1
|
Dewanjee S, Bhattacharya H, Bhattacharyya C, Chakraborty P, Fleishman J, Alexiou A, Papadakis M, Jha SK. Nrf2/Keap1/ARE regulation by plant secondary metabolites: a new horizon in brain tumor management. Cell Commun Signal 2024; 22:497. [PMID: 39407193 PMCID: PMC11476647 DOI: 10.1186/s12964-024-01878-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Brain cancer is regarded as one of the most life-threatening forms of cancer worldwide. Oxidative stress acts to derange normal brain homeostasis, thus is involved in carcinogenesis in brain. The Nrf2/Keap1/ARE pathway is an important signaling cascade responsible for the maintenance of redox homeostasis, and regulation of anti-inflammatory and anticancer activities by multiple downstream pathways. Interestingly, Nrf2 plays a somewhat, contradictory role in cancers, including brain cancer. Nrf2 has traditionally been regarded as a tumor suppressor since its cytoprotective functions are considered to be the principle cellular defense mechanism against exogenous and endogenous insults, such as xenobiotics and oxidative stress. However, hyperactivation of the Nrf2 pathway supports the survival of normal as well as malignant cells, protecting them against oxidative stress, and therapeutic agents. Plants possess a pool of secondary metabolites with potential chemotherapeutic/chemopreventive actions. Modulation of Nrf2/ARE and downstream activities in a Keap1-dependant manner, with the aid of plant-derived secondary metabolites exhibits promise in the management of brain tumors. Current article highlights the effects of Nrf2/Keap1/ARE cascade on brain tumors, and the potential role of secondary metabolites regarding the management of the same.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India.
| | - Hiranmoy Bhattacharya
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Chiranjib Bhattacharyya
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Joshua Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, 11741, Greece
- Department of Research & Development, AFNP Med, Wien, 1030, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, Delhi, 110008, India.
| |
Collapse
|
2
|
Nie QY, Yang GM, Zhang P, Dong WJ, Jing D, Hou ZP, Peng YX, Yu Y, Li LH, Hong SJ. Nrf2 expression, mitochondrial fission, and neuronal apoptosis in the prefrontal cortex of methamphetamine abusers and rats. Brain Res 2024; 1837:148973. [PMID: 38685372 DOI: 10.1016/j.brainres.2024.148973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/20/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Methamphetamine (MA), a representative amphetamine-type stimulant, is one of the most abused drugs worldwide. Studies have shown that MA-induced neurotoxicity is strongly associated with oxidative stress and apoptosis. While nuclear factor E2-related factor 2 (Nrf2), an antioxidant transcription factor, is known to exert neuroprotective effects, its role in MA-induced dopaminergic neuronal apoptosis remains incompletely understood. In the present study, we explored the effects of MA on the expression levels of Nrf2, dynamin-related protein 1 (Drp1), mitofusin 1 (Mfn1), cytochrome c oxidase (Cyt-c), and cysteine aspartate-specific protease 3 (Caspase 3), as well as the correlations between Nrf2 and mitochondrial dynamics and apoptosis. Brain tissue from MA abusers was collected during autopsy procedures. An MA-dependent rat model was also established by intraperitoneal administration of MA (10 mg/kg daily) for 28 consecutive days, followed by conditioned place preference (CPP) testing. Based on immunohistochemical staining and western blot analysis, the protein expression levels of Nrf2 and Mfn1 showed a decreasing trend, while levels of Drp1, Cyt-c, and Caspase 3 showed an increasing trend in the cerebral prefrontal cortex of both MA abusers and MA-dependent rats. Notably, the expression of Nrf2 was positively associated with the expression of Mfn1, but negatively associated with the expression levels of Drp1, Cyt-c, and Caspase 3. These findings suggest that oxidative stress and mitochondrial fission contribute to neuronal apoptosis, with Nrf2 potentially playing a critical role in MA-induced neurotoxicity.
Collapse
Affiliation(s)
- Qian-Yun Nie
- School of Forensic Medicine, National Health Commission Key (NHC) Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650500, China; Key Laboratory of Tropical Translational Medicine of Ministry of Education & Department of Pathology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou 571199, China
| | - Gen-Meng Yang
- School of Forensic Medicine, National Health Commission Key (NHC) Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650500, China
| | - Peng Zhang
- Department of Forensic Medicine, Hainan Provincial Academician Workstation (Tropical Forensic Medicine), Hainan Provincial Tropical Forensic Engineering Research Center, Hainan Medical University, Haikou 571199, China
| | - Wen-Juan Dong
- School of Forensic Medicine, National Health Commission Key (NHC) Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650500, China
| | - Di Jing
- School of Forensic Medicine, National Health Commission Key (NHC) Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650500, China
| | - Zhen-Ping Hou
- School of Forensic Medicine, National Health Commission Key (NHC) Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650500, China
| | - Yan-Xia Peng
- School of Forensic Medicine, National Health Commission Key (NHC) Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650500, China
| | - Yang Yu
- Department of Anatomy, School of Basic Medicine, Kunming Medical University, Kunming 650500, China
| | - Li-Hua Li
- School of Forensic Medicine, National Health Commission Key (NHC) Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650500, China.
| | - Shi-Jun Hong
- School of Forensic Medicine, National Health Commission Key (NHC) Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650500, China.
| |
Collapse
|
3
|
Falfushynska H, Rychter P, Boshtova A, Faidiuk Y, Kasianchuk N, Rzymski P. Illicit Drugs in Surface Waters: How to Get Fish off the Addictive Hook. Pharmaceuticals (Basel) 2024; 17:537. [PMID: 38675497 PMCID: PMC11054822 DOI: 10.3390/ph17040537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
The United Nations World Drug Report published in 2022 alarmed that the global market of illicit drugs is steadily expanding in space and scale. Substances of abuse are usually perceived in the light of threats to human health and public security, while the environmental aspects of their use and subsequent emissions usually remain less explored. However, as with other human activities, drug production, trade, and consumption of drugs may leave their environmental mark. Therefore, this paper aims to review the occurrence of illicit drugs in surface waters and their bioaccumulation and toxicity in fish. Illicit drugs of different groups, i.e., psychostimulants (methamphetamines/amphetamines, cocaine, and its metabolite benzoylecgonine) and depressants (opioids: morphine, heroin, methadone, fentanyl), can reach the aquatic environment through wastewater discharge as they are often not entirely removed during wastewater treatment processes, resulting in their subsequent circulation in nanomolar concentrations, potentially affecting aquatic biota, including fish. Exposure to such xenobiotics can induce oxidative stress and dysfunction to mitochondrial and lysosomal function, distort locomotion activity by regulating the dopaminergic and glutamatergic systems, increase the predation risk, instigate neurological disorders, disbalance neurotransmission, and produce histopathological alterations in the brain and liver tissues, similar to those described in mammals. Hence, this drugs-related multidimensional harm to fish should be thoroughly investigated in line with environmental protection policies before it is too late. At the same time, selected fish species (e.g., Danio rerio, zebrafish) can be employed as models to study toxic and binge-like effects of psychoactive, illicit compounds.
Collapse
Affiliation(s)
- Halina Falfushynska
- Faculty of Economics, Anhalt University of Applied Sciences, 06406 Bernburg, Germany
| | - Piotr Rychter
- Faculty of Science & Technology, Jan Dlugosz University in Częstochowa, Armii Krajowej 13/15, 42200 Czestochowa, Poland;
| | | | - Yuliia Faidiuk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53114 Wrocław, Poland;
- Educational and Scientific Centre “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 2 Prospekt Hlushkov, 03022 Kyiv, Ukraine
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 154 Zabolotny Str., 03143 Kyiv, Ukraine
| | - Nadiia Kasianchuk
- Faculty of Biology, Adam Mickiewicz University, 61712 Poznań, Poland;
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 60806 Poznań, Poland;
| |
Collapse
|
4
|
Wei T, Li JD, Wang YJ, Zhao W, Duan F, Wang Y, Xia LL, Jiang ZB, Song X, Zhu YQ, Shao WY, Wang Z, Bi KS, Li H, Zhang XC, Jiao DL. p-Nrf2/HO-1 Pathway Involved in Methamphetamine-induced Executive Dysfunction through Endoplasmic Reticulum Stress and Apoptosis in the Dorsal Striatum. Neurotox Res 2023; 41:446-458. [PMID: 37199892 DOI: 10.1007/s12640-023-00650-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/25/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023]
Abstract
Methamphetamine (METH) abuse is known to cause executive dysfunction. However, the molecular mechanism underlying METH induced executive dysfunction remains unclear. Go/NoGo experiment was performed in mice to evaluate METH-induced executive dysfunction. Immunoblot analysis of Nuclear factor-E2-related factor 2 (Nrf2), phosphorylated Nrf2 (p-Nrf2), heme-oxygenase-1 (HO-1), Glucose Regulated Protein 78(GRP78), C/EBP homologous protein (CHOP), Bcl-2, Bax and Caspase3 was performed to evaluate the levels of oxidative stress, endoplasmic reticulum (ER) stress and apoptosis in the dorsal striatum (Dstr). Malondialdehyde (MDA) levels and glutathione peroxidase (GSH-Px) activity was conducted to evaluate the level of oxidative stress. TUNEL staining was conducted to detect apoptotic neurons. The animal Go/NoGo testing confirmed that METH abuse impaired the inhibitory control ability of executive function. Meanwhile, METH down-regulated the expression of p-Nrf2, HO-1 and GSH-Px and activated ER stress and apoptosis in the Dstr. Microinjection of Tert-butylhydroxyquinone (TBHQ), an Nrf2 agonist, into the Dstr increased the expression of p-Nrf2, HO-1, and GSH-Px, ameliorated ER stress, apoptosis and executive dysfunction caused by METH. Our results indicated that the p-Nrf2/HO-1 pathway was potentially involved in mediating methamphetamine-induced executive dysfunction by inducing endoplasmic reticulum stress and apoptosis in the dorsal striatum.
