1
|
Aljohani Y, Payne W, Yasuda RP, Olson T, Kellar KJ, Dezfuli G. Pharmacological target sites for restoration of age-associated deficits in NMDA receptor-mediated norepinephrine release in brain. J Neurochem 2025; 169:e16280. [PMID: 39655655 PMCID: PMC11629444 DOI: 10.1111/jnc.16280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/13/2024] [Accepted: 11/21/2024] [Indexed: 12/13/2024]
Abstract
Aging affects virtually all organs of the body, but perhaps it has the most profound effects on the brain and its neurotransmitter systems, which influence a wide range of crucial functions, such as attention, focus, mood, neuroendocrine and autonomic functions, and sleep cycles. All of these essential functions, as well as fundamental cognitive processes such as memory, recall, and processing speed, utilize neuronal circuits that depend on neurotransmitter signaling between neurons. Glutamate (Glu), the main excitatory neurotransmitter in the CNS, is involved in most neuronal excitatory functions, including release of the neurotransmitter norepinephrine (NE). Previous studies from our lab demonstrated that the age-associated decline in Glu-stimulated NE release in rat cerebral cortex and hippocampus mediated by NMDA glutamate receptors, as well as deficits in dendritic spines, and cognitive functions are fully rescued by the CNS stimulant amphetamine. Here we further investigated Glu-stimulated NE release in the cerebral cortex to identify additional novel target sites for restoration of Glu-stimulated NE release. We found that blockade of alpha-2 adrenergic receptors fully restores Glu-stimulated NE release to the levels of young controls. In addition, we investigated the density and responsiveness of NMDA receptors as a potential underlying neuronal mechanism that could account for the observed age-associated decline in Glu-stimulated NE release. In the basal state of the receptor (no added glutamate and glycine) the density of NMDA receptors in the cortex from young and aged rats was similar. However, in contrast, in the presence of 10 μM added glutamate, which opens the receptor channel and increases the number of available [3H]-MK-801 binding sites within the channel, the density of [3H]-MK-801 binding sites was significantly less in the cortex from aged rats.
Collapse
Affiliation(s)
- Yousef Aljohani
- Department of Pharmacology and PhysiologyGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| | - William Payne
- Department of Pharmacology and PhysiologyGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Robert P. Yasuda
- Department of Pharmacology and PhysiologyGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Thao Olson
- Department of Pharmacology and PhysiologyGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Kenneth J. Kellar
- Department of Pharmacology and PhysiologyGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Ghazaul Dezfuli
- Department of Pharmacology and PhysiologyGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
2
|
Tacke C, Landgraf P, Dieterich DC, Kröger A. The fate of neuronal synapse homeostasis in aging, infection, and inflammation. Am J Physiol Cell Physiol 2024; 327:C1546-C1563. [PMID: 39495249 DOI: 10.1152/ajpcell.00466.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
Neuroplasticity is the brain's ability to reorganize and modify its neuronal connections in response to environmental stimuli, experiences, learning, and disease processes. This encompasses a variety of mechanisms, including changes in synaptic strength and connectivity, the formation of new synapses, alterations in neuronal structure and function, and the generation of new neurons. Proper functioning of synapses, which facilitate neuron-to-neuron communication, is crucial for brain activity. Neuronal synapse homeostasis, which involves regulating and maintaining synaptic strength and function in the central nervous system (CNS), is vital for this process. Disruptions in synaptic balance, due to factors like inflammation, aging, or infection, can lead to impaired brain function. This review highlights the main aspects and mechanisms underlying synaptic homeostasis, particularly in the context of aging, infection, and inflammation.
