stem Cells for Tissue Engineering, Scientific Institute for Research, Hospitalization and Health Care (IRCCS) Policlinico San Donato, San Donato (Milan), Italy
| |
Collapse
|
31
|
Torretta E, Vasso M, Fania C, Capitanio D, Bergante S, Piccoli M, Tettamanti G, Anastasia L, Gelfi C. Application of direct HPTLC-MALDI for the qualitative and quantitative profiling of neutral and acidic glycosphingolipids: The case of NEU3 overexpressing C2C12 murine myoblasts. Electrophoresis 2014; 35:1319-28. [DOI: 10.1002/elps.201300474] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/22/2013] [Accepted: 12/09/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Enrica Torretta
- Department of Biomedical Sciences for Health; University of Milan; Segrate Milan Italy
| | - Michele Vasso
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR; Cefalù (Palermo) Segrate Milan Italy
| | - Chiara Fania
- Department of Biomedical Sciences for Health; University of Milan; Segrate Milan Italy
| | - Daniele Capitanio
- Department of Biomedical Sciences for Health; University of Milan; Segrate Milan Italy
| | - Sonia Bergante
- Department of Biomedical Sciences for Health; University of Milan; Segrate Milan Italy
- Laboratory of Stem Cells for Tissue Engineering; IRCCS Policlinico San Donato Milan Italy
| | - Marco Piccoli
- Department of Biomedical Sciences for Health; University of Milan; Segrate Milan Italy
- Laboratory of Stem Cells for Tissue Engineering; IRCCS Policlinico San Donato Milan Italy
| | - Guido Tettamanti
- Laboratory of Stem Cells for Tissue Engineering; IRCCS Policlinico San Donato Milan Italy
| | - Luigi Anastasia
- Department of Biomedical Sciences for Health; University of Milan; Segrate Milan Italy
- Laboratory of Stem Cells for Tissue Engineering; IRCCS Policlinico San Donato Milan Italy
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health; University of Milan; Segrate Milan Italy
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR; Cefalù (Palermo) Segrate Milan Italy
| |
Collapse
|
32
|
Wierstra I. The transcription factor FOXM1 (Forkhead box M1): proliferation-specific expression, transcription factor function, target genes, mouse models, and normal biological roles. Adv Cancer Res 2013; 118:97-398. [PMID: 23768511 DOI: 10.1016/b978-0-12-407173-5.00004-2] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
FOXM1 (Forkhead box M1) is a typical proliferation-associated transcription factor, which stimulates cell proliferation and exhibits a proliferation-specific expression pattern. Accordingly, both the expression and the transcriptional activity of FOXM1 are increased by proliferation signals, but decreased by antiproliferation signals, including the positive and negative regulation by protooncoproteins or tumor suppressors, respectively. FOXM1 stimulates cell cycle progression by promoting the entry into S-phase and M-phase. Moreover, FOXM1 is required for proper execution of mitosis. Accordingly, FOXM1 regulates the expression of genes, whose products control G1/S-transition, S-phase progression, G2/M-transition, and M-phase progression. Additionally, FOXM1 target genes encode proteins with functions in the execution of DNA replication and mitosis. FOXM1 is a transcriptional activator with a forkhead domain as DNA binding domain and with a very strong acidic transactivation domain. However, wild-type FOXM1 is (almost) inactive because the transactivation domain is repressed by three inhibitory domains. Inactive FOXM1 can be converted into a very potent transactivator by activating signals, which release the transactivation domain from its inhibition by the inhibitory domains. FOXM1 is essential for embryonic development and the foxm1 knockout is embryonically lethal. In adults, FOXM1 is important for tissue repair after injury. FOXM1 prevents premature senescence and interferes with contact inhibition. FOXM1 plays a role for maintenance of stem cell pluripotency and for self-renewal capacity of stem cells. The functions of FOXM1 in prevention of polyploidy and aneuploidy and in homologous recombination repair of DNA-double-strand breaks suggest an importance of FOXM1 for the maintenance of genomic stability and chromosomal integrity.