Collapse
Affiliation(s)
- Tao Wei
- School of Mental Health, Bengbu Medical College, Bengbu, 233030, Anhui, China
- Huainan First People's Hospital, Huainan, 232007, Anhui, China
| | - Jun-Da Li
- School of Mental Health, Bengbu Medical College, Bengbu, 233030, Anhui, China
| | - Yu-Jing Wang
- School of Mental Health, Bengbu Medical College, Bengbu, 233030, Anhui, China
| | - Wei Zhao
- School of Mental Health, Bengbu Medical College, Bengbu, 233030, Anhui, China
| | - Fan Duan
- School of Mental Health, Bengbu Medical College, Bengbu, 233030, Anhui, China
| | - Yan Wang
- School of Mental Health, Bengbu Medical College, Bengbu, 233030, Anhui, China
| | - Ling-Ling Xia
- School of Mental Health, Bengbu Medical College, Bengbu, 233030, Anhui, China
| | - Zhao-Bin Jiang
- School of Mental Health, Bengbu Medical College, Bengbu, 233030, Anhui, China
| | - Xun Song
- School of Mental Health, Bengbu Medical College, Bengbu, 233030, Anhui, China
| | - Yu-Qiong Zhu
- School of Mental Health, Bengbu Medical College, Bengbu, 233030, Anhui, China
| | - Wen-Yi Shao
- School of Mental Health, Bengbu Medical College, Bengbu, 233030, Anhui, China
| | - Ze Wang
- School of Mental Health, Bengbu Medical College, Bengbu, 233030, Anhui, China
| | - Kang-Sheng Bi
- School of Mental Health, Bengbu Medical College, Bengbu, 233030, Anhui, China
| | - Hui Li
- School of Mental Health, Bengbu Medical College, Bengbu, 233030, Anhui, China
| | - Xiao-Chu Zhang
- CAS Key Laboratory of Brain Function and Disease and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China.
| | - Dong-Liang Jiao
- School of Mental Health, Bengbu Medical College, Bengbu, 233030, Anhui, China.
| |
Collapse
|
5
|
Dong W, Wan J, Yu H, Shen B, Yang G, Nie Q, Tian Y, Qin L, Song C, Chen B, Li L, Hong S. Nrf2 protects against methamphetamine-induced nephrotoxicity by mitigating oxidative stress and autophagy in mice. Toxicol Lett 2023; 384:136-148. [PMID: 37567421 DOI: 10.1016/j.toxlet.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/11/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Methamphetamine (MA) is a widely abused drug that can cause kidney damage. However, the molecular mechanism remains unclear. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key transcription factor that regulates resistance to oxidative and proteotoxic stress. In this study, we investigated the role of Nrf2 in MA-induced renal injury in mice. Nrf2 was pharmacologically activated and genetically knocked-out in mice. The animal model of MA-induced nephrotoxicity was established by injecting MA (2 mg/kg) intraperitoneally twice a day for 5 days. Histopathological alterations were shown in the MA-exposed kidneys. MA significantly increased renal function biomarkers and kidney injury molecule-1 (KIM-1) levels. MA decreased superoxide dismutase activity and increased malondialdehyde levels. Autophagy-related factors (LC3 and Beclin 1) were elevated in MA-treated mice. Furthermore, Nrf2 increased in the MA-exposed kidneys. Activation of Nrf2 may attenuate histopathological changes in the kidneys of MA-treated mice. Pre-administration of Nrf2 agonist significantly decreased KIM-1 expression, oxidative stress, and autophagy in the kidneys after MA toxicity. In contrast, Nrf2 knockout mice treated with MA lost renal tubular morphology. Nrf2 deficiency increased KIM-1 expression, oxidative stress, and autophagy in the MA-exposed kidneys. Our results demonstrate that Nrf2 may protect against MA-induced nephrotoxicity by mitigating oxidative stress and autophagy.
Collapse
Affiliation(s)
- Wenjuan Dong
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Jia Wan
- Hunan Provincial People's Hospital, Hunan 410005, China
| | - Hao Yu
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China; West China Hospital, Sichuan University, Chengdu 610041, China
| | - Baoyu Shen
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Genmeng Yang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Qianyun Nie
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China; Department of Pathology Medicine, Hainan Medical University, Haikou 571199, China
| | - Yan Tian
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Lixiang Qin
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Chunhui Song
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Bingzheng Chen
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Lihua Li
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China.
| | - Shijun Hong
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China.
| |
Collapse
|
6
|
Gong M, Zhang H, Lou M, Wang Y, Ma R, Hu Z, Zheng G, Zhang Y. Melatonin reduces IL-33 and TSLP expression in human nasal epithelial cells by scavenging ROS directly. Immun Inflamm Dis 2023; 11:e788. [PMID: 36840497 PMCID: PMC9933203 DOI: 10.1002/iid3.788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) is a chronic mucosal inflammation of the nasal cavity and sinuses. It is classified into CRS without nasal polyps and CRS with nasal polyps (CRSwNP). CRSwNP has high recurrence, especially CRSwNP with massive eosinophil infiltration which is mediated by type 2 inflammatory response. Melatonin is a hormone secreted by the pineal gland, it has powerful antioxidant and anti-inflammatory effects in addition to regulating biological rhythms. There are no studies on melatonin for the treatment of CRS, so we aimed to explore whether melatonin could be used for the treatment of CRS. MATERIALS AND METHODS In this study, we used melatonin to treat a cell model of CRS. Subsequently, MTT assay was performed to examine the cell viability of human nasal epithelial cells (HNEpCs), a reactive oxygen species (ROS) kit to detect ROS production, a malondialdehyde (MDA) kit to detect the MDA content in the cell culture supernatant, and an apoptosis kit and Western blot analysis to detect apoptosis. The expressions of Nrf2, HO-1, IL-33, TSLP, and IL-25 were detected by Western blot analysis. RESULTS Melatonin improved the viability of HNEpCs, reduced lipopolysaccharide-induced ROS, reduced the MDA content, and inhibited their apoptosis. More importantly, melatonin reduced the expression of IL-33 and TSLP, an important phenomenon for the treatment of CRSwNP. CONCLUSION Melatonin protects HNEpCs from damage in inflammation and reduces IL-33 and TSLP expression of HNEpCs.
Collapse
Affiliation(s)
- Min‐jie Gong
- Department of Otolaryngology Head and Neck SurgeryThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Hai‐bao Zhang
- Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of EducationXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Miao Lou
- Department of Otolaryngology Head and Neck SurgeryThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Yu‐sheng Wang
- Department of Otolaryngology Head and Neck SurgeryThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Rui‐ping Ma
- Department of Otolaryngology Head and Neck SurgeryThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Zhen‐zhen Hu
- Department of Otolaryngology Head and Neck SurgeryThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Guo‐xi Zheng
- Department of Otolaryngology Head and Neck SurgeryThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Ya Zhang
- Department of Otolaryngology Head and Neck SurgeryThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| |
Collapse
|
7
|
Liu Y, Tan YQ, Zhou G. Melatonin: a potential therapeutic approach for the management of primary Sjögren's syndrome. Immunol Res 2023; 71:373-387. [PMID: 36715831 DOI: 10.1007/s12026-023-09360-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/03/2023] [Indexed: 01/31/2023]
Abstract
Primary Sjögren's syndrome (pSS) is an autoimmune disease that primarily affects the exocrine glands and is mainly characterized by sicca symptoms of the eyes and mouth. Approximately 30-50% of pSS patients develop systemic multi-organ disorders including malignant lymphoma. The etiology of pSS is not well understood; growing evidence suggests that uncontrolled immune/inflammatory responses, excessive oxidative stress, defected apoptosis, dysregulated autophagy, exosomes, and exogenous virus infections may participate in the pathogenesis of pSS. There is no ideal therapeutic method for pSS; the management of pSS is mainly palliative, which aims to alleviate sicca symptoms. Melatonin, as the main secretory product of the pineal gland, has been evidenced to show various physiological functions, including effects of immunoregulation, capability of antioxidation, moderation of autophagy, suppressive activities of apoptosis, regulative capacity of exosomes, properties of anti-infection, and improvement of sleep. The beneficial effects of melatonin have been already validated in some autoimmune diseases such as multiple sclerosis (MS), type 1 diabetes mellitus (T1DM), systemic lupus erythematosus (SLE), and inflammatory bowel disease (IBD). However, our previous research firstly revealed that melatonin might inhibit pathogenic responses of peripheral Th17 and double-negative (DN) T cells in pSS. More importantly, melatonin administration alleviated the development of pSS in animal models with reduced infiltrating lymphocytes, improved functional activity of salivary gland, and decreased production of inflammatory factors as well as autoantibodies. Owing to the important biological properties reported in melatonin are characteristics closely related to the treatment of pSS; the potential role and underlying mechanisms of melatonin in the administration of pSS are certainly worth further investigations. Consequently, the aim of this review is to give a deep insight to the therapeutic potency of melatonin for pSS.
Collapse
Affiliation(s)
- Yi Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ya-Qin Tan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, China
| | - Gang Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China. .,Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, China.
| |
Collapse
|
8
|
Begum R, Mamun-Or-Rashid ANM, Lucy TT, Pramanik MK, Sil BK, Mukerjee N, Tagde P, Yagi M, Yonei Y. Potential Therapeutic Approach of Melatonin against Omicron and Some Other Variants of SARS-CoV-2. Molecules 2022; 27:6934. [PMID: 36296527 PMCID: PMC9609612 DOI: 10.3390/molecules27206934] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
The Omicron variant (B.529) of COVID-19 caused disease outbreaks worldwide because of its contagious and diverse mutations. To reduce these outbreaks, therapeutic drugs and adjuvant vaccines have been applied for the treatment of the disease. However, these drugs have not shown high efficacy in reducing COVID-19 severity, and even antiviral drugs have not shown to be effective. Researchers thus continue to search for an effective adjuvant therapy with a combination of drugs or vaccines to treat COVID-19 disease. We were motivated to consider melatonin as a defensive agent against SARS-CoV-2 because of its various unique properties. Over 200 scientific publications have shown the significant effects of melatonin in treating diseases, with strong antioxidant, anti-inflammatory, and immunomodulatory effects. Melatonin has a high safety profile, but it needs further clinical trials and experiments for use as a therapeutic agent against the Omicron variant of COVID-19. It might immediately be able to prevent the development of severe symptoms caused by the coronavirus and can reduce the severity of the infection by improving immunity.
