1
|
Hakimi Naeini S, Rajabi-Maham H, Azizi V, Hosseini A. Anticonvulsant effect of glycitin in pentylenetetrazol induced male Wistar rat model by targeting oxidative stress and Nrf2/HO-1 signaling. Front Pharmacol 2024; 15:1392325. [PMID: 39246658 PMCID: PMC11377222 DOI: 10.3389/fphar.2024.1392325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024] Open
Abstract
Epilepsy, characterized by recurrent seizures, poses a significant health challenge globally. Despite the availability of anti-seizure medications, their adverse effects and inadequate efficacy in controlling seizures propel the exploration of alternative therapeutic measures. In hypothesis, glycitin is a phytoestrogenic compound found in soybeans and due to its estrogenic properties may have anti-epileptic and neuroprotective effects. This study investigates the potential anti-epileptic properties of glycitin in the context of pentylenetetrazol (PTZ) induced seizures in male Wistar rats. The rats were pretreated with varying doses of glycitin (5, 10, and 20 mg/kg) before PTZ (35 mg/kg) administration, and assessments included behavioral observations and histological evaluation via hematoxylin and eosin (H&E) staining. Additionally, oxidative stress markers, such as malondialdehyde (MDA), glutathione peroxidase (GPx), and superoxide dismutase (SOD) levels, were quantified to examine glycitin's impact on oxidative stress. Molecular analysis was conducted to assess the activation of the Nuclear factor erythroid 2-related factor (Nrf2)/Heme oxygenase 1 (HO-1) signaling pathway. Results indicated that glycitin pretreatment effectively mitigated PTZ-induced convulsive behaviors, supported by histological findings from H&E staining. Furthermore, glycitin administration led to significant alterations in MDA, GPx, and SOD levels, suggestive of its ability to modulate oxidative stress. Notably, glycitin treatment induced activation of the Nrf2/HO-1 signaling pathway. These findings underscore the potential of glycitin as an anticonvulsant agent, elucidating its mechanism of action through histological protection, modulation of oxidative stress markers, and activation of the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Saghi Hakimi Naeini
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Hassan Rajabi-Maham
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Vahid Azizi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Abdolkarim Hosseini
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
2
|
Nonato DTT, Aragão GF, Craveiro RMCB, Pereira MG, Vasconcelos SMM, Wong DVT, Júnior RCPL, Soares PMG, Lima MADS, Assreuy AMS, Chaves EMC. Polysaccharide-rich extract of Genipa americana leaves protects seizures and oxidative stress in the mice model of pentylenetetrazole-induced epilepsy. Biomed Pharmacother 2024; 172:116212. [PMID: 38364734 DOI: 10.1016/j.biopha.2024.116212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/18/2024] Open
Abstract
Plant polysaccharides have biological activities in the brain and those obtained from Genipa americana leaves present antioxidant and anticonvulsant effects in the mice model of pentylenetetrazole (PTZ)-induced acute seizures. This study aimed to evaluate the polysaccharide-rich extract of Genipa americana leaves (PRE-Ga) in the models of acute seizures and chronic epilepsy (kindling) induced by PTZ. In the acute seizure model, male Swiss mice (25-35 g) received PRE-Ga (1 or 9 mg/kg; intraperitoneal- IP), alone or associated with diazepam (0.01 mg/kg), 30 min before induction of seizures with PTZ (70 mg/kg; IP). In the chronic epilepsy model, seizures were induced by PTZ (40 mg/kg) 30 min after treatment and in alternated days up to 30 days and evaluated by video. Brain areas (prefrontal cortex, hippocampus, striatum) were assessed for inflammatory and oxidative stress markers. Diazepam associated to PRE-Ga (9 mg/kg; i.p.) increased the latency of seizures in acute (222.4 ± 47.57 vs. saline: 62.00 ± 4.709 s) and chronic models (6.267 ± 0.502 vs. saline: 4.067 ± 0.407 s). In hippocampus, PRE-Ga (9 mg/kg) inhibited TNF-α (105.9 ± 5.38 vs. PTZ: 133.5 ± 7.62 pmol/g) and malondialdehyde (MDA) (473.6 ± 60.51) in the chronic model. PTZ increased glial fibrillar acid proteins (GFAP) and Iba-1 in hippocampus, which was reversed by PRE-Ga (GFAP: 1.9 ± 0.23 vs PTZ: 3.1 ± 1.3 and Iba-1: 2.2 ± 0.8 vs PTZ: 3.2 ± 1.4). PRE-Ga presents neuroprotector effect in the mice model of epilepsy induced by pentylenetetrazole reducing seizures, gliosis, inflammatory cytokines and oxidative stress.
Collapse
Affiliation(s)
| | - Gislei Frota Aragão
- Superior Institute of Biomedical Sciences, State University of Ceará, 60714-903 Fortaleza, Ceará, Brazil
| | | | - Maria Gonçalves Pereira
- Superior Institute of Biomedical Sciences, State University of Ceará, 60714-903 Fortaleza, Ceará, Brazil
| | | | - Deysi Viviana Tenazoa Wong
- Department of Physiology and Pharmacology, Federal University of Ceará, 60455-760 Fortaleza, Ceará, Brazil
| | | | - Pedro Marcos Gomes Soares
- Department of Physiology and Pharmacology, Federal University of Ceará, 60455-760 Fortaleza, Ceará, Brazil
| | | | - Ana Maria Sampaio Assreuy
- Superior Institute of Biomedical Sciences, State University of Ceará, 60714-903 Fortaleza, Ceará, Brazil
| | - Edna Maria Camelo Chaves
- Superior Institute of Biomedical Sciences, State University of Ceará, 60714-903 Fortaleza, Ceará, Brazil.
| |
Collapse
|
3
|
Ahmadi-Soleimani SM, Amiry GY, Khordad E, Masoudi M, Beheshti F. Omega-3 fatty acids prevent nicotine withdrawal-induced impairment of learning and memory via affecting oxidative status, inflammatory response, cholinergic activity, BDNF and amyloid-B in rat hippocampal tissues. Life Sci 2023; 332:122100. [PMID: 37722588 DOI: 10.1016/j.lfs.2023.122100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 08/29/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
In the present study, the main objective was to reveal whether treatment by Omega-3 fatty acids could prevent the adverse effects of adolescent nicotine withdrawal on spatial and avoidance memory in male rats. For this purpose, Morris water maze and passive avoidance tests were performed on male Wistar rats and the hippocampal levels of oxidative stress markers, inflammatory indices, brain-derived neurotrophic factor, nitrite, amyloid-B and acetylcholinesterase (AChE) were measured. Moreover, density of dark neurons were assessed in CA1 and CA3 regions. Results showed that adolescent nicotine exposure followed by a period of drug cessation exacerbates the behavioral indices of learning and memory through affecting a variety of biochemical markers within the hippocampal tissues. These changes lead to elevation of oxidative and inflammatory markers, reduction of neurotrophic capacity and increased AChE activity in hippocampal tissues. In addition, it was observed that co-administration of nicotine with Omega-3 fatty acids significantly prevents nicotine withdrawal-induced adverse effects through restoration of the mentioned biochemical disturbances. Therefore, we suggest administration of Omega-3 fatty acids as a safe, inexpensive and effective therapeutic strategy for prevention of memory dysfunctions associated with nicotine abstinence during adolescence.