Collapse
Affiliation(s)
- Charlotte Tacke
- Institute of Medical Microbiology and Hospital Hygiene, Molecular Microbiology Group, Otto-von-Guericke University, Magdeburg, Germany
| | - Peter Landgraf
- Institute of Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
| | - Daniela C Dieterich
- Institute of Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Andrea Kröger
- Institute of Medical Microbiology and Hospital Hygiene, Molecular Microbiology Group, Otto-von-Guericke University, Magdeburg, Germany
- Helmholtz Center for Infection Research, Innate Immunity and Infection Group, Braunschweig, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
3
|
Lee H, Choi BJ, Kang N. Non-invasive brain stimulation enhances motor and cognitive performances during dual tasks in patients with Parkinson's disease: a systematic review and meta-analysis. J Neuroeng Rehabil 2024; 21:205. [PMID: 39581969 PMCID: PMC11587594 DOI: 10.1186/s12984-024-01505-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) induces progressive deficits in motor and cognitive functions as well as impaired dual-task performance requiring both motor and cognitive functions. This systematic review and meta-analysis evaluated the effects of non-invasive brain stimulation (NIBS) on dual-task performance in patients with PD. METHODS 11 studies met the following inclusion criteria: (a) patients with PD, (b) NIBS intervention, (c) comparison with the sham stimulation group, (d) motor and cognitive performance outcomes during dual tasks, and (e) randomized controlled trials with parallel or crossover designs. Individual effect size (i.e., comparison) was quantified by comparing motor and cognitive performances changes during dual tasks between active NIBS and sham stimulation conditions. Thus, higher values of the overall effect size indicate more improvements in either motor or cognitive performances after NIBS. Moreover, moderator variable analyses determined whether NIBS effects on dual-task performances differed depending on targeted brain regions. Finally, meta-regression analyses determined whether NIBS effects on dual-task performances were associated with demographic characteristics. RESULTS The random-effects model meta-analysis revealed that NIBS significantly improved motor (73 comparisons from 11 studies) and cognitive (12 comparisons from four studies) performances during dual tasks in patients with PD. Specifically, anodal transcranial direct current stimulation protocols on the dorsolateral prefrontal cortex were effective. Moreover, greater improvements in motor performance during dual tasks significantly correlated with decreased age and increased proportion of females, respectively. CONCLUSION This meta-analysis suggests that excitatory stimulation on the dorsolateral prefrontal cortex may be effective for improving dual-task performance in patients with PD.
Collapse
Affiliation(s)
- Hajun Lee
- Department of Human Movement Science, Incheon National University, Incheon, South Korea
| | - Beom Jin Choi
- Department of Human Movement Science, Incheon National University, Incheon, South Korea
| | - Nyeonju Kang
- Department of Human Movement Science, Incheon National University, Incheon, South Korea.
- Division of Sport Science, Sport Science Institute & Health Promotion Center, Incheon National University, Incheon, South Korea.
- Neuromechanical Rehabilitation Research Laboratory, Division of Sport Science & Sport Science Institute, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, South Korea.
| |
Collapse
|
4
|
Zeng X, Jiang C, Zhao X, Wu Z, Zhuang A, Qian K, Wang J, Meng X. Knockdown of TcGluCl leads to the premature pupation of Tribolium castaneum larvae possibly by influencing the calcium-mediating hormone homeostasis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 205:106137. [PMID: 39477590 DOI: 10.1016/j.pestbp.2024.106137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/02/2024] [Accepted: 09/16/2024] [Indexed: 11/07/2024]
Abstract
The glutamate-gated chloride channels (GluCls) are widely existed in the neural and nonneural tissues of invertebrate. In addition to play important roles in signal transduction, the GluCls also showed multiple physiological functions in insects such as participate in the juvenile hormone synthesis. In the present study, the potential roles of TcGluCl in growth and development of the red flour beetle Tribolium castaneum were explored. Knockdown of TcGluCl showed no effects on the survivability, weight growth, final pupation rate, eclosion and fecundity of T. castaneum, whereas resulted in the significant premature pupation of larvae. Inhibition of TcGluCl expression significantly changed the levels of juvenile hormone and ecdysone as well as the expressions of hormone biosynthetic genes. The increased ecdysone level and decreased juvenile hormone level were observed at the late stage of dsGluCl-treated larvae. Knockdown of TcGluCl significantly reduced the expressions of TcSTIM1 and TcOrai1, which were the primary proteins in store-operated calcium entry (SOCE) mediated Ca2+ influx mechanism. Whilst the L-glutamic acid treatment led to the increased TcOrai1 expression in T. castaneum. These findings suggested that knockdown of TcGluCl increased the ecdysone level and contributed to the premature pupation of larvae, which might be due to the reduced Ca2+ influx caused by the decreased expressions of TcSTIM1 and TcOrai1. These studies provide novel insights on the function of GluCls in insects.
