1
|
Palazzo E, Marabese I, Boccella S, Belardo C, Pierretti G, Maione S. Affective and Cognitive Impairments in Rodent Models of Diabetes. Curr Neuropharmacol 2024; 22:1327-1343. [PMID: 38279738 PMCID: PMC11092917 DOI: 10.2174/1570159x22666240124164804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 01/28/2024] Open
Abstract
Diabetes and related acute and long-term complications have a profound impact on cognitive, emotional, and social behavior, suggesting that the central nervous system (CNS) is a crucial substrate for diabetic complications. When anxiety, depression, and cognitive deficits occur in diabetic patients, the symptoms and complications related to the disease worsen, contributing to lower quality of life while increasing health care costs and mortality. Experimental models of diabetes in rodents are a fundamental and valuable tool for improving our understanding of the mechanisms underlying the close and reciprocal link between diabetes and CNS alterations, including the development of affective and cognitive disorders. Such models must reproduce the different components of this pathological condition in humans and, therefore, must be associated with affective and cognitive behavioral alterations. Beyond tight glycemic control, there are currently no specific therapies for neuropsychiatric comorbidities associated with diabetes; animal models are, therefore, essential for the development of adequate therapies. To our knowledge, there is currently no review article that summarizes changes in affective and cognitive behavior in the most common models of diabetes in rodents. Therefore, in this review, we have reported the main evidence on the alterations of affective and cognitive behavior in the different models of diabetes in rodents, the main mechanisms underlying these comorbidities, and the applicable therapeutic strategy.
Collapse
Affiliation(s)
- Enza Palazzo
- Department of Experimental Medicine, Pharamacology Division, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Ida Marabese
- Department of Experimental Medicine, Pharamacology Division, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Serena Boccella
- Department of Experimental Medicine, Pharamacology Division, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Carmela Belardo
- Department of Experimental Medicine, Pharamacology Division, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Gorizio Pierretti
- Department of Plastic Surgery, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Pharamacology Division, University of Campania “L. Vanvitelli”, Naples, Italy
| |
Collapse
|
2
|
Roy MA, Gridley CK, Li S, Park Y, Timme-Laragy AR. Nrf2a dependent and independent effects of early life exposure to 3,3'-dichlorobiphenyl (PCB-11) in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 249:106219. [PMID: 35700651 PMCID: PMC9701526 DOI: 10.1016/j.aquatox.2022.106219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/28/2022] [Accepted: 06/08/2022] [Indexed: 06/03/2023]
Abstract
The environmental pollutant 3,3'-dichlorobiphenyl (PCB-11) is a lower-chlorinated polychlorinated biphenyl (PCB) congener present in air and water samples. Both PCB-11 and its metabolite, 4-PCB-11-Sulfate, are detected in humans, including in pregnant women. Previous research in zebrafish (Danio rerio) has shown that 0.2 μM exposures to 4-PCB-11-Sulfate starting at 1 day post fertilization (dpf) increase hepatic neutral lipid accumulation in larvae at 15 dpf. Here, we explored whether nuclear factor erythroid 2-related factor 2 (Nrf2), known as the master-regulator of the adaptive response to oxidative stress, contributes to metabolic impacts of 4-PCB-11-Sulfate. For this work, embryos were collected from homozygous wildtype or Nrf2a mutant adult zebrafish that also express GFP in pancreatic β-cells, rendering Tg(ins:GFP;nrf2afh318+/+) and Tg(ins:GFP;nrf2afh318-/-) lines. Exposures were conducted from 1-15 dpf to either 0.05% DMSO or DMSO-matched 0.2 µM 4-PCB-11-Sulfate, and at 15 dpf subsets of larvae were imaged for overall morphology, primary pancreatic islet area, and collected for fatty acid profiling and RNAseq. At 15 dpf, independent of genotype, fish exposed to 4-PCB-11-Sulfate survived significantly more at 80-85% compared to 65-73% survival for unexposed fish, and had primary pancreatic islets 8% larger compared to unexposed fish. Fish growth at 15 dpf was dependent on genotype, with Nrf2a mutant fish a significant 3-5% shorter than wildtype fish, and an interaction effect was observed where Nrf2a mutant fish exposed to 4-PCB-11-Sulfate experienced a significant 29% decrease in the omega-3 fatty acid DHA compared to unexposed mutant fish. RNAseq revealed 308 differentially expressed genes, most of which were dependent on genotype. These findings suggest that Nrf2a plays an important role in growth as well as for DHA production in the presence of 4-PCB-11-Sulfate. Further research would be beneficial to understand the importance of Nrf2a throughout the lifecourse, especially in the context of toxicant exposures.
Collapse
Affiliation(s)
- Monika A Roy
- Department of Environmental Health Sciences, University of Massachusetts Amherst, 171B Goessmann Building, 686 N Pleasant St, Amherst, MA 01003, USA; Biotechnology Training Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Charlotte K Gridley
- Department of Environmental Health Sciences, University of Massachusetts Amherst, 171B Goessmann Building, 686 N Pleasant St, Amherst, MA 01003, USA
| | - Sida Li
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Alicia R Timme-Laragy
- Department of Environmental Health Sciences, University of Massachusetts Amherst, 171B Goessmann Building, 686 N Pleasant St, Amherst, MA 01003, USA.