Collapse
Affiliation(s)
- S Mohammad Ahmadi-Soleimani
- Departments of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Ghulam Yahya Amiry
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Elnaz Khordad
- Department of Anatomical Sciences, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Maha Masoudi
- Vice Chancellery of Education and Research, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Farimah Beheshti
- Departments of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
| |
Collapse
|
4
|
Zubareva OE, Sinyak DS, Kalita AD, Griflyuk AV, Diespirov GP, Postnikova TY, Zaitsev AV. Antiepileptogenic Effects of Anakinra, Lamotrigine and Their Combination in a Lithium-Pilocarpine Model of Temporal Lobe Epilepsy in Rats. Int J Mol Sci 2023; 24:15400. [PMID: 37895080 PMCID: PMC10607594 DOI: 10.3390/ijms242015400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Temporal lobe epilepsy is a common, chronic disorder with spontaneous seizures that is often refractory to drug therapy. A potential cause of temporal lobe epilepsy is primary brain injury, making prevention of epileptogenesis after the initial event an optimal method of treatment. Despite this, no preventive therapy for epilepsy is currently available. The purpose of this study was to evaluate the effects of anakinra, lamotrigine, and their combination on epileptogenesis using the rat lithium-pilocarpine model of temporal lobe epilepsy. The study showed that there was no significant difference in the number and duration of seizures between treated and untreated animals. However, the severity of seizures was significantly reduced after treatment. Anakinra and lamotrigine, alone or in combination, significantly reduced neuronal loss in the CA1 hippocampus compared to the control group. However, the drugs administered alone were found to be more effective in preventing neuron loss in the hippocampal CA3 field compared to combination treatment. The treatment alleviated the impairments in activity level, exploratory behavior, and anxiety but had a relatively weak effect on TLE-induced impairments in social behavior and memory. The efficacy of the combination treatment did not differ from that of anakinra and lamotrigine monotherapy. These findings suggest that anakinra and lamotrigine, either alone or in combination, may be clinically useful in preventing the development of histopathological and behavioral abnormalities associated with epilepsy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Aleksey V. Zaitsev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 Saint Petersburg, Russia; (O.E.Z.); (D.S.S.); (A.D.K.); (A.V.G.); (G.P.D.); (T.Y.P.)
| |
Collapse
|
5
|
Sandouka S, Saadi A, Singh PK, Olowe R, Shekh-Ahmad T. Nrf2 is predominantly expressed in hippocampal neurons in a rat model of temporal lobe epilepsy. Cell Biosci 2023; 13:3. [PMID: 36600279 DOI: 10.1186/s13578-022-00951-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Drug resistance is a particular problem in patients with temporal lobe epilepsy, where seizures originate mainly from the hippocampus. Many of these epilepsies are acquired conditions following an insult to the brain such as a prolonged seizure. Such conditions are characterized by pathophysiological mechanisms including massive oxidative stress that synergistically mediate the secondary brain damage, contributing to the development of epilepsy. The transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) has emerged in recent years as an attractive therapeutic approach targeting to upregulate the antioxidative defenses in the cell, to ameliorate the oxidative stress-induced damage. Thus, it is important to understand the characteristics of Nrf2 activation during epileptogenesis and epilepsy. Here, we studied the temporal, regional, and cell-type specific expression of Nrf2 in the brain, in a rat model of temporal lobe epilepsy. RESULTS Early after status-epilepticus, Nrf2 is mainly activated in the hippocampus and maintained during the whole period of epileptogenesis. Only transient expression of Nrf2 was observed in the cortex. Nevertheless, the expression of several Nrf2 antioxidant target genes was increased within 24 h after status-epilepticus in both the cortex and the hippocampus. We demonstrated that after status-epilepticus in rats, Nrf2 is predominantly expressed in neurons in the CA1 and CA3 regions of the hippocampus, and only astrocytes in the CA1 increase their Nrf2 expression. CONCLUSIONS In conclusion, our data identify previously unrecognized spatial and cell-type dependent activation of Nrf2 during epilepsy development, highlighting the need for a time-controlled, and cell-type specific activation of the Nrf2 pathway for mediating anti-oxidant response after brain insult, to modify the development of epilepsy.
Collapse
Affiliation(s)
- Sereen Sandouka
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Aseel Saadi
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Prince Kumar Singh
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Rhoda Olowe
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Tawfeeq Shekh-Ahmad
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel.
| |
Collapse
|
6
|
Maternal Hyperhomocysteinemia Disturbs the Mechanisms of Embryonic Brain Development and Its Maturation in Early Postnatal Ontogenesis. Cells 2023; 12:cells12010189. [PMID: 36611982 PMCID: PMC9818313 DOI: 10.3390/cells12010189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
Maternal hyperhomocysteinemia causes the disruption of placental blood flow and can lead to serious disturbances in the formation of the offspring's brain. In the present study, the effects of prenatal hyperhomocysteinemia (PHHC) on the neuronal migration, neural tissue maturation, and the expression of signaling molecules in the rat fetal brain were described. Maternal hyperhomocysteinemia was induced in female rats by per os administration of 0.15% aqueous methionine solution in the period of days 4-21 of pregnancy. Behavioral tests revealed a delay in PHHC male pups maturing. Ultrastructure of both cortical and hippocampus tissue demonstrated the features of the developmental delay. PHHC was shown to disturb both generation and radial migration of neuroblasts into the cortical plate. Elevated Bdnf expression, together with changes in proBDNF/mBDNF balance, might affect neuronal cell viability, positioning, and maturation in PHHC pups. Reduced Kdr gene expression and the content of SEMA3E might lead to impaired brain development. In the brain tissue of E20 PHHC fetuses, the content of the procaspase-8 was decreased, and the activity level of the caspase-3 was increased; this may indicate the development of apoptosis. PHHC disturbs the mechanisms of early brain development leading to a delay in brain tissue maturation and formation of the motor reaction of pups.
Collapse
|
7
|
Wu Y, Luo XD, Xiang T, Li SJ, Ma MG, Chen ML. Activation of metabotropic glutamate receptor 1 regulates hippocampal CA1 region excitability in rats with status epilepticus by suppressing the HCN1 channel. Neural Regen Res 2023; 18:594-602. [DOI: 10.4103/1673-5374.350206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
8
|
Maternal Hyperhomocysteinemia Produces Memory Deficits Associated with Impairment of Long-Term Synaptic Plasticity in Young Rats. Cells 2022; 12:cells12010058. [PMID: 36611852 PMCID: PMC9818716 DOI: 10.3390/cells12010058] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
Maternal hyperhomocysteinemia (HCY) is a common pregnancy complication caused by high levels of the homocysteine in maternal and fetal blood, which leads to the alterations of the cognitive functions, including learning and memory. In the present study, we investigated the mechanisms of these alterations in a rat model of maternal HCY. The behavioral tests confirmed the memory impairments in young and adult rats following the prenatal HCY exposure. Field potential recordings in hippocampal slices demonstrated that the long-term potentiation (LTP) was significantly reduced in HCY rats. The whole-cell patch-clamp recordings in hippocampal slices demonstrated that the magnitude of NMDA receptor-mediated currents did not change while their desensitization decreased in HCY rats. No significant alterations of glutamate receptor subunit expression except GluN1 were detected in the hippocampus of HCY rats using the quantitative real-time PCR and Western blot methods. The immunofluorescence microscopy revealed that the number of synaptopodin-positive spines is reduced, while the analysis of the ultrastructure of hippocampus using the electron microscopy revealed the indications of delayed hippocampal maturation in young HCY rats. Thus, the obtained results suggest that maternal HCY disturbs the maturation of hippocampus during the first month of life, which disrupts LTP formation and causes memory impairments.