Collapse
|
33
|
Randelli P, Conforti E, Piccoli M, Ragone V, Creo P, Cirillo F, Masuzzo P, Tringali C, Cabitza P, Tettamanti G, Gagliano N, Anastasia L. Isolation and characterization of 2 new human rotator cuff and long head of biceps tendon cells possessing stem cell-like self-renewal and multipotential differentiation capacity. Am J Sports Med 2013; 41:1653-64. [PMID: 23393078 DOI: 10.1177/0363546512473572] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Stem cell therapy is expected to offer new alternatives to the traditional therapies of rotator cuff tendon tears. In particular, resident, tissue-specific, adult stem cells seem to have a higher regenerative potential for the tissue where they reside. HYPOTHESIS Rotator cuff tendon and long head of the biceps tendon possess a resident stem cell population that, when properly stimulated, may be induced to proliferate, thus being potentially usable for tendon regeneration. STUDY DESIGN Controlled laboratory study. METHODS Human tendon samples from the supraspinatus and the long head of the biceps were collected during rotator cuff tendon surgeries from 26 patients, washed with phosphate-buffered saline, cut into small pieces, and digested with collagenase type I and dispase. After centrifugation, cell pellets were resuspended in appropriate culture medium and plated. Adherent cells were cultured, phenotypically characterized, and then compared with human bone marrow stromal cells (BMSCs), as an example of adult stem cells, and human dermal fibroblasts, as normal proliferating cells with no stem cell properties. RESULTS Two new adult stem cell populations from the supraspinatus and long head of the biceps tendons were isolated, characterized, and cultured in vitro. Cells showed adult stem cell characteristics (ie, they were self-renewing in vitro, clonogenic, and multipotent), as they could be induced to differentiate into different cell types--namely, osteoblasts, adipocytes, and skeletal muscle cells. CONCLUSION This work demonstrated that human rotator cuff tendon stem cells and human long head of the biceps tendon stem cells can be isolated and possess a high regenerative potential, which is comparable with that of BMSCs. Moreover, comparative analysis of the sphingolipid pattern of isolated cells with that of BMSCs and fibroblasts revealed the possibility of using this class of lipids as new possible markers of the cell differentiation status. CLINICAL RELEVANCE Rotator cuff and long head of the biceps tendons contain a stem cell population that can proliferate in vitro and could constitute an easily accessible stem cell source to develop novel therapies for tendon regeneration.
Collapse
Affiliation(s)
- Pietro Randelli
- IRCCS Policlinico San Donato, piazza Malan 1, 20097 San Donato Milanese, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ryu JS, Chang KT, Lee JT, Lim MU, Min HK, Na YJ, Lee SB, Moussavou G, Kim SU, Kim JS, Ko K, Ko K, Hwang KA, Jeong EJ, Lee JW, Choo YK. Ganglioside GM1 influences the proliferation rate of mouse induced pluripotent stem cells. BMB Rep 2013; 45:713-8. [PMID: 23261057 PMCID: PMC4133816 DOI: 10.5483/bmbrep.2012.45.12.138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Gangliosides play important roles in the control of several biological processes, including proliferation and transmembrane signaling. In this study, we demonstrate the effect of ganglioside GM1 on the proliferation of mouse induced pluripotent stem cells (miPSCs). The proliferation rate of miPSCs was lower than in mouse embryonic stem cells (mESCs). Fluorescence activated cell sorting analysis showed that the percentage of cells in the G2/M phase in miPSCs was lower than that in mESCs. GM1 was expressed in mESCs, but not miPSCs. To confirm the role of GM1 in miPSC proliferation, miPSCs were treated with GM1. GM1-treated miPSCs exhibited increased cell proliferation and a larger number of cells in the G2/M phase. Furthermore, phosphorylation of mitogen-activated protein kinases was increased in GM1- treated miPSCs.
Collapse
Affiliation(s)
- Jae-Sung Ryu
- Department of Biological Science, College of Natural Sciences, Wonkwang University, Iksan 570-749, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Barone A, Benktander J, Ångström J, Aspegren A, Björquist P, Teneberg S, Breimer ME. Structural complexity of non-acid glycosphingolipids in human embryonic stem cells grown under feeder-free conditions. J Biol Chem 2013; 288:10035-10050. [PMID: 23404501 DOI: 10.1074/jbc.m112.436162] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Due to their pluripotency and growth capability, there are great expectations for human embryonic stem cells, both as a resource for functional studies of early human development and as a renewable source of cells for use in regenerative medicine and transplantation. However, to bring human embryonic stem cells into clinical applications, their cell surface antigen expression and its chemical structural complexity have to be defined. In the present study, total non-acid glycosphingolipid fractions were isolated from two human embryonic stem cell lines (SA121 and SA181) originating from leftover in vitro fertilized human embryos, using large amounts of starting material (1 × 10(9) cells/cell line). The total non-acid glycosphingolipid fractions were characterized by antibody and lectin binding, mass spectrometry, and proton NMR. In addition to the globo-series and type 1 core chain glycosphingolipids previously described in human embryonic stem cells, a number of type 2 core chain glycosphingolipids (neo-lactotetraosylceramide, the H type 2 pentaosylceramide, the Le(x) pentaosylceramide, and the Le(y) hexaosylceramide) were identified as well as the blood group A type 1 hexaosylceramide. Finally, the mono-, di-, and triglycosylceramides were characterized as galactosylceramide, glucosylceramide, lactosylceramide, galabiaosylceramide, globotriaosylceramide, and lactotriaosylceramide. Thus, the glycan diversity of human embryonic stem cells, including cell surface immune determinants, is more complex than previously appreciated.
