1
|
Das L, Das M, Barkalita LM, Borah P. Comprehensive Analysis of Antioxidant Properties, GC-MS, and FTIR Profiles of Myrica esculenta Fruit Extracts from Western East Khasi Hills of Meghalaya. Chem Biodivers 2024; 21:e202401006. [PMID: 39229819 DOI: 10.1002/cbdv.202401006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024]
Abstract
This study investigates the phytoconstituents of Myrica esculenta fruit extracts using various solvents, including n-hexane, dichloromethane, ethyl acetate, methanol, and water. Qualitative phytochemical analysis revealed the presence of several phytochemicals, with the highest concentration found in the methanol extract. The total phenolic (94.5±0.96 mg gallic acid equivalent (GAE)/g) and flavonoid (74.27±0.29 mg quercetin equivalent (QE)/g) contents were also highest in the methanol extract. Antioxidant activity was measured using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic) acid (ABTS), and Ferric Reducing Antioxidant Power (FRAP) assays. The methanol extract exhibited superior antioxidant activity with DPPH and ABTS IC50 values of 22.27±0.98 μg/ml and 19.69±0.36 μg/ml, respectively, compared to ascorbic acid. FRAP activity was also highest in the methanol extract (87.125±0.33 mg Trolox equivalents (TE)/g). Gas Chromatography-Mass Spectrometry (GC-MS) analysis identified antioxidant compounds hexanedioic acid, bis(2-ethylhexyl) ester, methyl 11,12-octadecadienoate, and pentadecanoic acid. while Fourier Transform Infrared Spectroscopy (FTIR) analysis detected functional groups such as alkenes, ketones, esters, alcohols and carboxylic acids. These findings suggest that the methanolic extract of M. esculenta fruits is a rich source of natural antioxidants, making it suitable for pharmaceutical, health, and nutritional supplements aimed at enhancing overall health.
Collapse
Affiliation(s)
- Leena Das
- Department of Zoology, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati, 781014, India
| | - Manas Das
- Department of Zoology, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati, 781014, India
| | - Luit M Barkalita
- Department of Animal Biotechnology, College of Veterinary Science (Assam Agricultural University), Khanapara, Guwahati, 781022, India
| | - Probodh Borah
- Department of Animal Biotechnology, College of Veterinary Science (Assam Agricultural University), Khanapara, Guwahati, 781022, India
| |
Collapse
|
2
|
Ashique S, Mohanto S, Kumar N, Nag S, Mishra A, Biswas A, Rihan M, Srivastava S, Bhowmick M, Taghizadeh-Hesary F. Unlocking the possibilities of therapeutic potential of silymarin and silibinin against neurodegenerative Diseases-A mechanistic overview. Eur J Pharmacol 2024; 981:176906. [PMID: 39154829 DOI: 10.1016/j.ejphar.2024.176906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/28/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Silymarin, a bioflavonoid derived from the Silybum marianum plant, was discovered in 1960. It contains C25 and has been extensively used as a therapeutic agent against liver-related diseases caused by alcohol addiction, acute viral hepatitis, and toxins-inducing liver failure. Its efficacy stems from its role as a potent anti-oxidant and scavenger of free radicals, employed through various mechanisms. Additionally, silymarin or silybin possesses immunomodulatory characteristics, impacting immune-enhancing and immune-suppressive functions. Recently, silymarin has been recognized as a potential neuroprotective therapy for various neurological conditions, including Parkinson's and Alzheimer's diseases, along with conditions related to cerebral ischemia. Its hepatoprotective qualities, primarily due to its anti-oxidant and tissue-regenerating properties, are well-established. Silymarin also enhances health by modifying processes such as inflammation, β-amyloid accumulation, cellular estrogenic receptor mediation, and apoptotic machinery. While believed to reduce oxidative stress and support neuroprotective mechanisms, these effects represent just one aspect of the compound's multifaceted protective action. This review article further delves into the possibilities of potential therapeutic advancement of silymarin and silibinin for the management of neurodegenerative disorders via mechanics modules.
Collapse
Affiliation(s)
- Sumel Ashique
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur, 713212, West Bengal, India.
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India.
| | - Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to Be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh, 201204, India
| | - Sagnik Nag
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| | - Anuradha Mishra
- Amity Institute of Pharmacy, Amity University Lucknow Campus, Uttar Pradesh, 226010, India
| | - Aritra Biswas
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Rahara Akhil Mukherjee Road, Khardaha, West Bengal, 700118, India; UNESCO Regional Centre for Biotechnology, Department of Biotechnology, Government of India, NCR Biotech Science Cluster, Faridabad, 121001, Haryana, India.
| | - Mohd Rihan
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India
| | - Shriyansh Srivastava
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, 203201, India; Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), Sector 3 Pushp Vihar, New Delhi, 110017, India
| | - Mithun Bhowmick
- Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur, 713212, West Bengal, India
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Kabir E, Shila TT, Islam J, Beauty SA, Islam F, Hossain S, Nikkon F, Himeno S, Hossain K, Saud ZA. Concomitant Exposure to Lower Doses of Arsenic, Lead, and Manganese Induces Greater Synergistic Neurotoxicity Than Individual Metals in Mice. Biol Trace Elem Res 2024:10.1007/s12011-024-04260-y. [PMID: 38898194 DOI: 10.1007/s12011-024-04260-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024]
Abstract
People in Bangladesh are often exposed to low to high levels of multiple metals due to contaminated groundwater with various heavy metals such as arsenic (As), lead (Pb), and manganese (Mn). However, the effects of concomitant exposure of these three metals on neurobehavioral changes are yet to be studied. Therefore, this study was intended to assess the neurotoxic effect of As, Pb, and Mn in a mouse model. Elevated plus maze (EPM) and Morris water maze (MWM) tests were conducted to evaluate anxiety, learning, and spatial memory impairment, respectively. The mice exposed to a combination of metals spent least time exploring the open arms and had longer latencies to find the hidden platform than the control and individual metal exposure groups in EPM and MWM tests. Moreover, concomitant multi-metal exposure remarkably decreased the activities of cholinergic and antioxidant enzymes, brain-derived neurotropic factor (BDNF), and nuclear factor erythroid 2-related factor 2 (Nrf2) levels and significantly increased interleukin-6 (IL-6) level in the brain tissue compared to the control and individual metal-exposed mice. Among the mice treated with a single metal, the As-treated mice showed the highest toxic effects than Pb- or Mn-treated mice. Taken together, the present study demonstrated that exposure to a mixture of As, Pb, and Mn, even at lower doses than individual metals, significantly augmented anxiety-like behavior and impaired learning and spatial memory compared to exposure to individual metals, which was associated with the changes of BDNF, Nrf2, IL-6 levels, and related enzyme activities in the brain.
Collapse
Affiliation(s)
- Ehsanul Kabir
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Tasnim Tabassum Shila
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Jahidul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Sharmin Akter Beauty
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Shakhawoat Hossain
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Farjana Nikkon
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Seiichiro Himeno
- Laboratory of Molecular Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
- School of Pharmacy, Showa University, Tokyo, Japan
| | - Khaled Hossain
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Zahangir Alam Saud
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
4
|
He J, Ma X, Zhang J, Yang YP, Qin H, Chen H, Wei S, Li F, Wang J, Liang G, Zou Y. Manganese-induced neurological pyroptosis: Unveiling the mechanism through the ROS activaed Caspase-3/GSDME signaling pathway. Food Chem Toxicol 2024; 184:114322. [PMID: 38056821 DOI: 10.1016/j.fct.2023.114322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
Manganese (Mn) is an essential micronutrient in maintaining homeostasis in the human body, while excessive Mn exposure can lead to neurological disorders. To investigate whether there is an association between elevated ROS and pyroptosis caused by Mn exposure using both in vitro and in vivo models. We exposed BV2 and N2a, which represent microglial cells and Neuroblastoma cells in the brain, respectively, to different concentrations of Mn for 24 h. Following Mn exposure, we assessed cell morphology, levels of lactate dehydrogenase, and cellular ROS levels. C57BL/6 male mice were exposed to 0-100 mg/kg MnCl2·4H2O for 12 weeks through gavage. The expression level of pyroptosis proteins including caspase3 and GSDME in the hippocampus was examined. We found that Mn exposure resulted in elevated levels of cellular ROS and protein expression of Caspase3 and GSDME in both N2a and BV2 cells. The pyroptosis levels were blunted by either inhibiting Caspase3 expression or ROS production. In the in vivo model, protein levels of Caspase3 and GSDME also increased dependent of Mn concentrations. These findings suggested that neuronal pyroptosis induced by Mn exposure may occur through the ROS-stimulated Caspase3-GSDME pathway. Moreover, utilizing inhibitors targeting Caspase3 or ROS may provide protection against Mn-induced toxicity.
Collapse
Affiliation(s)
- Jiacheng He
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Xiaoli Ma
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Jie Zhang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Emergency Response Office, Nanning Center for Disease Prevention and Control, Nanning, 530021, China
| | - Yi-Ping Yang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Huiyan Qin
- Institute of Hygiene Toxicology and Functional Testing, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, 530000, China
| | - Hao Chen
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Shengtao Wei
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Fangfei Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Jian Wang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Guiqiang Liang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Yunfeng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
5
|
Baj J, Flieger W, Barbachowska A, Kowalska B, Flieger M, Forma A, Teresiński G, Portincasa P, Buszewicz G, Radzikowska-Büchner E, Flieger J. Consequences of Disturbing Manganese Homeostasis. Int J Mol Sci 2023; 24:14959. [PMID: 37834407 PMCID: PMC10573482 DOI: 10.3390/ijms241914959] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Manganese (Mn) is an essential trace element with unique functions in the body; it acts as a cofactor for many enzymes involved in energy metabolism, the endogenous antioxidant enzyme systems, neurotransmitter production, and the regulation of reproductive hormones. However, overexposure to Mn is toxic, particularly to the central nervous system (CNS) due to it causing the progressive destruction of nerve cells. Exposure to manganese is widespread and occurs by inhalation, ingestion, or dermal contact. Associations have been observed between Mn accumulation and neurodegenerative diseases such as manganism, Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. People with genetic diseases associated with a mutation in the gene associated with impaired Mn excretion, kidney disease, iron deficiency, or a vegetarian diet are at particular risk of excessive exposure to Mn. This review has collected data on the current knowledge of the source of Mn exposure, the experimental data supporting the dispersive accumulation of Mn in the brain, the controversies surrounding the reference values of biomarkers related to Mn status in different matrices, and the competitiveness of Mn with other metals, such as iron (Fe), magnesium (Mg), zinc (Zn), copper (Cu), lead (Pb), calcium (Ca). The disturbed homeostasis of Mn in the body has been connected with susceptibility to neurodegenerative diseases, fertility, and infectious diseases. The current evidence on the involvement of Mn in metabolic diseases, such as type 2 diabetes mellitus/insulin resistance, osteoporosis, obesity, atherosclerosis, and non-alcoholic fatty liver disease, was collected and discussed.
Collapse
Affiliation(s)
- Jacek Baj
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (W.F.); (A.F.)
| | - Wojciech Flieger
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (W.F.); (A.F.)
| | - Aleksandra Barbachowska
- Department of Plastic, Reconstructive and Burn Surgery, Medical University of Lublin, 21-010 Łęczna, Poland;
| | - Beata Kowalska
- Department of Water Supply and Wastewater Disposal, Lublin University of Technology, 20-618 Lublin, Poland;
| | - Michał Flieger
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (M.F.); (G.T.); (G.B.)
| | - Alicja Forma
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (W.F.); (A.F.)
| | - Grzegorz Teresiński
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (M.F.); (G.T.); (G.B.)
| | - Piero Portincasa
- Clinica Medica A. Murri, Department of Biomedical Sciences & Human Oncology, Medical School, University of Bari, 70124 Bari, Italy;
| | - Grzegorz Buszewicz
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (M.F.); (G.T.); (G.B.)
| | | | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
6
|
Pukoli D, Vécsei L. Smouldering Lesion in MS: Microglia, Lymphocytes and Pathobiochemical Mechanisms. Int J Mol Sci 2023; 24:12631. [PMID: 37628811 PMCID: PMC10454160 DOI: 10.3390/ijms241612631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated, chronic inflammatory, demyelinating, and neurodegenerative disease of the central nervous system (CNS). Immune cell infiltration can lead to permanent activation of macrophages and microglia in the parenchyma, resulting in demyelination and neurodegeneration. Thus, neurodegeneration that begins with acute lymphocytic inflammation may progress to chronic inflammation. This chronic inflammation is thought to underlie the development of so-called smouldering lesions. These lesions evolve from acute inflammatory lesions and are associated with continuous low-grade demyelination and neurodegeneration over many years. Their presence is associated with poor disease prognosis and promotes the transition to progressive MS, which may later manifest clinically as progressive MS when neurodegeneration exceeds the upper limit of functional compensation. In smouldering lesions, in the presence of only moderate inflammatory activity, a toxic environment is clearly identifiable and contributes to the progressive degeneration of neurons, axons, and oligodendrocytes and, thus, to clinical disease progression. In addition to the cells of the immune system, the development of oxidative stress in MS lesions, mitochondrial damage, and hypoxia caused by the resulting energy deficit and iron accumulation are thought to play a role in this process. In addition to classical immune mediators, this chronic toxic environment contains high concentrations of oxidants and iron ions, as well as the excitatory neurotransmitter glutamate. In this review, we will discuss how these pathobiochemical markers and mechanisms, alone or in combination, lead to neuronal, axonal, and glial cell death and ultimately to the process of neuroinflammation and neurodegeneration, and then discuss the concepts and conclusions that emerge from these findings. Understanding the role of these pathobiochemical markers would be important to gain a better insight into the relationship between the clinical classification and the pathomechanism of MS.