| |
Collapse
|
3
|
Ghaddar B, Diotel N. Zebrafish: A New Promise to Study the Impact of Metabolic Disorders on the Brain. Int J Mol Sci 2022; 23:ijms23105372. [PMID: 35628176 PMCID: PMC9141892 DOI: 10.3390/ijms23105372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023] Open
Abstract
Zebrafish has become a popular model to study many physiological and pathophysiological processes in humans. In recent years, it has rapidly emerged in the study of metabolic disorders, namely, obesity and diabetes, as the regulatory mechanisms and metabolic pathways of glucose and lipid homeostasis are highly conserved between fish and mammals. Zebrafish is also widely used in the field of neurosciences to study brain plasticity and regenerative mechanisms due to the high maintenance and activity of neural stem cells during adulthood. Recently, a large body of evidence has established that metabolic disorders can alter brain homeostasis, leading to neuro-inflammation and oxidative stress and causing decreased neurogenesis. To date, these pathological metabolic conditions are also risk factors for the development of cognitive dysfunctions and neurodegenerative diseases. In this review, we first aim to describe the main metabolic models established in zebrafish to demonstrate their similarities with their respective mammalian/human counterparts. Then, in the second part, we report the impact of metabolic disorders (obesity and diabetes) on brain homeostasis with a particular focus on the blood-brain barrier, neuro-inflammation, oxidative stress, cognitive functions and brain plasticity. Finally, we propose interesting signaling pathways and regulatory mechanisms to be explored in order to better understand how metabolic disorders can negatively impact neural stem cell activity.
Collapse
|
4
|
Diabetes and Alzheimer's Disease: Might Mitochondrial Dysfunction Help Deciphering the Common Path? Antioxidants (Basel) 2021; 10:antiox10081257. [PMID: 34439505 PMCID: PMC8389322 DOI: 10.3390/antiox10081257] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023] Open
Abstract
A growing number of clinical and epidemiological studies support the hypothesis of a tight correlation between type 2 diabetes mellitus (T2DM) and the development risk of Alzheimer's disease (AD). Indeed, the proposed definition of Alzheimer's disease as type 3 diabetes (T3D) underlines the key role played by deranged insulin signaling to accumulation of aggregated amyloid beta (Aβ) peptides in the senile plaques of the brain. Metabolic disturbances such as hyperglycemia, peripheral hyperinsulinemia, dysregulated lipid metabolism, and chronic inflammation associated with T2DM are responsible for an inefficient transport of insulin to the brain, producing a neuronal insulin resistance that triggers an enhanced production and deposition of Aβ and concomitantly contributes to impairment in the micro-tubule-associated protein Tau, leading to neural degeneration and cognitive decline. Furthermore, the reduced antioxidant capacity observed in T2DM patients, together with the impairment of cerebral glucose metabolism and the decreased performance of mitochondrial activity, suggests the existence of a relationship between oxidative damage, mitochondrial impairment, and cognitive dysfunction that could further reinforce the common pathophysiology of T2DM and AD. In this review, we discuss the molecular mechanisms by which insulin-signaling dysregulation in T2DM can contribute to the pathogenesis and progression of AD, deepening the analysis of complex mechanisms involved in reactive oxygen species (ROS) production under oxidative stress and their possible influence in AD and T2DM. In addition, the role of current therapies as tools for prevention or treatment of damage induced by oxidative stress in T2DM and AD will be debated.
Collapse
|
5
|
Huo M, Wang Z, Fu W, Tian L, Li W, Zhou Z, Chen Y, Wei J, Abliz Z. Spatially Resolved Metabolomics Based on Air-Flow-Assisted Desorption Electrospray Ionization-Mass Spectrometry Imaging Reveals Region-Specific Metabolic Alterations in Diabetic Encephalopathy. J Proteome Res 2021; 20:3567-3579. [PMID: 34137614 DOI: 10.1021/acs.jproteome.1c00179] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Spatially resolved metabolic profiling of brain is vital for elucidating tissue-specific molecular histology and pathology underlying diabetic encephalopathy (DE). In this study, a spatially resolved metabolomic method based on air-flow-assisted desorption electrospray ionization-mass spectrometry imaging (AFADESI-MSI) was developed for investigating the region-specific metabolic disturbances in the brain of DE model rats induced by a high-fat diet in combination with streptozotocin administration. A total of 19 discriminating metabolites associated with glycolysis and the pentose phosphate pathway (PPP); the glutamate/gamma aminobutyric acid-glutamine cycle and tricarboxylic acid cycle; nucleotide metabolism; lipid metabolism; carnitine homeostasis; and taurine, ascorbic acid, histidine, and choline metabolism were identified and located in the brains of the diabetic rats simultaneously for the first time. The results indicated that increased glycolytic and PPP activity; dysfunction of mitochondrial metabolism; dysregulation of adenosinergic, glutamatergic, dopaminergic, cholinergic, and histaminergic systems; disorder of osmotic regulation and antioxidant system; and disorder of lipid metabolism occur in a region-specific fashion in the brains of DE rats. Thus, this study provides valuable information regarding the molecular pathological signature of DE. These findings also underline the high potential of AFADESI-MSI for applications in various central nervous system diseases.
