1
|
Xu W, Huang X, Wu X. The effect of acute hypoxic exercise on the protein kinase A/ arachidonic acid/ transient receptor potential vanilloid 4 pathway in the prefrontal cortex of rats. Arch Biochem Biophys 2025; 763:110214. [PMID: 39566673 DOI: 10.1016/j.abb.2024.110214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
Acute hypoxic exercise will cause insufficient oxygen supply in brain tissue, and a succession of variations such as central dysfunction will occur. For example, the muscles don't have an adequate supply of oxygen, which leads to decrease in exercise capacity (Imray et al., 2005) [1]. The prefrontal cortex in the brain is primarily responsible for regulating the executive functions of the brain. TRPV4 channel is a cation channel with permeability to Ca2+. Signals such as hypotonic solution stimulation, cell swelling, temperature stimulation, mechanical stimulation, arachidonic acid and its metabolites can activate TRPV4 channel. PURPOSE In conditions of ischemia and hypoxia, the central nervous system of the brain is damaged. Therefore, studying the biological mechanism of TRPV4 pathway can help prevent the damage caused by cerebral ischemia and hypoxia to the human. RESULTS Studies have found that PKA-mediated phosphorylation at Ser-824 affects AA. This is an important signaling pathway for coronary dilatation. This signaling pathway can activate TRPV4 channels. Therefore, we studied the effect of acute hypoxic exercise on the PKA/AA/TRPV4 pathway in the prefrontal cortex of rats. Furthermore, we concluded that the hypoxic environment can shorten the time of increasing load exercise in rats. In this way, the rat entered a state of exhaustion in advance, and the exercise ability was significantly reduced. After further study, blocking TRPV4 channel can prolong the time of incremental load exercise in hypoxic environment, and the exercise ability is improved. Acute hypoxic exercise led to an increase in the concentration of 14,15-EET, which was speculated to be one of the reasons for the increased expression of TRPV4 channels. Acute hypoxic exercise can activate the PKA/AA/TRPV4 signaling pathway in the prefrontal cortex of rats. Further research on blocking the TRPV4 channel can alleviate the activation of the PKA/AA/TRPV4 signaling pathway in the prefrontal cortex of rats by acute hypoxic exercise. CONCLUSION These results suggest that blocking the TRPV4 channel may be one of the ways to reduce the damage and apoptosis of prefrontal cortex cells in rats due to acute hypoxic exercise. In future studies, multiple time points will be selected for collection. Alternatively, TRPV4 agonists, PKA agonists or blockers and 14,15-EET agonists or blockers can be added for further pathway validation. To provide a biological mechanism for the study of nutrient targets on the problem of reduced exercise capacity when military personnel and travel enthusiasts first went to the plateau. Better medical reference for athletes training at high altitudes or patients with respiratory issues.
Collapse
Affiliation(s)
- Wenlei Xu
- Capital University of Physical Education and Sports, Beijing, 100191, China
| | - Xing Huang
- Capital University of Physical Education and Sports, Beijing, 100191, China.
| | - Xiaolong Wu
- Capital University of Physical Education and Sports, Beijing, 100191, China
| |
Collapse
|
2
|
Wang T, Gao L, Tan J, Zhuoma D, Yuan R, Li B, Huang S. The Neuroprotective Effect of Sophocarpine against Glutamate-Induced HT22 Cell Cytotoxicity. J Oleo Sci 2024; 73:359-370. [PMID: 38433000 DOI: 10.5650/jos.ess23089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Neuronal cell death and dysfunction of the central nervous system can be caused by oxidative stress, which is associated with the development of neurodegenerative diseases. Sophocarpine, an alkaloid compound derived from Sophora moorcroftiana (Benth.) Baker seeds, has a wide range of medicinal value. This study sought to determine how sophocarpine exerts neuroprotective effects by inhibited oxidative stress and apoptosis in mouse hippocampus neuronal (HT22) cells. 20mM glutamate-induced HT22 cells were used to develop an in vitro model of oxidative stress damage. The Cell Counting Kit-8 (CCK-8) assay was used to assess cell viability. According to the instructions on the kits to detect reactive oxygen species (ROS) levels and oxidative stress indicators. HT22 cells were examined using immunofluorescence and Western Blotting to detect Nuclear Factor Erythroid 2-related Factor 2 (Nrf2) expression. The expression of proteins and messenger RNA (mRNA) for heme oxygenase-1 (HO-1) was examined by Western Blotting and Quantitative real time polymerase chain reaction (qRT-PCR). Mitochondrial membrane potential (MMP) and Cell apoptosis were used by 5, 5', 6, 6'-Tetrachloro-1, 1', 3, 3'-tetraethyl-imidacarbocyanine iodide (JC- 1) kit and Terminal Deoxynucleotidyl Transferase-mediated dUTP Nick-End Labeling (TUNEL) apoptosis assay kit, respectively. Finally, the expression of pro-apoptotic proteins was detected by Western Blotting. The result demonstrated that sophocarpine (1.25 μM-10 μM) can significantly inhibit glutamate-induced cytotoxicity and ROS generation, improve the activity of antioxidant enzymes. Sophocarpine increased the expression of HO-1 protein and mRNA and the nuclear translocation of Nrf2 to play a cytoprotective role; however, cells were transfected with small interfering RNA targeting HO-1 (si-HO-1) reversed the above effects of sophocarpine. In addition, sophocarpine significantly inhibited glutamate induced mitochondrial depolarization and further inhibited cell apoptosis by reducing the expression level of caspase-related proteins.
Collapse
Affiliation(s)
- Tong Wang
- Department of Pharmaceutical Engineering and Pharmaceutical Chemistry, College of Chemical Engineering, Qingdao University of Science & Technology
| | - Liying Gao
- Department of Pharmaceutical Engineering and Pharmaceutical Chemistry, College of Chemical Engineering, Qingdao University of Science & Technology
| | - Jiahua Tan
- Department of Pharmaceutical Engineering and Pharmaceutical Chemistry, College of Chemical Engineering, Qingdao University of Science & Technology
| | - Dongzhi Zhuoma
- Department of Pharmacy, Medical College, Tibet University
| | - Ruiying Yuan
- Department of Pharmacy, Medical College, Tibet University
| | - Bin Li
- Department of Pharmaceutical Engineering and Pharmaceutical Chemistry, College of Chemical Engineering, Qingdao University of Science & Technology
- Department of Pharmacy, Medical College, Tibet University
| | - Shan Huang
- Department of Pharmaceutical Engineering and Pharmaceutical Chemistry, College of Chemical Engineering, Qingdao University of Science & Technology
| |
Collapse
|
3
|
Harwood JL. Polyunsaturated Fatty Acids: Conversion to Lipid Mediators, Roles in Inflammatory Diseases and Dietary Sources. Int J Mol Sci 2023; 24:ijms24108838. [PMID: 37240183 DOI: 10.3390/ijms24108838] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are important components of the diet of mammals. Their role was first established when the essential fatty acids (EFAs) linoleic acid and α-linolenic acid were discovered nearly a century ago. However, most of the biochemical and physiological actions of PUFAs rely on their conversion to 20C or 22C acids and subsequent metabolism to lipid mediators. As a generalisation, lipid mediators formed from n-6 PUFAs are pro-inflammatory while those from n-3 PUFAs are anti-inflammatory or neutral. Apart from the actions of the classic eicosanoids or docosanoids, many newly discovered compounds are described as Specialised Pro-resolving Mediators (SPMs) which have been proposed to have a role in resolving inflammatory conditions such as infections and preventing them from becoming chronic. In addition, a large group of molecules, termed isoprostanes, can be generated by free radical reactions and these too have powerful properties towards inflammation. The ultimate source of n-3 and n-6 PUFAs are photosynthetic organisms which contain Δ-12 and Δ-15 desaturases, which are almost exclusively absent from animals. Moreover, the EFAs consumed from plant food are in competition with each other for conversion to lipid mediators. Thus, the relative amounts of n-3 and n-6 PUFAs in the diet are important. Furthermore, the conversion of the EFAs to 20C and 22C PUFAs in mammals is rather poor. Thus, there has been much interest recently in the use of algae, many of which make substantial quantities of long-chain PUFAs or in manipulating oil crops to make such acids. This is especially important because fish oils, which are their main source in human diets, are becoming limited. In this review, the metabolic conversion of PUFAs into different lipid mediators is described. Then, the biological roles and molecular mechanisms of such mediators in inflammatory diseases are outlined. Finally, natural sources of PUFAs (including 20 or 22 carbon compounds) are detailed, as well as recent efforts to increase their production.