Collapse
Affiliation(s)
- Rahima Begum
- Department of Microbiology, Gono Bishwabidyalay, Dhaka 1344, Bangladesh
| | - A. N. M. Mamun-Or-Rashid
- Anti-Aging Medical Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 TataraMiyakodani, Kyoto 610-0394, Japan
- Glycative Stress Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 Tatara Miyakodani, Kyoto 610-0394, Japan
- Department of Environmental & Occupational Health, School of Public Health, University of Pittsburgh, 130 De Soto Str., Pittsburgh, PA 15231, USA
| | - Tanzima Tarannum Lucy
- Anti-Aging Medical Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 TataraMiyakodani, Kyoto 610-0394, Japan
- Glycative Stress Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 Tatara Miyakodani, Kyoto 610-0394, Japan
| | - Md. Kamruzzaman Pramanik
- Microbiology and Industrial Irradiation Division, Institute of Food and Radiation Biology, Atomic Energy Research Establishment, Savar 1349, Bangladesh
| | - Bijon Kumar Sil
- Department of Microbiology, Gono Bishwabidyalay, Dhaka 1344, Bangladesh
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Kolkata 700118, India
- Department of Health Sciences, Novel Global Community Educational Foundation, Sydney 37729, Australia
| | - Priti Tagde
- Patel College of Pharmacy, Madhyanchal Professional University, Bhopal 462044, India
| | - Masayuki Yagi
- Anti-Aging Medical Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 TataraMiyakodani, Kyoto 610-0394, Japan
- Glycative Stress Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 Tatara Miyakodani, Kyoto 610-0394, Japan
| | - Yoshikazu Yonei
- Anti-Aging Medical Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 TataraMiyakodani, Kyoto 610-0394, Japan
- Glycative Stress Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 Tatara Miyakodani, Kyoto 610-0394, Japan
| |
Collapse
|
9
|
Shahcheraghi SH, Salemi F, Alam W, Ashworth H, Saso L, Khan H, Lotfi M. The Role of NRF2/KEAP1 Pathway in Glioblastoma: Pharmacological Implications. Med Oncol 2022; 39:91. [PMID: 35568790 DOI: 10.1007/s12032-022-01693-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/21/2022] [Indexed: 11/29/2022]
Abstract
Glioblastoma multiforme (GBM) grade IV glioma is the most frequent and deadly intracranial cancer. This tumor is determined by unrestrained progression, uncontroled angiogenesis, high infiltration and weak response to treatment, which is chiefly because of abnormal signaling pathways in the tumor. A member related to the Cap 'n' collar family of keypart-leucine zipper transcription agents-the transcription factor NF-E2-related factor 2 (Nrf2)-regulates adaptive protection answers by organized upregulation of many genes that produce the cytoprotective factors. In reply to cellular pressures types such as stresses, Nrf2 escapes Kelch-like ECH-related protein 1 (Keap1)-facilitated suppression, moves from the cytoplasm towards the nucleus and performs upregulation of gene expression of antioxidant responsive element (ARE). Nrf2 function is related tocontrolling many types of diseases in the human specially GBM tumor.Thus, we will review the epigeneticalregulatory actions on the Nrf2/Keap1 signaling pathway and potential therapeutic options in GBM by aiming the stimulation of Nrf2.
Collapse
Affiliation(s)
- Seyed Hossein Shahcheraghi
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fateme Salemi
- School of Medicine, Islamic Azad University of Medical Sciences, Yazd, Iran
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | | | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University, Rome, Italy
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan.
| | - Marzieh Lotfi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran. .,Abortion Research Center, Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
10
|
Potential Effects of Nrf2 in Exercise Intervention of Neurotoxicity Caused by Methamphetamine Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4445734. [PMID: 35480870 PMCID: PMC9038420 DOI: 10.1155/2022/4445734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/01/2022] [Indexed: 12/15/2022]
Abstract
Methamphetamine can cause oxidative stress-centered lipid peroxidation, endoplasmic reticulum stress, mitochondrial dysfunction, excitatory neurotoxicity, and neuroinflammation and ultimately lead to nerve cell apoptosis, abnormal glial cell activation, and dysfunction of blood-brain barrier. Protecting nerve cells from oxidative destroy is a hopeful strategy for treating METH use disorder. Nrf2 is a major transcriptional regulator that activates the antioxidant, anti-inflammatory, and cell-protective gene expression through endogenous pathways that maintains cell REDOX homeostasis and is conducive to the survival of neurons. The Nrf2-mediated endogenous antioxidant pathway can also prevent neurodegenerative effects and functional defects caused by METH oxidative stress. Moderate exercise activates this endogenous antioxidant system, which involves in many diseases, including neurodegenerative diseases. Based on evidence from existing literature, we argue that appropriate exercise can play an endogenous antioxidant regulatory role in the Nrf2 signaling pathway to reduce a number of issues caused by METH-induced oxidative stress. However, more experimental evidence is needed to support this idea. In addition, further exploration is necessary about the different effects of various parameters of exercise intervention (such as exercise mode, time, and intensity) on the Nrf2 signaling pathway intervention. Whether there are synergistic effects between exercise and plant-derived Nrf2 activators is worth further investigation.
Collapse
|
11
|
Shi S, Chen T, Zhao M. The Crosstalk Between Neurons and Glia in Methamphetamine-Induced Neuroinflammation. Neurochem Res 2022; 47:872-884. [PMID: 34982394 DOI: 10.1007/s11064-021-03513-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 01/06/2023]
Abstract
Methamphetamine (METH), an illicit psycho-stimulant, is widely known as an addictive drug that may cause neurotoxic effects. Previous researches on METH abuse have mainly focused on neurotransmitters, such as dopamine and glutamate. However, there is growing evidence that neuroinflammation also plays an important role in the etiology and pathophysiology of brain dysfunction induced by METH abuse. This has cast a spotlight on the research of microglia and astrocyte, which are critical mediators of neuroimmune pathology in recent years. In the central nervous system (CNS) immunity, abnormalities of the microglia and astrocytes have been observed in METH abusers from both postmortem and preclinical studies. The bidirectional communication between neurons and glia is essential for the homeostasis and biological function of the CNS while activation of glia induces the release of cytokines and chemokines during pathological conditions, which will affect the neuron-glia interactions and lead to adverse behavioral consequences. However, the underlying mechanisms of interaction between neurons and glia in METH-induced neuroinflammation remain elusive. Notably, discovering and further understanding glial activity and functions, as well as the crosstalk between neurons and glia may help to explain the pathogenesis of METH abuse and behavioral changes in abusers. In this review, we will discuss the current understanding of the crosstalk between neurons and glia in METH-induced neuroinflammation. We also review the existing microglia-astrocyte interaction under METH exposure. We hope the present review will lead the way for more studies on the development of new therapeutic strategies for METH abuse in the near future.
Collapse
Affiliation(s)
- Sai Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wan Ping Road, Shanghai, 200030, China
| | - Tianzhen Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wan Ping Road, Shanghai, 200030, China
| | - Min Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wan Ping Road, Shanghai, 200030, China. .,Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China. .,CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
12
|
Lin F, Li R, Tu WJ, Chen Y, Wang K, Chen X, Zhao J. An Update on Antioxidative Stress Therapy Research for Early Brain Injury After Subarachnoid Hemorrhage. Front Aging Neurosci 2021; 13:772036. [PMID: 34938172 PMCID: PMC8686680 DOI: 10.3389/fnagi.2021.772036] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/08/2021] [Indexed: 12/30/2022] Open
Abstract
The main reasons for disability and death in aneurysmal subarachnoid hemorrhage (aSAH) may be early brain injury (EBI) and delayed cerebral ischemia (DCI). Despite studies reporting and progressing when DCI is well-treated clinically, the prognosis is not well-improved. According to the present situation, we regard EBI as the main target of future studies, and one of the key phenotype-oxidative stresses may be called for attention in EBI after laboratory subarachnoid hemorrhage (SAH). We summarized the research progress and updated the literature that has been published about the relationship between experimental and clinical SAH-induced EBI and oxidative stress (OS) in PubMed from January 2016 to June 2021. Many signaling pathways are related to the mechanism of OS in EBI after SAH. Several antioxidative stress drugs were studied and showed a protective response against EBI after SAH. The systematical study of antioxidative stress in EBI after laboratory and clinical SAH may supply us with new therapies about SAH.
Collapse
Affiliation(s)
- Fa Lin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Runting Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Wen-Jun Tu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,The General Office of Stroke Prevention Project Committee, National Health Commission of the People's Republic of China, Beijing, China.,Institute of Radiation Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Yu Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Ke Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Xiaolin Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Basheer AS, Abas F, Othman I, Naidu R. Role of Inflammatory Mediators, Macrophages, and Neutrophils in Glioma Maintenance and Progression: Mechanistic Understanding and Potential Therapeutic Applications. Cancers (Basel) 2021; 13:4226. [PMID: 34439380 PMCID: PMC8393628 DOI: 10.3390/cancers13164226] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Gliomas are the most common, highly malignant, and deadliest forms of brain tumors. These intra-cranial solid tumors are comprised of both cancerous and non-cancerous cells, which contribute to tumor development, progression, and resistance to the therapeutic regimen. A variety of soluble inflammatory mediators (e.g., cytokines, chemokines, and chemotactic factors) are secreted by these cells, which help in creating an inflammatory microenvironment and contribute to the various stages of cancer development, maintenance, and progression. The major tumor infiltrating immune cells of the tumor microenvironment include TAMs and TANs, which are either recruited peripherally or present as brain-resident macrophages (microglia) and support stroma for cancer cell expansion and invasion. These cells are highly plastic in nature and can be polarized into different phenotypes depending upon different types of stimuli. During neuroinflammation, glioma cells interact with TAMs and TANs, facilitating tumor cell proliferation, survival, and migration. Targeting inflammatory mediators along with the reprogramming of TAMs and TANs could be of great importance in glioma treatment and may delay disease progression. In addition, an inhibition of the key signaling pathways such as NF-κB, JAK/STAT, MAPK, PI3K/Akt/mTOR, and TLRs, which are activated during neuroinflammation and have an oncogenic role in glioblastoma (GBM), can exert more pronounced anti-glioma effects.
Collapse
Affiliation(s)
- Abdul Samad Basheer
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia; (A.S.B.); (I.O.)
| | - Faridah Abas
- Laboratory of Natural Products, Faculty of Science, University Putra Malaysia (UPM), Serdang 43400, Malaysia;
- Department of Food Science, Faculty of Food Science and Technology, University Putra Malaysia (UPM), Serdang 434000, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia; (A.S.B.); (I.O.)