Collapse
Affiliation(s)
- Meiling Huo
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Zhonghua Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Wenqing Fu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Lu Tian
- New Drug Safety Evaluation Center, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Wanfang Li
- New Drug Safety Evaluation Center, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Zhi Zhou
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Yanhua Chen
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Jinfeng Wei
- New Drug Safety Evaluation Center, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Zeper Abliz
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China.,Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing 100081, P. R. China
| |
Collapse
|
6
|
Mahmoud S, Latif Y, Orban H, Ibrahim A, Hussein J. Docosahexaenoic acid modulates oxidative stress and monoamines levels in brain of streptozotocin-induced diabetic rats. ACTA FACULTATIS MEDICAE NAISSENSIS 2021. [DOI: 10.5937/afmnai38-28984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The prevalence of diabetes mellitus (DM) is increasing in many countries. A lower prevalence of DM type 2 and other glucose metabolism disorders was observed in populations consuming larger amounts of n-3 polyunsaturated fatty acids, existing mainly in fish. Docosahexaenoic acid (DHA) is an important signaling molecule required for the central nervous system continuous maintenance of brain functioning. The aim of this research is to highlight the role of DHA in controlling glycemic measures and modulating the oxidant/antioxidant status and levels of neurotransmitters in brains of diabetic rats. Diabetes was induced with a single s.c. injection of streptozotocin (STZ) (6.0 mg/0.5 ml/100 g body weight). Experimental male Wister rats (n=40) were randomly divided into four groups: control group, DHA, STZ-diabetic, and STZ + DHA. All rats were decapitated after 30 days to evaluate glucose and insulin levels, brain oxidative stress and also to estimate monoamines levels. DHA administration significantly improved fasting blood glucose and insulin levels compared to the DHA+STZ group and decreased 8-hydroxy-2'-deoxyguanosine level in their urine. In addition, DHA treatment to STZ-treated rats showed a decrease in malondialdehyde content and advanced oxidation protein product and significantly increased glutathione content in brains of DHA + STZ-treated rats, and decreased the level of monoamines in rat's brain. To conclude: DHA modulated the elevated oxidative stress and neurotransmitters levels, and also acetylcholinesterase activity in diabetic rat brain via enhancing insulin level in serum
Collapse
|
7
|
Diaz A, Muñoz‐Arenas G, Caporal‐Hernandez K, Vázquez‐Roque R, Lopez‐Lopez G, Kozina A, Espinosa B, Flores G, Treviño S, Guevara J. Gallic acid improves recognition memory and decreases oxidative‐inflammatory damage in the rat hippocampus with metabolic syndrome. Synapse 2020; 75:e22186. [DOI: 10.1002/syn.22186] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/28/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Alfonso Diaz
- Facultad de Ciencias Quimicas Benemerita Universidad Autonoma de Puebla Puebla Mexico
| | | | | | - Rubén Vázquez‐Roque
- Laboratorio de Neuropsiquiatria Instituto de Fisiologia Benemerita Universidad Autonoma de Puebla Puebla Mexico
| | - Gustavo Lopez‐Lopez
- Facultad de Ciencias Quimicas Benemerita Universidad Autonoma de Puebla Puebla Mexico
| | - Anna Kozina
- Instituto de Química Universidad Nacional Autonoma de México Ciudad de Mexico Mexico
| | - Blanca Espinosa
- Departamento de Bioquimica Instituto Nacional de Enfermedades Respiratorias, ICV Ciudad de Mexico Mexico
| | - Gonzalo Flores
- Laboratorio de Neuropsiquiatria Instituto de Fisiologia Benemerita Universidad Autonoma de Puebla Puebla Mexico
| | - Samuel Treviño
- Facultad de Ciencias Quimicas Benemerita Universidad Autonoma de Puebla Puebla Mexico
| | - Jorge Guevara
- Departamento de Bioquimica Facultad de Medicina Universidad Nacional Autonoma de México Ciudad de Mexico Mexico
| |
Collapse
|
8
|
Giribabu N, Karim K, Kilari EK, Nelli SR, Salleh N. Oral administration of Centella asiatica (L.) Urb leave aqueous extract ameliorates cerebral oxidative stress, inflammation, and apoptosis in male rats with type-2 diabetes. Inflammopharmacology 2020; 28:1599-1622. [DOI: 10.1007/s10787-020-00733-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 06/10/2020] [Indexed: 12/25/2022]
|
9
|
Effect of sildenafil on neuroinflammation and synaptic plasticity pathways in experimental autoimmune encephalomyelitis. Int Immunopharmacol 2020; 85:106581. [PMID: 32442900 DOI: 10.1016/j.intimp.2020.106581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/17/2020] [Accepted: 05/07/2020] [Indexed: 12/25/2022]
Abstract
Multiple sclerosis (MS) is a chronic immuno-inflammatory disease of the central nervous system characterized by demyelination and axonal damage. Cognitive changes are common in individuals with MS since inflammatory molecules secreted by microglia interfere with the physiological mechanisms of synaptic plasticity. According to previous data, inhibition of PDE5 promotes the accumulation of cGMP, which inhibits neuroinflammation and seems to improve synaptic plasticity and memory. The present study aimed to evaluate the effect of sildenafil on the signaling pathways of neuroinflammation and synaptic plasticity in experimental autoimmune encephalomyelitis (EAE). C57BL/6 mice were divided into three experimental groups (n = 10/group): (a) Control; (b) EAE; (c) EAE + sild (25 mg/kg/21 days). Sildenafil was able to delay the onset and attenuate the severity of the clinical symptoms of EAE. The drug also reduced the infiltration of CD4+ T lymphocytes and their respective IL-17 and TNF-α cytokines. Moreover, sildenafil reduced neuroinflammation in the hippocampus (assessed by the reduction of inflammatory markers IL-1β, pIKBα and pNFkB and reactive gliosis, as well as elevating the inhibitory cytokines TGF-β and IL-10). Moreover, sildenafil induced increased levels of NeuN, BDNF and pCREB, protein kinases (PKA, PKG, and pERK) and synaptophysin, and modulated the expression of the glutamate receptors AMPA and NMDA. The present findings demonstrated that sildenafil has therapeutic potential for cognitive deficit associated with multiple sclerosis.