Collapse
Affiliation(s)
- Angela Barone
- Department of Surgery, Sahlgrenska University Hospital, S-41 345 Göteborg, Sweden
| | - John Benktander
- Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, P.O. Box 440, University of Gothenburg, S-405 30 Göteborg, Sweden
| | - Jonas Ångström
- Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, P.O. Box 440, University of Gothenburg, S-405 30 Göteborg, Sweden
| | - Anders Aspegren
- Cellectis Stem Cells, Cellartis AB, Arvid Wallgrens Backe 20, S-413 46 Göteborg, Sweden
| | - Petter Björquist
- Cellectis Stem Cells, Cellartis AB, Arvid Wallgrens Backe 20, S-413 46 Göteborg, Sweden
| | - Susann Teneberg
- Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, P.O. Box 440, University of Gothenburg, S-405 30 Göteborg, Sweden.
| | - Michael E Breimer
- Department of Surgery, Sahlgrenska University Hospital, S-41 345 Göteborg, Sweden
| |
Collapse
|
36
|
Rosu-Myles M, McCully J, Fair J, Mehic J, Menendez P, Rodriguez R, Westwood C. The globoseries glycosphingolipid SSEA-4 is a marker of bone marrow-derived clonal multipotent stromal cells in vitro and in vivo. Stem Cells Dev 2013; 22:1387-97. [PMID: 23330736 DOI: 10.1089/scd.2012.0547] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The therapeutic potential of multipotent stromal cells (MSC) may be enhanced by the identification of markers that allow their discrimination and enumeration both in vivo and in vitro. Here, we investigated the ability of embryonic stem cell-associated glycosphingolipids to isolate human MSC from both whole-bone-marrow (BM) and stromal cell cultures. Only SSEA-4 was consistently expressed on cells within the CD45loCD105hi marrow fraction and could be used to isolate cells with the capacity to give rise to stromal cultures containing MSC. Human stromal cultures, generated in either the presence or absence of serum, contained heterogeneous cell populations discriminated by the quantity of SSEA-4 epitopes detected on their surface. A low level of surface SSEA-4 (SSEA-4lo) correlated with undetectable levels of the α2,3-sialyltransferase-II enzyme required to synthesize SSEA-4; a reduced proliferative potential; and the loss of fat-, bone-, and cartilage-forming cells during long-term culture. In vitro, single cells with the capacity to generate multipotent stromal cultures were detected exclusively in the SSEA-4hi fraction. Our data demonstrate that a high level of surface epitopes for SSEA-4 provides a definitive marker of MSC from human BM.
Collapse
Affiliation(s)
- Michael Rosu-Myles
- Biologics and Genetic Therapies Directorate, Health Products and Food Branch , Health Canada, Ottawa, Canada.
| | | | | | | | | | | | | |
Collapse
|
37
|
Morimoto M, Nishinakamura R, Saga Y, Kopan R. Different assemblies of Notch receptors coordinate the distribution of the major bronchial Clara, ciliated and neuroendocrine cells. Development 2013; 139:4365-73. [PMID: 23132245 PMCID: PMC3509731 DOI: 10.1242/dev.083840] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In the developing lung, it is thought that the terminal buds of elongating airways contain a population of multipotent epithelial progenitors. As the bronchial tree extends, descendants of these cells give rise to lineage-restricted progenitors in the conducting airways via Notch signaling, which is involved in the establishment of epithelial Clara, ciliated and pulmonary neuroendocrine (NE) cell populations. However, the precise molecular details of this selection process are still emerging. Our stepwise removal of the three Notch receptors from the developing lung epithelium reveals that, whereas Notch2 mediates the Clara/ciliated cell fate decision with negligible contributions from Notch1 and Notch3, all three Notch receptors contribute in an additive manner to regulate the abundance of NE cells and the size of the presumptive pulmonary neuroepithelial body (pNEB) as a result of mutual interactions between NE cells and the Notch-dependent, SSEA-1+, CC10− cell population surrounding the pNEB (SPNC cells). Ectopic expression of the Notch1 or Notch2 intracellular domain was sufficient to induce SSEA-1+ cells and to suppress pNEB formation without expending Clara cells. We provide evidence that the additive functions of Notch receptors, together with other signaling pathways, maintains the expression of Hes1, a key regulator of NE cell fate, and that maintenance of Hes1 expression in epithelial cells is key to the regulation of pNEB size. These results suggest that two different assemblies of Notch receptors coordinate the numbers and distribution of the major epithelial cell types in the conducting airway during lung organogenesis.