Collapse
Affiliation(s)
- John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK
| |
Collapse
|
4
|
Feng Y, Yang L, Ma X, Huang Z, Zong X, Citadin CT, Lin HW, Zhang Q. Photobiomodulation treatment inhibits neurotoxic astrocytic polarization and protects neurons in in vitro and in vivo stroke models. Neurochem Int 2023; 162:105464. [PMID: 36539162 DOI: 10.1016/j.neuint.2022.105464] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
The beneficial effects of photobiomodulation (PBM) on function recovery after stroke have been well-established, while its molecular and cellular mechanisms remain to be elucidated. The current study was designed to investigate the effect of PBM on synaptic proteins and astrocyte polarization of photothrombotic (PT)-stroke induced rats in vivo, and explore the possible effect of PBM treatment on oxygen-glucose deprivation (OGD)-induced neurotoxic astrocytic polarization in vitro. We reported that 2-min PBM treatment (808 nm) for 7 days significantly increased synaptic proteins and neuroprotective astrocytic marker S100 Calcium Binding Protein A10 (S100A10) and inhibited neurotoxic astrocytic marker C3d in the peri-infarct region after ischemic stroke. Cell culture studies of primary cortical neurons and N2a cells showed that single-dose PBM treatment could increase cellular viability, regulate the apoptotic proteins (Caspase 9, Bcl-xL and BAX) and preserve synaptic proteins following OGD exposure. Additionly, PBM decreased the levels of C3d, inducible nitric oxide synthase (iNOS) and interleukin 1β (IL-1β) on astrocytes exposed to OGD. In summary, we demonstrated that PBM could inhibit neurotoxic astrocytic polarization, preserve synaptic integrity and protect neurons against stroke injury both in vitro and in vivo.
Collapse
Affiliation(s)
- Yu Feng
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, 1501 Kings Highway, LA, 71103, USA
| | - Luodan Yang
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, 1501 Kings Highway, LA, 71103, USA
| | - Xiaohui Ma
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, 1501 Kings Highway, LA, 71103, USA
| | - Zhihai Huang
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, 1501 Kings Highway, LA, 71103, USA
| | - Xuemei Zong
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, 1501 Kings Highway, LA, 71103, USA
| | - Cristiane Teresinha Citadin
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, 1501 Kings Highway, LA, 71103, USA; Department of Cellular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, 1501 Kings Highway, LA, 71103, USA
| | - Hung Wen Lin
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, 1501 Kings Highway, LA, 71103, USA
| | - Quanguang Zhang
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, 1501 Kings Highway, LA, 71103, USA.
| |
Collapse
|
5
|
Eccles JA, Baldwin WS. Detoxification Cytochrome P450s (CYPs) in Families 1-3 Produce Functional Oxylipins from Polyunsaturated Fatty Acids. Cells 2022; 12:82. [PMID: 36611876 PMCID: PMC9818454 DOI: 10.3390/cells12010082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
This manuscript reviews the CYP-mediated production of oxylipins and the current known function of these diverse set of oxylipins with emphasis on the detoxification CYPs in families 1-3. Our knowledge of oxylipin function has greatly increased over the past 3-7 years with new theories on stability and function. This includes a significant amount of new information on oxylipins produced from linoleic acid (LA) and the omega-3 PUFA-derived oxylipins such as α-linolenic acid (ALA), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA). However, there is still a lack of knowledge regarding the primary CYP responsible for producing specific oxylipins, and a lack of mechanistic insight for some clinical associations between outcomes and oxylipin levels. In addition, the role of CYPs in the production of oxylipins as signaling molecules for obesity, energy utilization, and development have increased greatly with potential interactions between diet, endocrinology, and pharmacology/toxicology due to nuclear receptor mediated CYP induction, CYP inhibition, and receptor interactions/crosstalk. The potential for diet-diet and diet-drug/chemical interactions is high given that these promiscuous CYPs metabolize a plethora of different endogenous and exogenous chemicals.
Collapse
Affiliation(s)
| | - William S. Baldwin
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
6
|
Zhao B, Huang J, Lou X, Yao K, Ye M, Mou Q, Wen Z, Duan Q, Zhang H, Zhao Y. Endothelial CYP2J2 overexpression restores the BRB via METTL3-mediated ANXA1 upregulation. FASEB J 2022; 36:e22619. [PMID: 36269280 DOI: 10.1096/fj.202201061rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/02/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022]
Abstract
Blood-retinal barrier (BRB) breakdown is responsible for multiple ocular diseases, such as diabetic retinopathy, age-related macular degeneration, and retinal vascular occlusive diseases. Increased vascular permeability contributes to vasogenic edema and tissue damage, with consequent adverse effects on vision. Herein, we found that endothelial CYP2J2 overexpression maintained BRB integrity after ischemia-reperfusion injury and consequently protected against retinal ganglion cell loss. Oxidative stress repressed endothelial ANXA1 expression in vivo and in vitro. CYP2J2 upregulated methyltransferase-like 3 (METTL3) expression and hence promoted ANXA1 translation via ANXA1 m6 A modification in endothelium under oxidative stress. CYP2J2 maintained the distribution of endothelial tight junctions and adherens junctions in an ANXA1-dependent manner. Endothelial ANXA1 plays an indispensable role in vascular homeostasis and stabilization during development. Endothelial ANXA1 deletion disrupted retinal vascular perfusion as well as BRB integrity. CYP2J2 metabolites restored BRB integrity in the presence of ANXA1. Our findings identified the CYP2J2-METTL3-ANXA1 pathway as a potential therapeutic target for relieving BRB impairments.