Collapse
|
10
|
Sun Y, Ma C, Sun H, Wang H, Peng W, Zhou Z, Wang H, Pi C, Shi Y, He X. Metabolism: A Novel Shared Link between Diabetes Mellitus and Alzheimer's Disease. J Diabetes Res 2020; 2020:4981814. [PMID: 32083135 PMCID: PMC7011481 DOI: 10.1155/2020/4981814] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/29/2019] [Accepted: 01/14/2020] [Indexed: 12/14/2022] Open
Abstract
As a chronic metabolic disease, diabetes mellitus (DM) is broadly characterized by elevated levels of blood glucose. Novel epidemiological studies demonstrate that some diabetic patients have an increased risk of developing dementia compared with healthy individuals. Alzheimer's disease (AD) is the most frequent cause of dementia and leads to major progressive deficits in memory and cognitive function. Multiple studies have identified an increased risk for AD in some diabetic populations, but it is still unclear which diabetic patients will develop dementia and which biological characteristics can predict cognitive decline. Although few mechanistic metabolic studies have shown clear pathophysiological links between DM and AD, there are several plausible ways this may occur. Since AD has many characteristics in common with impaired insulin signaling pathways, AD can be regarded as a metabolic disease. We conclude from the published literature that the body's diabetic status under certain circumstances such as metabolic abnormalities can increase the incidence of AD by affecting glucose transport to the brain and reducing glucose metabolism. Furthermore, due to its plentiful lipid content and high energy requirement, the brain's metabolism places great demands on mitochondria. Thus, the brain may be more susceptible to oxidative damage than the rest of the body. Emerging evidence suggests that both oxidative stress and mitochondrial dysfunction are related to amyloid-β (Aβ) pathology. Protein changes in the unfolded protein response or endoplasmic reticulum stress can regulate Aβ production and are closely associated with tau protein pathology. Altogether, metabolic disorders including glucose/lipid metabolism, oxidative stress, mitochondrial dysfunction, and protein changes caused by DM are associated with an impaired insulin signal pathway. These metabolic factors could increase the prevalence of AD in diabetic patients via the promotion of Aβ pathology.
Collapse
Affiliation(s)
- Yanan Sun
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Cao Ma
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
- Department of Pathology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Hui Sun
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Huan Wang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Wei Peng
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
- Department of Clinical Medicine, Jilin University, Changchun 130021, China
| | - Zibo Zhou
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
- Department of Clinical Medicine, Jilin University, Changchun 130021, China
| | - Hongwei Wang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
- Department of Clinical Medicine, Jilin University, Changchun 130021, China
| | - Chenchen Pi
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
- The First Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Yingai Shi
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Xu He
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
11
|
Mechanism of the neuroprotective effect of GLP-1 in a rat model of Parkinson's with pre-existing diabetes. Neurochem Int 2019; 131:104583. [DOI: 10.1016/j.neuint.2019.104583] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 01/21/2023]
|
12
|
Sanjari Moghaddam H, Ghazi Sherbaf F, Aarabi MH. Brain microstructural abnormalities in type 2 diabetes mellitus: A systematic review of diffusion tensor imaging studies. Front Neuroendocrinol 2019; 55:100782. [PMID: 31401292 DOI: 10.1016/j.yfrne.2019.100782] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/27/2019] [Accepted: 08/07/2019] [Indexed: 12/13/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is associated with deficits in the structure and function of the brain. Diffusion tensor imaging (DTI) is a highly sensitive method for characterizing cerebral tissue microstructure. Using PRISMA guidelines, we identified 29 studies which have demonstrated widespread brain microstructural impairment and topological network disorganization in patients with T2DM. Most consistently reported structures with microstructural abnormalities were frontal, temporal, and parietal lobes in the lobar cluster; corpus callosum, cingulum, uncinate fasciculus, corona radiata, and internal and external capsules in the white matter cluster; thalamus in the subcortical cluster; and cerebellum. Microstructural abnormalities were correlated with pathological derangements in the endocrine profile as well as deficits in cognitive performance in the domains of memory, information-processing speed, executive function, and attention. Altogether, the findings suggest that the detrimental effects of T2DM on cognitive functions might be due to microstructural disruptions in the central neural structures.
Collapse
Affiliation(s)
| | - Farzaneh Ghazi Sherbaf
- Neuroradiology Division, Tehran University of Medical Sciences, School of Medicine, Tehran, Iran
| | - Mohammad Hadi Aarabi
- Neuroradiology Division, Tehran University of Medical Sciences, School of Medicine, Tehran, Iran.
| |
Collapse
|
13
|
Etchegoyen M, Nobile MH, Baez F, Posesorski B, González J, Lago N, Milei J, Otero-Losada M. Metabolic Syndrome and Neuroprotection. Front Neurosci 2018; 12:196. [PMID: 29731703 PMCID: PMC5919958 DOI: 10.3389/fnins.2018.00196] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/12/2018] [Indexed: 12/17/2022] Open
Abstract
Introduction: Over the years the prevalence of metabolic syndrome (MetS) has drastically increased in developing countries as a major byproduct of industrialization. Many factors, such as the consumption of high-calorie diets and a sedentary lifestyle, bolster the spread of this disorder. Undoubtedly, the massive and still increasing incidence of MetS places this epidemic as an important public health issue. Hereon we revisit another outlook of MetS beyond its classical association with cardiovascular disease (CVD) and Diabetes Mellitus Type 2 (DM2), for MetS also poses a risk factor for the nervous tissue and threatens neuronal function. First, we revise a few essential concepts of MetS pathophysiology. Second, we explore some neuroprotective approaches in MetS pertaining brain hypoxia. The articles chosen for this review range from the years 1989 until 2017; the selection criteria was based on those providing data and exploratory information on MetS as well as those that studied innovative therapeutic approaches. Pathophysiology: The characteristically impaired metabolic pathways of MetS lead to hyperglycemia, insulin resistance (IR), inflammation, and hypoxia, all closely associated with an overall pro-oxidative status. Oxidative stress is well-known to cause the wreckage of cellular structures and tissue architecture. Alteration of the redox homeostasis and oxidative stress alter the macromolecular array of DNA, lipids, and proteins, in turn disrupting the biochemical pathways necessary for normal cell function. Neuroprotection: Different neuroprotective strategies are discussed involving lifestyle changes, medication aimed to mitigate MetS cardinal symptoms, and treatments targeted toward reducing oxidative stress. It is well-known that the routine practice of physical exercise, aerobic activity in particular, and a complete and well-balanced nutrition are key factors to prevent MetS. Nevertheless, pharmacological control of MetS as a whole and pertaining hypertension, dyslipidemia, and endothelial injury contribute to neuronal health improvement. Conclusion: The development of MetS has risen as a risk factor for neurological disorders. The therapeutic strategies include multidisciplinary approaches directed to address different pathological pathways all in concert.