Collapse
|
9
|
Postnikova TY, Trofimova AM, Zakharova MV, Nosova OI, Brazhe AR, Korzhevskii DE, Semyanov AV, Zaitsev AV. Delayed Impairment of Hippocampal Synaptic Plasticity after Pentylenetetrazole-Induced Seizures in Young Rats. Int J Mol Sci 2022; 23:ijms232113461. [PMID: 36362260 PMCID: PMC9657086 DOI: 10.3390/ijms232113461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Data on the long-term consequences of a single episode of generalized seizures in infants are inconsistent. In this study, we examined the effects of pentylenetetrazole-induced generalized seizures in three-week-old rats. One month after the seizures, we detected a moderate neuronal loss in several hippocampal regions: CA1, CA3, and hilus, but not in the dentate gyrus. In addition, long-term synaptic potentiation (LTP) was impaired. We also found that the mechanism of plasticity induction was altered: additional activation of metabotropic glutamate receptors (mGluR1) is required for LTP induction in experimental rats. This disturbance of the plasticity induction mechanism is likely due to the greater involvement of perisynaptic NMDA receptors compared to receptors located in the core part of the postsynaptic density. This hypothesis is supported by experiments with selective blockades of core-located NMDA receptors by the use-dependent blocker MK-801. MK-801 had no effect on LTP induction in experimental rats and suppressed LTP in control animals. The weakening of the function of core-located NMDA receptors may be due to the disturbed clearance of glutamate from the synaptic cleft since the distribution of the astrocytic glutamate transporter EAAT2 in experimental animals was found to be altered.
Collapse
Affiliation(s)
- Tatyana Y. Postnikova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, Saint Petersburg 194223, Russia
| | - Alina M. Trofimova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, Saint Petersburg 194223, Russia
| | - Maria V. Zakharova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, Saint Petersburg 194223, Russia
| | - Olga I. Nosova
- Institute of Experimental Medicine, Saint Petersburg 197022, Russia
| | - Alexey R. Brazhe
- Faculty of Biology, Moscow State University, Moscow 119234, Russia
| | | | - Alexey V. Semyanov
- Faculty of Biology, Moscow State University, Moscow 119234, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
- Department of Clinical Pharmacology, Sechenov First Moscow State Medical University, Moscow 119435, Russia
| | - Aleksey V. Zaitsev
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, Saint Petersburg 194223, Russia
- Correspondence:
| |
Collapse
|
10
|
A 10-day mild treadmill exercise performed before an epileptic seizure alleviates oxidative injury in the skeletal muscle and brain tissues of the rats. MARMARA MEDICAL JOURNAL 2022. [DOI: 10.5472/marumj.1056192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Involvement of nitric oxide pathway in the acute anticonvulsant effect of salmon calcitonin in rats. Epilepsy Res 2022; 180:106864. [DOI: 10.1016/j.eplepsyres.2022.106864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/10/2021] [Accepted: 01/17/2022] [Indexed: 11/18/2022]
|
12
|
Reaction of the Hippocampal Microglia to Hyperbaric Oxygen. Bull Exp Biol Med 2022; 173:655-659. [PMID: 36210418 PMCID: PMC9548419 DOI: 10.1007/s10517-022-05607-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Indexed: 11/21/2022]
Abstract
We studied the reaction of rat hippocampal microgliocytes to hyperbaric oxygen at a pressure of 5 ata (absolute atmosphere). Immunohistochemical analysis with selective macrophage marker CD68 (ED1) and microglial marker Iba-1 allowed separate analysis of these two cell populations. It was shown that macrophages do not significantly contribute to reactive changes in the total pool of Iba-1+ hippocampal cells induced by hyperbaric oxygen.
Collapse
|
13
|
Green JL, Dos Santos WF, Fontana ACK. Role of glutamate excitotoxicity and glutamate transporter EAAT2 in epilepsy: Opportunities for novel therapeutics development. Biochem Pharmacol 2021; 193:114786. [PMID: 34571003 DOI: 10.1016/j.bcp.2021.114786] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/21/2022]
Abstract
Epilepsy is a complex neurological syndrome characterized by seizures resulting from neuronal hyperexcitability and sudden and synchronized bursts of electrical discharges. Impaired astrocyte function that results in glutamate excitotoxicity has been recognized to play a key role in the pathogenesis of epilepsy. While there are 26 drugs marketed as anti-epileptic drugs no current treatments are disease modifying as they only suppress seizures rather than the development and progression of epilepsy. Excitatory amino acid transporters (EAATs) are critical for maintaining low extracellular glutamate concentrations and preventing excitotoxicity. When extracellular glutamate concentrations rise to abnormal levels, glutamate receptor overactivation and the subsequent excessive influx of calcium into the post-synaptic neuron can trigger cell death pathways. In this review we discuss targeting EAAT2, the predominant glutamate transporter in the CNS, as a promising approach for developing therapies for epilepsy. EAAT2 upregulation via transcriptional and translational regulation has proven successful in vivo in reducing spontaneous recurrent seizures and offering neuroprotective effects. Another approach to regulate EAAT2 activity is through positive allosteric modulation (PAM). Novel PAMs of EAAT2 have recently been identified and are under development, representing a promising approach for the advance of novel therapeutics for epilepsy.
Collapse
Affiliation(s)
- Jennifer Leigh Green
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, United States
| | | | | |
Collapse
|
14
|
Ozel AB, Cilingir-Kaya OT, Sener G, Ozbeyli D, Sen A, Sacan O, Yanardag R, Yarat A. Investigation of possible neuroprotective effects of some plant extracts on brain in bile duct ligated rats. J Food Biochem 2021; 45:e13835. [PMID: 34173678 DOI: 10.1111/jfbc.13835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/29/2021] [Accepted: 06/09/2021] [Indexed: 11/30/2022]
Abstract
This study aimed to investigate the possible neuroprotective effects of bitter melon (BM), chard, and parsley extracts on oxidative damage that may occur in the brain of rats with bile duct ligation (BDL)-induced biliary cirrhosis. It was observed that lipid peroxidation (LPO), sialic acid (SA), and nitric oxide (NO) levels increased; glutathione (GSH) levels, catalase (CAT) activity, and tissue factor (TF) activity decreased significantly in the BDL group. However, in groups with BDL given BM, chard, and parsley extracts LPO, SA, NO levels decreased; GSH levels and CAT activities increased significantly. No significant differences were observed between groups in total protein, glutathione-S-transferase, superoxide dismutase, and boron. Histological findings were supported by the biochemical results. BM, chard, and parsley extracts were effective in the regression of oxidant damage caused by cirrhosis in the brain tissues. PRACTICAL APPLICATIONS: Bitter melon (BM), chard, and parsley have antioxidant properties due to their bioactive compounds which are involved in scavenging free radicals, suppressing their production, and stimulating the production of endogenous antioxidant compounds. Since BM, chard, and parsley extracts were found to be effective in the regression of oxidant damage caused by cirrhosis in the brain tissues, these plant extracts may be an alternative in the development of different treatment approaches against brain damage in cirrhosis. At the same time, these species have been used as food by the people for many years. Therefore, they can be used safely as neuroprotective agents in treatment.