Collapse
Affiliation(s)
- Bowen Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingqiu Huang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaotong Lou
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Yao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Ye
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianxue Mou
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Wen
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiming Duan
- Gladstone Institutes, San Francisco, California, USA
| | - Hong Zhang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yin Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Geng H, Li M, Tang J, Lv Q, Li R, Wang L. Early Rehabilitation Exercise after Stroke Improves Neurological Recovery through Enhancing Angiogenesis in Patients and Cerebral Ischemia Rat Model. Int J Mol Sci 2022; 23:ijms231810508. [PMID: 36142421 PMCID: PMC9499642 DOI: 10.3390/ijms231810508] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Among cerebrovascular diseases, ischemic stroke is a leading cause of mortality and disability. Thrombolytic therapy with tissue plasminogen activator is the first choice for clinical treatment, but its use is limited due to the high requirements of patient characteristics. Therefore, the choice of neurological rehabilitation strategies after stroke is an important prevention and treatment strategy to promote the recovery of neurological function in patients. This study shows that rehabilitation exercise 24 h after stroke can significantly improve the neurological function (6.47 ± 1.589 vs. 3.21 ± 1.069 and 0.76 ± 0.852), exercise ability (15.68 ± 5.95 vs. 162.32 ± 9.286 and 91.18 ± 7.377), daily living ability (23.37 ± 5.196 vs. 66.95 ± 4.707 and 6.55 ± 2.873), and quality of life (114.39 ± 7.772 vs. 168.61 ± 6.323 and 215.95 ± 10.977) of patients after 1 month and 3 months, and its ability to promote rehabilitation is better than that of rehabilitation exercise administered to patients 72 h after stroke (p < 0.001). Animal experiments show that treadmill exercise 24 h after middle cerebral artery occlusion and reperfusion can inhibit neuronal apoptosis, reduce the volume of cerebral infarction on the third (15.04 ± 1.07% vs. 30.67 ± 3.06%) and fifth (8.33 ± 1.53% vs. 30.67 ± 3.06%) days, and promote the recovery of neurological function on the third (7.22 ± 1.478 vs. 8.28 ± 1.018) and fifth (4.44 ± 0.784 vs. 6.00 ± 0.767) days. Mechanistic studies have shown that treadmill exercise increases the density of microvessels, regulates angiogenesis, and promotes the recovery of nerve function by upregulating the expression of vascular endothelial growth factor and laminin. This study shows that rehabilitation exercise 24 h after stroke is conducive to promoting the recovery of patients’ neurological function, and provides a scientific reference for the clinical rehabilitation of stroke patients.
Collapse
Affiliation(s)
- Huixia Geng
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health Sciences, Henan University, Kaifeng 475004, China
| | - Min Li
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health Sciences, Henan University, Kaifeng 475004, China
| | - Jing Tang
- The School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Qing Lv
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health Sciences, Henan University, Kaifeng 475004, China
| | - Ruiling Li
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health Sciences, Henan University, Kaifeng 475004, China
- Correspondence: (R.L.); (L.W.); Tel.: +86-371-2388-7799 (R.L. & L.W.)
| | - Lai Wang
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health Sciences, Henan University, Kaifeng 475004, China
- The School of Life Sciences, Henan University, Kaifeng 475000, China
- Correspondence: (R.L.); (L.W.); Tel.: +86-371-2388-7799 (R.L. & L.W.)
| |
Collapse
|
8
|
Li S, Zhang Y, Fei L, Zhang Y, Pang J, Gao W, Fan F, Xing Y, Li X. Baicalein-ameliorated cerebral ischemia-reperfusion injury dependent on calpain 1/AIF pathway. Biosci Biotechnol Biochem 2022; 86:305-312. [PMID: 34935885 DOI: 10.1093/bbb/zbab222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022]
Abstract
Cerebral ischemia reperfusion (CIR) has become the leading cause of death and disability. Baicalein is a natural bioactive ingredient extracted from Scutellaria baicalensis Georgi and has neuroprotective activity. In our work, baicalein was found to reduce neurological deficits, brain water content, infarct area, and neuronal death of rats induced by middle cerebral artery occlusion/reperfusion. In vitro, oxygen-glucose deprivation/reperfusion induced inordinate ROS production and apoptosis that could be reversed by baicalein. Our study revealed for the first time that baicalein has the potential to bind and inhibit the activity of calpain 1, thereby inhibiting AIF nuclear translocation. These findings demonstrated that baicalein protected against CIR injury via inhibiting AIF nuclear translocation by inhibiting calpain 1 activity.
Collapse
Affiliation(s)
- Shanshan Li
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
| | - Yaoshuai Zhang
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
| | - Lili Fei
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
| | - Yuhan Zhang
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
| | - Jinlong Pang
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
| | - Wei Gao
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
| | - Fangtian Fan
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
| | - Yadong Xing
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
| | - Xian Li
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
| |
Collapse
|
9
|
Chen X, Li Z, Zhang B, Liu T, Yao W, Wan L, Zhang C, Zhang Y. Antinociception role of 14,15-epoxyeicosatrienoic acid in a central post-stroke pain model in rats mediated by anti-inflammation and anti-apoptosis effect. Neurochem Int 2022; 154:105291. [PMID: 35074479 DOI: 10.1016/j.neuint.2022.105291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 11/24/2021] [Accepted: 01/20/2022] [Indexed: 11/18/2022]
Abstract
Central post stroke pain (CPSP) is an intractable neuropathic pain syndrome that occurs after the acute focal lesion of the central nervous system (CNS) due to a cerebrovascular cause. Epoxyeicosatrienoic acids (EETs) exert many pharmacological effects in vivo and in vitro, such as anti-apoptosis, anti-inflammatory, and anti-oxidative stress. Neuroinflammation and apoptosis are the potential pathophysiological mechanisms of neuropathic pain. This study aimed to investigate whether 14,15-EET has an antinociception effect on CPSP rats through its anti-inflammation and anti-apoptosis mechanisms. Rats were treated with type IV collagenase (CPSP group) or saline (Sham group) via injection with a Hamilton syringe into the ventral posterior lateral nucleus (VPL) according to the stereotaxic coordinates. We first tested the mechanical withdrawal threshold, as well as neuroinflammation- and apoptosis-related protein expressions in the per-lesion site of CPSP and Sham rats. Sprague-Dawley rats were randomly divided into five groups, as follows: vehicle; EET at 0.025, 0.05, and 0.1 μg; and EET (0.1 μg) + EEZE (3.25 ng). EET or and vehicle were administered into VPL nuclei three consecutive days after hemorrhagic stroke. Immunostaining, ELISA, and Western blot were performed to evaluate neuroinflammation and apoptosis. Hemorrhagic stroke induced mechanical allodynia, glial activation, neuroinflammation, and apoptosis-related protein upregulation. However, early treatment with 14,15-EET inhibited glial cell activation, decreased proinflammatory cytokines and apoptosis-related protein, and alleviated the pain behavior of CPSP rats. Our results provided strong evidence that antinociception produced by 14,15-EET is partly mediated by the inhibition of neuroinflammation and apoptosis.