Collapse
Affiliation(s)
- Melisa Etchegoyen
- Institute of Cardiological Research, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Mariana H Nobile
- Institute of Cardiological Research, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Francisco Baez
- Institute of Cardiological Research, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Barbara Posesorski
- Institute of Cardiological Research, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Julian González
- Institute of Cardiological Research, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Néstor Lago
- Institute of Cardiovascular Pathophysiology, School of Medicine, University of Buenos Aires, UBA-CONICET, Buenos Aires, Argentina
| | - José Milei
- Institute of Cardiological Research, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Matilde Otero-Losada
- Institute of Cardiological Research, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
14
|
Taurine counteracts the neurotoxic effects of streptozotocin-induced diabetes in rats. Amino Acids 2017; 50:95-104. [DOI: 10.1007/s00726-017-2495-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 09/18/2017] [Indexed: 01/07/2023]
|
15
|
Abdel-Moneim A, Yousef AI, Abd El-Twab SM, Abdel Reheim ES, Ashour MB. Gallic acid and p-coumaric acid attenuate type 2 diabetes-induced neurodegeneration in rats. Metab Brain Dis 2017; 32:1279-1286. [PMID: 28573601 DOI: 10.1007/s11011-017-0039-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 05/24/2017] [Indexed: 10/19/2022]
Abstract
The brain of diabetics revealed deterioration in many regions, especially the hippocampus. Hence, the present study aimed to evaluate the effects of gallic acid and p-coumaric acid against the hippocampal neurodegeneration in type 2 diabetic rats. Adult male albino rats were randomly allocated into four groups: Group 1 served as control ones and others were induced with diabetes. Group 2 considered as diabetic, and groups 3 and 4 were further orally treated with gallic acid (20 mg/kg b.wt./day) and p-coumaric acid (40 mg/kg b.wt./day) for six weeks. Diabetic rats revealed significant elevation in the levels of serum glucose, blood glycosylated hemoglobin and serum tumor necrosis factor-α, while the level of serum insulin was significantly declined. Furthermore, the brain of diabetic rats showed a marked increase in oxidative stress and a decrease of antioxidant parameters as well as upregulation the protein expression of Bax and downregulation the protein expression of Bcl-2 in the hippocampus. Treatment of diabetic rats with gallic acid and p-coumaric acid significantly ameliorated glucose tolerance, diminished the brain oxidative stress and improved antioxidant status, declined inflammation and inhibited apoptosis in the hippocampus. The overall results suggested that gallic acid and p-coumaric acid may inhibit hippocampal neurodegeneration via their potent antioxidant, anti-inflammatory and anti-apoptotic properties. Therefore, both compounds can be recommended as hopeful adjuvant agents against brain neurodegeneration in diabetics.
Collapse
Affiliation(s)
- Adel Abdel-Moneim
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Ahmed I Yousef
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Sanaa M Abd El-Twab
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Eman S Abdel Reheim
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Mohamed B Ashour
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| |
Collapse
|
16
|
Rebai R, Jasmin L, Boudah A. The antidepressant effect of melatonin and fluoxetine in diabetic rats is associated with a reduction of the oxidative stress in the prefrontal and hippocampal cortices. Brain Res Bull 2017; 134:142-150. [PMID: 28746841 DOI: 10.1016/j.brainresbull.2017.07.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/10/2017] [Accepted: 07/19/2017] [Indexed: 12/16/2022]
Abstract
In the past few years possible mechanisms that link diabetes and depression have been found. One of these mechanisms is the increase in lipid peroxidation and decrease in antioxidant activity in the hippocampal and prefrontal cortices, which are brain areas involved in mood. The goal of the present study was to evaluate the effect of an antidepressant and of an antioxidant on behavior and oxidative activity in brains of diabetic rats. Rats rendered diabetic after a treatment with streptozotocin (STZ) (60mg/kg) were treated with fluoxetine (15mg/kg), melatonin (10mg/kg), or vehicle for 4 weeks. All animals were tested for signs of depression and anxiety using the elevated plus maze (EPM), open field test (OFT) and the forced swim test (FST). Four groups were compared: (1) normoglycemic, (2) hyperglycemic vehicle treated, and hyperglycemic (3) fluoxetine or (4) melatonin treated rats. On the last day of the study, blood samples were obtained to determine the levels of hemoglobin A1c (HbA1c). Also, brain samples were collected to measure the oxidative stress in the hippocampal and prefrontal cortices using the thiobarbituric acid reactive substances (TBARS) assay. The activity of the antioxidant enzymes catalase (CAT), glutathione peroxidase (GPx), and glutathione S-transferase (GST) were also measured on the brain samples. The results show that both fluoxetine and melatonin decrease the signs of depression and anxiety in all tests. Concomitantly, the levels of HbA1c were reduced in drug treated rats, and to a greater degree in the fluoxetine group. In the cerebral cortex of diabetic rats, TBARS was increased, while the activity of CAT, GPx and GST were decreased. Fluoxetine and melatonin treatments decreased TBARS in both cortices. In the prefrontal cortex, fluoxetine and melatonin restored the activity of CAT, while only melatonin improved the activity of GPx and GST. In the hippocampus, the activity of GPx alone was restored by melatonin, while fluoxetine had no effect. These results suggest that antidepressants and antioxidants can counter the mood and oxidative disorders associated with diabetes. While these effects could result from a decreased production of reactive oxygen species (ROS) remains to be established.