Collapse
Affiliation(s)
- Xi Zeng
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Chengyun Jiang
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xu Zhao
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Zhaolu Wu
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Anxiang Zhuang
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Kun Qian
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Jianjun Wang
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xiangkun Meng
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
5
|
Guan S, Li Y, Xin Y, Wang D, Lu P, Han F, Xu H. Deciphering the dual role of N-methyl-D-Aspartate receptor in postoperative cognitive dysfunction: A comprehensive review. Eur J Pharmacol 2024; 971:176520. [PMID: 38527701 DOI: 10.1016/j.ejphar.2024.176520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/03/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Postoperative cognitive dysfunction (POCD) is a common complication following surgery, adversely impacting patients' recovery, increasing the risk of negative outcomes, prolonged hospitalization, and higher mortality rates. The N-methyl-D-aspartate (NMDA) receptor, crucial for learning, memory, and synaptic plasticity, plays a significant role in the development of POCD. Various perioperative factors, including age and anesthetic use, can reduce NMDA receptor function, while surgical stress, inflammation, and pain may lead to its excessive activation. This review consolidates preclinical and clinical research to explore the intricate relationship between perioperative factors affecting NMDA receptor functionality and the onset of POCD. It discusses the influence of aging, anesthetic administration, perioperative injury, pain, and inflammation on the NMDA receptor-related pathophysiology of POCD. The comprehensive analysis presented aims to identify effective treatment targets for POCD, contributing to the improvement of patient outcomes post-surgery.
Collapse
Affiliation(s)
- Shaodi Guan
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yali Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yueyang Xin
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Danning Wang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Pei Lu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fanglong Han
- Department of Anesthesiology, Xiangyang Maternal and Child Health Hospital, Xiangyang, 441003, China
| | - Hui Xu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
6
|
Kawanaka R, Jin H, Aoe T. Unraveling the Connection: Pain and Endoplasmic Reticulum Stress. Int J Mol Sci 2024; 25:4995. [PMID: 38732214 PMCID: PMC11084550 DOI: 10.3390/ijms25094995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Pain is a complex and multifaceted experience. Recent research has increasingly focused on the role of endoplasmic reticulum (ER) stress in the induction and modulation of pain. The ER is an essential organelle for cells and plays a key role in protein folding and calcium dynamics. Various pathological conditions, such as ischemia, hypoxia, toxic substances, and increased protein production, may disturb protein folding, causing an increase in misfolding proteins in the ER. Such an overload of the folding process leads to ER stress and causes the unfolded protein response (UPR), which increases folding capacity in the ER. Uncompensated ER stress impairs intracellular signaling and cell function, resulting in various diseases, such as diabetes and degenerative neurological diseases. ER stress may be a critical universal mechanism underlying human diseases. Pain sensations involve the central as well as peripheral nervous systems. Several preclinical studies indicate that ER stress in the nervous system is enhanced in various painful states, especially in neuropathic pain conditions. The purpose of this narrative review is to uncover the intricate relationship between ER stress and pain, exploring molecular pathways, implications for various pain conditions, and potential therapeutic strategies.
Collapse
Affiliation(s)
- Ryoko Kawanaka
- Department of Anesthesiology, Chiba Medical Center, Teikyo University, Ichihara 299-0111, Japan
| | - Hisayo Jin
- Department of Anesthesiology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Tomohiko Aoe
- Pain Center, Chiba Medical Center, Teikyo University, Ichihara 299-0111, Japan
| |
Collapse
|
7
|
Burnyasheva AO, Stefanova NA, Kolosova NG, Telegina DV. Changes in the Glutamate/GABA System in the Hippocampus of Rats with Age and during Alzheimer's Disease Signs Development. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1972-1986. [PMID: 38462444 DOI: 10.1134/s0006297923120027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 03/12/2024]
Abstract
GABA and glutamate are the most abundant neurotransmitters in the CNS and play a pivotal part in synaptic stability/plasticity. Glutamate and GABA homeostasis is important for healthy aging and reducing the risk of various neurological diseases, while long-term imbalance can contribute to the development of neurodegenerative disorders, including Alzheimer's disease (AD). Normalization of the homeostasis has been discussed as a promising strategy for prevention and/or treatment of AD, however, data on the changes in the GABAergic and glutamatergic systems with age, as well as on the dynamics of AD development, are limited. It is not clear whether imbalance of the excitatory/inhibitory systems is the cause or the consequence of the disease development. Here we analyzed the age-related alterations of the levels of glutamate, GABA, as well as enzymes that synthesize them (glutaminase, glutamine synthetase, GABA-T, and GAD67), transporters (GLAST, GLT-1, and GAT1), and relevant receptors (GluA1, NMDAR1, NMDA2B, and GABAAr1) in the whole hippocampus of the Wistar rats and of the senescence-accelerated OXYS rats, a model of the most common (> 95%) sporadic AD. Our results suggest that there is a decline in glutamate and GABA signaling with age in hippocampus of the both rat strains. However, we have not identified significant changes or compensatory enhancements in this system in the hippocampus of OXYS rats during the development of neurodegenerative processes that are characteristic of AD.