Collapse
Affiliation(s)
- Xuhui Chen
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zuofan Li
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bo Zhang
- Department of Anaesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tongtong Liu
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenlong Yao
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li Wan
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chuanhan Zhang
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yue Zhang
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
10
|
Jurcau A, Simion A. Neuroinflammation in Cerebral Ischemia and Ischemia/Reperfusion Injuries: From Pathophysiology to Therapeutic Strategies. Int J Mol Sci 2021; 23:14. [PMID: 35008440 PMCID: PMC8744548 DOI: 10.3390/ijms23010014] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/18/2021] [Accepted: 12/18/2021] [Indexed: 02/07/2023] Open
Abstract
Its increasing incidence has led stroke to be the second leading cause of death worldwide. Despite significant advances in recanalization strategies, patients are still at risk for ischemia/reperfusion injuries in this pathophysiology, in which neuroinflammation is significantly involved. Research has shown that in the acute phase, neuroinflammatory cascades lead to apoptosis, disruption of the blood-brain barrier, cerebral edema, and hemorrhagic transformation, while in later stages, these pathways support tissue repair and functional recovery. The present review discusses the various cell types and the mechanisms through which neuroinflammation contributes to parenchymal injury and tissue repair, as well as therapeutic attempts made in vitro, in animal experiments, and in clinical trials which target neuroinflammation, highlighting future therapeutic perspectives.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania;
- Neurology Ward, Clinical Municipal Hospital “dr. G. Curteanu” Oradea, 410154 Oradea, Romania
| | - Aurel Simion
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania;
- Neurorehabilitation Ward, Clinical Municipal Hospital “dr. G. Curteanu” Oradea, 410154 Oradea, Romania
| |
Collapse
|
11
|
Zhang Y, Yu J, Liu J, Liu H, Li J. Effects of stem cell-derived exosomes on neuronal apoptosis and inflammatory cytokines in rats with cerebral ischemia-reperfusion injury via PI3K/AKT pathway-mediated mitochondrial apoptosis. Immunopharmacol Immunotoxicol 2021; 43:731-740. [PMID: 34549680 DOI: 10.1080/08923973.2021.1976794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE This study aimed to investigate the effects of stem cell-derived exosomes (SC-Exos) on learning, memory, and neuronal apoptosis in rats with cerebral ischemia-reperfusion injury and to determine whether SC-Exos exert their effects via phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) pathway-mediated mitochondrial pathways of apoptosis. MATERIALS AND METHODS Eighty rats were randomly allocated to control, model, SC-Exos, and PI3K inhibitor groups. A model of focal cerebral ischemia-reperfusion was established using the improved Longa method. Expression of interleukin-1α (IL-1α), interleukin-2 (IL-2), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ) were compared in the brains and serum of each group. The expressions of Bcl-2, Bax, cleaved-caspase-3, cleaved-caspase-9, cytochrome C (CytC), PI3K, and AKT-related genes and proteins were evaluated by real-time quantitative polymerase chain reaction and western blotting. RESULTS The SC-Exos-group exhibited more novel entries, less latency for the novel arm, and fewer entries into the starting arm and other arms than the model group (p<.05). Lower expression of the inflammatory cytokines IL-1α, IL-2, and TNF-α and higher expression of IFN-γ were observed in the SC-Exos group than in the model group. TdT-mediated dUTP nick end labeling (TUNEL) assay showed that lower neural cell apoptosis rate and expression of Bax, cleaved-caspase-3, cleaved-caspase-9, CytC, PI3K, and AKT mRNA and proteins and higher expression of Bcl-2 mRNA and protein were observed in the SC-Exos group than in the model group (p<.05). CONCLUSIONS SC-Exos can significantly ameliorate brain injury caused by cerebral ischemia-reperfusion. The mechanism may be a novel therapeutic target for ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Nuclear Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Yu
- Department of Nuclear Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Liu
- Department of Nuclear Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hongbiao Liu
- Department of Nuclear Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Li
- Department of Nuclear Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
12
|
Zhao H, Tang J, Chen H, Gu W, Geng H, Wang L, Wang Y. 14,15-EET Reduced Brain Injury from Cerebral Ischemia and Reperfusion via Suppressing Neuronal Parthanatos. Int J Mol Sci 2021; 22:ijms22189660. [PMID: 34575823 PMCID: PMC8471287 DOI: 10.3390/ijms22189660] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 12/11/2022] Open
Abstract
To investigate the effect of 14,15-EET on the parthanatos in neurons induced by cerebral ischemia and reperfusion, middle cerebral artery occlusion and reperfusion (MCAO/R) and oxygen glucose deprivation/reoxygenation (OGD/R) were used to simulate cerebral ischemia reperfusion in vivo and in vitro, respectively. TTC staining and the Tunel method were used to detect cerebral infarct volume and neuronal apoptosis. Western blot and immunofluorescence were used to detect poly (ADP-ribose) polymerase-1 (PARP-1) activation and AIF nuclear translocation. The production of reactive oxygen species (ROS) and the expression of antioxidant genes were detected by Mito SOX, DCFH-DA and qPCR methods. MCAO/R increased cerebral infarct volume and neuronal apoptosis in mice, while 14,15-EET pretreatment increased cerebral infarct volume and neuronal apoptosis. OGD/R induced reactive oxygen species generation, PARP-1 cleavage, and AIF nuclear translocation in cortical neurons. 14,15-EET pretreatment could enhance the antioxidant gene expression of glutathione peroxidase (GSH-Px), heme oxygenase-1 (HO-1) and superoxide dismutase (SOD) in cortical neurons after ischemia and reperfusion. 14,15-EET inhibits the neuronal parthanatos induced by MCAO/R through upregulation of the expression of antioxidant genes and by reducing the generation of reactive oxygen species. This study advances the EET neuroprotection theory and provides a scientific basis for targeted clinical drugs that reduce neuronal parthanatos following cerebral ischemia and reperfusion.
Collapse
Affiliation(s)
- Haipeng Zhao
- School of Life Sciences, Henan University, Kaifeng 475000, China; (H.Z.); (J.T.); (H.C.); (W.G.)
| | - Jing Tang
- School of Life Sciences, Henan University, Kaifeng 475000, China; (H.Z.); (J.T.); (H.C.); (W.G.)
| | - Hongyang Chen
- School of Life Sciences, Henan University, Kaifeng 475000, China; (H.Z.); (J.T.); (H.C.); (W.G.)
| | - Wei Gu
- School of Life Sciences, Henan University, Kaifeng 475000, China; (H.Z.); (J.T.); (H.C.); (W.G.)
| | - Huixia Geng
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health Sciences, Henan University, Kaifeng 475000, China;
| | - Lai Wang
- School of Life Sciences, Henan University, Kaifeng 475000, China; (H.Z.); (J.T.); (H.C.); (W.G.)
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health Sciences, Henan University, Kaifeng 475000, China;
- Correspondence: (L.W.); (Y.W.); Tel.: +86-371-23887799 (Y.W.)
| | - Yanming Wang
- School of Life Sciences, Henan University, Kaifeng 475000, China; (H.Z.); (J.T.); (H.C.); (W.G.)
- Correspondence: (L.W.); (Y.W.); Tel.: +86-371-23887799 (Y.W.)
| |
Collapse
|
13
|
McClung JA, Levy L, Garcia V, Stec DE, Peterson SJ, Abraham NG. Heme-oxygenase and lipid mediators in obesity and associated cardiometabolic diseases: Therapeutic implications. Pharmacol Ther 2021; 231:107975. [PMID: 34499923 DOI: 10.1016/j.pharmthera.2021.107975] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/08/2021] [Accepted: 07/27/2021] [Indexed: 02/08/2023]
Abstract
Obesity-mediated metabolic syndrome remains the leading cause of death worldwide. Among many potential targets for pharmacological intervention, a promising strategy involves the heme oxygenase (HO) system, specifically its inducible form, HO-1. This review collects and updates much of the current knowledge relevant to pharmacology and clinical medicine concerning HO-1 in metabolic diseases and its effect on lipid metabolism. HO-1 has pleotropic effects that collectively reduce inflammation, while increasing vasodilation and insulin and leptin sensitivity. Recent reports indicate that HO-1 with its antioxidants via the effect of bilirubin increases formation of biologically active lipid metabolites such as epoxyeicosatrienoic acid (EET), omega-3 and other polyunsaturated fatty acids (PUFAs). Similarly, HO-1and bilirubin are potential therapeutic targets in the treatment of fat-induced liver diseases. HO-1-mediated upregulation of EET is capable not only of reversing endothelial dysfunction and hypertension, but also of reversing cardiac remodeling, a hallmark of the metabolic syndrome. This process involves browning of white fat tissue (i.e. formation of healthy adipocytes) and reduced lipotoxicity, which otherwise will be toxic to the heart. More importantly, this review examines the activity of EET in biological systems and a series of pathways that explain its mechanism of action and discusses how these might be exploited for potential therapeutic use. We also discuss the link between cardiac ectopic fat deposition and cardiac function in humans, which is similar to that described in obese mice and is regulated by HO-1-EET-PGC1α signaling, a potent negative regulator of the inflammatory adipokine NOV.