Collapse
Affiliation(s)
- Redouane Rebai
- Department of Biochemistry & Molecular and Cellular Biology, Faculty of Natural and Life Sciences, University of Mentouri Brothers, Constantine BP, 325 Road of Ain El Bey, 25017 Constantine, Algeria.
| | - Luc Jasmin
- Department of Oral and Maxillofacial Surgery, University of California, 521 Parnassus Ave, Campus Box 0440, San Francisco, CA 94143, USA.
| | - Abdennacer Boudah
- National Higher School of Biotechnology, Ville universitaire Ali Mendjeli, BP E66 25100 Constantine, Algeria.
| |
Collapse
|
17
|
Perez SD, Du K, Rendeiro C, Wang L, Wu Q, Rubakhin SS, Vazhappilly R, Baxter JH, Sweedler JV, Rhodes JS. A unique combination of micronutrients rejuvenates cognitive performance in aged mice. Behav Brain Res 2017; 320:97-112. [DOI: 10.1016/j.bbr.2016.11.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/30/2016] [Accepted: 11/03/2016] [Indexed: 12/16/2022]
|
18
|
Gaspar JM, Baptista FI, Macedo MP, Ambrósio AF. Inside the Diabetic Brain: Role of Different Players Involved in Cognitive Decline. ACS Chem Neurosci 2016; 7:131-42. [PMID: 26667832 DOI: 10.1021/acschemneuro.5b00240] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus is the most common metabolic disease, and its prevalence is increasing. A growing body of evidence, both in animal models and epidemiological studies, has demonstrated that metabolic diseases like obesity, insulin resistance, and diabetes are associated with alterations in the central nervous system (CNS), being linked with development of cognitive and memory impairments and presenting a higher risk for dementia and Alzheimer's disease. The rising prevalence of diabetes together with its increasing earlier onset suggests that diabetes-related cognitive dysfunction will increase in the near future, causing substantial socioeconomic impact. Decreased insulin secretion or action, dysregulation of glucose homeostasis, impairment in the hypothalamic-pituitary-adrenal axis, obesity, hyperleptinemia, and inflammation may act independently or synergistically to disrupt neuronal homeostasis and cause diabetes-associated cognitive decline. However, the crosstalk between those factors and the mechanisms underlying the diabetes-related CNS complications is still elusive. During the past few years, different strategies (neuroprotective and antioxidant drugs) have emerged as promising therapies for this complication, which still remains to be preventable or treatable. This Review summarizes fundamental past and ongoing research on diabetes-associated cognitive decline, highlighting potential contributors, mechanistic mediators, and new pharmacological approaches to prevent and/or delay this complication.
Collapse
Affiliation(s)
- Joana M. Gaspar
- CEDOC,
Chronic Diseases Research Centre, NOVA Medical School/Faculdade de
Ciências Médicas, Universidade Nova de Lisboa, Edifício
CEDOC - IIRua Câmara Pestana no. 6, 6A e 6B, 1150-082 Lisboa, Portugal
- Institute
for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Portuguese Diabetes Association (APDP), R. do Salitre 118-120, 1250-203 Lisboa, Portugal
| | - Filipa I. Baptista
- Institute
for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CNC.IBILI
Consortium, University of Coimbra, 3004-517 Coimbra, Portugal
| | - M. Paula Macedo
- CEDOC,
Chronic Diseases Research Centre, NOVA Medical School/Faculdade de
Ciências Médicas, Universidade Nova de Lisboa, Edifício
CEDOC - IIRua Câmara Pestana no. 6, 6A e 6B, 1150-082 Lisboa, Portugal
- Portuguese Diabetes Association (APDP), R. do Salitre 118-120, 1250-203 Lisboa, Portugal
| | - António F. Ambrósio
- Institute
for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CNC.IBILI
Consortium, University of Coimbra, 3004-517 Coimbra, Portugal
- AIBILI, 3000-548 Coimbra, Portugal
| |
Collapse
|
19
|
Cui W, Zhang Y, Lu D, Ren M, Yuan G. Upregulation of p‑Akt by glial cell line‑derived neurotrophic factor ameliorates cell apoptosis in the hippocampus of rats with streptozotocin‑induced diabetic encephalopathy. Mol Med Rep 2015; 13:543-9. [PMID: 26549420 DOI: 10.3892/mmr.2015.4507] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 09/22/2015] [Indexed: 11/06/2022] Open
Abstract
The loss of neurotrophic factor support has been shown to contribute to the development of the central nervous system. Glial cell line‑derived neurotrophic factor (GDNF), a potent neurotrophic factor, is closely associated with apoptosis and exerts neuroprotective effects on numerous populations of cells. However, the underlying mechanisms of these protective effects remain unknown. In the present study, a significant increase in Bax levels and DNA fragmentation was observed in the hippocampus obtained from the brains of diabetic rats 60 days after diabetes had been induced. The apoptotic changes were correlated with the loss of GDNF/Akt signaling. GDNF administration was found to reverse the diabetes‑induced Bax and DNA fragmentation changes. This was associated with an improvement in the level of p‑Akt/Akt. In addition, combination of GDNF with a specific inhibitor of the phosphoinositide 3‑kinase (PI3K)/Akt pathway, Wortmannin, significantly abrogated the effects of GDNF on the levels of p‑Akt/Akt, Bax and DNA fragmentation. However, a p38 mitogen‑activated proten kinase (MAPK) inhibitor, SB203580, had no effect on the expression of p‑Akt/Akt, Bax or DNA fragmentation. These results demonstrate the pivotal role of GDNF as well as the PI3K/Akt pathway, but not the MAPK pathway, in the prevention of diabetes‑induced neuronal apoptosis in the hippocampus.