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia; (A.S.B.); (I.O.)
| |
Collapse
|
14
|
Abstract
Circadian rhythm pathway was demonstrated pathological functions in glioma on single-gene level. We aim to depict the multi-omics landscape of circadian rhythm pathway alteration in glioma using bioinformatic analyses. Multi-omics data were obtained from “cBioPortal” database. Comparisons were done regarding clinical parameters, differential-expressed genes and functional annotations. A pathway index was generated using the expression data from TCGA and GTEx to quantify the general alteration level of the pathway with clinical association of circadian rhythm pathway index explored. A total of 30 genes were mapped on the circadian rhythm pathway. Genomic profile ofcircadian rhythm pathway genes exhibited distinct characteristics on multiple levels between lower grade glioma (LGG) and glioblastoma multiforme (GBM) patients. LGG patients presented significantly higher frequencies of multi-omics mutations, as well as significant clinical relevance, on single-gene level. Differential-expressed genes between LGG and GBM patients revealed different functions between subtypes that related to the alteration of circadian rhythm pathway. LGG have significantly higher pathway index than normal brain tissue, while GBM significantly lower than normal tissue (P < 0.01), indicating distinctly altered circadian pathway in LGG. Circadian rhythm pathway index correlated with the prognosis of LGG, but not GBM, patients, with higher score indicating better survival outcome (LGG: HR = 0.39, 95% CI: 0.26 − 0.59, P < 0.001). In conclusion, LGG have more multi-omics alterations of circadian rhythm pathway than GBM. Quantification of circadian rhythm pathway using pathway index demonstrated hyperactivated pathway status in LGG and correlated with the prognosis of LGG patients.
Collapse
Affiliation(s)
- Chang Zhang
- Department of Internal Medicine, Guang Dong Second Hospital of Traditional Chinese Medicine, Guangzhou, China.,Department of Internal Medicine, Guangdong Key Laboratory of Traditional Chinese Medicine Research and Development, Guangzhou, Guangdong, China
| | - Jiahui Xu
- Department of Internal Medicine, Guang Dong Second Hospital of Traditional Chinese Medicine, Guangzhou, China.,Department of Internal Medicine, Guangdong Key Laboratory of Traditional Chinese Medicine Research and Development, Guangzhou, Guangdong, China
| | - Lijun Chen
- Department of Pediatrics, The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaojie Lin
- Department of Internal Medicine, Guang Dong Second Hospital of Traditional Chinese Medicine, Guangzhou, China.,Department of Internal Medicine, Guangdong Key Laboratory of Traditional Chinese Medicine Research and Development, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
Melatonin protects against methamphetamine-induced Alzheimer's disease-like pathological changes in rat hippocampus. Neurochem Int 2021; 148:105121. [PMID: 34224806 DOI: 10.1016/j.neuint.2021.105121] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 06/21/2021] [Accepted: 06/29/2021] [Indexed: 01/14/2023]
Abstract
Methamphetamine (METH) is a psychostimulant drug of abuse. METH use is associated with cognitive impairments and neurochemical abnormalities comparable to pathological changes observed in Alzheimer's disease (AD). These observations have stimulated the idea that METH abusers might be prone to develop AD-like signs and symptoms. Melatonin, the pineal hormone, is considered as a potential therapeutic intervention against AD. We thus conducted the present study to explore potential protective roles of melatonin against METH-induced deficits in learning and memory as well as in the appearance of AD-like pathological changes in METH-treated male Wistar rats. We found that melatonin ameliorated METH-induced cognitive impairments in those rats. Melatonin prevented METH-induced decrease in dopamine transporter (DAT) expression in rat hippocampus. Melatonin reversed METH-induced activation of β-arrestin2, reduction of phosphorylation of protein kinase B (Akt) and METH-induced excessive activity of glycogen synthase kinase-3β (GSK3β). Importantly, melatonin inhibited METH-induced changes in the expression of β-site APP cleaving enzyme (BACE1), disintegrin and metalloproteinase 10 (ADAM10), and presenilin 1 (PS1), as well as the reduction of amyloid beta (Aβ)42 production. Immunofluorescence double-labeling demonstrated that melatonin not only prevented the METH-induced loss of DAT but also prevented METH-induced Aβ42 overexpression in the dentate gyrus, CA1, and CA3. Furthermore, melatonin also suppressed METH-induced increase in phosphorylated tau. Significantly, melatonin attenuated METH-induced increase in N-methyl-D-aspartate receptor subtype 2 B (NR2B) protein expression and restored METH-induced reduction of Ca2+/calmodulin-dependent protein kinase II (CaMKII). This suggested that melatonin attenuated the toxic effect of METH on the hippocampus involving the amyloidogenic pathway. Taken together, our data suggest that METH abuse may be a predisposing risk factor for AD and that melatonin could serve as a potential therapeutic agent to prevent METH-induced AD like pathology.
Collapse
|
16
|
Role of Melatonin on Virus-Induced Neuropathogenesis-A Concomitant Therapeutic Strategy to Understand SARS-CoV-2 Infection. Antioxidants (Basel) 2021; 10:antiox10010047. [PMID: 33401749 PMCID: PMC7823793 DOI: 10.3390/antiox10010047] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
Viral infections may cause neurological disorders by directly inducing oxidative stress and interrupting immune system function, both of which contribute to neuronal death. Several reports have described the neurological manifestations in Covid-19 patients where, in severe cases of the infection, brain inflammation and encephalitis are common. Recently, extensive research-based studies have revealed and acknowledged the clinical and preventive roles of melatonin in some viral diseases. Melatonin has been shown to have antiviral properties against several viral infections which are accompanied by neurological symptoms. The beneficial properties of melatonin relate to its properties as a potent antioxidant, anti-inflammatory, and immunoregulatory molecule and its neuroprotective effects. In this review, what is known about the therapeutic role of melatonin in virus-induced neuropathogenesis is summarized and discussed.
Collapse
|
17
|
Xiong Q, Tian X, Li W, Chen L, Zhou M, Xu C, Ru Q. Sulforaphane alleviates methamphetamine-induced oxidative damage and apoptosis via the Nrf2-mediated pathway in vitro and in vivo. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2020.1784099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Qi Xiong
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, PR People’s Republic of China
| | - Xiang Tian
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, PR People’s Republic of China
| | - Weiling Li
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, PR People’s Republic of China
| | - Lin Chen
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, PR People’s Republic of China
| | - Mei Zhou
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, PR People’s Republic of China
| | - Congyue Xu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, PR People’s Republic of China
| | - Qin Ru
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, PR People’s Republic of China
| |
Collapse
|
18
|
Gurunathan S, Kang MH, Kim JH. Role and Therapeutic Potential of Melatonin in the Central Nervous System and Cancers. Cancers (Basel) 2020; 12:cancers12061567. [PMID: 32545820 PMCID: PMC7352348 DOI: 10.3390/cancers12061567] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/04/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023] Open
Abstract
Melatonin (MLT) is a powerful chronobiotic hormone that controls a multitude of circadian rhythms at several levels and, in recent times, has garnered considerable attention both from academia and industry. In several studies, MLT has been discussed as a potent neuroprotectant, anti-apoptotic, anti-inflammatory, and antioxidative agent with no serious undesired side effects. These characteristics raise hopes that it could be used in humans for central nervous system (CNS)-related disorders. MLT is mainly secreted in the mammalian pineal gland during the dark phase, and it is associated with circadian rhythms. However, the production of MLT is not only restricted to the pineal gland; it also occurs in the retina, Harderian glands, gut, ovary, testes, bone marrow, and lens. Although most studies are limited to investigating the role of MLT in the CNS and related disorders, we explored a considerable amount of the existing literature. The objectives of this comprehensive review were to evaluate the impact of MLT on the CNS from the published literature, specifically to address the biological functions and potential mechanism of action of MLT in the CNS. We document the effectiveness of MLT in various animal models of brain injury and its curative effects in humans. Furthermore, this review discusses the synthesis, biology, function, and role of MLT in brain damage, and as a neuroprotective, antioxidative, anti-inflammatory, and anticancer agent through a collection of experimental evidence. Finally, it focuses on the effect of MLT on several neurological diseases, particularly CNS-related injuries.
Collapse
|
19
|
Melatonin's Antineoplastic Potential Against Glioblastoma. Cells 2020; 9:cells9030599. [PMID: 32138190 PMCID: PMC7140435 DOI: 10.3390/cells9030599] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/25/2020] [Accepted: 03/01/2020] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma (GBM) is one of the most intransigent and aggressive brain tumors, and its treatment is extremely challenging and ineffective. To improve patients’ expectancy and quality of life, new therapeutic approaches were investigated. Melatonin is an endogenous indoleamine with an incredible variety of properties. Due to evidence demonstrating melatonin’s activity against several cancer hallmarks, there is growing interest in its use for preventing and treating cancer. In this review, we report on the potential effects of melatonin, alone or in combination with anticancer drugs, against GBM. We also summarize melatonin targets and/or the intracellular pathways involved. Moreover, we describe melatonin’s epigenetic activity responsible for its antineoplastic effects. To date, there are too few clinical studies (involving a small number of patients) investigating the antineoplastic effects of melatonin against GBM. Nevertheless, these studies described improvement of GBM patients’ quality of life and did not show significant adverse effects. In this review, we also report on studies regarding melatonin-like molecules with the tumor-suppressive properties of melatonin together with implemented pharmacokinetics. Melatonin effects and mechanisms of action against GBM require more research attention due to the unquestionably high potential of this multitasking indoleamine in clinical practice.
Collapse
|
20
|
Protective Effects of Melatonin on Methamphetamine-Induced Blood-Brain Barrier Dysfunction in Rat Model. Neurotox Res 2020; 37:640-660. [PMID: 31900895 DOI: 10.1007/s12640-019-00156-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/26/2019] [Accepted: 12/19/2019] [Indexed: 12/14/2022]
Abstract
The specialized brain endothelial cells interconnected by unique junctions and adhesion molecules are distinctive features of the blood-brain barrier (BBB), maintaining the homeostasis of the cerebral microenvironment. This study was designed to investigate the protective effects of melatonin on methamphetamine (METH)-induced alterations of BBB integrity. Wistar rats were randomly distributed into groups and underwent melatonin pretreatment and escalating-high doses of METH treatment. Immunohistochemistry was performed to demonstrate the BBB leakage. Protein and RNA samples were isolated from hippocampal and prefrontal cortical tissues and measured expression levels of molecular markers associated with BBB structural components and inflammatory processes. METH provoked the loss of zonula occludens (ZO)-1, occludin, and claudin-5 tight junction proteins. Furthermore, METH caused an excessive increase in matrix metalloproteinase-9 (MMP-9) enzyme, intercellular adhesion molecule 1 (ICAM-1), and vascular cell adhesion molecule 1 (VCAM-1) and the increase in NAD(P)H oxidase 2 (NOX2). Melatonin exerted the protective effects by recovering tight junction loss; attenuating excessive MMP-9, NOX2, and cell adhesion molecule expression; and reducing serum albumin in the brain. Our results also showed the protective effects of melatonin against METH neurotoxic profiles, characterized by reactive gliosis: microglia (integrin-αM) and astrocyte (GFAP); an excessive upregulation of primary pro-inflammatory cytokines: interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α); activation of neuroinflammatory signaling: nuclear factor-kappa B (NF-κB); and suppression of anti-oxidative signaling: nuclear factor erythroid 2-related factor (Nrf2), that may exacerbate BBB structural impairment. Our results provide insights into the beneficial effects of melatonin against METH-induced BBB disruption and mechanisms that play detrimental roles in BBB impairment by in vivo design.