Collapse
Affiliation(s)
- Dániel Pukoli
- Department of Neurology, Esztergomi Vaszary Kolos Hospital, 2500 Esztergom, Hungary;
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, University of Szeged, Semmelweis u. 6., H-6725 Szeged, Hungary
- Danube Neuroscience Research Laboratory, ELKH-SZTE Neuroscience Research Group, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| |
Collapse
|
7
|
Xu Y, Peng T, Zhou Q, Zhu J, Liao G, Zou F, Meng X. Evaluation of the oxidative toxicity induced by lead, manganese, and cadmium using genetically modified nrf2a-mutant zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2023; 266:109550. [PMID: 36717045 DOI: 10.1016/j.cbpc.2023.109550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/03/2023] [Accepted: 01/15/2023] [Indexed: 01/30/2023]
Abstract
Heavy metal pollution has become a serious environmental concern and a threat to public health. Three of the most common heavy metals are cadmium (Cd), lead (Pb), and manganese (Mn). Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important transcription factor activated in the response to oxidative stress. In this study, mutant zebrafish with an nrf2a deletion of 7 bp were constructed by the CRISPR/Cas9 system to investigate the oxidative toxicity of these three heavy metals. The results of general toxicity tests showed that Pb exposure did not cause significant damage to mutant zebrafish compared with wild-type (WT) zebrafish. However, high Mn exposure increased mortality and malformation rates in mutant zebrafish. Of concern, Cd exposure caused significant toxic damage, including increased mortality and malformation rates, apoptosis of brain neurons, and severe locomotor behavior aberration in mutant zebrafish. The results of qRT-PCR indicated that Cd exposure could induce the activation of genes related to oxidative stress resistance in WT zebrafish, while the expression of these genes was inhibited in mutant zebrafish. This study showed that of the three heavy metals, Cd had the strongest oxidative toxicity, Mn had medium toxicity, and Pb had the weakest toxicity.
Collapse
Affiliation(s)
- Yongjie Xu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Tao Peng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Qin Zhou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiawei Zhu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Gengze Liao
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
A Novel Selenium Polysaccharide Alleviates the Manganese (Mn)-Induced Toxicity in Hep G2 Cells and Caenorhabditis elegans. Int J Mol Sci 2022; 23:ijms23084097. [PMID: 35456914 PMCID: PMC9029073 DOI: 10.3390/ijms23084097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 12/14/2022] Open
Abstract
Manganese (Mn) is now known to have a variety of toxicities, particularly when exposed to it in the workplace. However, there are still ineffective methods for reducing Mn's hazardous effects. In this study, a new selenium polysaccharide (Se-PCS) was developed from the shell of Camellia oleifera to reduce Mn toxicity in vitro and in vivo. The results revealed that Se-PCS may boost cell survival in Hep G2 cells exposed to Mn and activate antioxidant enzyme activity, lowering ROS and cell apoptosis. Furthermore, after being treated with Se-PCS, Caenorhabditis elegans survived longer under Mn stress. daf-16, a tolerant critical gene, was turned on. Moreover, the antioxidant system was enhanced as the increase in strong antioxidant enzyme activity and high expression of the sod-3, ctl-2, and gst-1 genes. A variety of mutations were also used to confirm that Se-PCS downregulated the insulin signaling pathway. These findings showed that Se-PCS protected Hep G2 cells and C. elegans via the insulin/IGF-1 signaling pathway and that it could be developed into a promising medication to treat Mn toxicity.
Collapse
|
9
|
Forero-Rodríguez LJ, Josephs-Spaulding J, Flor S, Pinzón A, Kaleta C. Parkinson's Disease and the Metal-Microbiome-Gut-Brain Axis: A Systems Toxicology Approach. Antioxidants (Basel) 2021; 11:71. [PMID: 35052575 PMCID: PMC8773335 DOI: 10.3390/antiox11010071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/02/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson's Disease (PD) is a neurodegenerative disease, leading to motor and non-motor complications. Autonomic alterations, including gastrointestinal symptoms, precede motor defects and act as early warning signs. Chronic exposure to dietary, environmental heavy metals impacts the gastrointestinal system and host-associated microbiome, eventually affecting the central nervous system. The correlation between dysbiosis and PD suggests a functional and bidirectional communication between the gut and the brain. The bioaccumulation of metals promotes stress mechanisms by increasing reactive oxygen species, likely altering the bidirectional gut-brain link. To better understand the differing molecular mechanisms underlying PD, integrative modeling approaches are necessary to connect multifactorial perturbations in this heterogeneous disorder. By exploring the effects of gut microbiota modulation on dietary heavy metal exposure in relation to PD onset, the modification of the host-associated microbiome to mitigate neurological stress may be a future treatment option against neurodegeneration through bioremediation. The progressive movement towards a systems toxicology framework for precision medicine can uncover molecular mechanisms underlying PD onset such as metal regulation and microbial community interactions by developing predictive models to better understand PD etiology to identify options for novel treatments and beyond. Several methodologies recently addressed the complexity of this interaction from different perspectives; however, to date, a comprehensive review of these approaches is still lacking. Therefore, our main aim through this manuscript is to fill this gap in the scientific literature by reviewing recently published papers to address the surrounding questions regarding the underlying molecular mechanisms between metals, microbiota, and the gut-brain-axis, as well as the regulation of this system to prevent neurodegeneration.
Collapse
Affiliation(s)
- Lady Johanna Forero-Rodríguez
- Research Group Bioinformatics and Systems Biology, Instituto de Genetica, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (L.J.F.-R.); (A.P.)
- Research Group Medical Systems Biology, Christian-Albrechts-Universität Kiel, Brunswiker Straße 10, 24105 Kiel, Germany; (S.F.); (C.K.)
| | - Jonathan Josephs-Spaulding
- Research Group Medical Systems Biology, Christian-Albrechts-Universität Kiel, Brunswiker Straße 10, 24105 Kiel, Germany; (S.F.); (C.K.)
| | - Stefano Flor
- Research Group Medical Systems Biology, Christian-Albrechts-Universität Kiel, Brunswiker Straße 10, 24105 Kiel, Germany; (S.F.); (C.K.)
| | - Andrés Pinzón
- Research Group Bioinformatics and Systems Biology, Instituto de Genetica, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (L.J.F.-R.); (A.P.)
| | - Christoph Kaleta
- Research Group Medical Systems Biology, Christian-Albrechts-Universität Kiel, Brunswiker Straße 10, 24105 Kiel, Germany; (S.F.); (C.K.)
| |
Collapse
|
10
|
Akingbade GT, Ijomone OM, Imam A, Aschner M, Ajao MS. D-Ribose-L-Cysteine Improves Glutathione Levels, Neuronal and Mitochondrial Ultrastructural Damage, Caspase-3 and GFAP Expressions Following Manganese-Induced Neurotoxicity. Neurotox Res 2021; 39:1846-1858. [PMID: 34480735 DOI: 10.1007/s12640-021-00404-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 01/08/2023]
Abstract
Repeated manganese (Mn) exposure may cause increased production of reactive oxygen species (ROS), with a consequent imbalance in the glutathione (GSH) antioxidant defence system, resulting in cellular dysfunctions, and eventually cell death, particularly in the brain. D-ribose-L-cysteine (RibCys) has been demonstrated to effectively promote the synthesis of glutathione, a potent neutralizer of ROS. In the present study, we examined the effects of RibCys on glutathione levels, apoptotic and astrocytic responses, neuronal ultrastructural integrity, following Mn exposure. Wild-type rats were exposed to either saline, Mn, or/and RibCys for 2 weeks. The Mn-exposed rats received RibCys either as pre-, co-, or post-treatments. Mn caused a marked decrease in GSH levels, overexpression of GFAP and caspase-3, reflecting astrocytosis and apoptosis, and altered ultrastructural integrities of the neuronal nuclei, mitochondria, and myelin sheath of the striatum and motor cortex respectively, while all interventions with RibCys minimized and prevented the neurotoxic events. Our study demonstrates that RibCys effectively attenuates the neurotoxic effects of Mn and may be useful as a therapeutic strategy against neurological consequences of Mn overexposure.
Collapse
Affiliation(s)
- Grace T Akingbade
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria.
- The Neuro-Lab, Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria.
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Omamuyovwi M Ijomone
- The Neuro-Lab, Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aminu Imam
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Moyosore S Ajao
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
11
|
Critical Involvement of Glial Cells in Manganese Neurotoxicity. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1596185. [PMID: 34660781 PMCID: PMC8514895 DOI: 10.1155/2021/1596185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/13/2022]
Abstract
Over the years, most of the research concerning manganese exposure was restricted to the toxicity of neuronal cells. Manganese is an essential trace element that in high doses exerts neurotoxic effects. However, in the last two decades, efforts have shifted toward a more comprehensive approach that takes into account the involvement of glial cells in the development of neurotoxicity as a brain insult. Glial cells provide structural, trophic, and metabolic support to neurons. Nevertheless, these cells play an active role in adult neurogenesis, regulation of synaptogenesis, and synaptic plasticity. Disturbances in glial cell function can lead to neurological disorders, including neurodegenerative diseases. This review highlights the pivotal role that glial cells have in manganese-induced neurotoxicity as well as the most sounding mechanisms involved in the development of this phenomenon.
Collapse
|
12
|
Fruh V, Rifas-Shiman SL, Coull BA, Devick KL, Amarasiriwardena C, Cardenas A, Bellinger DC, Wise LA, White RF, Wright RO, Oken E, Claus Henn B. Prenatal exposure to a mixture of elements and neurobehavioral outcomes in mid-childhood: Results from Project Viva. ENVIRONMENTAL RESEARCH 2021; 201:111540. [PMID: 34166661 PMCID: PMC8502495 DOI: 10.1016/j.envres.2021.111540] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/26/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Lead (Pb), manganese (Mn), selenium (Se) and methylmercury (MeHg) can be neurotoxic individually, despite Mn and Se also being essential elements. Little is known about the joint effects of essential and non-essential elements on neurobehavior, particularly for prenatal exposures. OBJECTIVES To evaluate associations of prenatal exposure to multiple elements with executive function and neurobehavior in children. METHODS Participants included 1009 mother-child pairs from the Project Viva pre-birth cohort. We estimated maternal erythrocyte Pb, Mn, Se, and Hg concentrations prenatally. In 6-11-year old children (median 7.6 years), parents and teachers rated children's executive function-related behaviors using the Behavior Rating Inventory of Executive Function (BRIEF) Global Executive Composite score and behavioral difficulties using the Strengths and Difficulties Questionnaire (SDQ) total difficulties score. We evaluated associations of element mixtures with neurobehavior using Bayesian kernel machine regression (BKMR), multivariable linear regression, and quantile g-computation. RESULTS Median erythrocyte Pb, Mn, Se, and Hg concentrations were 1.1 μg/dL, 33.1 μg/L, 204.5 ng/mL, and 3.1 ng/g, respectively. Findings from BKMR and quantile g-computation models both showed worse (higher) parent-rated BRIEF and SDQ z-scores with higher concentrations of the mixture, although estimates were imprecise. When remaining elements were set at their median within BKMR models, increases in Pb and Se from the 25th to 75th percentile of exposure distributions were associated with 0.08 (95% CI: 0.02, 0.19) and 0.07 (95% CI: 0.03, 0.16) standard deviation increases in parent-rated BRIEF scores, and 0.08 (95% CI: 0.02, 0.17) and 0.05 (95% CI: 0.03, 0.13) standard deviation increases in SDQ scores, respectively. There was no evidence of element interactions. DISCUSSION Although associations were small in magnitude, we found a trend of worsening neurobehavioral ratings with increasing prenatal exposure to an element mixture. However, we may be observing a limited range of dose-dependent impacts given the levels of exposure within our population.