Collapse
Affiliation(s)
- John A McClung
- Department of Medicine, New York Medical College, Valhalla, NY 10595, United States of America
| | - Lior Levy
- Department of Medicine, New York Medical College, Valhalla, NY 10595, United States of America
| | - Victor Garcia
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States of America
| | - David E Stec
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216, United States of America.
| | - Stephen J Peterson
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, United States of America; New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, United States of America
| | - Nader G Abraham
- Department of Medicine, New York Medical College, Valhalla, NY 10595, United States of America; Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States of America.
| |
Collapse
|
14
|
Wang HL, Chen JW, Yang SH, Lo YC, Pan HC, Liang YW, Wang CF, Yang Y, Kuo YT, Lin YC, Chou CY, Lin SH, Chen YY. Multimodal Optical Imaging to Investigate Spatiotemporal Changes in Cerebrovascular Function in AUDA Treatment of Acute Ischemic Stroke. Front Cell Neurosci 2021; 15:655305. [PMID: 34149359 PMCID: PMC8209306 DOI: 10.3389/fncel.2021.655305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/10/2021] [Indexed: 01/03/2023] Open
Abstract
Administration of 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA) has been demonstrated to alleviate infarction following ischemic stroke. Reportedly, the main effect of AUDA is exerting anti-inflammation and neovascularization via the inhibition of soluble epoxide hydrolase. However, the major contribution of this anti-inflammation and neovascularization effect in the acute phase of stroke is not completely elucidated. To investigate the neuroprotective effects of AUDA in acute ischemic stroke, we combined laser speckle contrast imaging and optical intrinsic signal imaging techniques with the implantation of a lab-designed cranial window. Forepaw stimulation was applied to assess the functional changes via measuring cerebral metabolic rate of oxygen (CMRO2) that accompany neural activity. The rats that received AUDA in the acute phase of photothrombotic ischemia stroke showed a 30.5 ± 8.1% reduction in the ischemic core, 42.3 ± 15.1% reduction in the ischemic penumbra (p < 0.05), and 42.1 ± 4.6% increase of CMRO2 in response to forepaw stimulation at post-stroke day 1 (p < 0.05) compared with the control group (N = 10 for each group). Moreover, at post-stroke day 3, increased functional vascular density was observed in AUDA-treated rats (35.9 ± 1.9% higher than that in the control group, p < 0.05). At post-stroke day 7, a 105.4% ± 16.4% increase of astrocytes (p < 0.01), 30.0 ± 10.9% increase of neurons (p < 0.01), and 65.5 ± 15.0% decrease of microglia (p < 0.01) were observed in the penumbra region in AUDA-treated rats (N = 5 for each group). These results suggested that AUDA affects the anti-inflammation at the beginning of ischemic injury and restores neuronal metabolic rate of O2 and tissue viability. The neovascularization triggered by AUDA restored CBF and may contribute to ischemic infarction reduction at post-stroke day 3. Moreover, for long-term neuroprotection, astrocytes in the penumbra region may play an important role in protecting neurons from apoptotic injury.
Collapse
Affiliation(s)
- Han-Lin Wang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jia-Wei Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Hung Yang
- Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Chun Lo
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Han-Chi Pan
- National Laboratory Animal Center, Taipei, Taiwan
| | - Yao-Wen Liang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ching-Fu Wang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi Yang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yun-Ting Kuo
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Chen Lin
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chin-Yu Chou
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Sheng-Huang Lin
- Department of Neurology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Department of Neurology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan.,The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
15
|
Griñán-Ferré C, Companys-Alemany J, Jarné-Ferrer J, Codony S, González-Castillo C, Ortuño-Sahagún D, Vilageliu L, Grinberg D, Vázquez S, Pallàs M. Inhibition of Soluble Epoxide Hydrolase Ameliorates Phenotype and Cognitive Abilities in a Murine Model of Niemann Pick Type C Disease. Int J Mol Sci 2021; 22:3409. [PMID: 33810307 PMCID: PMC8036710 DOI: 10.3390/ijms22073409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 11/17/2022] Open
Abstract
Niemann-Pick type C (NPC) disease is a rare autosomal recessive inherited childhood neurodegenerative disease characterized by the accumulation of cholesterol and glycosphingolipids, involving the autophagy-lysosome system. Inhibition of soluble epoxide hydrolase (sEH), an enzyme that metabolizes epoxy fatty acids (EpFAs) to 12-diols, exerts beneficial effects in modulating inflammation and autophagy, critical features of the NPC disease. This study aims to evaluate the effects of UB-EV-52, an sEH inhibitor (sEHi), in an NPC mouse model (Npc) by administering it for 4 weeks (5 mg/kg/day). Behavioral and cognitive tests (open-field test (OF)), elevated plus maze (EPM), novel object recognition test (NORT) and object location test (OLT) demonstrated that the treatment produced an improvement in short- and long-term memory as well as in spatial memory. Furthermore, UB-EV-52 treatment increased body weight and lifespan by 25% and reduced gene expression of the inflammatory markers (i.e., Il-1β and Mcp1) and enhanced oxidative stress (OS) markers (iNOS and Hmox1) in the treated Npc mice group. As for autophagic markers, surprisingly, we found significantly reduced levels of LC3B-II/LC3B-I ratio and significantly reduced brain protein levels of lysosomal-associated membrane protein-1 (LAMP-1) in treated Npc mice group compared to untreated ones in hippocampal tissue. Lipid profile analysis showed a significant reduction of lipid storage in the liver and some slight changes in homogenated brain tissue in the treated NPC mice compared to the untreated groups. Therefore, our results suggest that pharmacological inhibition of sEH ameliorates most of the characteristic features of NPC mice, demonstrating that sEH can be considered a potential therapeutic target for this disease.
Collapse
Affiliation(s)
- Christian Griñán-Ferré
- Pharmacology and Toxicology Section and Institute of Neuroscience, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (C.G.-F.); (J.C.-A.); (J.J.-F.)
| | - Júlia Companys-Alemany
- Pharmacology and Toxicology Section and Institute of Neuroscience, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (C.G.-F.); (J.C.-A.); (J.J.-F.)
| | - Júlia Jarné-Ferrer
- Pharmacology and Toxicology Section and Institute of Neuroscience, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (C.G.-F.); (J.C.-A.); (J.J.-F.)
| | - Sandra Codony
- Laboratory of Medicinal Chemistry (CSIC, Associated Unit), Faculty of Pharmacy and Food Sciences and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (S.C.); (S.V.)
| | - Celia González-Castillo
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, Zapopan, 45201 Jalisco, Mexico;
| | - Daniel Ortuño-Sahagún
- Laboratorio de Neuroinmunobiología Molecular, Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Jalisco 44340, Mexico;
| | - Lluïsa Vilageliu
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (L.V.); (D.G.)
- Institut de Biomedicina de la UB (IBUB)-Institut de Recerca Sant Joan de Déu (IRSJD), 08028 Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBERER), 08028 Barcelona, Spain
| | - Daniel Grinberg
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (L.V.); (D.G.)