Collapse
Affiliation(s)
- Armagan Begum Ozel
- Department of Basic Medical Sciences, Biochemistry, Marmara University, Faculty of Dentistry, Istanbul, Turkey
| | | | - Goksel Sener
- Vocational School of Health Service, Fenerbahçe University, Istanbul, Turkey
| | - Dilek Ozbeyli
- Pathology Laboratory Techniques, Vocational School of Health Service, Marmara University, Istanbul, Turkey
| | - Ali Sen
- Department of Pharmacognosy, Marmara University, Faculty of Pharmacy, Istanbul, Turkey
| | - Ozlem Sacan
- Department of Chemistry, Istanbul University-Cerrahpasa, Faculty of Engineering, Istanbul, Turkey
| | - Refiye Yanardag
- Department of Chemistry, Istanbul University-Cerrahpasa, Faculty of Engineering, Istanbul, Turkey
| | - Aysen Yarat
- Department of Basic Medical Sciences, Biochemistry, Marmara University, Faculty of Dentistry, Istanbul, Turkey
| |
Collapse
|
15
|
Shcherbitskaia AD, Vasilev DS, Milyutina YP, Tumanova NL, Mikhel AV, Zalozniaia IV, Arutjunyan AV. Prenatal Hyperhomocysteinemia Induces Glial Activation and Alters Neuroinflammatory Marker Expression in Infant Rat Hippocampus. Cells 2021; 10:cells10061536. [PMID: 34207057 PMCID: PMC8234222 DOI: 10.3390/cells10061536] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 12/15/2022] Open
Abstract
Maternal hyperhomocysteinemia is one of the common complications of pregnancy that causes offspring cognitive deficits during postnatal development. In this study, we investigated the effect of prenatal hyperhomocysteinemia (PHHC) on inflammatory, glial activation, and neuronal cell death markers in the hippocampus of infant rats. Female Wistar rats received L-methionine (0.6 g/kg b.w.) by oral administration during pregnancy. On postnatal days 5 and 20, the offspring’s hippocampus was removed to perform histological and biochemical studies. After PHHC, the offspring exhibited increased brain interleukin-1β and interleukin-6 levels and glial activation, as well as reduced anti-inflammatory interleukin-10 level in the hippocampus. Additionally, the activity of acetylcholinesterase was increased in the hippocampus of the pups. Exposure to PHHC also resulted in the reduced number of neurons and disrupted neuronal ultrastructure. At the same time, no changes in the content and activity of caspase-3 were found in the hippocampus of the pups. In conclusion, our findings support the hypothesis that neuroinflammation and glial activation could be involved in altering the hippocampus cellular composition following PHHC, and these alterations could be associated with cognitive disorders later in life.
Collapse
Affiliation(s)
- Anastasiia D. Shcherbitskaia
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia; (Y.P.M.); (A.V.M.); (I.V.Z.); (A.V.A.)
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 St. Petersburg, Russia; (D.S.V.); (N.L.T.)
- Correspondence:
| | - Dmitrii S. Vasilev
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 St. Petersburg, Russia; (D.S.V.); (N.L.T.)
| | - Yulia P. Milyutina
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia; (Y.P.M.); (A.V.M.); (I.V.Z.); (A.V.A.)
| | - Natalia L. Tumanova
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 St. Petersburg, Russia; (D.S.V.); (N.L.T.)
| | - Anastasiia V. Mikhel
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia; (Y.P.M.); (A.V.M.); (I.V.Z.); (A.V.A.)
| | - Irina V. Zalozniaia
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia; (Y.P.M.); (A.V.M.); (I.V.Z.); (A.V.A.)
| | - Alexander V. Arutjunyan
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia; (Y.P.M.); (A.V.M.); (I.V.Z.); (A.V.A.)
| |
Collapse
|
16
|
Alterations in mRNA and Protein Expression of Glutamate Receptor Subunits Following Pentylenetetrazole-induced Acute Seizures in Young Rats. Neuroscience 2021; 468:1-15. [PMID: 34102267 DOI: 10.1016/j.neuroscience.2021.05.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/28/2022]
Abstract
Acute seizures can severely affect brain function and development. However, the underlying pathophysiological mechanisms are still poorly understood. Disturbances of the glutamatergic system are considered one of the critical mechanisms of neurological abnormalities. In the present study, we analyzed changes in the expression of NMDA and AMPA receptor subunits in the different brain regions (dorsal hippocampus, amygdala, and the medial prefrontal, temporal, and entorhinal cortex) using a pentylenetetrazole (PTZ) model of seizures in 3-week-old rats. A distinctive feature of this model is that the administration of PTZ causes severe acute seizures, which are not followed by the development of spontaneous recurrent seizures later on. Subunit expression was analyzed using qRT-PCR and Western blotting during the first week after seizures. The most pronounced alterations of mRNA and protein levels were observed in the dorsal hippocampus. We found decreased expression of the GluA2 mRNA 7 days after seizures (PSE7), as well as reduced GluN2a protein levels on PSE7. Significant alterations in the expression of different receptor subunits in the mRNA but not protein levels were observed in the entorhinal cortex and amygdala. In contrast, in the medial prefrontal and temporal cortex, we found almost no changes in the expression of the studied genes. The identified changes deepen our understanding of post-seizure disturbances in the developing brain and confirm that although various brain structures are involved in seizures, the hippocampus is the most vulnerable.
Collapse
|
17
|
CB2 receptors modulate seizure-induced expression of pro-inflammatory cytokines in the hippocampus but not neocortex. Mol Neurobiol 2021; 58:4028-4037. [PMID: 33907944 DOI: 10.1007/s12035-021-02395-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/14/2021] [Indexed: 10/21/2022]
Abstract
We compared neuroinflammatory responses induced by nonconvulsive and convulsive seizures and analyzed the role that may be played by cannabinoid CB2 receptors in the neuroinflammatory response induced by generalized tonic-clonic seizures (GTCS). Using quantitative PCR, we analyzed expression of interleukin-1b, CCL2, interleukin-6, tumor necrosis factor (TNF), transforming growth factor beta 1 (TGFb1), fractalkine, and cannabinoid receptor type 2 in the neocortex, dorsal and ventral hippocampus, cortical leptomeninges, dura mater, and spleen in 3 and 6 h after induction of GTCS by a high dose of pentylenetetrazole (PTZ, 70 mg/kg) and absence-like activity by a low dose of PTZ (30 mg/kg). The low dose of PTZ had no effect on the gene expression 3 and 6 h after PTZ injection. In 3 and 6 h after high PTZ dose, the expression of CCL2 and TNF increased in the neocortex. Both ventral and dorsal parts of the hippocampus responded to seizures by elevation of CCL2 expression 3 h after PTZ. Cortical leptomeninges but not dura mater also had elevated CCL2 level and decreased TGFb1 expression 3 h after GTCS. Activation of CB2 receptors by HU308 suppressed an inflammatory response only in the dorsal hippocampus but not neocortex. Suppression of CB2 receptors by AM630 potentiated expression of inflammatory cytokines also in the hippocampus but not in the neocortex. Thus, we showed that GTCS, but not the absence-like activity, provoke inflammatory response in the neocortex, dorsal and ventral hippocampus, and cortical leptomeninges. Modulation of CB2 receptors changes seizure-induced neuroinflammation only in the hippocampus but not neocortex.