Collapse
Affiliation(s)
- Victoria Fruh
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA.
| | - Sheryl L Rifas-Shiman
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Brent A Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Katrina L Devick
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Scottsdale, AZ, USA
| | - Chitra Amarasiriwardena
- Department of Environmental Medicine and Public Health, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - David C Bellinger
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Roberta F White
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Emily Oken
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
13
|
Kulkarni N, Gadde R, Gugnani KS, Vu N, Yoo C, Zaveri R, Betharia S. Neuroprotective effects of disubstituted dithiolethione ACDT against manganese-induced toxicity in SH-SY5Y cells. Neurochem Int 2021; 147:105052. [PMID: 33905764 DOI: 10.1016/j.neuint.2021.105052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/05/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022]
Abstract
Dithiolethiones are lipophilic, organosulfur compounds that activate the Nrf2 transcription factor causing an upregulation of various phase II antioxidant enzymes. A disubstituted dithiolethione 5-amino-3-thioxo-3H-(1,2) dithiole-4-carboxylic acid ethyl ester (ACDT) retains the functional pharmacophore while also containing modifiable functional groups. Neuroprotection against autoimmune encephalomyelitis in vivo and 6-hydroxy dopamine (a model for Parkinson's disease) in vitro have been previously reported with ACDT. Manganese (Mn) is a metal essential for metabolic processes at low concentrations. Overexposure and accumulation of Mn leads to a neurological condition called manganism which shares pathophysiological sequelae with parkinsonism. Here we hypothesized ACDT to be protective against manganese-induced cytotoxicity. SH-SY5Y human neuroblastoma cells exposed to 300 μM MnCl2 displayed approximately 50% cell death, and a 24-h pretreatment with 75 μM ACDT significantly reversed this cytotoxicity. ACDT pretreatment was also found to increase total GSH levels (2.18-fold) and the protein levels of NADPH:quinone oxidoreductase-1 (NQO1) enzyme (6.33-fold), indicating an overall increase in the cells' antioxidant defense stores. A corresponding 2.32-fold reduction in the level of Mn-induced reactive oxygen species was also observed in cells pretreated with ACDT. While no changes were observed in the protein levels of apoptotic markers Bax and Bcl-2, pretreatment with 75 μM ACDT led to a 2.09-fold downregulation of ZIP14 import transporter, indicating a potential reduction in the cellular uptake of Mn as an additional neuroprotective mechanism. These effects did not extend to other transporters like the divalent metal transporter 1 (DMT1) or ferroportin. Collectively, ACDT showed substantial neuroprotection against Mn-induced cytotoxicity, opening a path for dithiolethiones as a potential novel therapeutic option against heavy metal neurotoxicity.
Collapse
Affiliation(s)
- Neha Kulkarni
- Department of Pharmaceutical Sciences, MCPHS University, School of Pharmacy, 179 Longwood Avenue, Boston, MA, 02115, USA.
| | - Rajitha Gadde
- Department of Pharmaceutical Sciences, MCPHS University, School of Pharmacy, 179 Longwood Avenue, Boston, MA, 02115, USA
| | - Kuljeet S Gugnani
- Department of Pharmaceutical Sciences, MCPHS University, School of Pharmacy, 179 Longwood Avenue, Boston, MA, 02115, USA
| | - Nguyen Vu
- Department of Pharmaceutical Sciences, MCPHS University, School of Pharmacy, 179 Longwood Avenue, Boston, MA, 02115, USA
| | - Claude Yoo
- Department of Pharmaceutical Sciences, MCPHS University, School of Pharmacy, 179 Longwood Avenue, Boston, MA, 02115, USA
| | - Rohan Zaveri
- Department of Pharmaceutical Sciences, MCPHS University, School of Pharmacy, 179 Longwood Avenue, Boston, MA, 02115, USA
| | - Swati Betharia
- Department of Pharmaceutical Sciences, MCPHS University, School of Pharmacy, 179 Longwood Avenue, Boston, MA, 02115, USA
| |
Collapse
|
14
|
Lopes de Andrade V, Marreilha dos Santos AP, Aschner M. NEUROTOXICITY OF METAL MIXTURES. ADVANCES IN NEUROTOXICOLOGY 2021; 5:329-364. [PMID: 34263093 PMCID: PMC8276944 DOI: 10.1016/bs.ant.2020.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Environmental exposures and/or alterations in the homeostasis of essential transition metals (ETM), such as Fe, Cu, Zn or Mn, are known to contribute to neurodegenerative diseases (ND), such as Alzheimer's Disease (AD) and Parkinson's Disease (PD). Aberrant ETM homeostasis leads to altered distributions, as significant amounts may accumulate in specific brain areas, while causing metal deficiency in others. The disruption of processes reliant on the interplay between these ETM, may lead to loss of metal balance and the ensuing neurotoxicity via shared mechanisms, such as the induction of oxidative stress (OS). Both ETM imbalance and OS may play a role, via complex positive loop processes, in primary neuropathological signatures of AD, such as the accumulation of amyloid plaques and neurofibrillary tangles (NTF), and in PD, α-Syn aggregation and loss of dopamine(DA)rgic neurons. The association between ETM imbalance and ND is rarely approached under the view that metals such as Fe, Cu, Zn and Mn, can act as dangerous endogenous neurotoxic mixtures when their control mechanisms became disrupted. In fact, their presence as mixtures implies intricacies, which should be kept in mind when developing therapies for complex disorders of metal dyshomeostasis, which commonly occur in ND.
Collapse
Affiliation(s)
- Vanda Lopes de Andrade
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa. Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Ana Paula Marreilha dos Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa. Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Michael Aschner
- Albert Einstein College of Medicine. Einstein Center of Toxicology.1300 Morris Park Avenue. Bronx, NY 10461
| |
Collapse
|
15
|
Li H, Mu Q, Kang Y, Yang X, Shan L, Wang M, Li C, Liu Y, Wang F. Association of Cigarette Smoking With Male Cognitive Impairment and Metal Ions in Cerebrospinal Fluid. Front Psychiatry 2021; 12:738358. [PMID: 34887785 PMCID: PMC8650691 DOI: 10.3389/fpsyt.2021.738358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/28/2021] [Indexed: 11/14/2022] Open
Abstract
Objective: Cigarette smoking might accelerate cognitive impairment; however, this has never been investigated using human cerebrospinal fluid (CSF). We conducted this study to investigate the association between cigarette smoking and cognitive impairment through metal ions in CSF. Methods: We obtained 5-ml CSF samples from routine lumbar puncture procedures in patients undergoing anterior cruciate ligament reconstruction before surgery in China. A total of 180 Chinese males were recruited (80 active smokers and 100 non-smokers). We measured specific cigarette-related neurotoxic metal ions in CSF, including iron, copper, zinc, lead, aluminum, and manganese. Sociodemographic data and history of smoking were obtained. The Montreal Cognitive Assessment (MoCA) was applied. Results: Active smokers had fewer years of education (11.83 ± 3.13 vs. 13.17 ± 2.60, p = 0.01), and higher age (33.70 ± 10.20 vs. 29.76 ± 9.58, p = 0.01) and body mass index (25.84 ± 3.52 vs. 24.98 ± 4.06, p =0.03) than non-smokers. Compared to non-smokers, active smokers had significantly higher CSF levels of iron, zinc, lead, and aluminum and lower MoCA scores (all p < 0.05). Average daily numbers of cigarettes smoked negatively correlated with the MoCA scores (r = -0.244, p = 0.048). In young smokers, CSF manganese levels negatively correlated with MoCA scores (r = -0.373, p = 0.009). Conclusions and Relevance: Cigarette smoking might be associated with male cognitive impairment, as shown by lower MoCA scores and higher levels of CSF iron, zinc, lead, and aluminum in active smokers. This might be early evidence of cigarette smoking accelerating male cognitive impairment.
Collapse
Affiliation(s)
- Hui Li
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China.,Xinjiang Key Laboratory of Neurological Disorder Research, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Qingshuang Mu
- Xinjiang Key Laboratory of Neurological Disorder Research, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yimin Kang
- Key Laboratory of Psychosomatic Medicine, Inner Mongolia Medical University, Hohhot, China
| | | | - Ligang Shan
- Department of Anesthesiology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Meiling Wang
- Key Laboratory of Psychosomatic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Cunbao Li
- Key Laboratory of Psychosomatic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Yanlong Liu
- School of Mental Health, Wenzhou Medical University, Wenzhou, China.,The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, China
| | - Fan Wang
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing, China
| |
Collapse
|
16
|
Haddadi R, Shahidi Z, Eyvari-Brooshghalan S. Silymarin and neurodegenerative diseases: Therapeutic potential and basic molecular mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 79:153320. [PMID: 32920285 DOI: 10.1016/j.phymed.2020.153320] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/20/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Neurodegenerative diseases (NDDs) are primarily characterized by selective neuronal loss in the brain. Alzheimer's disease as the most common NDDs and the most prevalent cause of dementia is characterized by Amyloid-beta deposition, which leads to cognitive and memory impairment. Parkinson's disease is a progressive neurodegenerative disease characterized by the dramatic death of dopaminergic neuronal cells, especially in the SNc and caused alpha-synuclein accumulation in the neurons. Silymarin, an extract from seeds of Silybum marianum, administered mostly for liver disorders and also had anti-oxidant and anti-carcinogenic activities. PURPOSE The present comprehensive review summarizes the beneficial effects of Silymarin in-vivo and in-vitro and even in animal models for these NDDs. METHODS A diagram model for systematic review is utilized for this search. The research is conducted in the following databases: PubMed, Web of Science, Scopus, and Science Direct. RESULTS Based on the inclusion criteria, 83 studies were selected and discussed in this review. CONCLUSION Lastly, we review the latest experimental evidences supporting the potential effects of Silymarin, as a neuroprotective agent in NDDs.
Collapse
Affiliation(s)
- Rasool Haddadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Medicinal plant and natural products Research Center, Hamadan University of Medical Sciences, Hamadan 6517838678, Iran.
| | - Zahra Shahidi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahla Eyvari-Brooshghalan
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
17
|
Dales JP, Desplat-Jégo S. Metal Imbalance in Neurodegenerative Diseases with a Specific Concern to the Brain of Multiple Sclerosis Patients. Int J Mol Sci 2020; 21:E9105. [PMID: 33266021 PMCID: PMC7730295 DOI: 10.3390/ijms21239105] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/29/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022] Open
Abstract
There is increasing evidence that deregulation of metals contributes to a vast range of neurodegenerative diseases including multiple sclerosis (MS). MS is a chronic inflammatory disease of the central nervous system (CNS) manifesting disability and neurological symptoms. The precise origin of MS is unknown, but the disease is characterized by focal inflammatory lesions in the CNS associated with an autoimmune reaction against myelin. The treatment of this disease has mainly been based on the prescription of immunosuppressive and immune-modulating agents. However, the rate of progressive disability and early mortality is still worrisome. Metals may represent new diagnostic and predictive markers of severity and disability as well as innovative candidate drug targets for future therapies. In this review, we describe the recent advances in our understanding on the role of metals in brain disorders of neurodegenerative diseases and MS patients.
Collapse
Affiliation(s)
- Jean-Philippe Dales
- Institute of Neurophysiopathology, CNRS, INP, Aix-Marseille University, 13005 Marseille, France;
- Assistance Publique-Hôpitaux de Marseille, Hôpital Nord, Pavillon Etoile, Pôle de Biologie, Service d’anatomie-pathologie, CEDEX 20, 13915 Marseille, France
| | - Sophie Desplat-Jégo
- Institute of Neurophysiopathology, CNRS, INP, Aix-Marseille University, 13005 Marseille, France;
- Assistance Publique-Hôpitaux de Marseille, Hôpital de la Conception, Pôle de Biologie, Service d’Immunologie, 13005 Marseille, France
| |
Collapse
|
18
|
Tatsunami R, Murao Y, Sato K. [Protective Effect of Epalrestat against Oxidative Stress-induced Cytotoxicity]. YAKUGAKU ZASSHI 2020; 140:1381-1388. [PMID: 33132274 DOI: 10.1248/yakushi.20-00167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epalrestat (EPS), approved in Japan, is currently the only aldose reductase inhibitor that is available for the treatment of diabetic neuropathy. Recently, we found that EPS at near-plasma concentration increases the intracellular levels of glutathione (GSH) in rat Schwann cells. GSH, the most abundant non-protein thiol antioxidant in cells, is important for protection against oxidative stress. Oxidative stress is associated with the development and progression of many pathological conditions, such as atherosclerosis, diabetes, and neurodegeneration. In this study, we tested the hypothesis that EPS enhances resistance to oxidative stress, by using rat Schwann cells. To determine whether EPS protects Schwann cells from oxidative stress, we performed experiments by using radical generators, drugs, and heavy metals as the source of oxidative stress. EPS reduced the cytotoxicity induced by 2,2-azobis-[2-(2-imidazolin-2-yl) propane] dihydrochloride, 6-hydroxydopamine, cisplatin, palmitate, cadmium chloride, and manganese (II) sulfate, indicating that EPS plays a role in protecting cells from oxidative stress. We suggest that EPS has the potential to prevent the development and progression of disorders caused by oxidative stress.