- Institut de Biomedicina de la UB (IBUB)-Institut de Recerca Sant Joan de Déu (IRSJD), 08028 Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBERER), 08028 Barcelona, Spain
| | - Santiago Vázquez
- Laboratory of Medicinal Chemistry (CSIC, Associated Unit), Faculty of Pharmacy and Food Sciences and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (S.C.); (S.V.)
| | - Mercè Pallàs
- Pharmacology and Toxicology Section and Institute of Neuroscience, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (C.G.-F.); (J.C.-A.); (J.J.-F.)
| |
Collapse
|
16
|
Zang X, Zhou J, Zhang X, Han Y, Chen X. Ischemia Reperfusion Injury: Opportunities for Nanoparticles. ACS Biomater Sci Eng 2020; 6:6528-6539. [PMID: 33320610 DOI: 10.1021/acsbiomaterials.0c01197] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ischemia reperfusion (IR)-induced oxidative stress, accompanied by inflammatory responses, contributes to morbidity and mortality in numerous diseases such as acute coronary syndrome, stroke, organ transplantation, and limb injury. Ischemia results in profound hypoxia and tissue dysfunction, whereas subsequent reperfusion further aggravates ischemic tissue damage through inducing cell death and activating inflammatory responses. In this review, we highlight recent studies of therapeutic strategies against IR injury. Furthermore, nanotechnology offers significant improvements in this area. Hence, we also review recent advances in nanomedicines for IR therapy, suggesting them as potent and promising strategies to improve drug delivery to IR-injured tissues and achieve protective effects.
Collapse
Affiliation(s)
- Xinlong Zang
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao 110016, P.R. China
| | - Jingyi Zhou
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao 110016, P.R. China
| | - Xiaoxu Zhang
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao 110016, P.R. China
| | - Yantao Han
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao 110016, P.R. China
| | - Xuehong Chen
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao 110016, P.R. China
| |
Collapse
|
17
|
Sarparast M, Dattmore D, Alan J, Lee KSS. Cytochrome P450 Metabolism of Polyunsaturated Fatty Acids and Neurodegeneration. Nutrients 2020; 12:E3523. [PMID: 33207662 PMCID: PMC7696575 DOI: 10.3390/nu12113523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
Due to the aging population in the world, neurodegenerative diseases have become a serious public health issue that greatly impacts patients' quality of life and adds a huge economic burden. Even after decades of research, there is no effective curative treatment for neurodegenerative diseases. Polyunsaturated fatty acids (PUFAs) have become an emerging dietary medical intervention for health maintenance and treatment of diseases, including neurodegenerative diseases. Recent research demonstrated that the oxidized metabolites, particularly the cytochrome P450 (CYP) metabolites, of PUFAs are beneficial to several neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease; however, their mechanism(s) remains unclear. The endogenous levels of CYP metabolites are greatly affected by our diet, endogenous synthesis, and the downstream metabolism. While the activity of omega-3 (ω-3) CYP PUFA metabolites and omega-6 (ω-6) CYP PUFA metabolites largely overlap, the ω-3 CYP PUFA metabolites are more active in general. In this review, we will briefly summarize recent findings regarding the biosynthesis and metabolism of CYP PUFA metabolites. We will also discuss the potential mechanism(s) of CYP PUFA metabolites in neurodegeneration, which will ultimately improve our understanding of how PUFAs affect neurodegeneration and may identify potential drug targets for neurodegenerative diseases.
Collapse
Affiliation(s)
- Morteza Sarparast
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA;
| | - Devon Dattmore
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| | - Jamie Alan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| | - Kin Sing Stephen Lee
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA;
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
18
|
PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers. Cell Death Dis 2020; 11:797. [PMID: 32973135 PMCID: PMC7515865 DOI: 10.1038/s41419-020-02998-6] [Citation(s) in RCA: 436] [Impact Index Per Article: 87.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022]
Abstract
Multidrug resistance (MDR) is the dominant challenge in the failure of chemotherapy in cancers. Phosphatidylinositol 3-kinase (PI3K) is a lipid kinase that spreads intracellular signal cascades and regulates a variety of cellular processes. PI3Ks are considered significant causes of chemoresistance in cancer therapy. Protein kinase B (AKT) is also a significant downstream effecter of PI3K signaling, and it modulates several pathways, including inhibition of apoptosis, stimulation of cell growth, and modulation of cellular metabolism. This review highlights the aberrant activation of PI3K/AKT as a key link that modulates MDR. We summarize the regulation of numerous major targets correlated with the PI3K/AKT pathway, which is further related to MDR, including the expression of apoptosis-related protein, ABC transport and glycogen synthase kinase-3 beta (GSK-3β), synergism with nuclear factor kappa beta (NF-κB) and mammalian target of rapamycin (mTOR), and the regulation of glycolysis.
Collapse
|
19
|
Zhao G, Wang X, Edwards S, Dai M, Li J, Wu L, Xu R, Han J, Yuan H. NLRX1 knockout aggravates lipopolysaccharide (LPS)-induced heart injury and attenuates the anti-LPS cardioprotective effect of CYP2J2/11,12-EET by enhancing activation of NF-κB and NLRP3 inflammasome. Eur J Pharmacol 2020; 881:173276. [PMID: 32574674 DOI: 10.1016/j.ejphar.2020.173276] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/01/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022]
Abstract
NLRX1 weakens lipopolysaccharide (LPS)-induced NF-κB activation on immune cells. Cytochrome P450 epoxygenase 2J2 (CYP2J2) attenuates LPS-induced cardiac injury by inhibiting NF-κB activation. However, it is still unclear whether NLRX1 could reduce LPS-induced heart damage and whether it is involved in the anti-LPS cardioprotective effect of CYP2J2. In this study, we found that NLRX1 knockout further exacerbated LPS-induced heart injury and up-regulated the proinflammatory cytokines in serum and heart tissue, and weakened the inhibitory effect of CYP2J2 on the harmful effects caused by LPS. We also found that LPS treatment induced ubiquitination of NLRX1 and promoted its binding to IKKα/β in myocardial tissue, which should theoretically inhibit NF-κB activation. However, LPS eventually leads to activation of NF-κB and NLRP3 inflammasome. Under the action of LPS, CYP2J2 further promoted the ubiquitination of NLRX1 and its binding to IKKα/β, impaired NF-κB activation and NLRP3 inflammasome activation. NLRX1 knockout notably aggravated LPS-induced NF-κB activation and NLRP3 inflammasome activation, and attenuated the inhibitory effects of CYP2J2 on NF-κB signal and NLRP3 inflammasome. More, CYP2J2 reduced LPS-induced reactive oxygen species (ROS) production and mitochondrial depolarization in heart cells, thereby inhibiting NLRP3 inflammasome activation. NLRX1 knockdown aggravated mitochondrial depolarization induced by LPS and weakened the protective effect of CYP2J2 on mitochondrial potential, although it had no significant effect on reactive oxygen species production. Together, these findings demonstrated that NLRX1 knockout aggravated LPS-induced heart injury and weakened the anti-LPS cardioprotective effect of CYP2J2 by enhancing activation of NF-κB and NLRP3 inflammasome.