Collapse
|
21
|
Palmer ACS, Souza A, Dos Santos VS, Cavalheiro JAC, Schuh F, Zucatto AE, Biazus JV, Torres ILDS, Fregni F, Caumo W. The Effects of Melatonin on the Descending Pain Inhibitory System and Neural Plasticity Markers in Breast Cancer Patients Receiving Chemotherapy: Randomized, Double-Blinded, Placebo-Controlled Trial. Front Pharmacol 2019; 10:1382. [PMID: 31824318 PMCID: PMC6883914 DOI: 10.3389/fphar.2019.01382] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 10/30/2019] [Indexed: 12/17/2022] Open
Abstract
Background: Adjuvant chemotherapy for breast cancer (ACBC) has been associated with fatigue, pain, depressive symptoms, and disturbed sleep. And, previous studies in non-cancer patients showed that melatonin could improve the descending pain modulatory system (DPMS). We tested the hypothesis that melatonin use before and during the first cycle of ACBC is better than placebo at improving the DPMS function assessed by changes in the 0–10 Numerical Pain Scale (NPS) during the conditioned pain modulating task (CPM-task) (primary outcome). The effects of melatonin were evaluated in the following secondary endpoints: heat pain threshold (HPT), heat pain tolerance (HPTo), and neuroplasticity state assessed by serum brain-derived neurotrophic factor (BDNF), tropomyosin kinase receptor B, and S100B-protein and whether melatonin’s effects on pain and neuroplasticity state are due more so to its impact on sleep quality. Methods: Thirty-six women, ages 18 to 75 years old, scheduled for their first cycle of ACBC were randomized to receive 20mg of oral melatonin (n = 18) or placebo (n = 18). The effect of treatment on the outcomes was analyzed by delta (Δ)-values (from pre to treatment end). Results: Multivariate analyses of covariance revealed that melatonin improved the function of the DPMS. The Δ-mean (SD) on the NPS (0–10) during the CPM-task in the placebo group was −1.91 [−1.81 (1.67) vs. −0.1 (1.61)], and in the melatonin group was −3.5 [−0.94 (1.61) vs. −2.29 (1.61)], and the mean difference (md) between treatment groups was 1.59 [(95% CI, 0.50 to 2.68). Melatonin’s effect increased the HPTo and HPT while reducing the (Δ)-means of the serum neuroplasticity marker in placebo vs. melatonin. The Δ-BDNF is 1.87 (7.17) vs. −20.44 (17.17), respectively, and the md = 22.31 [(95% CI = 13.40 to 31.22)]; TrKB md = 0.61 [0.46 (0.17) vs. −0.15 (0.18); 95% CI = 0.49 to 0.73)] and S00B-protein md = −8.27[(2.89 (11.18) vs. −11.16 (9.75); 95% CI = −15.38 to −1.16)]. However, melatonin’s effect on pain and the neuroplastic state are not due to its effect on sleep quality. Conclusions: These results suggest that oral melatonin, together with the first ACBC counteracts the dysfunction in the inhibitory DPMS and improves pain perception measures. Also, it shows that changes in the neuroplasticity state mediate the impact of melatonin on pain. Clinical Trial Registration:www.ClinicalTrials.gov, identifier NCT03205033.
Collapse
Affiliation(s)
- Ana Claudia Souza Palmer
- Post-graduate Program in Pharmacology and Therapeutics, Department of Pharmacology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Andressa Souza
- Postgraduate Program in Health and Human Development, La Salle University Center, Canoas, Brazil
| | - Vinicius Souza Dos Santos
- Post-graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - José Antônio Crespo Cavalheiro
- Division of Breast Surgery, Hospital de Clinicas de Porto Alegre (HCPA), Postgraduate Program in Gynecology and Obstetrics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Fernando Schuh
- Division of Breast Surgery, Hospital de Clinicas de Porto Alegre (HCPA), Postgraduate Program in Gynecology and Obstetrics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Angela Erguy Zucatto
- Division of Breast Surgery, Hospital de Clinicas de Porto Alegre (HCPA), Postgraduate Program in Gynecology and Obstetrics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Jorge Villanova Biazus
- Division of Breast Surgery, Hospital de Clinicas de Porto Alegre (HCPA), Postgraduate Program in Gynecology and Obstetrics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Iraci Lucena Da S Torres
- Post-graduate Program in Pharmacology and Therapeutics, Department of Pharmacology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Pharmacology Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Felipe Fregni
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, United States
| | - Wolnei Caumo
- Post-graduate Program in Pharmacology and Therapeutics, Department of Pharmacology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Post-graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Pharmacology Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Anesthesiology, Pain and Palliative Care Service, Hospital de Clínicas de Porto Alegre (HCPA), Department of Surgery, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
22
|
Ahmadi Z, Ashrafizadeh M. Melatonin as a potential modulator of Nrf2. Fundam Clin Pharmacol 2019; 34:11-19. [PMID: 31283051 DOI: 10.1111/fcp.12498] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/19/2019] [Accepted: 07/04/2019] [Indexed: 02/06/2023]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is considered as the sensor of oxidative stress, and the main aim of this signaling pathway is to maintain physiological condition by induction of redox balance. Also, this pathway exerts anti-inflammatory effects via antioxidant response element. Oxidative stress is a key factor in a variety of pathological conditions and high level of oxidative stress is associated with damages in lipids, proteins, genetic material, and cell membrane. Multiple drugs have been developed in order to diminish oxidative stress. However, synthetic drugs suffer from various drawbacks such as high cost and side effects. On the other hand, naturally occurring compounds are of interest due to their minimal side effects and valuable biological activities. Melatonin is a hormone of pineal gland which is found in different plants. This compound has a variety of favorable biological and therapeutic activities such as antioxidant, anti-inflammatory, anti-tumor, anti-diabetic, and cardioprotection. At the present review, we demonstrate that Nrf2 signaling pathway explains some of the therapeutic and biological effects of melatonin.
Collapse
Affiliation(s)
- Zahra Ahmadi
- Department of basic science, Shoushtar Branch, Islamic Azad university, Shoushtar, 5563584, Iran
| | - Milad Ashrafizadeh
- Department of basic science, Faculty of veterinary medicine, University of Tabriz, Tabriz, 1455742, Iran
| |
Collapse
|
23
|
MiR-142a-3p and miR-155-5p reduce methamphetamine-induced inflammation: Role of the target protein Peli1. Toxicol Appl Pharmacol 2019; 370:145-153. [DOI: 10.1016/j.taap.2019.03.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/07/2019] [Accepted: 03/22/2019] [Indexed: 11/20/2022]
|
24
|
Hardeland R. Aging, Melatonin, and the Pro- and Anti-Inflammatory Networks. Int J Mol Sci 2019; 20:ijms20051223. [PMID: 30862067 PMCID: PMC6429360 DOI: 10.3390/ijms20051223] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/17/2022] Open
Abstract
Aging and various age-related diseases are associated with reductions in melatonin secretion, proinflammatory changes in the immune system, a deteriorating circadian system, and reductions in sirtuin-1 (SIRT1) activity. In non-tumor cells, several effects of melatonin are abolished by inhibiting SIRT1, indicating mediation by SIRT1. Melatonin is, in addition to its circadian and antioxidant roles, an immune stimulatory agent. However, it can act as either a pro- or anti-inflammatory regulator in a context-dependent way. Melatonin can stimulate the release of proinflammatory cytokines and other mediators, but also, under different conditions, it can suppress inflammation-promoting processes such as NO release, activation of cyclooxygenase-2, inflammasome NLRP3, gasdermin D, toll-like receptor-4 and mTOR signaling, and cytokine release by SASP (senescence-associated secretory phenotype), and amyloid-β toxicity. It also activates processes in an anti-inflammatory network, in which SIRT1 activation, upregulation of Nrf2 and downregulation of NF-κB, and release of the anti-inflammatory cytokines IL-4 and IL-10 are involved. A perhaps crucial action may be the promotion of macrophage or microglia polarization in favor of the anti-inflammatory phenotype M2. In addition, many factors of the pro- and anti-inflammatory networks are subject to regulation by microRNAs that either target mRNAs of the respective factors or upregulate them by targeting mRNAs of their inhibitor proteins.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, 37073 Göttingen, Germany.
| |
Collapse
|
25
|
Pérez-González A, Castañeda-Arriaga R, Álvarez-Idaboy JR, Reiter RJ, Galano A. Melatonin and its metabolites as chemical agents capable of directly repairing oxidized DNA. J Pineal Res 2019; 66:e12539. [PMID: 30417425 DOI: 10.1111/jpi.12539] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/26/2018] [Accepted: 11/05/2018] [Indexed: 12/24/2022]
Abstract
Oxidative stress mediates chemical damage to DNA yielding a wide variety of products. In this work, the potential capability of melatonin and several of its metabolites to repair directly (chemically) oxidative lesions in DNA was explored. It was found that all the investigated molecules are capable of repairing guanine-centered radical cations by electron transfer at very high rates, that is, diffusion-limited. They are also capable of repairing C-centered radicals in the sugar moiety of 2'-deoxyguanosine (2dG) by hydrogen atom transfer. Although this was identified as a rather slow process, with rate constants ranging from 1.75 to 5.32 × 102 M-1 s-1 , it is expected to be fast enough to prevent propagation of the DNA damage. Melatonin metabolites 6-hydroxymelatonin (6OHM) and 4-hydroxymelatonin (4OHM) are also predicted to repair OH adducts in the imidazole ring. In particular, the rate constants corresponding to the repair of 8-OH-G adducts were found to be in the order of 104 M-1 s-1 and are assisted by a water molecule. The results presented here strongly suggest that the role of melatonin in preventing DNA damage might be mediated by its capability, combined with that of its metabolites, to directly repair oxidized sites in DNA through different chemical routes.