Collapse
Affiliation(s)
- Ryosuke Tatsunami
- Department of Public Health, Faculty of Pharmaceutical Sciences, Hokkaido University of Science
| | - Yu Murao
- Department of Public Health, Faculty of Pharmaceutical Sciences, Hokkaido University of Science
| | - Keisuke Sato
- Department of Public Health, Faculty of Pharmaceutical Sciences, Hokkaido University of Science
| |
Collapse
|
19
|
Maheshwari N, Mahmood R. Protective effect of catechin on pentachlorophenol-induced cytotoxicity and genotoxicity in isolated human blood cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:13826-13843. [PMID: 32036526 DOI: 10.1007/s11356-020-07969-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/02/2020] [Indexed: 06/10/2023]
Abstract
Pentachlorophenol (PCP) is an organochlorine compound that is used as pesticide, biocide, and wood preservative. PCP is highly toxic and carcinogenic. It has been detected in food and several consumable products. The toxicity of PCP is thought to be due to generation of oxidative stress in cells. We examined whether the dietary antioxidant catechin can attenuate or protect human erythrocytes and lymphocytes against PCP-induced cytotoxicity and genotoxicity, respectively. Human erythrocytes were treated with increasing concentrations of catechin (0.05-2.5 mM) for 30 min followed by addition of 0.75 mM PCP and further incubation for 4 h at 37 °C. Hemolysates were prepared and assayed for various biochemical parameters. Treatment with PCP alone increased the generation of reactive oxygen and nitrogen species, lipid and protein oxidation, and damaged the plasma membrane, when compared to PCP untreated (control) cells. It significantly decreased glutathione level, total sulfhydryl content, and cellular antioxidant power. PCP treatment lowered the activity of antioxidant enzymes and inhibited enzymes of glucose metabolism. However, prior incubation with catechin attenuated the PCP-induced changes in all these parameters in a catechin concentration-dependent manner. Scanning electron microscopy of erythrocytes confirmed these biochemical results. PCP treatment converted the normal discoidal erythrocytes to irregularly contracted cells, acanthocytes, and echinocytes but the presence of catechin inhibited these morphological changes and erythrocytes retained their biconcave shape to a large extent. Genotoxicity was studied in human lymphocytes by single-cell gel electrophoresis (comet assay). It showed strand breaks and longer comet tail length in PCP alone treated cells. The comet tail length was reduced in the catechin +PCP-treated lymphocytes showing that catechin protected cells from PCP-induced DNA damage. These results show that catechin protects human blood cells against PCP-induced oxidative damage.
Collapse
Affiliation(s)
- Nikhil Maheshwari
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, U. P., 202002, India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, U. P., 202002, India.
| |
Collapse
|
20
|
Qayyum MA, Shah MH. Disparities in Trace Metal Levels in Hodgkin/Non-Hodgkin Lymphoma Patients in Comparison with Controls. Biol Trace Elem Res 2020; 194:34-47. [PMID: 31098833 DOI: 10.1007/s12011-019-01746-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023]
Abstract
Lymphoma arises from cells of the immune system and trace metals augment the immune system and their imbalance may promote immunological disorders including tumorigenesis. The primary aim of the present investigation was to evaluate the levels of essential/toxic trace metals in the nails of non-Hodgkin and Hodgkin lymphomas patients in comparison with controls. The samples collected from patients and controls were digested in the mixture of HNO3-HClO4 and selected trace metals were analysed using flame atomic absorption spectrometry. The results showed that mean concentrations of some elements (Pb, Ni, Cd, Cu and Cr) in nails of non-Hodgkin lymphoma patients were significantly elevated (p < 0.05) than that of the controls whereas mean contents of Pb, Cu, Cd and Cr were observed to be significantly higher in the nails of Hodgkin lymphoma patients compared with healthy donors. Additionally, correlation study pointed out significantly diverse mutual associations of the trace metals among the patients and controls. The present results revealed noticeable disparities in the metal concentrations based on gender, food habits, tobacco use and types/stages of the donor's groups. Overall, the pathogenesis of disease significantly affected the trace metal balance in both patients' groups.
Collapse
Affiliation(s)
- Muhammad Abdul Qayyum
- Department of Chemistry, University of Education Lahore, Faisalabad Campus, Faisalabad, 38000, Pakistan
| | - Munir Hussain Shah
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
21
|
Gorantla NV, Balaraman E, Chinnathambi S. Cobalt-based metal complexes prevent Repeat Tau aggregation and nontoxic to neuronal cells. Int J Biol Macromol 2020; 152:171-179. [PMID: 32105696 DOI: 10.1016/j.ijbiomac.2020.02.278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/14/2020] [Accepted: 02/24/2020] [Indexed: 01/11/2023]
Abstract
Alzheimer's disease (AD) is a fatal neurodegenerative disorder with an alarming increase in the death rate every year. AD is characterised by an aberrant accumulation of proteins in the form of aggregates. The axonal microtubule-associated protein Tau and amyloid-β undergo structural transition to β-sheet rich structure and form aggregates in neuronal soma as well as in the extracellular region. The loss of Tau from microtubules leads to the disintegration of axon and causing neuronal degeneration. This led to the development of effective drugs against AD, to prevent Tau aggregation. Here, we synthesized and screen metal-based complexes to prevent Tau protein aggregation. ThS fluorescence and TEM suggested the role of synthetic cobalt complexes in inhibiting Tau aggregation. CD spectroscopy showed that these complexes prevented conformational changes in Tau to β-sheet. CBMCs were not toxic at lower concentrations and formed non-toxic Tau species. L1 and L2 prevented membrane leakage; whereas, higher concentrations of L3 caused membrane leakage as observed by LDH release assay. The overall results indicate the synthetic cobalt complexes to be a promising molecule against AD.
Collapse
Affiliation(s)
- Nalini V Gorantla
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India; Academy of Scientific and Innovative Research (AcSIR), 411008 Pune, India.
| | - Ekambaram Balaraman
- Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India; Academy of Scientific and Innovative Research (AcSIR), 411008 Pune, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India; Academy of Scientific and Innovative Research (AcSIR), 411008 Pune, India.
| |
Collapse
|
22
|
Rajabian A, Sadeghnia HR, Hosseini A, Mousavi SH, Boroushaki MT. 3-Acetyl-11-keto-β-boswellic acid attenuated oxidative glutamate toxicity in neuron-like cell lines by apoptosis inhibition. J Cell Biochem 2020; 121:1778-1789. [PMID: 31642100 DOI: 10.1002/jcb.29413] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 10/04/2019] [Indexed: 12/18/2022]
Abstract
3-Acetyl-11-keto-β-boswellic acid (AKBA), a pentacyclic triterpenic acid present in gum resin of Boswellia serrata, has been found to possess antioxidant and neuroprotective properties. In this study, we aimed to examine protective properties of AKBA against glutamate-induced neuronal injury. To investigate the effects of AKBA (2.5-10 µM) on glutamate injury in neuron-like cells PC12 and N2a, two treatment regimens (incubation for 2 or 0 hours before glutamate exposure) were used. Then, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method was used to determine viability of the cells. Cellular redox status was evaluated using fluorimetry and comet assays. Annexin V/propidium iodide double staining and Western blot analysis of relative apoptotic proteins were conducted. Based on the results, 24 hours incubation with glutamate (8 mM) increased the cell mortality of PC12 and N2a (P < .001). However, AKBA (2.5-10 µM) enhanced the cell viability in both treatment regimens (P < .001). Also co- and pretreatment with AKBA significantly attenuated lipid peroxidation, reactive oxygen species production, and DNA injury (P < .05 and P < .001). AKBA also restored the activity of cellular superoxide dismutase under glutamate toxicity; this effect was seen to be more significant during the pretreatment regimen (P < .001). Moreover, Western blot analysis indicated that AKBA inhibited glutamate-induced programmed cell death through depressing the elevation of the expression ratio of Bax/Bcl-2 and cleaved-caspase-3 proteins, concentration-dependently. Overall, the present findings suggest the neuroprotective activities of AKBA against glutamate-induced cell injury probably by inhibiting oxidative damage and reducing apoptotic cell death.
Collapse
Affiliation(s)
- Arezoo Rajabian
- Pharmacological Research Center of Medicinal Plants, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Sadeghnia
- Pharmacological Research Center of Medicinal Plants, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hadi Mousavi
- Pharmacological Research Center of Medicinal Plants, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Taher Boroushaki
- Pharmacological Research Center of Medicinal Plants, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
Neumann C, Baesler J, Steffen G, Nicolai MM, Zubel T, Aschner M, Bürkle A, Mangerich A, Schwerdtle T, Bornhorst J. The role of poly(ADP-ribose) polymerases in manganese exposed Caenorhabditis elegans. J Trace Elem Med Biol 2020; 57:21-27. [PMID: 31546209 PMCID: PMC6878993 DOI: 10.1016/j.jtemb.2019.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND AND AIM When exceeding the homeostatic range, manganese (Mn) might cause neurotoxicity, characteristic of the pathophysiology of several neurological diseases. Although the underlying mechanism of its neurotoxicity remains unclear, Mn-induced oxidative stress contributes to disease etiology. DNA damage caused by oxidative stress may further trigger dysregulation of DNA-damage-induced poly(ADP-ribosyl)ation (PARylation), which is of central importance especially for neuronal homeostasis. Accordingly, this study was designed to assess in the genetically traceable in vivo model Caenorhabditis elegans the role of PARylation as well as the consequences of loss of pme-1 or pme-2 (orthologues of PARP1 and PARP2) in Mn-induced toxicity. METHODS A specific and sensitive isotope-dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed to quantify PARylation in worms. Next to monitoring the PAR level, pme-1 and pme-2 gene expression as well as Mn-induced oxidative stress was studied in wildtype worms and the pme deletion mutants. RESULTS AND CONCLUSION While Mn failed to induce PARylation in wildtype worms, toxic doses of Mn led to PAR-induction in pme-1-deficient worms, due to an increased gene expression of pme-2 in the pme-1 deletion mutants. However, this effect could not be observed at sub-toxic Mn doses as well as upon longer incubation times. Regarding Mn-induced oxidative stress, the deletion mutants did not show hypersensitivity. Taken together, this study characterizes worms to model PAR inhibition and addresses the consequences for Mn-induced oxidative stress in genetically manipulated worms.
Collapse
Affiliation(s)
- Catherine Neumann
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Jessica Baesler
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; TraceAge - DFG Research Unit FOR 2558, Berlin-Potsdam, Jena, Germany
| | - Gereon Steffen
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Merle Marie Nicolai
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany
| | - Tabea Zubel
- Department of Biology, University of Konstanz, Universitaetsstraße 10, 78464 Konstanz, Germany
| | - Michael Aschner
- Department of Molecular Pharmacology, Neuroscience, and Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, 10461 Bronx, NY, USA
| | - Alexander Bürkle
- Department of Biology, University of Konstanz, Universitaetsstraße 10, 78464 Konstanz, Germany
| | - Aswin Mangerich
- Department of Biology, University of Konstanz, Universitaetsstraße 10, 78464 Konstanz, Germany
| | - Tanja Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; TraceAge - DFG Research Unit FOR 2558, Berlin-Potsdam, Jena, Germany
| | - Julia Bornhorst
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; TraceAge - DFG Research Unit FOR 2558, Berlin-Potsdam, Jena, Germany; Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany.
| |
Collapse
|
24
|
Steimle BL, Smith FM, Kosman DJ. The solute carriers ZIP8 and ZIP14 regulate manganese accumulation in brain microvascular endothelial cells and control brain manganese levels. J Biol Chem 2019; 294:19197-19208. [PMID: 31699897 DOI: 10.1074/jbc.ra119.009371] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/29/2019] [Indexed: 12/29/2022] Open
Abstract
Manganese supports numerous neuronal functions but in excess is neurotoxic. Consequently, regulation of manganese flux at the blood-brain barrier (BBB) is critical to brain homeostasis. However, the molecular pathways supporting the transcellular trafficking of divalent manganese ions within the microvascular capillary endothelial cells (BMVECs) that constitute the BBB have not been examined. In this study, we have determined that ZIP8 and ZIP14 (Zrt- and Irt-like proteins 8 and 14) support Mn2+ uptake by BMVECs and that neither DMT1 nor an endocytosis-dependent pathway play any significant role in Mn2+ uptake. Specifically, siRNA-mediated knockdown of ZIP8 and ZIP14 coincided with a decrease in manganese uptake, and kinetic analyses revealed that manganese uptake depends on pH and bicarbonate and is up-regulated by lipopolysaccharide, all biochemical markers of ZIP8 or ZIP14 activity. Mn2+ uptake also was associated with cell-surface membrane presentation of ZIP8 and ZIP14, as indicated by membrane protein biotinylation. Importantly, surface ZIP8 and ZIP14 biotinylation and Mn2+-uptake experiments together revealed that these transporters support manganese uptake at both the apical, blood and basal, brain sides of BMVECs. This indicated that in the BMVECs of the BBB, these two transporters support a bidirectional Mn2+ flux. We conclude that BMVECs play a critical role in controlling manganese homeostasis in the brain.
Collapse
Affiliation(s)
- Brittany L Steimle
- Department of Biochemistry, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203
| | - Frances M Smith
- Department of Biochemistry, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203
| | - Daniel J Kosman
- Department of Biochemistry, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203
| |
Collapse
|
25
|
Martins AC, Morcillo P, Ijomone OM, Venkataramani V, Harrison FE, Lee E, Bowman AB, Aschner M. New Insights on the Role of Manganese in Alzheimer's Disease and Parkinson's Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E3546. [PMID: 31546716 PMCID: PMC6801377 DOI: 10.3390/ijerph16193546] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022]
Abstract
Manganese (Mn) is an essential trace element that is naturally found in the environment and is necessary as a cofactor for many enzymes and is important in several physiological processes that support development, growth, and neuronal function. However, overexposure to Mn may induce neurotoxicity and may contribute to the development of Alzheimer's disease (AD) and Parkinson's disease (PD). The present review aims to provide new insights into the involvement of Mn in the etiology of AD and PD. Here, we discuss the critical role of Mn in the etiology of these disorders and provide a summary of the proposed mechanisms underlying Mn-induced neurodegeneration. In addition, we review some new therapy options for AD and PD related to Mn overload.