Collapse
Affiliation(s)
- Alena O Burnyasheva
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Natalia A Stefanova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Nataliya G Kolosova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Darya V Telegina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| |
Collapse
|
8
|
Marzola P, Melzer T, Pavesi E, Gil-Mohapel J, Brocardo PS. Exploring the Role of Neuroplasticity in Development, Aging, and Neurodegeneration. Brain Sci 2023; 13:1610. [PMID: 38137058 PMCID: PMC10741468 DOI: 10.3390/brainsci13121610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 12/24/2023] Open
Abstract
Neuroplasticity refers to the ability of the brain to reorganize and modify its neural connections in response to environmental stimuli, experience, learning, injury, and disease processes. It encompasses a range of mechanisms, including changes in synaptic strength and connectivity, the formation of new synapses, alterations in the structure and function of neurons, and the generation of new neurons. Neuroplasticity plays a crucial role in developing and maintaining brain function, including learning and memory, as well as in recovery from brain injury and adaptation to environmental changes. In this review, we explore the vast potential of neuroplasticity in various aspects of brain function across the lifespan and in the context of disease. Changes in the aging brain and the significance of neuroplasticity in maintaining cognitive function later in life will also be reviewed. Finally, we will discuss common mechanisms associated with age-related neurodegenerative processes (including protein aggregation and accumulation, mitochondrial dysfunction, oxidative stress, and neuroinflammation) and how these processes can be mitigated, at least partially, by non-invasive and non-pharmacologic lifestyle interventions aimed at promoting and harnessing neuroplasticity.
Collapse
Affiliation(s)
- Patrícia Marzola
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| | - Thayza Melzer
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| | - Eloisa Pavesi
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| | - Joana Gil-Mohapel
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada
| | - Patricia S. Brocardo
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| |
Collapse
|
9
|
Mousavi SL, Rezayof A, Alijanpour S, Delphi L, Hosseinzadeh Sahafi O. Activation of mediodorsal thalamic dopamine receptors inhibited nicotine-induced anxiety in rats: A possible role of corticolimbic NMDA neurotransmission and BDNF expression. Pharmacol Biochem Behav 2023; 232:173650. [PMID: 37778541 DOI: 10.1016/j.pbb.2023.173650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/11/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
The present study aimed to evaluate the functional interaction between the dopaminergic and glutamatergic systems of the mediodorsal thalamus (MD), the ventral hippocampus (VH), and the prefrontal cortex (PFC) in nicotine-induced anxiogenic-like behaviors. Brain-derived neurotrophic factor (BDNF) level changes were measured in the targeted brain areas following the drug treatments. The percentage of time spent in the open arm (% OAT) and open arm entry (% OAE) were calculated in the elevated plus maze (EPM) to measure anxiety-related behaviors in adult male Wistar rats. Systemic administration of nicotine at a dose of 0.5 mg/kg induced an anxiogenic-like response associated with decreased BDNF levels in the hippocampus and the PFC. Intra-MD microinjection of apomorphine (0.1-0.3 μg/rat) induced an anxiogenic-like response, while apomorphine inhibited nicotine-induced anxiogenic-like behaviors associated with increased hippocampal and PFC BDNF expression levels. Interestingly, the blockade of the VH or the PFC NMDA receptors via the microinjection of D-AP5 (0.3-0.5 μg/rat) into the targeted sites reversed the inhibitory effect of apomorphine (0.5 μg/rat, intra-MD) on the nicotine response and led to the decrease of BDNF levels in the hippocampus and the PFC. Also, the microinjection of a higher dose of D-AP5 (0.5 μg/rat, intra-PFC) alone produced an anxiogenic effect. These findings suggest that the functional interaction between the MD dopaminergic D1/D2-like and the VH/PFC glutamatergic NMDA receptors may be partially involved in the anxiogenic-like effects of nicotine, likely via the alteration of BDNF levels in the hippocampus and the PFC.