Collapse
Affiliation(s)
- Adriana Pérez-González
- CONACYT, Universidad Autónoma Metropolitana - Iztapalapa, Iztapalapa, México City, México
| | - Romina Castañeda-Arriaga
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Iztapalapa, México City, México
| | - Juan Raúl Álvarez-Idaboy
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, México City, México
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, Texas
| | - Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Iztapalapa, México City, México
| |
Collapse
|
26
|
Khan AM, Korzeniowska B, Gorshkov V, Tahir M, Schrøder H, Skytte L, Rasmussen KL, Khandige S, Møller-Jensen J, Kjeldsen F. Silver nanoparticle-induced expression of proteins related to oxidative stress and neurodegeneration in an in vitro human blood-brain barrier model. Nanotoxicology 2019; 13:221-239. [DOI: 10.1080/17435390.2018.1540728] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Asif Manzoor Khan
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Barbara Korzeniowska
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Vladimir Gorshkov
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Muhammad Tahir
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Henrik Schrøder
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Lilian Skytte
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Kaare Lund Rasmussen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Surabhi Khandige
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Jakob Møller-Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Frank Kjeldsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
27
|
Hardeland R. Melatonin and inflammation-Story of a double-edged blade. J Pineal Res 2018; 65:e12525. [PMID: 30242884 DOI: 10.1111/jpi.12525] [Citation(s) in RCA: 281] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 12/13/2022]
Abstract
Melatonin is an immune modulator that displays both pro- and anti-inflammatory properties. Proinflammatory actions, which are well documented by many studies in isolated cells or leukocyte-derived cell lines, can be assumed to enhance the resistance against pathogens. However, they can be detrimental in autoimmune diseases. Anti-inflammatory actions are of particular medicinal interest, because they are observed in high-grade inflammation such as sepsis, ischemia/reperfusion, and brain injury, and also in low-grade inflammation during aging and in neurodegenerative diseases. The mechanisms contributing to anti-inflammatory effects are manifold and comprise various pathways of secondary signaling. These include numerous antioxidant effects, downregulation of inducible and inhibition of neuronal NO synthases, downregulation of cyclooxygenase-2, inhibition of high-mobility group box-1 signaling and toll-like receptor-4 activation, prevention of inflammasome NLRP3 activation, inhibition of NF-κB activation and upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2). These effects are also reflected by downregulation of proinflammatory and upregulation of anti-inflammatory cytokines. Proinflammatory actions of amyloid-β peptides are reduced by enhancing α-secretase and inhibition of β- and γ-secretases. A particular role in melatonin's actions seems to be associated with the upregulation of sirtuin-1 (SIRT1), which shares various effects known from melatonin and additionally interferes with the signaling by the mechanistic target of rapamycin (mTOR) and Notch, and reduces the expression of the proinflammatory lncRNA-CCL2. The conclusion on a partial mediation by SIRT1 is supported by repeatedly observed inhibitions of melatonin effects by sirtuin inhibitors or knockdown.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
28
|
Liu Y, Yan J, Sun C, Li G, Li S, Zhang L, Di C, Gan L, Wang Y, Zhou R, Si J, Zhang H. Ameliorating mitochondrial dysfunction restores carbon ion-induced cognitive deficits via co-activation of NRF2 and PINK1 signaling pathway. Redox Biol 2018; 17:143-157. [PMID: 29689442 PMCID: PMC6006734 DOI: 10.1016/j.redox.2018.04.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 12/17/2022] Open
Abstract
Carbon ion therapy is a promising modality in radiotherapy to treat tumors, however, a potential risk of induction of late normal tissue damage should still be investigated and protected. The aim of the present study was to explore the long-term cognitive deficits provoked by a high-linear energy transfer (high-LET) carbon ions in mice by targeting to hippocampus which plays a crucial role in memory and learning. Our data showed that, one month after 4 Gy carbon ion exposure, carbon ion irradiation conspicuously resulted in the impaired cognitive performance, neurodegeneration and neuronal cell death, as well as the reduced mitochondrial integrity, the disrupted activities of tricarboxylic acid cycle flux and electron transport chain, and the depressed antioxidant defense system, consequently leading to a decline of ATP production and persistent oxidative damage in the hippocampus region. Mechanistically, we demonstrated the disruptions of mitochondrial homeostasis and redox balance typically characterized by the disordered mitochondrial dynamics, mitophagy and glutathione redox couple, which is closely associated with the inhibitions of PINK1 and NRF2 signaling pathway as the key regulators of molecular responses in the context of neurotoxicity and neurodegenerative disorders. Most importantly, we found that administration with melatonin as a mitochondria-targeted antioxidant promoted the PINK1 accumulation on the mitochondrial membrane, and augmented the NRF2 accumulation and translocation. Moreover, melatonin pronouncedly enhanced the molecular interplay between NRF2 and PINK1. Furthermore, in the mouse hippocampal neuronal cells, overexpression of NRF2/PINK1 strikingly protected the hippocampal neurons from carbon ion-elicited toxic insults. Thus, these data suggest that alleviation of the sustained mitochondrial dysfunction and oxidative stress through co-modulation of NRF2 and PINK1 may be in charge of restoration of the cognitive impairments in a mouse model of high-LET carbon ion irradiation.
Collapse
Affiliation(s)
- Yang Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Jiawei Yan
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Cao Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Guo Li
- Lanzhou University, Lanzhou 730000, China
| | - Sirui Li
- Lanzhou University, Lanzhou 730000, China
| | - Luwei Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Cuixia Di
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Lu Gan
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yupei Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Rong Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Jing Si
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Hong Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China.
| |
Collapse
|
29
|
Fan W, He Y, Guan X, Gu W, Wu Z, Zhu X, Huang F, He H. Involvement of the nitric oxide in melatonin-mediated protection against injury. Life Sci 2018; 200:142-147. [DOI: 10.1016/j.lfs.2018.03.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/14/2018] [Accepted: 03/16/2018] [Indexed: 01/04/2023]
|
30
|
Leeboonngam T, Pramong R, Sae-Ung K, Govitrapong P, Phansuwan-Pujito P. Neuroprotective effects of melatonin on amphetamine-induced dopaminergic fiber degeneration in the hippocampus of postnatal rats. J Pineal Res 2018; 64. [PMID: 29149481 DOI: 10.1111/jpi.12456] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/10/2017] [Indexed: 12/21/2022]
Abstract
Chronic amphetamine (AMPH) abuse leads to damage of the hippocampus, the brain area associated with learning and memory process. Previous results have shown that AMPH-induced dopamine neurotransmitter release, reactive oxygen species formation, and degenerative protein aggregation lead to neuronal death. Melatonin, a powerful antioxidant, plays a role as a neuroprotective agent. The objective of this study was to investigate whether the protective effect of melatonin on AMPH-induced hippocampal damage in the postnatal rat acts through the dopaminergic pathway. Four-day-old postnatal rats were subcutaneously injected with 5-10 mg/kg AMPH and pretreated with 10 mg/kg melatonin prior to AMPH exposure for seven days. The results showed that melatonin decreased the AMPH-induced hippocampal neuronal degeneration in the dentate gyrus, CA1, and CA3. Melatonin attenuated the reduction in the expression of hippocampal synaptophysin, PSD-95, α-synuclein, and N-methyl-D-aspartate (NMDA) receptor protein and mRNA caused by AMPH. Melatonin attenuated the AMPH-induced reduction in dopamine transporter (DAT) protein expression in the hippocampus and the reduction in mRNA expression in the ventral tegmental area (VTA). Immunofluorescence demonstrated that melatonin not only prevented the AMPH-induced loss of DAT and NMDA receptor but also prevented AMPH-induced α-synuclein overexpression in the dentate gyrus, CA1, and CA3. Melatonin decreased the AMPH-induced reduction in the protein and mRNA of the NMDA receptor downstream signaling molecule, calcium/calmodulin-dependent protein kinase II (CaMKII), and the melatonin receptors (MT1 and MT2). This study showed that melatonin prevented AMPH-induced toxicity in the hippocampus of postnatal rats possibly via its antioxidative effect and mitochondrial protection.
Collapse
Affiliation(s)
- Tanawan Leeboonngam
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
| | - Ratchadaporn Pramong
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
| | - Kwankanit Sae-Ung
- Innovative Learning Center, Srinakharinwirot University, Bangkok, Thailand
| | - Piyarat Govitrapong
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakorn Pathom, Thailand
| | | |
Collapse
|
31
|
Melatonin: A Versatile Protector against Oxidative DNA Damage. Molecules 2018; 23:molecules23030530. [PMID: 29495460 PMCID: PMC6017920 DOI: 10.3390/molecules23030530] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 02/13/2018] [Accepted: 02/22/2018] [Indexed: 12/15/2022] Open
Abstract
Oxidative damage to DNA has important implications for human health and has been identified as a key factor in the onset and development of numerous diseases. Thus, it is evident that preventing DNA from oxidative damage is crucial for humans and for any living organism. Melatonin is an astonishingly versatile molecule in this context. It can offer both direct and indirect protection against a wide variety of damaging agents and through multiple pathways, which may (or may not) take place simultaneously. They include direct antioxidative protection, which is mediated by melatonin's free radical scavenging activity, and also indirect ways of action. The latter include, at least: (i) inhibition of metal-induced DNA damage; (ii) protection against non-radical triggers of oxidative DNA damage; (iii) continuous protection after being metabolized; (iv) activation of antioxidative enzymes; (v) inhibition of pro-oxidative enzymes; and (vi) boosting of the DNA repair machinery. The rather unique capability of melatonin to exhibit multiple neutralizing actions against diverse threatening factors, together with its low toxicity and its ability to cross biological barriers, are all significant to its efficiency for preventing oxidative damage to DNA.