Collapse
Affiliation(s)
- Airton Cunha Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA (P.M.)
| | - Patricia Morcillo
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA (P.M.)
| | - Omamuyovwi Meashack Ijomone
- Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology Akure, Akure 340252, Nigeria;
| | - Vivek Venkataramani
- Department of Hematology and Medical Oncology and Institute of Pathology, University Medical Center Göttingen (UMG), 37075 Göttingen, Germany;
| | - Fiona Edith Harrison
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32301, USA;
| | - Aaron Blaine Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, USA;
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA (P.M.)
| |
Collapse
|
26
|
Ommati MM, Heidari R, Ghanbarinejad V, Abdoli N, Niknahad H. Taurine Treatment Provides Neuroprotection in a Mouse Model of Manganism. Biol Trace Elem Res 2019; 190:384-395. [PMID: 30357569 DOI: 10.1007/s12011-018-1552-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/15/2018] [Indexed: 12/11/2022]
Abstract
Manganese (Mn) is a trace element involved in many physiological processes. However, excessive Mn exposure leads to neurological complications. Although no precise mechanism(s) has been found for Mn-induced neurotoxicity, oxidative stress and mitochondrial injury seem to play a relevant role in this complication. On the other hand, there is no protective strategy against Mn neurotoxicity so far. Taurine is an amino acid with significant neuroprotective properties. The current study was designed to evaluate the effect of taurine supplementation and its potential mechanism(s) of action in a mouse model of manganism. Animals were treated with Mn (100 mg/kg, s.c) alone and/or in combination with taurine (50, 100, and 500 mg/kg, i.p, for eight consecutive days). Severe locomotor dysfunction along with a significant elevation in brain tissue biomarkers of oxidative stress was evident in Mn-exposed mice. On the other hand, it was revealed that mitochondrial indices of functionality were hampered in Mn-treated animals. Taurine supplementation (50, 100, and 500 mg/kg, i.p) alleviated Mn-induced locomotor deficit. Moreover, this amino acid mitigated oxidative stress biomarkers and preserved brain tissue mitochondrial indices of functionality. These data introduce taurine as a potential neuroprotective agent against Mn neurotoxicity. Antioxidative and mitochondria protecting effects of taurine might play a fundamental role in its neuroprotective properties against Mn toxicity.
Collapse
Affiliation(s)
- Mohammad Mehdi Ommati
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P. O. Box 158371345, Roknabad, Karafarin St., Shiraz, Fars, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P. O. Box 158371345, Roknabad, Karafarin St., Shiraz, Fars, Iran.
| | - Vahid Ghanbarinejad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P. O. Box 158371345, Roknabad, Karafarin St., Shiraz, Fars, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Abdoli
- Iran Food and Drug Administration (IFDA), Ministry of Health, Tehran, Iran
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P. O. Box 158371345, Roknabad, Karafarin St., Shiraz, Fars, Iran.
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
27
|
Zeng Z, Huo X, Zhang Y, Hylkema MN, Wu Y, Xu X. Differential DNA methylation in newborns with maternal exposure to heavy metals from an e-waste recycling area. ENVIRONMENTAL RESEARCH 2019; 171:536-545. [PMID: 30763874 DOI: 10.1016/j.envres.2019.01.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/06/2018] [Accepted: 01/04/2019] [Indexed: 02/05/2023]
Abstract
This study explored the effects of maternal exposure to e-waste environmental heavy metals on neonatal DNA methylation patterns. Neonatal umbilical cord blood (UCB) samples were collected from participants that resided in an e-waste recycling area, Guiyu and a nearby non-e-waste area, Haojiang in China. The concentrations of UCB lead (Pb), cadmium (Cd), manganese (Mn) and chromium (Cr) were measured by graphite furnace atomic absorption spectrometry. Epigenome-wide DNA methylation at 473, 844 CpG sites (CpGs) were assessed by Illumina 450 K BeadChip. The differential methylation of CpG sites from the microarray were further validated by bisulfite pyrosequencing. Bioinformatics analysis showed that 125 CpGs mapped to 79 genes were differential methylation in the e-waste exposed group with higher concentrations of heavy metals in neonatal UCB. These genes mainly involve in multiple biological processes including calcium ion binding, cell adhesion, embryonic morphogenesis, as well as in signaling pathways related to NFkB activation, adherens junction, TGF beta and apoptosis. Among them, BAI1 and CTNNA2 (involving in neuron differentiation and development) were further verified to be hyper- and hypo-methylated, respectively, which were associated with maternal Pb exposure. These results suggest that maternal exposure to e-waste environmental heavy metals (particularly lead) during pregnancy are associated with peripheral blood differential DNA methylation in newborns, specifically the genes involving in brain neuron development.
Collapse
Affiliation(s)
- Zhijun Zeng
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Xia Huo
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, Guangdong, China
| | - Yu Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Machteld N Hylkema
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Yousheng Wu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
28
|
Ommati MM, Heidari R, Ghanbarinejad V, Aminian A, Abdoli N, Niknahad H. The neuroprotective properties of carnosine in a mouse model of manganism is mediated via mitochondria regulating and antioxidative mechanisms. Nutr Neurosci 2019; 23:731-743. [PMID: 30856059 DOI: 10.1080/1028415x.2018.1552399] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Objective(s): Manganese (Mn) is an essential trace element physiologically incorporated in the structure of several vital enzymes. Despite its essentiality, excessive Mn exposure is toxic with brain tissue as the primary target organ. There is no specific and clinically available therapeutic/preventive option against Mn neurotoxicity. Carnosine is a neuropeptide with several physiological roles. The neuroprotective properties of this peptide have been evaluated in different experimental models. The current study was designed to investigate the effect of carnosine supplementation and its potential mechanisms of action in an animal model of Mn-induced neurotoxicity. Materials and Methods: Male C57BL/6 mice received Mn (100 mg/kg, s.c) alone and/or in combination with carnosine (10, 50, and 100 mg/kg, i.p). Several locomotor activity indices were monitored. Moreover, biomarkers of oxidative stress and mitochondrial function were assessed in the brain tissue of Mn-exposed animals. Results: Significant locomotor dysfunction was revealed in Mn-exposed animals. Furthermore, brain tissue biomarkers of oxidative stress were significantly increased, and mitochondrial indices of functionality were impaired in Mn-treated animals. It was found that carnosine supplementation (10, 50, and 100 mg/kg, i.p) alleviated the Mn-induced locomotor deficit. Moreover, this peptide mitigated oxidative stress biomarkers and preserved brain tissue mitochondrial functionality in the animal model of manganism. Conclusion: These data indicate that carnosine is a potential neuroprotective agent against Mn neurotoxicity. Antioxidative and mitochondria protecting effects of carnosine might play a fundamental role in its neuroprotective properties against Mn toxicity.
Collapse
Affiliation(s)
- Mohammad Mehdi Ommati
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Bioinformatics, College of Life Sciences, Shanxi Agricultural University, Taigu, Peoples' Republic of China
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Ghanbarinejad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmadreza Aminian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Abdoli
- Iran Food and Drug Administration (IFDA), Ministry of Health, Tehran, Iran
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
29
|
Huat TJ, Camats-Perna J, Newcombe EA, Valmas N, Kitazawa M, Medeiros R. Metal Toxicity Links to Alzheimer's Disease and Neuroinflammation. J Mol Biol 2019; 431:1843-1868. [PMID: 30664867 DOI: 10.1016/j.jmb.2019.01.018] [Citation(s) in RCA: 271] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/11/2022]
Abstract
As the median age of the population increases, the number of individuals with Alzheimer's disease (AD) and the associated socio-economic burden are predicted to worsen. While aging and inherent genetic predisposition play major roles in the onset of AD, lifestyle, physical fitness, medical condition, and social environment have emerged as relevant disease modifiers. These environmental risk factors can play a key role in accelerating or decelerating disease onset and progression. Among known environmental risk factors, chronic exposure to various metals has become more common among the public as the aggressive pace of anthropogenic activities releases excess amount of metals into the environment. As a result, we are exposed not only to essential metals, such as iron, copper, zinc and manganese, but also to toxic metals including lead, aluminum, and cadmium, which perturb metal homeostasis at the cellular and organismal levels. Herein, we review how these metals affect brain physiology and immunity, as well as their roles in the accumulation of toxic AD proteinaceous species (i.e., β-amyloid and tau). We also discuss studies that validate the disruption of immune-related pathways as an important mechanism of toxicity by which metals can contribute to AD. Our goal is to increase the awareness of metals as players in the onset and progression of AD.
Collapse
Affiliation(s)
- Tee Jong Huat
- Neurula Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia; Centre for Stem Cell Ageing and Regenerative Engineering, The University of Queensland, Brisbane, Australia.
| | - Judith Camats-Perna
- Neurula Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Estella A Newcombe
- Neurula Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Nicholas Valmas
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Masashi Kitazawa
- Center for Occupational and Environmental Health, Department of Medicine, University of California, Irvine, CA, USA
| | - Rodrigo Medeiros
- Neurula Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
30
|
Rabha R, Ghosh S, Padhy PK. Indoor air pollution in rural north-east India: Elemental compositions, changes in haematological indices, oxidative stress and health risks. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 165:393-403. [PMID: 30218962 DOI: 10.1016/j.ecoenv.2018.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/27/2018] [Accepted: 09/01/2018] [Indexed: 06/08/2023]
Abstract
Chronic smoke exposure, emitted by biomass fuel burning leads to many diseases, which are originated due to oxidative stress. The present study investigated the levels of PM2.5, PM10 and PM2.5 bound trace metals released during cooking with fuelwood and subsequent changes in haematological parameters along with oxidative stress in rural tribal women of northeast India exposed to wood smoke. The levels of PM2.5, PM10 and trace metals associated with PM2.5 (nickel, cobalt, manganese, zinc, cadmium, lead and copper) were measured. In addition, blood samples were analyzed for concentrations of different blood related parameters (haemoglobin, platelet count, red blood cells and white blood cells) and levels of antioxidants (reduced glutathione, superoxide dismutase, and catalase). Plasma malondialdehyde (MDA) was measured as a biomarker of lipid peroxidation. Health risk assessment was done to assess the potential risk posed by inhalation of fine particles emitted from cooking with fuel wood. Levels of both PM2.5 and PM10 were higher in wood users compared to LPG users during cooking period (644.4 ± 368.3 µg/m³ vs 50 ± 23.8 µg/m³; 915 ± 441.3 µg/m³ vs 83.3 ± 33 µg/m³) and it exceeded the permissible limits of WHO. Levels of trace metals during the cooking period in fuel wood users were significantly higher than LPG users (p = 0.01). After controlling possible confounders, both platelet count and white blood cells (WBC) had a significant positive association with PM2.5and PM10. Similarly, haemoglobin had a negative association with both PM2.5 and PM10. Depleted levels of antioxidant enzymes and increase in lipid peroxidation (MDA) suggest a close association with pollutants released from wood smoke, indicating oxidative stress in women who used fuelwood for cooking. The total hazard quotient (HQ) of 0.11 was within the acceptable limit (i.e., 1.0). The total excess lifetime cancer risk (ELCR) was 5.4 × 10-6 which is five times higher than the acceptable limit of 1.0 × 10-6. Individual carcinogenic risk of Ni (2.3 × 10-6) and Cd (3.1 × 10-6) were also higher compared to acceptable limit. These results indicate that tribal women cooking with wood are at greater risk of developing cancer and also give support to the positive association between wood smoke and oxidative stress.
Collapse
Affiliation(s)
- Rumi Rabha
- Department of Environmental Studies, Institute of Science, Visva-Bharati, Santiniketan 731235, West Bengal, India
| | - Suraj Ghosh
- Department of Environmental Studies, Institute of Science, Visva-Bharati, Santiniketan 731235, West Bengal, India
| | - Pratap Kumar Padhy
- Department of Environmental Studies, Institute of Science, Visva-Bharati, Santiniketan 731235, West Bengal, India.
| |
Collapse
|
31
|
El-Hady WM, Galal AAA. Neurotoxic Outcomes of Subchronic Manganese Chloride Exposure via Contaminated Water in Adult Male Rats and the Potential Benefits of Ebselen. Biol Trace Elem Res 2018. [PMID: 29516356 DOI: 10.1007/s12011-018-1291-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The neurological effects of manganese (Mn) exposure on adults consuming contaminated water remain unclear. Accordingly, the current experiment was planned to explore the neurotoxic consequences of subchronic Mn exposure via contaminated water and to examine whether ebselen (Ebs) improved these outcomes. Rats exposed to oral MnCl2 (50 mg/kg body weight) for 30 successive days exhibited reduced rearing and ambulation. Furthermore, Mn administration increased brain Mn concentrations and induced superoxide dismutase, catalase, and glutathione depletion. Mn administration also increased lipid peroxidation biomarker levels. Additionally, Mn increased interleukin1-β and prostaglandin E2 levels and altered caspase-3 and Bcl-2 expression. Mn intoxication also induced marked gliosis, numerous vacuolations, and disoriented and pyknotic Purkinje cells as well as marked vascular congestion in brain tissue. Meanwhile, intraperitoneal administration of Ebs (15 mg/kg body weight) to Mn-intoxicated rats improved the behavioral performance and oxidative damage as well as inflammatory, apoptotic, and histopathological changes. The above results indicate that Ebs alleviated Mn neurotoxicity via its antioxidant, anti-inflammatory, and anti-apoptotic activities. Therefore, Ebs could represent a promising agent in the prevention of Mn-induced neurotoxicity.