Collapse
Affiliation(s)
- Seyedeh Leila Mousavi
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran; Department of Biobehavioral Health, Pennsylvania State University, University Park, PA 16802, USA
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Sakineh Alijanpour
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran; Department of Biology, Faculty of Science, Gonbad Kavous University, Gonbad Kavous, Iran
| | - Ladan Delphi
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Oveis Hosseinzadeh Sahafi
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
10
|
Ladagu AD, Olopade FE, Adejare A, Olopade JO. GluN2A and GluN2B N-Methyl-D-Aspartate Receptor (NMDARs) Subunits: Their Roles and Therapeutic Antagonists in Neurological Diseases. Pharmaceuticals (Basel) 2023; 16:1535. [PMID: 38004401 PMCID: PMC10674917 DOI: 10.3390/ph16111535] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are ion channels that respond to the neurotransmitter glutamate, playing a crucial role in the permeability of calcium ions and excitatory neurotransmission in the central nervous system (CNS). Composed of various subunits, NMDARs are predominantly formed by two obligatory GluN1 subunits (with eight splice variants) along with regulatory subunits GluN2 (GluN2A-2D) and GluN3 (GluN3A-B). They are widely distributed throughout the CNS and are involved in essential functions such as synaptic transmission, learning, memory, plasticity, and excitotoxicity. The presence of GluN2A and GluN2B subunits is particularly important for cognitive processes and has been strongly implicated in neurodegenerative diseases like Parkinson's disease and Alzheimer's disease. Understanding the roles of GluN2A and GluN2B NMDARs in neuropathologies provides valuable insights into the underlying causes and complexities of major nervous system disorders. This knowledge is vital for the development of selective antagonists targeting GluN2A and GluN2B subunits using pharmacological and molecular methods. Such antagonists represent a promising class of NMDA receptor inhibitors that have the potential to be developed into neuroprotective drugs with optimal therapeutic profiles.
Collapse
Affiliation(s)
- Amany Digal Ladagu
- Department of Veterinary Anatomy, University of Ibadan, Ibadan 200284, Nigeria; (A.D.L.); (J.O.O.)
| | - Funmilayo Eniola Olopade
- Developmental Neurobiology Laboratory, Department of Anatomy, College of Medicine, University of Ibadan, Ibadan 200284, Nigeria
| | - Adeboye Adejare
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph’s University, Philadelphia, PA 19131, USA
| | - James Olukayode Olopade
- Department of Veterinary Anatomy, University of Ibadan, Ibadan 200284, Nigeria; (A.D.L.); (J.O.O.)
| |
Collapse
|
11
|
Dong B, Yue Y, Dong H, Wang Y. N-methyl-D-aspartate receptor hypofunction as a potential contributor to the progression and manifestation of many neurological disorders. Front Mol Neurosci 2023; 16:1174738. [PMID: 37396784 PMCID: PMC10308130 DOI: 10.3389/fnmol.2023.1174738] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/26/2023] [Indexed: 07/04/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDA) are glutamate-gated ion channels critical for synaptic transmission and plasticity. A slight variation of NMDAR expression and function can result in devastating consequences, and both hyperactivation and hypoactivation of NMDARs are detrimental to neural function. Compared to NMDAR hyperfunction, NMDAR hypofunction is widely implicated in many neurological disorders, such as intellectual disability, autism, schizophrenia, and age-related cognitive decline. Additionally, NMDAR hypofunction is associated with the progression and manifestation of these diseases. Here, we review the underlying mechanisms of NMDAR hypofunction in the progression of these neurological disorders and highlight that targeting NMDAR hypofunction is a promising therapeutic intervention in some neurological disorders.