Collapse
Affiliation(s)
- Gang Zhao
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China; Key Laboratory for Rare Disease Research of Shandong Province, Shandong Medical Biotechnological Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, PR China.
| | - Xiaoting Wang
- Department of Otolaryngology, Head and Neck Surgery & Sleep Medicine Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Sabrina Edwards
- Oregon Institute of Occupational Health Science, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Meiyan Dai
- Department of Internal Medicine and Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Jianfeng Li
- Department of Otolaryngology, Head and Neck Surgery & Sleep Medicine Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Lujin Wu
- Department of Internal Medicine and Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Rong Xu
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Jinxiang Han
- Key Laboratory for Rare Disease Research of Shandong Province, Shandong Medical Biotechnological Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, PR China
| | - Haitao Yuan
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China.
| |
Collapse
|
20
|
Atone J, Wagner K, Hashimoto K, Hammock BD. Cytochrome P450 derived epoxidized fatty acids as a therapeutic tool against neuroinflammatory diseases. Prostaglandins Other Lipid Mediat 2020; 147:106385. [PMID: 31698143 PMCID: PMC7067627 DOI: 10.1016/j.prostaglandins.2019.106385] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/26/2019] [Accepted: 08/08/2019] [Indexed: 12/23/2022]
Abstract
Cytochrome P450 (CYP) metabolism of arachidonic acid (ARA) produces epoxy fatty acids (EpFAs) such as epoxyeicosatrienoic acids (EETs) that are known to exert protective effects in inflammatory disorders. Endogenous EpFAs are further metabolized into corresponding diols by the soluble epoxide hydrolase (sEH). Through inhibition of sEH, many studies have demonstrated the cardioprotective and renoprotective effects of EpFAs; however, the role of sEH inhibition in modulating the pathogenesis of neuroinflammatory disorders is less well described. In this review, we discuss the current knowledge surrounding the effects of sEH inhibition and EpFA action in neuroinflammatory disorders such as Parkinson's Disease (PD), stroke, depression, epilepsy, and Alzheimer's Disease (AD), as well as the potential mechanisms that underlie the therapeutic effects of sEH inhibition.
Collapse
Affiliation(s)
- Jogen Atone
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, United States
| | - Karen Wagner
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, United States
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Bruce D Hammock
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, United States.
| |
Collapse
|
21
|
Tang YN, Zhang GF, Chen HL, Sun XP, Qin WW, Shi F, Sun LX, Xu XN, Wang MS. Selective brain hypothermia-induced neuroprotection against focal cerebral ischemia/reperfusion injury is associated with Fis1 inhibition. Neural Regen Res 2020; 15:903-911. [PMID: 31719256 PMCID: PMC6990783 DOI: 10.4103/1673-5374.268973] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Selective brain hypothermia is considered an effective treatment for neuronal injury after stroke, and avoids the complications of general hypothermia. However, the mechanisms by which selective brain hypothermia affects mitochondrial fission remain unknown. In this study, we investigated the effect of selective brain hypothermia on the expression of fission 1 (Fis1) protein, a key factor in the mitochondrial fission system, during focal cerebral ischemia/reperfusion injury. Sprague-Dawley rats were divided into four groups. In the sham group, the carotid arteries were exposed only. In the other three groups, middle cerebral artery occlusion was performed using the intraluminal filament technique. After 2 hours of occlusion, the filament was slowly removed to allow blood reperfusion in the ischemia/reperfusion group. Saline, at 4°C and 37°C, were perfused through the carotid artery in the hypothermia and normothermia groups, respectively, followed by restoration of blood flow. Neurological function was assessed with the Zea Longa 5-point scoring method. Cerebral infarct volume was assessed by 2,3,5-triphenyltetrazolium chloride staining, and apoptosis was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining. Fis1 and cytosolic cytochrome c levels were assessed by western blot assay. Fis1 mRNA expression was assessed by quantitative reverse transcription-polymerase chain reaction. Mitochondrial ultrastructure was evaluated by transmission electron microscopy. Compared with the sham group, apoptosis, Fis1 protein and mRNA expression and cytosolic cytochrome c levels in the cortical ischemic penumbra and cerebral infarct volume were increased after reperfusion in the other three groups. These changes caused by cerebral ischemia/reperfusion were inhibited in the hypothermia group compared with the normothermia group. These findings show that selective brain hypothermia inhibits Fis1 expression and reduces apoptosis, thereby ameliorating focal cerebral ischemia/reperfusion injury in rats. Experiments were authorized by the Ethics Committee of Qingdao Municipal Hospital of China (approval No. 2019008).
Collapse
Affiliation(s)
- Ya-Nan Tang
- Department of Anesthesiology, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Gao-Feng Zhang
- Department of Anesthesiology, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Huai-Long Chen
- Department of Anesthesiology, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xiao-Peng Sun
- Department of Anesthesiology, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Wei-Wei Qin
- Department of Anesthesiology, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Fei Shi
- Department of Anesthesiology, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Li-Xin Sun
- Department of Anesthesiology, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xiao-Na Xu
- Department of Central Laboratory, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Ming-Shan Wang
- Department of Anesthesiology, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
22
|
Liu JJ, Raskin JS, McFarlane R, Samatham R, Cetas JS. Subarachnoid Hemorrhage Pattern Predicts Acute Cerebral Blood Flow Response in the Rat. ACTA NEUROCHIRURGICA. SUPPLEMENT 2020; 127:83-89. [PMID: 31407068 DOI: 10.1007/978-3-030-04615-6_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is considerable variability in the presentation of patients with acute subarachnoid hemorrhage (aSAH). Evidence suggests that a thick, diffuse clot better predicts the development of delayed cerebral ischemia and poor outcomes. In a rodent model of acute SAH, we directly measured the effects of the volume of blood injected versus the pattern of distribution of hemorrhage in the subarachnoid space on markers of early brain injury, namely, cerebral blood flow (CBF), cerebrospinal fluid (CSF) concentrations of P450 eicosanoids and catecholamines, and cortical spreading depolarizations (CSDs). There is a significant decrease in CBF, an increase in CSF biomarkers, and a trend toward increasing frequency and severity of CSDs when grouped by severity of hemorrhage but not by volume of blood injected. In severe hemorrhage grade animals, there was a progressive decrease in CBF after successive CSD events. These results suggest that the pattern of SAH (thick diffuse clots) correlates with the "clinical" severity of SAH.
Collapse
Affiliation(s)
- Jesse J Liu
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Jeffrey S Raskin
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, USA
| | | | - Ravi Samatham
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Justin S Cetas
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, USA.
- Portland VA Medical Center, Portland, OR, USA.
| |
Collapse
|
23
|
Zhou XB, Lai LF, Xie GB, Ding C, Xu X, Wang Y. LncRNA GAS5 sponges miRNA-221 to promote neurons apoptosis by up-regulated PUMA under hypoxia condition. Neurol Res 2019; 42:8-16. [PMID: 31878844 DOI: 10.1080/01616412.2019.1672382] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Objectives: Long noncoding RNAs (lncRNAs) play substantial roles in cerebral ischemia. Growth arrest-specific 5 (GAS5) was reported to be involved in stroke. In the present study, we aimed to investigate the roles of GAS5 in cerebral condition and unveil the underlying mechanism.Method: Transient focal ischemia was induced by intraluminal occlusion of the right Middle cerebral artery occlusion (MCAO) and 2,3,5-triphenyltetrazolium chloride (TTC) staining was used to evaluate the volume of cerebral infarction. RT-qPCR was applied to evaluate the level of GAS5 and miR-221. Fluorescence activated Cell Sorting (FACS) and Terminal deoxynucleotidyl transferased (TUNEL) were used for detection of apoptosis. Western blotting was applied for protein level. Luciferase assay was applied to reveal the underlying relationship between GAS5 and miR-221 or p53-upregulated modulator of apoptosis (PUMA) and miR-221.Results: The results indicated that GAS5 was up-regulated in MCAO rats and in vitro hypoxia cell model while miR-221 expression was decreased in vitro hypoxia cell model. GAS5 promoted cells apoptosis, while miR-221 inhibited cell apoptosis through regulation of PUMA and downstream JNK/H2AX signaling. Moreover, GAS5 and miR-221 have direct interaction and PUMA was the target of miR-221, indicating that GAS5 regulated PUMA through sponging miR-221.Conclusions: the present study revealed that GAS5 aggravated cell apoptosis in hypoxia condition via miR-221/PUMA axis, which may provide potential targets for the treatment of stroke.