Collapse
|
18
|
Alachkar A, Lotfy M, Adeghate E, Łażewska D, Kieć-Kononowicz K, Sadek B. Ameliorating effects of histamine H3 receptor antagonist E177 on acute pentylenetetrazole-induced memory impairments in rats. Behav Brain Res 2021; 405:113193. [PMID: 33626390 DOI: 10.1016/j.bbr.2021.113193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/14/2021] [Accepted: 02/14/2021] [Indexed: 12/14/2022]
Abstract
Histamine H3 receptors (H3Rs) are involved in several neuropsychiatric diseases including epilepsy. Therefore, the effects of H3R antagonist E177 (5 and 10 mg/kg, intraperitoneal (i.p.)) were evaluated on acute pentylenetetrazole (PTZ)-induced memory impairments, oxidative stress levels (glutathione (GSH), malondialdehyde (MDA), catalase (CAT), and superoxide dismutase (SOD)), various brain neurotransmitters (histamine (HA), acetylcholine (ACh), γ-aminobutyric acid (GABA)), and glutamate (Glu), acetylcholine esterase (AChE) activity, and c-fos protein expression in rats. E177 (5 and 10 mg/kg, i.p.) significantly prolonged step-through latency (STL) time in single-trial passive avoidance paradigm (STPAP), and shortened transfer latency time (TLT) in elevated plus maze paradigm (EPMP) (all P < 0.05). Moreover, and in the hippocampus of PTZ-treated animals, E177 mitigated abnormal levels of AChE activity, ACh and HA (all P < 0.05), but failed to modify brain levels of GABA and Glu. Furthermore, E177 alleviated hippocampal oxidative stress by significantly decreasing the elevated levels of MDA, and increasing the abnormally decreased level of GSH (all P < 0.05). Furthermore, E177 reduced elevated levels of hippocampal c-fos protein expression in hippocampal tissues of PTZ-treated animals (all P < 0.05). The observed results propose the potential of H3R antagonist E177 with an added advantage of avoiding cognitive impairment, emphasizing the H3Rs as a prospective target for future pharmacological management of epilepsy with associated memory impairments.
Collapse
Affiliation(s)
- Alaa Alachkar
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, 17666, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 17666, Abu Dhabi, United Arab Emirates
| | - Mohamed Lotfy
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 17666, United Arab Emirates
| | - Ernest Adeghate
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 17666, Abu Dhabi, United Arab Emirates; Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, 17666, United Arab Emirates
| | - Dorota Łażewska
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Medyczna 9 St., 30-688, Kraków, Poland
| | - Katarzyna Kieć-Kononowicz
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Medyczna 9 St., 30-688, Kraków, Poland
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, 17666, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 17666, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
19
|
Neurobiology, Functions, and Relevance of Excitatory Amino Acid Transporters (EAATs) to Treatment of Refractory Epilepsy. CNS Drugs 2020; 34:1089-1103. [PMID: 32926322 DOI: 10.1007/s40263-020-00764-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epilepsy is one of the most prevalent and devastating neurological disorders characterized by episodes of unusual sensations, loss of awareness, and reoccurring seizures. The frequency and intensity of epileptic fits can vary to a great degree, with almost a third of all cases resistant to available therapies. At present, there is a major unmet need for effective and specific therapeutic intervention. Impairments of the exquisite balance between excitatory and inhibitory synaptic processes in the brain are considered key in the onset and pathophysiology of the disease. As the primary excitatory neurotransmitter in the central nervous system, glutamate has been implicated in the process, with the glutamatergic system holding center stage in the pathobiology as well as in developing disease-modifying therapies. Emerging data pinpoint impairments of glutamate clearance as one of the key causative factors in drug-resistant disease forms. Reinstatement of glutamate homeostasis using pharmacological and genetic modulation of glutamate clearance is therefore considered to be of major translational relevance. In this article, we review the neurobiological and clinical evidence suggesting complex aberrations in the activity and functions of excitatory amino acid transporters (EAATs) in epilepsy, with knock-on effects on glutamate homeostasis as a leading cause for the development of refractory forms. We consider the emerging data on pharmacological and genetic manipulations of EAATs, with reference to seizures and glutamate dyshomeostasis, and review their fundamental and translational relevance. We discuss the most recent advances in the EAATs research in human and animal models, along with numerous questions that remain open for debate and critical appraisal. Contrary to the widely held view on EAATs as a promising therapeutic target for management of refractory epilepsy as well as other neurological and psychiatric conditions related to glutamatergic hyperactivity and glutamate-induced cytotoxicity, we stress that the true relevance of EAAT2 as a target for medical intervention remains to be fully appreciated and verified. Despite decades of research, the emerging properties and functional characteristics of glutamate transporters and their relationship with neurophysiological and behavioral correlates of epilepsy challenge the current perception of this disease and fit unambiguously in neither EAATs functional deficit nor in reversal models. We stress the pressing need for new approaches and models for research and restoration of the physiological activity of glutamate transporters and synaptic transmission to achieve much needed therapeutic effects. The complex mechanism of EAATs regulation by multiple factors, including changes in the electrochemical environment and ionic gradients related to epileptic hyperactivity, impose major therapeutic challenges. As a final note, we consider the evolving views and present a cautious perspective on the key areas of future progress in the field towards better management and treatment of refractory disease forms.
Collapse
|
20
|
Schwarz AP, Kovalenko AA, Malygina DA, Postnikova TY, Zubareva OE, Zaitsev AV. Reference Gene Validation in the Brain Regions of Young Rats after Pentylenetetrazole-Induced Seizures. Biomedicines 2020; 8:biomedicines8080239. [PMID: 32717922 PMCID: PMC7460155 DOI: 10.3390/biomedicines8080239] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
Reverse transcription followed by quantitative polymerase chain reaction (qRT-PCR) is a powerful and commonly used tool for gene expression analysis. It requires the right choice of stably expressed reference genes for accurate normalization. In this work, we aimed to select the optimal reference genes for qRT-PCR normalization within different brain areas during the first week following pentylenetetrazole-induced seizures in immature (P20–22) Wistar rats. We have tested the expression stability of a panel of nine housekeeping genes: Actb, Gapdh, B2m, Rpl13a, Sdha, Ppia, Hprt1, Pgk1, and Ywhaz. Based on geometric averaging of ranks obtained by four common algorithms (geNorm, NormFinder, BestKeeper, Comparative Delta-Ct), we found that the stability of tested reference genes varied significantly between different brain regions. The expression of the tested panel of genes was very stable within the medial prefrontal and temporal cortex, and the dorsal hippocampus. However, within the ventral hippocampus, the entorhinal cortex and amygdala expression levels of most of the tested genes were not steady. The data revealed that in the pentylenetetrazole-induced seizure model in juvenile rats, Pgk1, Ppia, and B2m expression are the most stable within the medial prefrontal cortex; Ppia, Rpl13a, and Sdha within the temporal cortex; Pgk1, Ppia, and Rpl13a within the entorhinal cortex; Gapdh, Ppia, and Pgk1 within the dorsal hippocampus; Rpl13a, Sdha, and Ppia within the ventral hippocampus; and Sdha, Pgk1, and Ppia within the amygdala. Our data indicate the need for a differential selection of reference genes across brain regions, including the dorsal and ventral hippocampus.