Collapse
Affiliation(s)
- Mitsuru Morimoto
- Division of Mammalian Development, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan.
| | | | | | | |
Collapse
|
38
|
Kolter T. Ganglioside biochemistry. ISRN BIOCHEMISTRY 2012; 2012:506160. [PMID: 25969757 PMCID: PMC4393008 DOI: 10.5402/2012/506160] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 10/09/2012] [Indexed: 01/21/2023]
Abstract
Gangliosides are sialic acid-containing glycosphingolipids. They occur especially on the cellular surfaces of neuronal cells, where they form a complex pattern, but are also found in many other cell types. The paper provides a general overview on their structures, occurrence, and metabolism. Key functional, biochemical, and pathobiochemical aspects are summarized.
Collapse
Affiliation(s)
- Thomas Kolter
- Program Unit Membrane Biology & Lipid Biochemistry, LiMES, University of Bonn, Gerhard-Domagk Straße 1, 53121 Bonn, Germany
| |
Collapse
|
39
|
Rostovskaya M, Anastassiadis K. Differential expression of surface markers in mouse bone marrow mesenchymal stromal cell subpopulations with distinct lineage commitment. PLoS One 2012; 7:e51221. [PMID: 23236457 PMCID: PMC3517475 DOI: 10.1371/journal.pone.0051221] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 10/29/2012] [Indexed: 12/12/2022] Open
Abstract
Bone marrow mesenchymal stromal cells (BM MSCs) represent a heterogeneous population of progenitors with potential for generation of skeletal tissues. However the identity of BM MSC subpopulations is poorly defined mainly due to the absence of specific markers allowing in situ localization of those cells and isolation of pure cell types. Here, we aimed at characterization of surface markers in mouse BM MSCs and in their subsets with distinct differentiation potential. Using conditionally immortalized BM MSCs we performed a screening with 176 antibodies and high-throughput flow cytometry, and found 33 markers expressed in MSCs, and among them 3 were novel for MSCs and 13 have not been reported for MSCs from mice. Furthermore, we obtained clonally derived MSC subpopulations and identified bipotential progenitors capable for osteo- and adipogenic differentiation, as well as monopotential osteogenic and adipogenic clones, and thus confirmed heterogeneity of MSCs. We found that expression of CD200 was characteristic for the clones with osteogenic potential, whereas SSEA4 marked adipogenic progenitors lacking osteogenic capacity, and CD140a was expressed in adipogenic cells independently of their efficiency for osteogenesis. We confirmed our observations in cell sorting experiments and further investigated the expression of those markers during the course of differentiation. Thus, our findings provide to our knowledge the most comprehensive characterization of surface antigens expression in mouse BM MSCs to date, and suggest CD200, SSEA4 and CD140a as markers differentially expressed in distinct types of MSC progenitors.
Collapse
|
40
|
Surface markers for chondrogenic determination: a highlight of synovium-derived stem cells. Cells 2012; 1:1107-20. [PMID: 24710545 PMCID: PMC3901147 DOI: 10.3390/cells1041107] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 10/31/2012] [Accepted: 11/12/2012] [Indexed: 02/06/2023] Open
Abstract
Cartilage tissue engineering is a promising field in regenerative medicine that can provide substantial relief to people suffering from degenerative cartilage disease. Current research shows the greatest chondrogenic potential for healthy articular cartilage growth with minimal hypertrophic differentiation to be from mesenchymal stem cells (MSCs) of synovial origin. These stem cells have the capacity for differentiation into multiple cell lineages related to mesenchymal tissue; however, evidence exists for cell surface markers that specify a greater potential for chondrogenesis than other differentiation fates. This review will examine relevant literature to summarize the chondrogenic differentiation capacities of tested synovium-derived stem cell (SDSC) surface markers, along with a discussion about various other markers that may hold potential, yet require further investigation. With this information, a potential clinical benefit exists to develop a screening system for SDSCs that will produce the healthiest articular cartilage possible.