Collapse
Affiliation(s)
- Xiao-Bing Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Ling-Feng Lai
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Guang-Bin Xie
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Cong Ding
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Xiang Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Yang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| |
Collapse
|
24
|
Karkhanis A, Leow JWH, Hagen T, Chan ECY. Dronedarone-Induced Cardiac Mitochondrial Dysfunction and Its Mitigation by Epoxyeicosatrienoic Acids. Toxicol Sci 2019; 163:79-91. [PMID: 29385569 DOI: 10.1093/toxsci/kfy011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dronedarone and amiodarone are structurally similar antiarrhythmic drugs. Dronedarone worsens cardiac adverse effects with unknown causes while amiodarone has no cardiac adversity. Dronedarone induces preclinical mitochondrial toxicity in rat liver and exhibits clinical hepatotoxicity. Here, we further investigated the relative potential of the antiarrhythmic drugs in causing mitochondrial injury in cardiomyocytes. Differentiated rat H9c2 cardiomyocytes were treated with dronedarone, amiodarone, and their respective metabolites namely N-desbutyldronedarone (NDBD) and N-desethylamiodarone (NDEA). Intracellular ATP content, mitochondrial membrane potential (Δψm), and inhibition of carnitine palmitoyltransferase I (CPT1) activity and arachidonic acid (AA) metabolism were measured in H9c2 cells. Inhibition of electron transport chain (ETC) activities and uncoupling of ETC were further studied in isolated rat heart mitochondria. Dronedarone, amiodarone, NDBD and NDEA decreased intracellular ATP content significantly (IC50 = 0.49, 1.84, 1.07, and 0.63 µM, respectively) and dissipated Δψm potently (IC50 = 0.5, 2.94, 12.8, and 7.38 µM, respectively). Dronedarone, NDBD, and NDEA weakly inhibited CPT1 activity while amiodarone (IC50 > 100 µM) yielded negligible inhibition. Only dronedarone inhibited AA metabolism to its regioisomeric epoxyeicosatrienoic acids (EETs) consistently and potently. NADH-supplemented ETC activity was inhibited by dronedarone, amiodarone, NDBD and NDEA (IC50 = 3.07, 5.24, 11.94, and 16.16 µM, respectively). Cytotoxicity, ATP decrease and Δψm disruption were ameliorated via exogenous pre-treatment of H9c2 cells with 11, 12-EET and 14, 15-EET. Our study confirmed that dronedarone causes mitochondrial injury in cardiomyocytes by perturbing Δψm, inhibiting mitochondrial complex I, uncoupling ETC and dysregulating AA-EET metabolism. We postulate that cardiac mitochondrial injury is one potential contributing factor to dronedarone-induced cardiac failure exacerbation.
Collapse
Affiliation(s)
- Aneesh Karkhanis
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 117543
| | - Jacqueline Wen Hui Leow
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 117543
| | - Thilo Hagen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 117543
- Singapore Institute for Clinical Sciences, Brenner Centre for Molecular Medicine, National University of Singapore, Singapore 117609
| |
Collapse
|
25
|
Zhang WF, Jin YC, Li XM, Yang Z, Wang D, Cui JJ. Protective effects of leptin against cerebral ischemia/reperfusion injury. Exp Ther Med 2019; 17:3282-3290. [PMID: 30988703 PMCID: PMC6447799 DOI: 10.3892/etm.2019.7377] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 02/04/2019] [Indexed: 12/12/2022] Open
Abstract
In recent years, the use of thrombolytic therapy for treating ischemia/reperfusion injury has resulted in damage to the self-regulatory mechanisms of the brain. This is due to the increased production of free radicals, excitatory amino acids and pro-inflammatory cytokines causing secondary damage to the brain. Simple thrombolytic therapy has not been the best approach for treating ischemia/reperfusion injury. Excessive perfusion leads to failure of the body's self-regulatory functions, which in turn increases the area of cerebral edema and aggravates cerebral ischemia. Previous studies have evaluated the satiety hormone leptin as a link between energy expenditure and obesity. Of note, leptin, which is involved in brain development, synaptic transmission and angiogenesis following ischemia/reperfusion injury, has been considered an important factor for treating ischemia/reperfusion injury. The present review outlines the discovery of leptin and discusses its association with cerebral ischemia/reperfusion.
Collapse
Affiliation(s)
- Wen-Fang Zhang
- Department of Biomedical Research Center, Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Yin-Chuan Jin
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Xiao-Mei Li
- Department of Cardiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Zhi Yang
- Department of Cardiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Dong Wang
- Department of Cardiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Jing-Jing Cui
- Department of Medical Affairs, Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong 256603, P.R. China
| |
Collapse
|
26
|
Wu Q, Song J, Meng D, Chang Q. TPPU, a sEH Inhibitor, Attenuates Corticosterone-Induced PC12 Cell Injury by Modulation of BDNF-TrkB Pathway. J Mol Neurosci 2019; 67:364-372. [PMID: 30644034 DOI: 10.1007/s12031-018-1230-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/21/2018] [Indexed: 12/11/2022]
Abstract
High level of corticosterone (CORT) is toxic to neurons and plays an important role in depression-like behavior and chronic stress. Our previous study showed that TPPU, a soluble epoxide hydrolase (sEH) inhibitor (sEHI), induces an antidepressant effect in animal models. However, the underlying mechanism is not clear. In this study, we investigated the protective effect of TPPU on PC12 cells against CORT-induced cytotoxicity and its underlying mechanism. We found that TPPU and the sEH substrate epoxyeicosatrienoic acids (EETs) protected PC12 cells from the CORT-induced injury by increasing cell viability and inhibiting apoptosis. Furthermore, TPPU and EETs also blocked the CORT-mediated downregulation of BDNF. Blocking the BDNF-TrkB pathway by the TrkB inhibitor K252a abolished the protective effect of TPPU. Taken together, our results suggest that sEHI could protect PC12 cells against the CORT-induced cytotoxicity via the BDNF-TrkB signaling pathway.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Pathophysiology, Luohe Medical College, Luohe, China
| | - Jingfang Song
- Department of Medicine, Luohe Medical College, Luohe, China
| | - Danxin Meng
- Department of Medicine, Luohe Medical College, Luohe, China
| | - Quanzhong Chang
- Department of Physiology, Luohe Medical College, Luohe, 462000, China.
| |
Collapse
|
27
|
Neuroprotective effects of epoxyeicosatrienoic acids. Prostaglandins Other Lipid Mediat 2018; 138:9-14. [DOI: 10.1016/j.prostaglandins.2018.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 06/19/2018] [Accepted: 07/17/2018] [Indexed: 11/22/2022]
|