Collapse
Affiliation(s)
- Weigang Cui
- Henan Key Laboratory of Medical Tissue Regeneration, Department of Human Anatomy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Yinghua Zhang
- Henan Key Laboratory of Medical Tissue Regeneration, Department of Human Anatomy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Derong Lu
- Department of Internal Digestive Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Mingxin Ren
- Henan Key Laboratory of Medical Tissue Regeneration, Department of Human Anatomy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Guoyan Yuan
- Department of Neurosurgery, The First Affiliated Hospital, Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| |
Collapse
|
20
|
Trépanier MO, Hopperton KE, Orr SK, Bazinet RP. N-3 polyunsaturated fatty acids in animal models with neuroinflammation: An update. Eur J Pharmacol 2015; 785:187-206. [PMID: 26036964 DOI: 10.1016/j.ejphar.2015.05.045] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/13/2015] [Accepted: 05/21/2015] [Indexed: 12/19/2022]
Abstract
Neuroinflammation is a characteristic of a multitude of neurological and psychiatric disorders. Modulating inflammatory pathways offers a potential therapeutic target in these disorders. Omega-3 polyunsaturated fatty acids have anti-inflammatory and pro-resolving properties in the periphery, however, their effect on neuroinflammation is less studied. This review summarizes 61 animal studies that tested the effect of omega-3 polyunsaturated fatty acids on neuroinflammatory outcomes in vivo in various models including stroke, spinal cord injury, aging, Alzheimer's disease, Parkinson's disease, lipopolysaccharide and IL-1β injections, diabetes, neuropathic pain, traumatic brain injury, depression, surgically induced cognitive decline, whole body irradiation, amyotrophic lateral sclerosis, N-methyl-D-aspartate-induced excitotoxicity and lupus. The evidence presented in this review suggests anti-neuroinflammatory properties of omega-3 polyunsaturated fatty acids, however, it is not clear by which mechanism omega-3 polyunsaturated fatty acids exert their effect. Future research should aim to isolate the effect of omega-3 polyunsaturated fatty acids on neuroinflammatory signaling in vivo and elucidate the mechanisms underlying these effects.
Collapse
Affiliation(s)
- Marc-Olivier Trépanier
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2
| | - Kathryn E Hopperton
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2
| | - Sarah K Orr
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2
| | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2.
| |
Collapse
|
21
|
Yao M, Hou L, Xie T, Liu Y, Dai D, Shi Y, Lian K, Jiang L. The biosynthesis of DHA is increased in the liver of diabetic rats induced by high-fat diets and STZ, in correlation with increased activity of peroxisomal β-oxidation. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201400606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Min Yao
- Department of Biochemistry Molecular Biology; Key Laboratory of Neural Vascular Biology China Administration of Education; Hebei Medical University; Shijiazhuang P. R. China
| | - Lianguo Hou
- Department of Biochemistry Molecular Biology; Key Laboratory of Neural Vascular Biology China Administration of Education; Hebei Medical University; Shijiazhuang P. R. China
| | - Tian Xie
- Department of Biochemistry Molecular Biology; Key Laboratory of Neural Vascular Biology China Administration of Education; Hebei Medical University; Shijiazhuang P. R. China
| | - Yang Liu
- Department of Biochemistry Molecular Biology; Key Laboratory of Neural Vascular Biology China Administration of Education; Hebei Medical University; Shijiazhuang P. R. China
| | - Dongxue Dai
- Department of Biochemistry Molecular Biology; Key Laboratory of Neural Vascular Biology China Administration of Education; Hebei Medical University; Shijiazhuang P. R. China
| | - Yun Shi
- Department of Biochemistry Molecular Biology; Key Laboratory of Neural Vascular Biology China Administration of Education; Hebei Medical University; Shijiazhuang P. R. China
| | - Kaoqi Lian
- School of Public Health; Hebei Medical University; Shijiazhuang P. R. China
| | - Lingling Jiang
- Department of Biochemistry Molecular Biology; Key Laboratory of Neural Vascular Biology China Administration of Education; Hebei Medical University; Shijiazhuang P. R. China
| |
Collapse
|
22
|
Matching Diabetes and Alcoholism: Oxidative Stress, Inflammation, and Neurogenesis Are Commonly Involved. Mediators Inflamm 2015; 2015:624287. [PMID: 26063976 PMCID: PMC4439509 DOI: 10.1155/2015/624287] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/18/2014] [Accepted: 11/18/2014] [Indexed: 12/13/2022] Open
Abstract
Diabetes and alcohol misuse are two of the major challenges in health systems worldwide. These two diseases finally affect several organs and systems including the central nervous system. Hippocampus is one of the most relevant structures due to neurogenesis and memory-related processing among other functions. The present review focuses on the common profile of diabetes and ethanol exposure in terms of oxidative stress and proinflammatory and prosurvival recruiting transcription factors affecting hippocampal neurogenesis. Some aspects around antioxidant strategies are also included. As a global conclusion, the present review points out some common hits on both diseases giving support to the relations between alcohol intake and diabetes.