Collapse
Affiliation(s)
- Walaa M El-Hady
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Azza A A Galal
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| |
Collapse
|
32
|
Jakaria M, Park SY, Haque ME, Karthivashan G, Kim IS, Ganesan P, Choi DK. Neurotoxic Agent-Induced Injury in Neurodegenerative Disease Model: Focus on Involvement of Glutamate Receptors. Front Mol Neurosci 2018; 11:307. [PMID: 30210294 PMCID: PMC6123546 DOI: 10.3389/fnmol.2018.00307] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022] Open
Abstract
Glutamate receptors play a crucial role in the central nervous system and are implicated in different brain disorders. They play a significant role in the pathogenesis of neurodegenerative diseases (NDDs) such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Although many studies on NDDs have been conducted, their exact pathophysiological characteristics are still not fully understood. In in vivo and in vitro models of neurotoxic-induced NDDs, neurotoxic agents are used to induce several neuronal injuries for the purpose of correlating them with the pathological characteristics of NDDs. Moreover, therapeutic drugs might be discovered based on the studies employing these models. In NDD models, different neurotoxic agents, namely, kainic acid, domoic acid, glutamate, β-N-Methylamino-L-alanine, amyloid beta, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, 1-methyl-4-phenylpyridinium, rotenone, 3-Nitropropionic acid and methamphetamine can potently impair both ionotropic and metabotropic glutamate receptors, leading to the progression of toxicity. Many other neurotoxic agents mainly affect the functions of ionotropic glutamate receptors. We discuss particular neurotoxic agents that can act upon glutamate receptors so as to effectively mimic NDDs. The correlation of neurotoxic agent-induced disease characteristics with glutamate receptors would aid the discovery and development of therapeutic drugs for NDDs.
Collapse
Affiliation(s)
- Md. Jakaria
- Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju, South Korea
| | - Shin-Young Park
- Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju, South Korea
| | - Md. Ezazul Haque
- Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju, South Korea
| | - Govindarajan Karthivashan
- Department of Integrated Bioscience and Biotechnology, College of Biomedical and Health Sciences, Research Institute of Inflammatory Diseases (RID), Konkuk University, Chungju, South Korea
| | - In-Su Kim
- Department of Integrated Bioscience and Biotechnology, College of Biomedical and Health Sciences, Research Institute of Inflammatory Diseases (RID), Konkuk University, Chungju, South Korea
| | - Palanivel Ganesan
- Department of Integrated Bioscience and Biotechnology, College of Biomedical and Health Sciences, Research Institute of Inflammatory Diseases (RID), Konkuk University, Chungju, South Korea
- Nanotechnology Research Center, Konkuk University, Chungju, South Korea
| | - Dong-Kug Choi
- Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju, South Korea
- Department of Integrated Bioscience and Biotechnology, College of Biomedical and Health Sciences, Research Institute of Inflammatory Diseases (RID), Konkuk University, Chungju, South Korea
- Nanotechnology Research Center, Konkuk University, Chungju, South Korea
| |
Collapse
|
33
|
Ullah H, Khan H. Anti-Parkinson Potential of Silymarin: Mechanistic Insight and Therapeutic Standing. Front Pharmacol 2018; 9:422. [PMID: 29755356 PMCID: PMC5934474 DOI: 10.3389/fphar.2018.00422] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/11/2018] [Indexed: 02/05/2023] Open
Abstract
Parkinson’s disease (PD) involves aggregation of α-synuclein and progressive loss of dopaminergic neurons. Pathogenesis of PD may also be related to one’s genetic background. PD is most common among geriatric population and approximately 1–2% of population suffers over age 65 years. Currently no successful therapies are in practice for the management of PD and available therapies tend to decrease the symptoms of PD only. Furthermore, these are associated with diverse range of adverse effects profile. The neuroprotective effects of polyphenols are widely studied and documented. Among phytochemicals, silymarin is one of the most widely used flavonoids because of its extensive therapeutic properties and has been indicated in pathological conditions of prostate, CNS, lungs, skin, liver, and pancreas. Silymarin is a mixture of flavonolignans (silybin, isosilybin, and silychristin), small amount of flavonoids (taxifolin), fatty acids, and other polyphenolic compounds extracted from the dried fruit of Silybum marianum and is clinically used for hepatoprotective effects since ancient times. Neuroprotective effects of silymarin have been studied in various models of neurological disorders such as Alzheimer’s disease, PD, and cerebral ischemia. The aim of the present study is to provide a comprehensive review of the recent literature exploring the effects of silymarin administration on the progression of PD. Reducing oxidative stress, inflammatory cytokines, altering cellular apoptosis machinery, and estrogen receptor machinery are mechanisms that are responsible for neuroprotection by silymarin, as discussed in this review. Additionally, because of poor aqueous solubility, the bioavailability of silymarin is low and only 23–47% of silymarin reaches systemic circulation after oral administration. Our primary focus is on the chemical basis of the pharmacology of silymarin in the treatment of PD and its mechanisms and possible therapeutic/clinical status while addressing the bioavailability limitation.
Collapse
Affiliation(s)
- Hammad Ullah
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
34
|
de Moura TC, Afadlal S, Hazell AS. Potential for stem cell treatment in manganism. Neurochem Int 2018; 112:134-145. [DOI: 10.1016/j.neuint.2017.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/06/2017] [Accepted: 10/09/2017] [Indexed: 02/08/2023]
|
35
|
Gugnani KS, Vu N, Rondón-Ortiz AN, Böhlke M, Maher TJ, Pino-Figueroa AJ. Neuroprotective activity of macamides on manganese-induced mitochondrial disruption in U-87 MG glioblastoma cells. Toxicol Appl Pharmacol 2017; 340:67-76. [PMID: 29288688 DOI: 10.1016/j.taap.2017.12.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/09/2017] [Accepted: 12/23/2017] [Indexed: 02/07/2023]
Abstract
Macamides are a distinct class of secondary metabolites, benzylamides of long chain fatty acids, which were isolated from the Peruvian plant Lepidium meyenii (Maca). As structural analogues of the endocannabinoid anandamide (AEA), they have demonstrated neuroprotective effects in vitro and in vivo. The purpose of this study was to demonstrate the neuroprotective activity of the macamides: N-(3-methoxybenzyl)oleamide (MAC 18:1), N-(3-methoxybenzyl)linoleamide (MAC 18:2) and N-(3-methoxybenzyl)linolenamide (MAC 18:3) in a neurotoxic environment caused by exposure of U-87 MG glioblastoma cells to manganese chloride (MnCl2). The neuroprotective effects of these macamides were reversed by the CB1 antagonist AM251. The mechanism by which manganese (Mn) induces cell damage was investigated by studying its effects on mitochondria. Reactive oxygen species (ROS) increase intracellular calcium and enhance the opening of mitochondrial permeability transition pores (MPTP), which leads to decreased mitochondrial membrane potential (MMP), to disruption of mitochondria and to neuron death in neurodegenerative disorders. In this study, MnCl2 at 50μM was responsible for mitochondrial disruption, which was attenuated by all three of the macamides tested. Human peroxisome proliferator-activated receptor gamma (PPARγ) has been proposed to be a cannabinoid target, and PPARγ has also been demonstrated to mediate some of the longer-term vascular effects of the plant cannabinoid, ∆9-tetrahydrocannabinol. PPARγ activation was observed in response to exposures of cells to MAC 18:2 and MAC 18:3. These findings suggest that macamides achieve their neuroprotective effects by binding to CB1 receptors to protect against Mn-induced toxicity in U-87 MG glioblastoma cells. Additionally these macamides, in a manner similar to the analogous endocannabinoid AEA, interact with other targets such as PPARγ to regulate metabolism and energy homeostasis, cell differentiation and inflammation.
Collapse
Affiliation(s)
- Kuljeet S Gugnani
- Department of Pharmaceutical Sciences, MCPHS University, 179 Longwood Avenue, Boston, MA, USA
| | - Nguyen Vu
- School of Pharmacy, MCPHS University, 179 Longwood Avenue, Boston, MA, USA
| | | | - Mark Böhlke
- Department of Pharmaceutical Sciences, MCPHS University, 179 Longwood Avenue, Boston, MA, USA
| | - Timothy J Maher
- Department of Pharmaceutical Sciences, MCPHS University, 179 Longwood Avenue, Boston, MA, USA
| | | |
Collapse
|
36
|
Marreilha dos Santos AP, Andrade V, Aschner M. Neuroprotective and Therapeutic Strategies for Manganese-Induced Neurotoxicity. CLINICAL PHARMACOLOGY AND TRANSLATIONAL MEDICINE 2017; 1:54-62. [PMID: 30854510 PMCID: PMC6402347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Manganese (Mn) is an essential element required for growth, development and general maintenance of health. However, chronic or high occupational and environmental exposure to excessive levels of Mn has long been known to lead to a progressive neurological disorder similar to Parkinsonism. Manganism patients display a variety of symptoms, including mental, cognitive and behavioural impediments, as well as motor dysfunctions that are associated with basal ganglia dysfunction. Taking into account the pharmacokinetics and Mn-related toxicity mechanisms, several neuroprotective compounds and therapeutic approaches have been investigated to assess their efficacy in mitigating its neurotoxicity. Here, we will briefly address some of the toxic mechanisms of Mn, followed by neuroprotective strategies and therapeutic approaches aiming to reduce or treat Mn induced neurotoxicity. Natural and synthetic antioxidants, anti-inflammatory compounds, ATP/ADP ratio protectors and glutamate protectors have been introduced in view of decreasing Mn-induced neurotoxicity. In addition, the efficacy and mechanisms of several therapeutic interventions such as levodopa, ethylene-diamine-tetraacetic acid (EDTA) and para-aminosalicylic acid (PAS), aimed at ameliorating Mn neurotoxic symptoms in humans, will be reviewed.
Collapse
Affiliation(s)
- AP Marreilha dos Santos
- Institute of Medicine Research (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon. Portugal
| | - V Andrade
- Institute of Medicine Research (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon. Portugal
| | - M Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, USA
| |
Collapse
|
37
|
Smith MR, Fernandes J, Go YM, Jones DP. Redox dynamics of manganese as a mitochondrial life-death switch. Biochem Biophys Res Commun 2017; 482:388-398. [PMID: 28212723 PMCID: PMC5382988 DOI: 10.1016/j.bbrc.2016.10.126] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 12/16/2022]
Abstract
Sten Orrenius, M.D., Ph.D., pioneered many areas of cellular and molecular toxicology and made seminal contributions to our knowledge of oxidative stress and glutathione (GSH) metabolism, organellar functions and Ca+2-dependent mechanisms of cell death, and mechanisms of apoptosis. On the occasion of his 80th birthday, we summarize current knowledge on redox biology of manganese (Mn) and its role in mechanisms of cell death. Mn is found in all organisms and has critical roles in cell survival and death mechanisms by regulating Mn-containing enzymes such as manganese superoxide dismutase (SOD2) or affecting expression and activity of caspases. Occupational exposures to Mn cause "manganism", a Parkinson's disease-like condition of neurotoxicity, and experimental studies show that Mn exposure leads to accumulation of Mn in the brain, especially in mitochondria, and neuronal cell death occurs with features of an apoptotic mechanism. Interesting questions are why a ubiquitous metal that is essential for mitochondrial function would accumulate to excessive levels, cause increased H2O2 production and lead to cell death. Is this due to the interactions of Mn with other essential metals, such as iron, or with toxic metals, such as cadmium? Why is the Mn loading in the human brain so variable, and why is there such a narrow window between dietary adequacy and toxicity? Are non-neuronal tissues similarly vulnerable to insufficiency and excess, yet not characterized? We conclude that Mn is an important component of the redox interface between an organism and its environment and warrants detailed studies to understand the role of Mn as a mitochondrial life-death switch.
Collapse
Affiliation(s)
- Matthew Ryan Smith
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Jolyn Fernandes
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Young-Mi Go
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
38
|
Dolci GS, Rosa HZ, Barcelos RCS, Vey LT, Santos A, DallaVechia P, Bizzi C, Cunha MA, Baldisserotto B, Burger ME. Hypoxia acclimation and subsequent reoxygenation partially prevent Mn-induced damage in silver catfish. Comp Biochem Physiol C Toxicol Pharmacol 2017; 191:52-62. [PMID: 27645230 DOI: 10.1016/j.cbpc.2016.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/11/2016] [Accepted: 09/14/2016] [Indexed: 01/11/2023]
Abstract
This study investigated if hypoxia acclimation modifies the hematological and oxidative profiles in tissues of Mn-exposed silver catfish (Rhamdia quelen), and if such modifications persist upon subsequent reoxygenation. Silver catfish acclimated to hypoxia (~3mgL-1) for 10days and subsequently exposed to Mn (~8.1mgL-1) for additional 10days exhibited lower Mn accumulation in plasma, liver and kidney, even after reoxygenation, as compared to normoxia-acclimated fish. Hypoxia acclimation increased per se red blood cells count and hematocrit, suggesting adaptations under hypoxia, while the reoxygenation process was also related to increased hematocrit and hemoglobin per se. Fish exposed to Mn under normoxia for 20days showed decreased red blood cells count and hematocrit, while reoxygenation subsequent to hypoxia increased red blood cells count. Hypoxia acclimation also prevented Mn-induced oxidative damage, observed by increased reactive species generation and higher protein carbonyl levels in both liver and kidney under normoxia. Mn-exposed fish under hypoxia and after reoxygenation showed decreased plasma transaminases in relation to the normoxia group. Moreover, acclimation to hypoxia increased reduced glutathione levels, catalase activity and Na+/K+-ATPase activity in liver and kidney during Mn exposure, remaining increased even after reoxygenation. These findings show that previous acclimation to hypoxia generates physiological adjustments, which drive coordinated responses that ameliorate the antioxidant status even after reoxygenation. Such responses represent a physiological regulation of this teleost fish against oxygen restriction and/or Mn toxicity in order to preserve the stability of a particular tissue or system.