Collapse
Affiliation(s)
- Alexander P. Schwarz
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, 44, Toreza Prospekt, Saint Petersburg 194223, Russia; (A.P.S.); (A.A.K.); (D.A.M.); (T.Y.P.); (O.E.Z.)
| | - Anna A. Kovalenko
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, 44, Toreza Prospekt, Saint Petersburg 194223, Russia; (A.P.S.); (A.A.K.); (D.A.M.); (T.Y.P.); (O.E.Z.)
| | - Daria A. Malygina
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, 44, Toreza Prospekt, Saint Petersburg 194223, Russia; (A.P.S.); (A.A.K.); (D.A.M.); (T.Y.P.); (O.E.Z.)
| | - Tatiana Y. Postnikova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, 44, Toreza Prospekt, Saint Petersburg 194223, Russia; (A.P.S.); (A.A.K.); (D.A.M.); (T.Y.P.); (O.E.Z.)
| | - Olga E. Zubareva
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, 44, Toreza Prospekt, Saint Petersburg 194223, Russia; (A.P.S.); (A.A.K.); (D.A.M.); (T.Y.P.); (O.E.Z.)
| | - Aleksey V. Zaitsev
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, 44, Toreza Prospekt, Saint Petersburg 194223, Russia; (A.P.S.); (A.A.K.); (D.A.M.); (T.Y.P.); (O.E.Z.)
- Almazov National Medical Research Centre, Institute of Experimental Medicine, 2 Akkuratova Street, Saint Petersburg 197341, Russia
- Correspondence:
| |
Collapse
|
21
|
Shcherbitskaia AD, Vasilev DS, Milyutina YP, Tumanova NL, Zalozniaia IV, Kerkeshko GO, Arutjunyan AV. Maternal Hyperhomocysteinemia Induces Neuroinflammation and Neuronal Death in the Rat Offspring Cortex. Neurotox Res 2020; 38:408-420. [PMID: 32504390 DOI: 10.1007/s12640-020-00233-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/19/2020] [Accepted: 05/29/2020] [Indexed: 12/20/2022]
Abstract
Maternal hyperhomocysteinemia is one of the common complications of pregnancy that causes offspring cognitive deficits during postnatal development. In the present work, we evaluated the effect of prenatal hyperhomocysteinemia on structural and ultrastructural organization, neuronal and glial cell number, apoptosis (caspase-3 content and activity), inflammatory markers (tumor necrosis factor-α, interleukin-6, and interleukin-1β), and p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation in the offspring brain cortex in early ontogenesis. Wistar female rats received methionine (0.6 g/kg body weight) by oral administration during pregnancy. Histological and biochemical analyses of 5- and 20-day-old pups' cortical tissue were performed. Lysosome accumulation and other neurodegenerative changes in neurons of animals with impaired embryonic development were investigated by electron microscopy. Neuronal staining (anti-NeuN) revealed a reduction in neuronal number, accompanied by increasing of caspase-3 active form protein level and activity. Maternal hyperhomocysteinemia also elevated the number of astroglial and microglial cells and increased expression of interleukin-1β and p38 MAPK phosphorylation, which indicates the development of neuroinflammatory processes.
Collapse
Affiliation(s)
- A D Shcherbitskaia
- D.O. Ott Institute of Obstetrics, Gynecology, and Reproductology, St. Petersburg, Russia. .,I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia.
| | - D S Vasilev
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Yu P Milyutina
- D.O. Ott Institute of Obstetrics, Gynecology, and Reproductology, St. Petersburg, Russia
| | - N L Tumanova
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
| | - I V Zalozniaia
- D.O. Ott Institute of Obstetrics, Gynecology, and Reproductology, St. Petersburg, Russia
| | - G O Kerkeshko
- Saint Petersburg Institute of Bioregulation and Gerontology, St. Petersburg, Russia
| | - A V Arutjunyan
- D.O. Ott Institute of Obstetrics, Gynecology, and Reproductology, St. Petersburg, Russia
| |
Collapse
|
22
|
Amakhin DV, Smolensky IV, Soboleva EB, Zaitsev AV. Paradoxical Anticonvulsant Effect of Cefepime in the Pentylenetetrazole Model of Seizures in Rats. Pharmaceuticals (Basel) 2020; 13:ph13050080. [PMID: 32357511 PMCID: PMC7281561 DOI: 10.3390/ph13050080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 01/03/2023] Open
Abstract
Many β-lactam antibiotics, including cephalosporins, may cause neurotoxic and proconvulsant effects. The main molecular mechanism of such effects is considered to be γ-aminobutyric acid type a (GABAa) receptor blockade, leading to the suppression of GABAergic inhibition and subsequent overexcitation. We found that cefepime (CFP), a cephalosporin, has a pronounced antiepileptic effect in the pentylenetetrazole (PTZ)-induced seizure model by decreasing the duration and severity of the seizure and animal mortality. This effect was specific to the PTZ model. In line with findings of previous studies, CFP exhibited a proconvulsant effect in other models, including the maximal electroshock model and 4-aminopyridine model of epileptiform activity, in vitro. To determine the antiepileptic mechanism of CFP in the PTZ model, we used whole-cell patch-clamp recordings. We demonstrated that CFP or PTZ decreased the amplitude of GABAa receptor-mediated postsynaptic currents. PTZ also decreased the current decay time constant and temporal summation of synaptic responses. In contrast, CFP slightly increased the decay time constant and did not affect summation. When applied together, CFP prevented alterations to the summation of responses by PTZ, strongly reducing the effects of PTZ on repetitive inhibitory synaptic transmission. The latter may explain the antiepileptic effect of CFP in the PTZ model.
Collapse
|
23
|
Yazdi A, Doostmohammadi M, Pourhossein Majarshin F, Beheshti S. Betahistine, prevents kindling, ameliorates the behavioral comorbidities and neurodegeneration induced by pentylenetetrazole. Epilepsy Behav 2020; 105:106956. [PMID: 32062106 DOI: 10.1016/j.yebeh.2020.106956] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/26/2020] [Accepted: 01/29/2020] [Indexed: 12/20/2022]
Abstract
A seizure may occur because of the imbalance between glutamate and gamma-aminobutyric acid (GABA). Recurrent seizures induce some cognitive problems, such as, depression, learning and memory deficits, and neurodegeneration. Histamine is an appropriate therapeutic target for epilepsy via its effect on regulating neurotransmitter release. Also, evidence indicates the effect of histamine on neuroprotection and alleviating cognitive disorders. An ideal antiepileptic drug is a substance, which has both anticonvulsant effects and decreases the comorbidities that are induced by repeated seizures. Betahistine dihydrochloride (betahistine) is a structural analog of histamine. It acts as histamine H1 receptor agonist and H3 receptor antagonist, which enhances histaminergic neuronal activities. In the present study, we examined the effect of betahistine administration on seizure scores, memory deficits, depression, and neuronal loss induced by pentylenetetrazole (PTZ). Eight- to ten-week-old BALB/c male mice (20-25 g) received betahistine, 1, and 10 mg/kg daily from 7 days before the onset of PTZ-induced kindling until the end of the establishment of the kindling. We found that betahistine prevented generalized tonic-clonic seizures induction and diminished forelimb clonic seizures intensity. Also, it decreased cell death in the hippocampus and cortex, ameliorated the memory deficit and depression induced by PTZ in the kindled animals. Altogether, these results indicate that pretreatment and repetitive administration with betahistine exerts antiepileptogenic and anticonvulsant activity. These findings might be due to the neuroprotective impact of betahistine in the hippocampus and cortex.