Collapse
|
41
|
Chu PM, Ma HI, Chen LH, Chen MT, Huang PI, Lin SZ, Chiou SH. Deregulated microRNAs identified in isolated glioblastoma stem cells: an overview. Cell Transplant 2012; 22:741-53. [PMID: 23127968 DOI: 10.3727/096368912x655190] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Glioblastoma multiforme (GBM), the most common and aggressive primary brain tumor, is extremely resistant to current treatment paradigms and has a high rate of tumor recurrence. Recent progress in the field of tumor-initiating cells suggests that GBM stem cells (GBMSCs) may be responsible for tumor progression, resistance to treatment, and tumor relapse. Therefore, understanding the biologically significant pathways involved in modulating GBMSC-specific characteristics offers great promise for development of novel therapeutics, which may improve therapeutic efficacy and overcome present drug resistance. In addition, targeting deregulated microRNA (miRNA) has arisen as a new therapeutic strategy in treating malignant gliomas. In GBMSCs, miRNAs regulate a wide variety of tumorigenic processes including cellular proliferation, stemness maintenance, migration/invasion, apoptosis, and tumorigenicity. Nevertheless, the latest progress with GBMSCs and subsequent miRNA profiling is limited by the identification and isolation of GBMSCs. In this review, we thus summarize current markers and known features for isolation as well as the aberrant miRNAs that have been identified in GBM and GBMSCs.
Collapse
Affiliation(s)
- Pei-Ming Chu
- Department of Anatomy and Cell Biology, College of Medicine, China Medical University, Taichung, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
NSCs (neural stem cells) are undifferentiated neural cells endowed with a high potential for proliferation and a capacity for self-renewal with retention of multipotency to differentiate into neurons and glial cells. It has been recently reported that GD3, a b-series ganglioside, is a marker molecule for identifying and isolating mouse NSCs. However, the expression of gangliosides in human NSCs is largely unknown. In the present study, we analysed the expression of gangliosides, GD2 and GD3, in human NSCs that were isolated from human brains at gestational week 17 in the form of neurospheres, which are floating clonal aggregates formed by NSCs in vitro. Employing immunocytochemistry, we found that human NSCs were strongly reactive to anti-GD2 antibody and relatively weakly reactive to anti-GD3 antibody. Treatment of these cells with an organic solvent such as 100% methanol, which selectively removes glycolipids from plasma membrane, abolished the immunoreactivity with those antibodies, indicating that the reactivity was due to GD2 and GD3, but not to GD2-/GD3-like glycoproteins or proteoglycans. The immunoreactivity of human NSCs to antibody against SSEA-1 (stage-specific embryonic antigen-1), a well-known carbohydrate antigen of NSCs, was not decreased by the treatment with 100% methanol, indicating that SSEA-1 is mainly carried by glycoproteins and/or proteoglycans in human NSCs. Our study suggests that GD2 and GD3 can be marker gangliosides for identifying human NSCs.
Collapse
|
43
|
Yu RK, Tsai YT, Ariga T, Yanagisawa M. Structures, biosynthesis, and functions of gangliosides--an overview. J Oleo Sci 2011; 60:537-544. [PMID: 21937853 PMCID: PMC3684167 DOI: 10.5650/jos.60.537] [Citation(s) in RCA: 268] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023] Open
Abstract
Gangliosides are sialic acid-containing glycosphingolipids that are most abundant in the nervous system. Heterogeneity and diversity of the structures in their carbohydrate chains are characteristic hallmarks of these lipids; so far, 188 gangliosides with different carbohydrate structures have been identified in vertebrates. The molecular structural complexity increases manifold if one considers heterogeneity in the lipophilic components. The expression levels and patterns of brain gangliosides are known to change drastically during development. In cells, gangliosides are primarily, but not exclusively, localized in the outer leaflets of plasma membranes and are integral components of cell surface microdomains with sphingomyelin and cholesterol from which they participate in cell-cell recognition, adhesion, and signal transduction. In this brief review, we discuss the structures, metabolism and functions of gangliosides.
Collapse
Affiliation(s)
- Robert K Yu
- Institute of Molecular Medicine and Genetics and Institute of Neuroscience, Medical College of Georgia, Georgia Health Sciences University, Agusta 30912, USA.
| | | | | | | |
Collapse
|
44
|
|