Collapse
Affiliation(s)
- G S Dolci
- Programa de Pós Graduação em Farmacologia, UFSM, Universidade Federal de Santa Maria (UFSM), Av. Roraima n° 1000, Cidade Universitária, Camobi, Santa Maria 97105-900, RS, Brazil
| | - H Z Rosa
- Departamento de Fisiologia e Farmacologia, UFSM, Universidade Federal de Santa Maria (UFSM), Av. Roraima n° 1000, Cidade Universitária, Camobi, Santa Maria 97105-900, RS, Brazil
| | - R C S Barcelos
- Programa de Pós Graduação em Farmacologia, UFSM, Universidade Federal de Santa Maria (UFSM), Av. Roraima n° 1000, Cidade Universitária, Camobi, Santa Maria 97105-900, RS, Brazil
| | - L T Vey
- Programa de Pós Graduação em Bioquímica Toxicológica, UFSM, Universidade Federal de Santa Maria (UFSM), Av. Roraima n° 1000, Cidade Universitária, Camobi, Santa Maria 97105-900, RS, Brazil
| | - A Santos
- Programa de Pós Graduação em Farmacologia, UFSM, Universidade Federal de Santa Maria (UFSM), Av. Roraima n° 1000, Cidade Universitária, Camobi, Santa Maria 97105-900, RS, Brazil
| | - P DallaVechia
- Programa de Pós-graduação em Química, UFSM, Universidade Federal de Santa Maria (UFSM), Av. Roraima n° 1000, Cidade Universitária, Camobi, Santa Maria 97105-900, RS, Brazil
| | - C Bizzi
- Programa de Pós-graduação em Química, UFSM, Universidade Federal de Santa Maria (UFSM), Av. Roraima n° 1000, Cidade Universitária, Camobi, Santa Maria 97105-900, RS, Brazil
| | - M A Cunha
- Programa de Pós Graduação em Farmacologia, UFSM, Universidade Federal de Santa Maria (UFSM), Av. Roraima n° 1000, Cidade Universitária, Camobi, Santa Maria 97105-900, RS, Brazil; Departamento de Fisiologia e Farmacologia, UFSM, Universidade Federal de Santa Maria (UFSM), Av. Roraima n° 1000, Cidade Universitária, Camobi, Santa Maria 97105-900, RS, Brazil
| | - B Baldisserotto
- Programa de Pós Graduação em Farmacologia, UFSM, Universidade Federal de Santa Maria (UFSM), Av. Roraima n° 1000, Cidade Universitária, Camobi, Santa Maria 97105-900, RS, Brazil; Departamento de Fisiologia e Farmacologia, UFSM, Universidade Federal de Santa Maria (UFSM), Av. Roraima n° 1000, Cidade Universitária, Camobi, Santa Maria 97105-900, RS, Brazil
| | - M E Burger
- Programa de Pós Graduação em Farmacologia, UFSM, Universidade Federal de Santa Maria (UFSM), Av. Roraima n° 1000, Cidade Universitária, Camobi, Santa Maria 97105-900, RS, Brazil; Departamento de Fisiologia e Farmacologia, UFSM, Universidade Federal de Santa Maria (UFSM), Av. Roraima n° 1000, Cidade Universitária, Camobi, Santa Maria 97105-900, RS, Brazil; Programa de Pós Graduação em Bioquímica Toxicológica, UFSM, Universidade Federal de Santa Maria (UFSM), Av. Roraima n° 1000, Cidade Universitária, Camobi, Santa Maria 97105-900, RS, Brazil.
| |
Collapse
|
39
|
Gawlik M, Gawlik MB, Smaga I, Filip M. Manganese neurotoxicity and protective effects of resveratrol and quercetin in preclinical research. Pharmacol Rep 2016; 69:322-330. [PMID: 28183032 DOI: 10.1016/j.pharep.2016.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/17/2016] [Accepted: 11/28/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Exposure to Mn results in a neurological syndrome known as manganism. METHODS We examined how 4-week Mn exposure (20mg/kg MnCl2po, 5days/week) induces neurotoxic effects in rats. Oxidized-to-reduced glutathione ratio (GSSG/GSH), malondialdehyde (MDA), superoxide dismutase (SOD) activity, catalase (CAT) activity, vitamin E content and caspase-3 activity were measured in several rat brain structures. Further, we examined protective effects of the polyphenols: resveratrol (R) or quercetin (QCT) against Mn-induced neurotoxicity. RESULTS After exposure to Mn, we found a rise in GSSG/GSH ratio and a reduction in SOD activity in the rat striatum (STR), while in the nucleus accumbens (NAC) decreases in alpha-tocopherol content and in SOD activity were noted. In the frontal cortex (FCX), an enhancement in GSSG/GSH ratio and a reduction in SOD and CAT activities were observed. In the cerebellum (CER), a significant increase in the caspase-3 activity paralleled a rise in the GSSG/GSH ratio and a diminution of SOD activity. In the rat hippocampus (HIP), Mn evoked an enhancement in GSSG/GSH ratio. There were no changes in the MDA levels. Pretreatment with R and QCT protected against the Mn-induced (i) enhancement in GSSG/GSH ratio in the STR, (ii) decreases in the NAC alpha-tocopherol content and (iii) reduction in SOD activity in FCX, NAC and CER. CONCLUSION Repeated Mn administration induces toxic effects in several rat brain structures and treatment with R and QCT may be a potential therapeutic strategy to attenuate the metal neurotoxicity.
Collapse
Affiliation(s)
- Maciej Gawlik
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland.
| | - Małgorzata B Gawlik
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Irena Smaga
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Małgorzata Filip
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland; Institute of Pharmacology, Polish Academy of Sciences, Laboratory of Drug Addiction Pharmacology, Kraków, Poland
| |
Collapse
|
40
|
"Manganese-induced neurotoxicity: a review of its behavioral consequences and neuroprotective strategies". BMC Pharmacol Toxicol 2016; 17:57. [PMID: 27814772 PMCID: PMC5097420 DOI: 10.1186/s40360-016-0099-0] [Citation(s) in RCA: 226] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 10/19/2016] [Indexed: 01/20/2023] Open
Abstract
Manganese (Mn) is an essential heavy metal. However, Mn’s nutritional aspects are paralleled by its role as a neurotoxicant upon excessive exposure. In this review, we covered recent advances in identifying mechanisms of Mn uptake and its molecular actions in the brain as well as promising neuroprotective strategies. The authors focused on reporting findings regarding Mn transport mechanisms, Mn effects on cholinergic system, behavioral alterations induced by Mn exposure and studies of neuroprotective strategies against Mn intoxication. We report that exposure to Mn may arise from environmental sources, occupational settings, food, total parenteral nutrition (TPN), methcathinone drug abuse or even genetic factors, such as mutation in the transporter SLC30A10. Accumulation of Mn occurs mainly in the basal ganglia and leads to a syndrome called manganism, whose symptoms of cognitive dysfunction and motor impairment resemble Parkinson’s disease (PD). Various neurotransmitter systems may be impaired due to Mn, especially dopaminergic, but also cholinergic and GABAergic. Several proteins have been identified to transport Mn, including divalent metal tranporter-1 (DMT-1), SLC30A10, transferrin and ferroportin and allow its accumulation in the central nervous system. Parallel to identification of Mn neurotoxic properties, neuroprotective strategies have been reported, and these include endogenous antioxidants (for instance, vitamin E), plant extracts (complex mixtures containing polyphenols and non-characterized components), iron chelating agents, precursors of glutathione (GSH), and synthetic compounds that can experimentally afford protection against Mn-induced neurotoxicity.
Collapse
|
41
|
Sonet J, Bulteau AL, Chavatte L, García-Barrera T, Gómez-Ariza JL, Callejón-Leblic B, Nischwitz V, Theiner S, Galvez L, Koellensperger G, Keppler BK, Roman M, Barbante C, Neth K, Bornhorst J, Michalke B. Biomedical and Pharmaceutical Applications. Metallomics 2016. [DOI: 10.1002/9783527694907.ch13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jordan Sonet
- Centre National de Recherche Scientifique (CNRS)/Université de Pau et des Pays de l'Adour (UPPA), Unité Mixte de Recherche (UMR) 5254; Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux (IPREM), Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE); Technopôle Hélioparc Pau Pyrénées, 2 Avenue du Président Pierre Angot 64000 Pau France
| | - Anne-Laure Bulteau
- Centre National de Recherche Scientifique (CNRS)/Université de Pau et des Pays de l'Adour (UPPA), Unité Mixte de Recherche (UMR) 5254; Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux (IPREM), Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE); Technopôle Hélioparc Pau Pyrénées, 2 Avenue du Président Pierre Angot 64000 Pau France
| | - Laurent Chavatte
- Centre National de Recherche Scientifique (CNRS)/Université de Pau et des Pays de l'Adour (UPPA), Unité Mixte de Recherche (UMR) 5254; Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux (IPREM), Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE); Technopôle Hélioparc Pau Pyrénées, 2 Avenue du Président Pierre Angot 64000 Pau France
| | - Tamara García-Barrera
- University of Huelva; Department of Chemistry, Campus El Carmen; Fuerzas Armadas Ave 21007 Huelva Spain
| | - José Luis Gómez-Ariza
- University of Huelva, Research Center of Health and Environment (CYSMA); Campus El Carmen; Fuerzas Armadas Ave 21007 Huelva Spain
| | - Belén Callejón-Leblic
- University of Huelva; Department of Chemistry, Campus El Carmen; Fuerzas Armadas Ave 21007 Huelva Spain
| | - Volker Nischwitz
- Forschungszentrum Jülich; Central Institute for Engineering, Electronics and Analytics; Analytics (ZEA-3), Wilhelm-Johnen-Straße 52428 Jülich Germany
| | - Sarah Theiner
- University of Vienna; Department of Inorganic Chemistry; Waehringer Strasse 42 1090 Vienna Austria
| | - Luis Galvez
- University of Vienna, Research Platform ‘Translational Cancer Therapy Research’; Waehringer Strasse 42 1090 Vienna Austria
| | - Gunda Koellensperger
- University of Vienna, Department of Analytical Chemistry; Waehringer Strasse 38 1090 Vienna Austria
| | - Bernhard K. Keppler
- University of Vienna; Department of Inorganic Chemistry; Waehringer Strasse 42 1090 Vienna Austria
| | - Marco Roman
- Ca' Foscari University of Venice; Department of Environmental Sciences, Informatics and Statistics (DAIS); Via Torino 155 30172 Venice Italy
| | - Carlo Barbante
- National Research Council; Institute for the Dynamics of Environmental Processes (IDPA-CNR); Via Torino 155 30172 Venice Italy
| | - Katharina Neth
- Helmholtz Center Munich, German Research Center for Environmental Health GmbH; Research Unit: Analytical BioGeoChemistry; Ingolstädter Landstraße 1 85764 Neuherberg Germany
| | - Julia Bornhorst
- University of Potsdam; Department of Food Chemistry, Institute of Nutritional Science; Arthur-Scheunert-Allee 114-116 14558 Nuthetal Germany
| | - Bernhard Michalke
- Helmholtz Center Munich, German Research Center for Environmental Health GmbH; Research Unit: Analytical BioGeoChemistry; Ingolstädter Landstraße 1 85764 Neuherberg Germany
| |
Collapse
|
42
|
Michalke B. Review about the manganese speciation project related to neurodegeneration: An analytical chemistry approach to increase the knowledge about manganese related parkinsonian symptoms. J Trace Elem Med Biol 2016; 37:50-61. [PMID: 27006066 DOI: 10.1016/j.jtemb.2016.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/03/2016] [Accepted: 03/06/2016] [Indexed: 12/20/2022]
Abstract
Neurodegenerative diseases get a growing relevance for societies. But yet the complex multi-factorial mechanisms of these diseases are not fully understood, although it is well accepted that metal ions may play a crucial role. Manganese (Mn) is a transition metal which has essential biochemical functions but from occupational exposure scenarios it appeared that Mn can cause severe neurological damage. This "two-faces"-nature of manganese initiated us to start a project on Mn-speciation, since different element species are known to exhibit different impacts on health. A summary about the step-wise developments and findings from our working group was presented during the annual conference of the German trace element society in 2015. This paper summarizes now the contribution to this conference. It is intended to provide a complete picture of the so far evolved puzzle from our studies regarding manganese, manganese speciation and metabolomics as well as Mn-related mechanisms of neural damage. Doing so, the results of the single studies are now summarized in a connected way and thus their interrelationships are demonstrated. In short terms, we found that Mn-exposure leads to an increase of low molecular weight Mn compounds, above all Mn-citrate complex, which gets even enriched across neural barriers (NB). At a Mn serum concentration between 1.5 and 1.9μg/L a carrier switch from Mn-transferrin to Mn-citrate was observed. We concluded that the Mn-citrate complex is that important Mn-carrier to NB which can be found also beyond NB in human cerebrospinal fluid (CSF) or brain of exposed rats. In brain of Mn-exposed rats manganese leads to a decreased iron (Fe) concentration, to a shift from Fe(III) to Fe(II) after long term exposure and thus to a shift toward oxidative stress. This was additionally supported by an increase of markers for oxidative stress, inflammation or lipid peroxidation at increased Mn concentration in brain extracts. Furthermore, glutamate and acetylcholineesterase were elevated and many metabolite concentrations were significantly changed.