Collapse
Affiliation(s)
- Azadeh Yazdi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammadmahdi Doostmohammadi
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Farshid Pourhossein Majarshin
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Siamak Beheshti
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
24
|
Alachkar A, Azimullah S, Lotfy M, Adeghate E, Ojha SK, Beiram R, Łażewska D, Kieć-Kononowicz K, Sadek B. Antagonism of Histamine H3 receptors Alleviates Pentylenetetrazole-Induced Kindling and Associated Memory Deficits by Mitigating Oxidative Stress, Central Neurotransmitters, and c-Fos Protein Expression in Rats. Molecules 2020; 25:molecules25071575. [PMID: 32235506 PMCID: PMC7181068 DOI: 10.3390/molecules25071575] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/19/2022] Open
Abstract
Histamine H3 receptors (H3Rs) are involved in several neuropsychiatric diseases including epilepsy. Therefore, the effects of H3R antagonist E177 (5 and 10 mg/kg, intraperitoneal (i.p.)) were evaluated on the course of kindling development, kindling-induced memory deficit, oxidative stress levels (glutathione (GSH), malondialdehyde (MDA), catalase (CAT), and superoxide dismutase (SOD)), various brain neurotransmitters (histamine (HA), acetylcholine (ACh), γ-aminobutyric acid (GABA)), and glutamate (GLU), acetylcholine esterase (AChE) activity, and c-Fos protein expression in pentylenetetrazole (PTZ, 40 mg/kg) kindled rats. E177 (5 and 10 mg/kg, i.p.) significantly decreased seizure score, increased step-through latency (STL) time in inhibitory avoidance paradigm, and decreased transfer latency time (TLT) in elevated plus maze (all P < 0.05). Moreover, E177 mitigated oxidative stress by significantly increasing GSH, CAT, and SOD, and decreasing the abnormal level of MDA (all P < 0.05). Furthermore, E177 attenuated elevated levels of hippocampal AChE, GLU, and c-Fos protein expression, whereas the decreased hippocampal levels of HA and ACh were modulated in PTZ-kindled animals (all P < 0.05). The findings suggest the potential of H3R antagonist E177 as adjuvant to antiepileptic drugs with an added advantage of preventing cognitive impairment, highlighting the H3Rs as a potential target for the therapeutic management of epilepsy with accompanied memory deficits.
Collapse
Affiliation(s)
- Alaa Alachkar
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, UAE; (A.A.); (S.A.); (S.K.O.); (R.B.)
| | - Sheikh Azimullah
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, UAE; (A.A.); (S.A.); (S.K.O.); (R.B.)
| | - Mohamed Lotfy
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 17666, UAE;
| | - Ernest Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, UAE;
| | - Shreesh K. Ojha
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, UAE; (A.A.); (S.A.); (S.K.O.); (R.B.)
| | - Rami Beiram
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, UAE; (A.A.); (S.A.); (S.K.O.); (R.B.)
| | - Dorota Łażewska
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Medyczna 9 St., 30-688 Kraków, Poland; (D.Ł.); (K.K.-K.)
| | - Katarzyna Kieć-Kononowicz
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Medyczna 9 St., 30-688 Kraków, Poland; (D.Ł.); (K.K.-K.)
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, UAE; (A.A.); (S.A.); (S.K.O.); (R.B.)
- Correspondence: ; Tel.: +971-3-7137-512; Fax: +971-3-7672-033
| |
Collapse
|
25
|
Kapucu A, Üzüm G, Kaptan Z, Akgün-Dar K. Effects of erythropoietin pretreatment on single dose pentylentetrazole-induced seizures in rats. Biotech Histochem 2020; 95:418-427. [DOI: 10.1080/10520295.2020.1713398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Ayşegul Kapucu
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Gülay Üzüm
- Department of Physiology, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Zülal Kaptan
- Department of Physiology, Faculty of Medicine, Beykent University, Istanbul, Turkey
| | - Kadriye Akgün-Dar
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey
| |
Collapse
|
26
|
Ceftriaxone Treatment Affects EAAT2 Expression and Glutamatergic Neurotransmission and Exerts a Weak Anticonvulsant Effect in Young Rats. Int J Mol Sci 2019; 20:ijms20235852. [PMID: 31766528 PMCID: PMC6928884 DOI: 10.3390/ijms20235852] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/13/2019] [Accepted: 11/20/2019] [Indexed: 01/03/2023] Open
Abstract
Epilepsy is a common neurological disorder. Despite the availability of a wide range of antiepileptic drugs, these are unsuccessful in preventing seizures in 20–30% of patients. Therefore, new pharmacological strategies are urgently required to control seizures. Modulation of glutamate uptake may have potential in the treatment of pharmacoresistant forms of epilepsy. Previous research showed that the antibiotic ceftriaxone (CTX) increased the expression and functional activity of excitatory amino acid transporter 2 (EAAT2) and exerted considerable anticonvulsant effects. However, other studies did not confirm a significant anticonvulsant effect of CTX administration. We investigated the impacts of CTX treatment on EAAT expression and glutamatergic neurotransmission, as well its anticonvulsant action, in young male Wistar rats. As shown by a quantitative real-time polymerase chain reaction (qPCR) assay and a Western blot analysis, the mRNA but not the protein level of EAAT2 increased in the hippocampus following CTX treatment. Repetitive CTX administration had only a mild anticonvulsant effect on pentylenetetrazol (PTZ)-induced convulsions in a maximal electroshock threshold test (MEST). CTX treatment did not affect the glutamatergic neurotransmission, including synaptic efficacy, short-term facilitation, or the summation of excitatory postsynaptic potentials (EPSPs) in the hippocampus and temporal cortex. However, it decreased the field EPSP (fEPSP) amplitudes evoked by intense electrical stimulation. In conclusion, in young rats, CTX treatment did not induce overexpression of EAAT2, therefore exerting only a weak antiseizure effect. Our data provide new insight into the effects of modulation of EAAT2 expression on brain functioning.