Collapse
|
32
|
Inhibitory effects of melatonin on titanium particle-induced inflammatory bone resorption and osteoclastogenesis via suppression of NF-κB signaling. Acta Biomater 2017; 62:362-371. [PMID: 28867647 DOI: 10.1016/j.actbio.2017.08.046] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/14/2017] [Accepted: 08/24/2017] [Indexed: 12/14/2022]
Abstract
Wear debris-induced peri-implant osteolysis challenges the longevity of implants. The host response to wear debris causes chronic inflammation, promotes bone resorption, and impairs bone formation. We previously demonstrated that melatonin enhances bone formation and attenuates wear debris-induced bone loss in vivo. However, whether melatonin inhibits chronic inflammation and bone resorption at sites of wear debris-induced osteolysis remains unclear. In this study, we examined the potential inhibitory effects of melatonin on titanium particle-induced inflammatory osteolysis in a murine calvarial model and on RANKL-induced osteoclastic formation in bone marrow-derived macrophages. We found that the exogenous administration of melatonin significantly inhibited wear debris-induced bone resorption and the expression of inflammatory cytokines in vivo. Additionally, melatonin inhibited RANKL-induced osteoclast differentiation, F-actin ring formation, and osteoclastic resorption in a concentration-dependent manner in vitro. We also showed that melatonin blocked the phosphorylation of IκB-α and p65, but not IKKα, and significantly inhibited the expression of NFATc1 and c-Fos. However, melatonin had no effect on MAPK or PI3K/AKT signaling pathways. These results provide novel mechanistic insight into the anti-inflammatory and anti-bone resorptive effects of melatonin on wear debris-induced bone loss and provide an evidence-based rationale for the protective effects of melatonin as a treatment for peri-implant osteolysis. STATEMENT OF SIGNIFICANCE Wear debris-induced chronic inflammation, osteoclastic activation and osteoblastic inhibition have been identified as critical factors of peri-implant bone loss. We previously demonstrated that melatonin, a bioactive indolamine secreted mainly by the pineal gland, activates Wnt/β-catenin signaling pathway and enhances bone regeneration at osteolytic site in vivo. In the current study, we further demonstrated that melatonin significantly suppresses wear debris-induced bone resorption and inflammatory cytokine expression in vivo. In addition, melatonin inhibits receptor activator of nuclear factor kappa-B ligand induced osteoclast formation and osteoclastic bone resorption in vitro. Meanwhile, we found that melatonin mediates its anti-inflammation and anti-bone resorption effects by abrogating nuclear factor kappa-B activation. These results further support the protective effects of melatonin on wear debris-induced peri-implant bone loss, and strongly suggest that melatonin could be considered as a potential candidate for the prevention and treatment of wear debris-induced osteolysis and subsequent aseptic loosening.
Collapse
|
33
|
Molecular pathology of cerebral TNF-α, IL-1β, iNOS and Nrf2 in forensic autopsy cases with special regard to deaths due to environmental hazards and intoxication. Forensic Sci Med Pathol 2017; 13:409-416. [DOI: 10.1007/s12024-017-9896-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2017] [Indexed: 02/07/2023]
|
34
|
Xiong K, Long L, Zhang X, Qu H, Deng H, Ding Y, Cai J, Wang S, Wang M, Liao L, Huang J, Yi CX, Yan J. Overview of long non-coding RNA and mRNA expression in response to methamphetamine treatment in vitro. Toxicol In Vitro 2017; 44:1-10. [PMID: 28619521 DOI: 10.1016/j.tiv.2017.06.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/20/2017] [Accepted: 06/10/2017] [Indexed: 01/11/2023]
Abstract
Long non-coding RNAs (lncRNAs) display multiple functions including regulation of neuronal injury. However, their impact in methamphetamine (METH)-induced neurotoxicity has rarely been reported. Here, using microarray analysis, we investigated the expression profiling of lncRNAs and mRNAs in primary cultured prefrontal cortical neurons after METH treatment. We observed a difference in lncRNA and mRNA expression between the experimental and sham control groups. Using bioinformatics, we analyzed the highest enriched gene ontology (GO) terms of biological process, cellular component, and molecular function, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and pathway network analysis. Furthermore, an lncRNA-mRNA co-expression sub-network for aberrantly expressed terms revealed possible interactions of lncRNA NR_110713 and NR_027943 with their related genes. Afterwards, three lncRNAs (NR_110713, NR_027943, GAS5) and two mRNAs (Ddit3, Casp12) were targeted to validate the microarray data by qRT-PCR. This presented an overview of lncRNA and mRNA expression profiling and indicated that lncRNA might participate in METH-induced neuronal apoptosis by regulating the coding genes of neurons.
Collapse
Affiliation(s)
- Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Lingling Long
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Xudong Zhang
- Narcotics Division, Municipal Security Bureau, Changsha, Hunan 410013, China
| | - Hongke Qu
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Haixiao Deng
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Yanjun Ding
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Jifeng Cai
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Shuchao Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Mi Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Lvshuang Liao
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
35
|
The anti-inflammatory effect of melatonin in SH-SY5Y neuroblastoma cells exposed to sublethal dose of hydrogen peroxide. Mech Ageing Dev 2017; 164:49-60. [DOI: 10.1016/j.mad.2017.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 01/28/2023]
|
36
|
Pan H, Wang H, Jia Y, Wang Q, Li L, Wu Q, Chen L. VPA and MEL induce apoptosis by inhibiting the Nrf2-ARE signaling pathway in TMZ-resistant U251 cells. Mol Med Rep 2017; 16:908-914. [PMID: 28560379 DOI: 10.3892/mmr.2017.6621] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 02/23/2017] [Indexed: 11/05/2022] Open
Abstract
Chemoresistance is the primary obstacle to effective treatment of glioblastoma, the most lethal brain tumor. Our previous study demonstrated that Nf-E2 related factor 2 (Nrf2), a traditional cytoprotective transcription factor, was overexpressed in gliomas and promoted malignancy. The present study aimed to investigate the expression levels of Nrf2‑antioxidant response element (ARE) signaling pathway genes in temozolomide (TMZ)‑resistant U251 human glioblastoma cells (U251‑TMZ). Additionally, the effect of valproic acid (VPA) and melatonin (MEL) on Nrf2 expression in U251‑TMZ cells and their association with chemoresistance was investigated. The results of the present study indicated that the expression levels of components of the Nrf2‑ARE signaling pathway were increased in U251‑TMZ cells compared with U251 parent cells. Silencing of Nrf2 by transfection with small interfering RNA restored the chemosensitivity of U251‑TMZ cells. The Nrf2 inhibitors VPA and MEL successfully reduced Nrf2 expression and survival in U251‑TMZ cells treated with TMZ, accompanied by increased reactive oxygen species levels and apoptosis. Therefore, VPA and MEL may be potential chemotherapeutic sensitizers for the treatment of chemoresistant glioblastoma.
Collapse
Affiliation(s)
- Hao Pan
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Yue Jia
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Qiang Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Liwen Li
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Qi Wu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Longbang Chen
- Department of Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
37
|
Jumnongprakhon P, Sivasinprasasn S, Govitrapong P, Tocharus C, Tocharus J. Activation of melatonin receptor (MT1/2) promotes P-gp transporter in methamphetamine-induced toxicity on primary rat brain microvascular endothelial cells. Toxicol In Vitro 2017; 41:42-48. [PMID: 28223141 DOI: 10.1016/j.tiv.2017.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 12/08/2016] [Accepted: 02/17/2017] [Indexed: 11/17/2022]
Abstract
Melatonin has been known as a neuroprotective agent for the central nervous system (CNS) and the blood-brain barrier (BBB), which is the primary structure that comes into contact with several neurotoxins including methamphetamine (METH). Previous studies have reported that the activation of melatonin receptors (MT1/2) by melatonin could protect against METH-induced toxicity in brain endothelial cells via several mechanisms. However, its effects on the P-glycoprotein (P-gp) transporter, the active efflux pump involved in cell homeostasis, are still unclear. Thus, this study investigated the role of melatonin and its receptors on the METH-impaired P-gp transporter in primary rat brain microvascular endothelial cells (BMVECs). The results showed that METH impaired the function of the P-gp transporter, significantly decreasing the efflux of Rho123 and P-gp expression, which caused a significant increase in the intracellular accumulation of Rho123, and these responses were reversed by the interaction of melatonin with its receptors. Blockade of the P-gp transporter by verapamil caused oxidative stress, apoptosis, and cell integrity impairment after METH treatment, and these effects could be reversed by melatonin. Our results, together with previous findings, suggest that the interaction of melatonin with its receptors protects against the effects of the METH-impaired P-gp transporter and that the protective role in METH-induced toxicity was at least partially mediated by the regulation of the P-gp transporter. Thus, melatonin and its receptors (MT1/2) are essential for protecting against BBB impairment caused by METH.
Collapse
Affiliation(s)
- Pichaya Jumnongprakhon
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sivanan Sivasinprasasn
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Piyarat Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand; Center for Neuroscience, Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand; Chulabhorn Graduate Institute, Kamphaeng Phet 6 Road, Lak Si, Bangkok 10210, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
38
|
Gu YH, Wang Y, Bai Y, Liu M, Wang HL. Endoplasmic reticulum stress and apoptosis via PERK-eIF2α-CHOP signaling in the methamphetamine-induced chronic pulmonary injury. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 49:194-201. [PMID: 28081472 DOI: 10.1016/j.etap.2017.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/02/2017] [Indexed: 06/06/2023]
Abstract
Methamphetamine (MA) leads to multiple organs lesions and apoptosis. The aim of this study is to investigate if endoplasmic reticulum stress (ERS) - initiated apoptosis is involved in the chronic pulmonary injury induced by MA. In this study, rats were divided into a control group, methamphetamine 5mg/kg group and methamphetamine 10mg/kg group. This study found that the protein level of GRP78 is higher in M10 group than in control group. PERK signaling and the relevant apoptosis factors were also activated. Morphological measurements showed that protein BAX and CHOP accumulated in the alveolar epithelium and the alveolar walls with epithelium were damaged and that the number of pulmonary alveoli decreased. The findings showed that ERS and PERK pathway are activated and eventually lead to apoptosis. Severe ERS mediated the apoptosis of alveolar epithelium cells as well as decreasing numbers of pulmonary alveoli.