Collapse
Affiliation(s)
- Bernhard Michalke
- Helmholtz Zentrum München-Deutsches Forschungszentrum für Gesundheit und Umwelt, Research Unit Analytical BioGeoChemistry, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany.
| |
Collapse
|
43
|
Potential Role of Epigenetic Mechanism in Manganese Induced Neurotoxicity. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2548792. [PMID: 27314012 PMCID: PMC4899583 DOI: 10.1155/2016/2548792] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/08/2016] [Indexed: 02/07/2023]
Abstract
Manganese is a vital nutrient and is maintained at an optimal level (2.5–5 mg/day) in human body. Chronic exposure to manganese is associated with neurotoxicity and correlated with the development of various neurological disorders such as Parkinson's disease. Oxidative stress mediated apoptotic cell death has been well established mechanism in manganese induced toxicity. Oxidative stress has a potential to alter the epigenetic mechanism of gene regulation. Epigenetic insight of manganese neurotoxicity in context of its correlation with the development of parkinsonism is poorly understood. Parkinson's disease is characterized by the α-synuclein aggregation in the form of Lewy bodies in neuronal cells. Recent findings illustrate that manganese can cause overexpression of α-synuclein. α-Synuclein acts epigenetically via interaction with histone proteins in regulating apoptosis. α-Synuclein also causes global DNA hypomethylation through sequestration of DNA methyltransferase in cytoplasm. An individual genetic difference may also have an influence on epigenetic susceptibility to manganese neurotoxicity and the development of Parkinson's disease. This review presents the current state of findings in relation to role of epigenetic mechanism in manganese induced neurotoxicity, with a special emphasis on the development of Parkinson's disease.
Collapse
|
44
|
Impact of Plant-Derived Flavonoids on Neurodegenerative Diseases. Neurotox Res 2016; 30:41-52. [PMID: 26951456 DOI: 10.1007/s12640-016-9600-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/24/2015] [Accepted: 01/21/2016] [Indexed: 12/27/2022]
Abstract
Neurodegenerative disorders have a common characteristic that is the involvement of different cell types, typically the reactivity of astrocytes and microglia, characterizing gliosis, which in turn contributes to the neuronal dysfunction and or death. Flavonoids are secondary metabolites of plant origin widely investigated at present and represent one of the most important and diversified among natural products phenolic groups. Several biological activities are attributed to this class of polyphenols, such as antitumor activity, antioxidant, antiviral, and anti-inflammatory, among others, which give significant pharmacological importance. Our group have observed that flavonoids derived from Brazilian plants Dimorphandra mollis Bent., Croton betulaster Müll. Arg., e Poincianella pyramidalis Tul., botanical synonymous Caesalpinia pyramidalis Tul. also elicit a broad spectrum of responses in astrocytes and neurons in culture as activation of astrocytes and microglia, astrocyte associated protection of neuronal progenitor cells, neuronal differentiation and neuritogenesis. It was observed the flavonoids also induced neuronal differentiation of mouse embryonic stem cells and human pluripotent stem cells. Moreover, with the objective of seeking preclinical pharmacological evidence of these molecules, in order to assess its future use in the treatment of neurodegenerative disorders, we have evaluated the effects of flavonoids in preclinical in vitro models of neuroinflammation associated with Parkinson's disease and glutamate toxicity associated with ischemia. In particular, our efforts have been directed to identify mechanisms involved in the changes in viability, morphology, and glial cell function induced by flavonoids in cultures of glial cells and neuronal cells alone or in interactions and clarify the relation with their neuroprotective and morphogetic effects.
Collapse
|
45
|
Fernsebner K, Zorn J, Kanawati B, Walker A, Michalke B. Manganese leads to an increase in markers of oxidative stress as well as to a shift in the ratio of Fe(II)/(III) in rat brain tissue. Metallomics 2014; 6:921-31. [PMID: 24599255 DOI: 10.1039/c4mt00022f] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Occupationally or environmentally caused chronic exposure to Manganese (Mn) can lead to a degeneration of dopaminergic neurons inducing a Parkinson-like complaint called manganism. Deciphering the ongoing neurodegenerative mechanisms in the affected brain is still a major task for understanding the complex modes of action. Therefore, we applied a non-toxic, oral feeding in rats simulating a chronic exposure to Mn. Analysis of brain extracts by electrospray ionization Fourier transform resonance mass spectrometry (ESI-FT-ICR-MS) revealed an increase in markers of oxidative stress like glutathione disulfide (GSSG), prostaglandins, and 15(S)-HETE, a marker of lipid peroxidation. Furthermore, acetylcholinesterase (AchE) activity and glutamate concentrations were elevated in brain samples of Mn-supplemented rats, suggesting oxidative stress in the brain tissue. Application of ion chromatography coupled to inductively coupled plasma-optical emission spectrometry (IC-ICP-OES) further showed a shift of Fe(III) towards Fe(II) in the brain samples enabling for example the action of the Fenton reaction. This is the first time that changes in the Fe-species distribution could be related to Mn-induced neuroinflammation and is therefore enlarging the knowledge of this complex neurodegenerative condition. The combination of our findings provides substantial evidence that Mn-induced neuroinflammation leads to oxidative stress triggered by multifactorial pathophysiological processes.
Collapse
Affiliation(s)
- Katharina Fernsebner
- Research Unit Analytical Biogeochemistry, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany.
| | | | | | | | | |
Collapse
|
46
|
Evaluation of phytochemical constituents and antioxidant activity of selected actinorhizal fruits growing in the forests of Northeast India. J Biosci 2014; 38:797-803. [PMID: 24287659 DOI: 10.1007/s12038-013-9363-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Hippophae salicifolia, Elaeagnus pyriformis, Myrica esculenta and M. nagi are actinorhizal plants growing in the sacred forests of Northeast India with multipurpose uses. The present investigation was undertaken to determine the phenol, flavonoid and flavonol contents of the fresh fruit juice of these plant species including the antioxidant potential by means of DPPH, H2O2 and NO scavenging activity and FRP. The total phenolic, flavonoid and flavonol contents of fruit juice ranged from 321.68+/-0.06 to 76.67+/-0.01 mg/g GAE, 272.92+/-0.07 to 20.12+/-0.02 mg/g QE and 258.92+/-0.08 to 18.72+/-0.02 mg/g QE, respectively. At 2.0 mg/mL concentration, DPPH scavenging activity was found to be the highest in M. esculenta (89.62 percent) and the lowest in E. pyriformis (17.58 percent). The reducing power activity was found significantly higher in H. salicifolia juice, which increased with increase in concentration. The H2O2 scavenging activity of H. salicifolia juice was found to be as high as 98.78 percent, while Elaeagnus juice was found to be less effective with just 48.90 percent. Juice of H. salicifolia showed the greatest NO scavenging effect of 75.24 percent as compared to juice of E. pyriformis, where only 37.54 percent scavenging was observed at the same concentration. Taking into account all the experimental data, it can be said that the fruits of H. salicifolia and both M. nagi and M. esculenta have good antioxidant activity compared to fruits of E. pyriformis.
Collapse
|
47
|
Lechpammer M, Clegg MS, Muzar Z, Huebner PA, Jin LW, Gospe SM. Pathology of inherited manganese transporter deficiency. Ann Neurol 2014; 75:608-12. [DOI: 10.1002/ana.24131] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 02/18/2014] [Accepted: 03/04/2014] [Indexed: 12/29/2022]
Affiliation(s)
- Mirna Lechpammer
- Department Pathology and Laboratory Medicine; University of California, Davis Medical Center; Sacramento CA
| | - Michael S. Clegg
- Department of Food Science and Technology; University of California; Davis CA
| | - Zukhrofi Muzar
- Department Pathology and Laboratory Medicine; University of California, Davis Medical Center; Sacramento CA
| | - Philip A. Huebner
- Department Pathology and Laboratory Medicine; University of California, Davis Medical Center; Sacramento CA
| | - Lee-Way Jin
- Department Pathology and Laboratory Medicine; University of California, Davis Medical Center; Sacramento CA
| | - Sidney M. Gospe
- Departments of Neurology and Pediatrics; University of Washington and Seattle Children's Hospital; Seattle WA
| |
Collapse
|
48
|
Michalke B, Fernsebner K. New insights into manganese toxicity and speciation. J Trace Elem Med Biol 2014; 28:106-116. [PMID: 24200516 DOI: 10.1016/j.jtemb.2013.08.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/28/2013] [Accepted: 08/30/2013] [Indexed: 11/16/2022]
Abstract
Manganese (Mn) is known to be a neurotoxic agent for nearly 175 years now. A lot of research has therefore been carried out over the last century. From preliminary describing only symptoms of Mn-(over)exposed workers, research was preceded to more detail on toxic mechanisms of Mn. Unraveling those neurotoxic mechanisms implicated a number of studies, which were summarized partly in several reviews (e.g. Yokel RA. Neuromol Med 2009;11(4):297-310; Aschner M, et al. Toxicology Appl Pharmacol 2007;221(2):131-47; Michalke B, et al. J Environ Monit 2007;9(7):650). Since our recent review on Mn-speciation in 2007 (Michalke B, et al. J Environ Monit 2007;9(7):650), Mn-research was considerably pushed forward and several new research articles were published. The very recent years though, Mn toxicity investigating science is spreading into different fields with very detailed and complex study designs. Especially the mechanisms of Mn-induced neuronal injury on cellular and molecular level was investigated in more detail, discussing neurotransmitter and enzyme interactions, mechanisms of action on DNA level and even inclusion of genetic influences. Depicting the particular Mn-species was also a big issue to determine which molecule is transporting Mn at the cell membranes and which one is responsible for the injury of neuronal tissue. Other special foci on epidemiologic studies were becoming more and more important: These foci were directed toward environmental influences of Mn on especially Parkinson disease prevalence and the ability to carry out follow-up studies about Mn-life-span exposure. All these very far-reaching research applications may finally lead to a suitable future human Mn-biomonitoring for being able to prevent or at least detect the early onset of manganism at the right time.
Collapse
Affiliation(s)
- Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany.
| | - Katharina Fernsebner
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| |
Collapse
|
49
|
Daoust A, Saoudi Y, Brocard J, Collomb N, Batandier C, Bisbal M, Salomé M, Andrieux A, Bohic S, Barbier EL. Impact of manganese on primary hippocampal neurons from rodents. Hippocampus 2014; 24:598-610. [DOI: 10.1002/hipo.22252] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 01/17/2014] [Accepted: 01/24/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Alexia Daoust
- Inserm; U836 Grenoble France
- Université Grenoble Alpes, Grenoble Institut des Neurosciences; Grenoble France
| | - Yasmina Saoudi
- Inserm; U836 Grenoble France
- Université Grenoble Alpes, Grenoble Institut des Neurosciences; Grenoble France
| | - Jacques Brocard
- Inserm; U836 Grenoble France
- Université Grenoble Alpes, Grenoble Institut des Neurosciences; Grenoble France
| | - Nora Collomb
- Inserm; U836 Grenoble France
- Université Grenoble Alpes, Grenoble Institut des Neurosciences; Grenoble France
| | - Cécile Batandier
- Laboratoire de Bioénergétique Fondamentale et Appliquée; Grenoble France
| | - Mariano Bisbal
- Inserm; U836 Grenoble France
- Université Grenoble Alpes, Grenoble Institut des Neurosciences; Grenoble France
| | - Murielle Salomé
- European Synchrotron Radiation Facility (ESRF); Grenoble France
| | - Annie Andrieux
- Inserm; U836 Grenoble France
- Université Grenoble Alpes, Grenoble Institut des Neurosciences; Grenoble France
| | - Sylvain Bohic
- Inserm; U836 Grenoble France
- Université Grenoble Alpes, Grenoble Institut des Neurosciences; Grenoble France
- European Synchrotron Radiation Facility (ESRF); Grenoble France
| | - Emmanuel L. Barbier
- Inserm; U836 Grenoble France
- Université Grenoble Alpes, Grenoble Institut des Neurosciences; Grenoble France
| |
Collapse
|
50
|
Angelé-Martínez C, Goodman C, Brumaghim J. Metal-mediated DNA damage and cell death: mechanisms, detection methods, and cellular consequences. Metallomics 2014; 6:1358-81. [DOI: 10.1039/c4mt00057a] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Metal ions cause various types of DNA damage by multiple mechanisms, and this damage is a primary cause of cell death and disease.
Collapse
Affiliation(s)
| | - Craig Goodman
- Department of Chemistry
- Clemson University
- Clemson, USA
| | | |
Collapse
|