Collapse
|
23
|
Yonguc GN, Dodurga Y, Adiguzel E, Gundogdu G, Kucukatay V, Ozbal S, Yilmaz I, Cankurt U, Yilmaz Y, Akdogan I. Grape seed extract has superior beneficial effects than vitamin E on oxidative stress and apoptosis in the hippocampus of streptozotocin induced diabetic rats. Gene 2014; 555:119-26. [PMID: 25445279 DOI: 10.1016/j.gene.2014.10.052] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 10/24/2014] [Accepted: 10/28/2014] [Indexed: 01/16/2023]
Abstract
We aimed to investigate the effects of grape seed extract (GSE) and vitamin E (Vit E) on oxidative stress and apoptosis in the hippocampus of streptozotocin-induced diabetic rats. In Control, Diabetic, and Diabetic treated with GSE (Diabetic+GSE) and vitamin E (Diabetic+Vit E) groups, oxidative stress index (OSI), TUNEL staining and Bcl-2, Bcl-XL, Bax, caspase-3, -9, and -8, Cyt-c, TNF-α, and NF-κB gene expressions were evaluated. OSI was significantly increased in the plasma and hippocampus of the Diabetic compared to Control group and decreased in Diabetic+GSE and Diabetic+Vit E groups compared to Diabetic. TUNEL positive neurons significantly increased in the hippocampus of the Diabetic group compared to Control and decreased in Diabetic+GSE (more prominently) and Diabetic+Vit E groups compared to Diabetic. In the hippocampus of the Diabetic group, Bcl-2 and Bcl-XL gene expressions were significantly decreased; Bax, caspase-3, -9, and -8, Cyt-c, TNF-α, and NF-κB gene expressions were significantly increased compared to Control. In Diabetic+GSE and Diabetic+Vit E groups, Bcl-2 gene expressions were significantly increased; Bcl-XL gene expressions did not differ compared to the Diabetic group. The expression of Bax, caspase-3, -9, and -8, Cyt-c, TNF-α, and NF-κB genes in the Diabetic+GSE group and the expression of caspase-3 and -9, TNF-α, and NF-κB genes in the Diabetic+Vit E group were significantly decreased compared to Diabetic. In conclusion, GSE (more prominently) and vitamin E decreased oxidative stress and neuronal apoptosis occurring in the hippocampus of diabetic rats.
Collapse
Affiliation(s)
| | - Yavuz Dodurga
- Pamukkale University School of Medicine, Department of Medical Biology, Denizli, Turkey.
| | - Esat Adiguzel
- Pamukkale University School of Medicine, Department of Anatomy, Denizli, Turkey
| | - Gulsah Gundogdu
- Pamukkale University School of Medicine, Department of Physiology, Denizli, Turkey
| | - Vural Kucukatay
- Pamukkale University School of Medicine, Department of Physiology, Denizli, Turkey
| | - Seda Ozbal
- Dokuz Eylul University School of Medicine, Department of Histology and Embryology, Izmir, Turkey
| | - Ismail Yilmaz
- Izmir Bozyaka Training and Research Hospital, Department of Pharmacology, Izmir, Turkey
| | - Ulker Cankurt
- Dokuz Eylul University School of Medicine, Department of Histology and Embryology, Izmir, Turkey
| | - Yusuf Yilmaz
- Mehmet Akif Ersoy University Faculty of Engineering and Architecture, Department of Food Engineering, Burdur, Turkey
| | - Ilgaz Akdogan
- Pamukkale University School of Medicine, Department of Anatomy, Denizli, Turkey
| |
Collapse
|
24
|
Diabetes and the brain: oxidative stress, inflammation, and autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:102158. [PMID: 25215171 PMCID: PMC4158559 DOI: 10.1155/2014/102158] [Citation(s) in RCA: 292] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 07/30/2014] [Accepted: 07/30/2014] [Indexed: 12/19/2022]
Abstract
Diabetes mellitus is a common metabolic disorder associated with chronic complications including a state of mild to moderate cognitive impairment, in particular psychomotor slowing and reduced mental flexibility, not attributable to other causes, and shares many symptoms that are best described as accelerated brain ageing. A common theory for aging and for the pathogenesis of this cerebral dysfunctioning in diabetes relates cell death to oxidative stress in strong association to inflammation, and in fact nuclear factor κB (NFκB), a master regulator of inflammation and also a sensor of oxidative stress, has a strategic position at the crossroad between oxidative stress and inflammation. Moreover, metabolic inflammation is, in turn, related to the induction of various intracellular stresses such as mitochondrial oxidative stress, endoplasmic reticulum (ER) stress, and autophagy defect. In parallel, blockade of autophagy can relate to proinflammatory signaling via oxidative stress pathway and NFκB-mediated inflammation.
Collapse
|
25
|
Orr SK, Trépanier MO, Bazinet RP. n-3 Polyunsaturated fatty acids in animal models with neuroinflammation. Prostaglandins Leukot Essent Fatty Acids 2013; 88:97-103. [PMID: 22770766 DOI: 10.1016/j.plefa.2012.05.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/16/2012] [Accepted: 05/18/2012] [Indexed: 11/24/2022]
Abstract
Neuroinflammation is present in the majority of acute and chronic neurological disorders. Excess or prolonged inflammation in the brain is thought to exacerbate neuronal damage and loss. Identifying modulators of neuroinflammation is an active area of study since it may lead to novel therapies. Omega-3 polyunsaturated fatty acids (n-3 PUFA) are anti-inflammatory in many non-neural tissues; their role in neuroinflammation is less studied. This review summarizes the relationship between n-3 PUFA and brain inflammation in animal models of brain injury and aging. Evidence by and large shows protective effects of n-3 PUFA in models of sickness behavior, stroke, aging, depression, Parkinson's disease, diabetes, and cytokine- and irradiation-induced cognitive impairments. However, rigorous studies that test the direct effects of n-3 PUFA in neuroinflammation in vivo are lacking. Future research in this area is necessary to determine if, and if so which, n-3 PUFA directly target brain inflammatory pathways. n-3 PUFA bioactive metabolites may provide novel therapeutic targets for neurological disorders with a neuroinflammatory component.
Collapse
Affiliation(s)
- Sarah K Orr
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2
| | | | | |
Collapse
|