Collapse
Affiliation(s)
- Yu-Han Gu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning Province, China
| | - Yun Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning Province, China.
| | - Yang Bai
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning Province, China
| | - Ming Liu
- Department of Drug Control, China Criminal Police University, Shenyang 110035, China
| | - Huai-Liang Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning Province, China; National Key Subject, Institute of Respiratory Diseases, China Medical University, Shenyang, China
| |
Collapse
|
39
|
Tungkum W, Jumnongprakhon P, Tocharus C, Govitrapong P, Tocharus J. Melatonin suppresses methamphetamine-triggered endoplasmic reticulum stress in C6 cells glioma cell lines. J Toxicol Sci 2017; 42:63-71. [DOI: 10.2131/jts.42.63] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Wanida Tungkum
- Department of Biochemistry, Faculty of Medical Science Naresuan University, Thailand
| | | | | | - Piyarat Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Thailand
- Center for Neuroscience and Department of Pharmacology, Faculty of Science, Mahidol University, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Thailand
| |
Collapse
|
40
|
Zhang S, Chen S, Li Y, Liu Y. Melatonin as a promising agent of regulating stem cell biology and its application in disease therapy. Pharmacol Res 2016; 117:252-260. [PMID: 28042087 DOI: 10.1016/j.phrs.2016.12.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 01/20/2023]
Abstract
Stem cells have emerged as an important approach to repair and regenerate damaged tissues or organs and show great therapeutic potential in a variety of diseases. However, the low survival of engrafted stem cells still remains a major challenge for stem cell therapy. As a major hormone from the pineal gland, melatonin has been shown to play an important role in regulating the physiological and pathological functions of stem cells, such as promoting proliferation, migration and differentiation. Thus, melatonin combined with stem cell transplantation displayed promising application potential in neurodegenerative diseases, liver cirrhosis, wound healing, myocardial infarction, kidney ischemia injury, osteoporosis, etc. It exerts its physiological and pathological functions through its anti-oxidant, anti-inflammatory, anti-apoptosis and anti-ageing properties. Here, we summarize recent advances on exploring the biological role of melatonin in stem cells, and discuss its potential applications in stem cell-based therapy.
Collapse
Affiliation(s)
- Shuo Zhang
- College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Simon Chen
- Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Yuan Li
- College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Yu Liu
- Department of Clinical Laboratory Diagnosis, the Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China.
| |
Collapse
|
41
|
Zhang L, Zhang Y, Tai L, Jiang K, Xie C, Li Z, Lin YZ, Wei G, Lu W, Pan W. Functionalized cell nucleus-penetrating peptide combined with doxorubicin for synergistic treatment of glioma. Acta Biomater 2016; 42:90-101. [PMID: 27370905 DOI: 10.1016/j.actbio.2016.06.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 06/07/2016] [Accepted: 06/27/2016] [Indexed: 01/24/2023]
Abstract
UNLABELLED Clinical application of cell-penetrating peptides (CPPs) in cancer therapy is greatly restricted due to lack of tissue selectivity and tumor-targeting ability. CB5005, a rationally designed CPP that targets and inhibits intracellular NF-κB activation, is constituted by a unique membrane-permeable sequence (CB5005M) cascading to a NF-κB nuclear localization sequence (CB5005N). In vitro cellular evaluation confirmed that CB5005 was effectively taken up by brain capillary endothelial cell bEnd.3 and glioma cells U87. The intracellular localization analysis further demonstrated that CB5005 could not only penetrate into the cells but also enter into their nuclei. More interestingly, CB5005 permeated deeply into the tumor spheroids of U87 cell. In vivo imaging illustrated that the fluorescence-labeled CB5005 distributed itself into the brain and accumulated at the tumor site after intravenous injection. Given the important role of over expressed NF-κB in tumor growth and development, we further investigated CB5005 for its potential in treatment of glioma. When combined administration in vitro with doxorubicin (DOX), CB5005 exhibited a synergistic effect in killing U87 cells. In a nude mice xenograft model, CB5005 inhibited the growth of tumor when applied alone, and displayed a synergistic anti-tumor effect with DOX. In conclusion, CB5005 functioned simultaneously as a cell penetrating peptide and a tumor growth inhibitor, therefore can work as a potential synergist for chemotherapy of human tumor. STATEMENT OF SIGNIFICANCE Clinical application of cell-penetrating peptides in cancer therapy is restricted due to lack of tissue selectivity and tumor-targeting ability. In this manuscript, we reported a rationally designed peptide, named CB5005, which had an attractive capability of translocation into the cell nucleus and blocking nuclear translocation of endogenous NF-κB protein. CB5005 had unique affinity with brain and glioma, and could rapidly accumulate in these tissues after intravenous injection. Furthermore, CB5005 showed a synergistic effect on inhibiting gliomas when administrated with doxorubicin. This is the first literature report on this multi-functionalized peptide, which can work as a potential synergist for chemotherapy of tumor. This work should be of general interest to scientists in the fields of biomaterials, biology, pharmacy, and oncology.
Collapse
|
42
|
Melatonin promotes blood-brain barrier integrity in methamphetamine-induced inflammation in primary rat brain microvascular endothelial cells. Brain Res 2016; 1646:182-192. [DOI: 10.1016/j.brainres.2016.05.049] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 12/14/2022]
|
43
|
Jumnongprakhon P, Govitrapong P, Tocharus C, Tocharus J. Inhibitory effect of melatonin on cerebral endothelial cells dysfunction induced by methamphetamine via NADPH oxidase-2. Brain Res 2016; 1650:84-92. [PMID: 27590720 DOI: 10.1016/j.brainres.2016.08.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/24/2016] [Accepted: 08/29/2016] [Indexed: 01/02/2023]
Abstract
Melatonin is a hormone that mostly produced from the pineal gland, and it performs as a strong neuroprotectant to both neuron and glial cells against methamphetamine (METH)-induced neurotoxicity. Recently, it has been found that METH also damages the blood brain barrier (BBB) structure and function. However, the protective mechanism of melatonin on the BBB impairment caused by METH has not been investigated. In this study, the primary rat brain microvascular endothelium cells (BMVECs) isolated from neonatal rats was used to investigate the protective effect of melatonin on METH-induced BBB impairment and the underlying mechanism. The results demonstrated that melatonin decreased the level of reactive oxygen species (ROS), reactive nitrogen species (RNS), and apoptosis induced by METH via NADPH oxidase (NOX)-2 since apocynin, a NOX-2 inhibitor abolished those changes. In addition, melatonin was found to improve cell integrity by increasing the transendothelial electric resistance (TEER) values, and up-regulate the tight junction proteins ZO-1, occludin, and claudin-5, thereby decreasing the paracellular permeability caused by METH mediated by NOX-2. Our data suggest that METH induces BBB impairment by mediating NOX-2 activity, and then induces oxidative and nitrative stress, as well as apoptosis, which causes the impairment of cell integrity, and that melatonin reduces these negative effects of METH by mediating via MT1/2 receptors.
Collapse
Affiliation(s)
- Pichaya Jumnongprakhon
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Piyarat Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand; Center for Neuroscience and Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
44
|
Jumnongprakhon P, Govitrapong P, Tocharus C, Tocharus J. WITHDRAWN: Melatonin improves methamphetamine-induced blood brain barrier impairment through NADPH oxidase-2 in primary rat brain microvascular endothelium cells. Brain Res 2016; 1646:393-401. [PMID: 27297493 DOI: 10.1016/j.brainres.2016.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/10/2016] [Accepted: 06/08/2016] [Indexed: 12/16/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published in 〈BRES, 1646 (2016) 182-192〉, 10.1016/j.brainres.2016.05.049. The duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Pichaya Jumnongprakhon
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Piyarat Govitrapong
- Research Center for Neuroscience, Institute of Biosciences, Mahidol University, Bangkok, Thailand; Center for Neuroscience and Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
45
|
Pazar A, Kolgazi M, Memisoglu A, Bahadir E, Sirvanci S, Yaman A, Yeğen BÇ, Ozek E. The neuroprotective and anti-apoptotic effects of melatonin on hemolytic hyperbilirubinemia-induced oxidative brain damage. J Pineal Res 2016; 60:74-83. [PMID: 26511903 DOI: 10.1111/jpi.12292] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/26/2015] [Indexed: 12/16/2022]
Abstract
Melatonin exerts protection in several inflammatory and neurodegenerative disorders. To investigate the neuroprotective effects of melatonin in an experimental hemolysis-induced hyperbilirubinemia, newborn Sprague-Dawley rats (25-40 g, n = 72) were injected with phenylhydrazine hydrochloride (PHZ; 75 mg/kg) and the injections were repeated at the 24th hour. Rats were treated with saline or melatonin (10 mg/kg) 30 min before the first and second PHZ injections and 24 h after the 2nd PHZ injections. Control rats (n = 24) were injected with saline, but not PHZ. At sixth hours after the last injections of saline or melatonin, all rats were decapitated. Tumor necrosis factor (TNF)-α, IL-1β, IL-10 and brain-derived neurotrophic factor (BDNF) and S100B levels in the plasma were measured. Brain tissue malondialdehyde (MDA), glutathione (GSH) levels and myeloperoxidase (MPO) activities were measured, and brain tissues were evaluated for apoptosis by TUNEL method. In the saline-treated PHZ group, hemoglobin, hematocrit levels were reduced, and total/direct bilirubin levels were elevated when compared to control group. Increased plasma TNF-α, IL-1β levels, along with decreased BDNF, S100B and IL-10 values were observed in the saline-treated PHZ group, while these changes were all reversed in the melatonin-treated group. Increased MDA levels and MPO activities in the brain tissues of saline-treated hyperbilirubinemic rats, concomitant with depleted brain GSH stores, were also reversed in the melatonin-treated hyperbilirubinemic rats. Increased TUNEL(+) cells in the hippocampus of saline-treated PHZ group were reduced by melatonin treatment. Melatonin exerts neuroprotective and anti-apoptotic effects on the oxidative neuronal damage of the newborn rats with hemolysis and hyperbilirubinemia.
Collapse
Affiliation(s)
- Asilay Pazar
- Department of Paediatrics, Marmara University School of Medicine, Istanbul, Turkey
| | - Meltem Kolgazi
- Department of Physiology, Acibadem University School of Medicine, Istanbul, Turkey
| | - Aslı Memisoglu
- Division of Neonatology, Department of Paediatrics, Marmara University School of Medicine, Istanbul, Turkey
| | - Elif Bahadir
- Department of Physiology, Marmara University School of Medicine, Istanbul, Turkey
| | - Serap Sirvanci
- Department of Histology and Embryology, Marmara University School of Medicine, Istanbul, Turkey
| | - Akan Yaman
- Division of Neonatology, Department of Paediatrics, Marmara University School of Medicine, Istanbul, Turkey
| | - Berrak Ç Yeğen
- Department of Physiology, Marmara University School of Medicine, Istanbul, Turkey
| | - Eren Ozek
- Division of Neonatology, Department of Paediatrics, Marmara University School of Medicine, Istanbul, Turkey
| |
Collapse
|