Collapse
|
27
|
Fu J, Peng L, Wang W, He H, Zeng S, Chen TC, Chen Y. Sodium Valproate Reduces Neuronal Apoptosis in Acute Pentylenetetrzole-Induced Seizures via Inhibiting ER Stress. Neurochem Res 2019; 44:2517-2526. [DOI: 10.1007/s11064-019-02870-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/10/2019] [Accepted: 09/05/2019] [Indexed: 02/06/2023]
|
28
|
Zhang SH, Liu D, Hu Q, Zhu J, Wang S, Zhou S. Ferulic acid ameliorates pentylenetetrazol-induced seizures by reducing neuron cell death. Epilepsy Res 2019; 156:106183. [PMID: 31404716 DOI: 10.1016/j.eplepsyres.2019.106183] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/27/2019] [Accepted: 08/02/2019] [Indexed: 12/24/2022]
Abstract
To investigate the neuroprotective effect of ferulic acid (FA) in a pentylenetetrazol (PTZ)-induced seizures model in rat, the motor response, spatial learning ability and memory capability of the rats were assessed. Both the antioxidation and anti-apoptosis pathways were also investigated. In this study, male Wistar rats were randomly divided into 3 groups (n = 12 in each group). For 28 days, the rats were administered saline alone (i.p. normal saline, NS group), PTZ (40 mg/kg, i.p., PTZ group) once daily to induce seizures, or FA (i.p. 60 mg/kg) 20 min before being given PTZ (40 mg/kg, i.p., FA + PTZ group) to assess the neuroprotective effect of FA. The motor response of the rats was analysed with the Racine scale. The spatial learning and memory capacity of the rats were assessed by the Morris water maze test. The superoxide dismutase (SOD) activity and malondialdehyde (MDA) content were measured, and both in situ staining with the DNA-binding bisbenzimide Hoechst 33258 and TUNEL assays were used to assess apoptosis. Western blotting was used to further analyse the expression of Apaf-1, caspase-9, caspase-3, Bcl-2, Bid, Bax, cleaved caspase-3 and cytochrome c. The results showed that compared to the those of the PTZ group, FA pre-treatment significantly (p < 0.01) reduced the Racine scores starting at day 4, prolonged the latency of the onset of seizure at day 28, reduced the escape latency period starting at day 2, increased the frequency of crossing the platform location, increased the SOD activity, reduced the MDA content and apoptosis percentage, and upregulated the Bcl-2 levels whilst downregulating the Bax, cytochrome c, Apaf-1, caspase-9, caspase-3, cleaved caspase-3 and Bid expression levels. This study demonstrated that pre-treatment with FA exerts strong neuroprotective effects by reducing the motor response and by improving spatial learning ability and memory capacity. The neuroprotective effect may be a result of a reduction in neuron cell death that occurs via the antioxidative and anti-apoptotic pathways.
Collapse
Affiliation(s)
- Shu-Hong Zhang
- Department of Biology, Jiamusi University, Jiamusi, Heilongjiang, 154007, PR China
| | - Donghai Liu
- Department of Biology, Jiamusi University, Jiamusi, Heilongjiang, 154007, PR China
| | - Qingyun Hu
- Department of Anatomy, Jiamusi University, Jiamusi, Heilongjiang, 154007, PR China
| | - Jinling Zhu
- Department of Biology, Jiamusi University, Jiamusi, Heilongjiang, 154007, PR China.
| | - Shuqiu Wang
- Department of Pathophysiology, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, 154007, PR China
| | - Shaobo Zhou
- Department of Pathophysiology, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, 154007, PR China; School of Life Sciences, Institute of Biomedical and Environmental Science and Technology, University of Bedfordshire, Luton LU1 3JU, UK.
| |
Collapse
|
29
|
Postnikova TY, Trofimova AM, Ergina JL, Zubareva OE, Kalemenev SV, Zaitsev AV. Transient Switching of NMDA-Dependent Long-Term Synaptic Potentiation in CA3-CA1 Hippocampal Synapses to mGluR 1-Dependent Potentiation After Pentylenetetrazole-Induced Acute Seizures in Young Rats. Cell Mol Neurobiol 2019; 39:287-300. [PMID: 30607810 DOI: 10.1007/s10571-018-00647-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/29/2018] [Indexed: 01/18/2023]
Abstract
The mechanisms of impairment in long-term potentiation after status epilepticus (SE) remain unclear. We investigated the properties of LTP induced by theta-burst stimulation in hippocampal slices of rats 3 h and 1, 3, and 7 days after SE. Seizures were induced in 3-week old rats by a single injection of pentylenetetrazole (PTZ). Only animals with generalized seizures lasting more than 30 min were included in the experiments. The results revealed that LTP was strongly attenuated in the CA1 hippocampal area after PTZ-induced SE as compared with that in control animals. Saturation of synaptic responses following epileptic activity does not explain weakening of LTP because neither the quantal size of the excitatory responses nor the slopes of the input-output curves for field excitatory postsynaptic potentials changed in the post-SE rats. After PTZ-induced SE, NMDA-dependent LTP was suppressed, and LTP transiently switched to the mGluR1-dependent form. This finding does not appear to have been reported previously in the literature. An antagonist of NMDA receptors, D-2-amino-5-phosphonovalerate, did not block LTP induction in 3-h and 1-day post-SE slices. An antagonist of mGluR1, FTIDS, completely prevented LTP in 1-day post-SE slices; whereas it did not affect LTP induction in control and post-SE slices at the other studied times. mGluR1-dependent LTP was postsynaptically expressed and did not require NMDA receptor activation. Recovery of NMDA-dependent LTP occurred 7 day after SE. Transient switching between NMDA-dependent LTP and mGluR1-dependent LTP could play a role in the pathogenesis of acquired epilepsy.
Collapse
Affiliation(s)
- Tatyana Y Postnikova
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS (IEPhB), Saint Petersburg, Russia
- Peter the Great St.Petersburg Polytechnic University (SPbPU), Saint Petersburg, Russia
| | - Alina M Trofimova
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS (IEPhB), Saint Petersburg, Russia
| | - Julia L Ergina
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS (IEPhB), Saint Petersburg, Russia
| | - Olga E Zubareva
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS (IEPhB), Saint Petersburg, Russia
| | - Sergey V Kalemenev
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS (IEPhB), Saint Petersburg, Russia
| | - Aleksey V Zaitsev
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS (IEPhB), Saint Petersburg, Russia.
- Peter the Great St.Petersburg Polytechnic University (SPbPU), Saint Petersburg, Russia.
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russia.
| |
Collapse
|
30
|
Changes in Functional Properties of Rat Hippocampal Neurons Following Pentylenetetrazole-induced Status Epilepticus. Neuroscience 2018; 399:103-116. [PMID: 30593922 DOI: 10.1016/j.neuroscience.2018.12.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 11/13/2018] [Accepted: 12/17/2018] [Indexed: 12/28/2022]
Abstract
Pathophysiological remodeling processes following status epilepticus (SE) play a critical role in the pathophysiology of epilepsy but have not yet been not fully investigated. In the present study, we examined changes in intrinsic properties of pyramidal neurons, basal excitatory synaptic transmission, and short-term synaptic plasticity in hippocampal slices of rats after SE. Seizures were induced in 3-week-old rats by an intraperitoneal pentylenetetrazole (PTZ) injection. Only animals with generalized seizures lasting more than 30 min were included in the experiments. We found that CA1 pyramidal neurons became more excitable and started firing at a lower excitatory input due to a significant increase in input resistance. However, basal excitatory synaptic transmission was reduced in CA3-CA1 synapses, thus preventing the propagation of excitation through neural networks. A significant increase in paired-pulse facilitation 1 d after SE pointed to a decrease in the probability of glutamate release. Increased intrinsic excitability of neurons and decreased synaptic transmission differentially affected the excitability of a neural network. In terms of changes in seizure susceptibility after SE, we observed a significant increase in the maximal electroshock threshold 1 day after SE, suggesting a decrease in seizure susceptibility. However, after 1 week, there was no difference in seizure susceptibility between control and post-SE rats. The effects of SE on functional properties of hippocampal neurons were transient in the PTZ model, and most of them had recovered 1 week after SE. However, some minor alterations, such as smaller amplitude field potentials, were observed 1 month after SE.
Collapse
|
31
|
Alterations in mRNA expression of glutamate receptor subunits and excitatory amino acid transporters following pilocarpine-induced seizures in rats. Neurosci Lett 2018; 686:94-100. [DOI: 10.1016/j.neulet.2018.08.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/21/2018] [Accepted: 08/29/2018] [Indexed: 12/22/2022]
|