Collapse
Affiliation(s)
- Bin Dong
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| | - Yang Yue
- School of Psychology, Northeast Normal University, Changchun, China
| | - Han Dong
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| | - Yuehui Wang
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Yan W, Guo T, Liu N, Cui X, Wei X, Sun Y, Hu H, Chen L. Erythropoietin ameliorates cognitive deficits by improving hippocampal and synaptic damage in streptozotocin-induced diabetic mice. Cell Signal 2023; 106:110614. [PMID: 36739954 DOI: 10.1016/j.cellsig.2023.110614] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/05/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Recent studies have shown that erythropoietin (EPO) is an effective neuroprotective and neurotrophic agent for neurological disorders, such as traumatic brain injury and Alzheimer's disease. However, the effectiveness of EPO administration against diabetic cognitive impairments has rarely been examined. In this study, we investigated the effects of EPO on streptozotocin (STZ)-induced male C57BL/6 J mice. Then, we sought to clarify the mechanisms of EPO-mediated neuroprotection in high-glucose (HG)-stimulated HT22 cells. In vivo, we found that STZ-induced diabetic mice showed impaired spatial learning and memory, which was alleviated by EPO treatment. EPO also significantly lowered elevated fasting blood glucose levels, improved pancreatic and hippocampal damage, and restored oxidative stress in the STZ-induced diabetic mice. In vitro, EPO markedly increased cell viability, restrained the expression of pro-apoptotic Bax, enhanced the expression of pro-caspase 3, anti-apoptotic Bcl-2, brain-derived neurotrophic factor (BDNF) and postsynaptic density 95 (PSD-95), and attenuated the upregulation of N-methyl-d-aspartic acid (NMDA) receptor subunits NR1, NR2A and NR2B in HG-induced HT22 cells. The protective effects of EPO was obviously abolished by treatment with an NMDA receptor agonist. Our findings revealed that EPO impedes hippocampal and synaptic damage and neuronal apoptosis by regulating BDNF and PSD-95 expression through NMDA receptors, thereby ameliorating cognitive impairments in mice with T1DM.
Collapse
Affiliation(s)
- Wenhui Yan
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, China
| | - Tingli Guo
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Na Liu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Xin Cui
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Xiaotong Wei
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Yuzhuo Sun
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Hao Hu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, China
| | - Lina Chen
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, China; International Obesity and Metabolic Disease Research Center (IIOMC), Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
13
|
Yegla B, Rani A, Kumar A. Viral vector-mediated upregulation of serine racemase expression in medial prefrontal cortex improves learning and synaptic function in middle age rats. Aging (Albany NY) 2023; 15:2433-2449. [PMID: 37052995 PMCID: PMC10120901 DOI: 10.18632/aging.204652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023]
Abstract
An age-associated decrease in N-methyl-D-aspartate receptor (NMDAR)-mediated synaptic function contributes to impaired synaptic plasticity and is associated with cognitive impairments. Levels of serine racemase (SR), an enzyme that synthesizes D-serine, an NMDAR co-agonist, decline with age. Thus, enhancing NMDAR function via increased SR expression in middle age, when subtle declines in cognition emerge, was predicted to enhance performance on a prefrontal cortex-mediated task sensitive to aging. Middle-aged (~12 mo) male Fischer-344 rats were injected bilaterally in the medial prefrontal cortex (mPFC) with viral vector (LV), SR (LV-SR) or control (LV-GFP). Rats were trained on the operant attentional set-shift task (AST) to examine cognitive flexibility and attentional function. LV-SR rats exhibited a faster rate of learning compared to controls during visual discrimination of the AST. Extradimensional set shifting and reversal were not impacted. Immunohistochemical analyses demonstrated that LV-SR significantly increased SR expression in the mPFC. Electrophysiological characterization of synaptic transmission in the mPFC slices obtained from LV-GFP and LV-SR animals indicated a significant increase in isolated NMDAR-mediated synaptic responses in LV-SR slices. Thus, results of the current study demonstrated that prefrontal SR upregulation in middle age rats can improve learning of task contingencies for visual discrimination and increase glutamatergic synaptic transmission, including NMDAR activity.
Collapse
Affiliation(s)
- Brittney Yegla
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Asha Rani
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
14
|
Konar-Nié M, Guzman-Castillo A, Armijo-Weingart L, Aguayo LG. Aging in nucleus accumbens and its impact on alcohol use disorders. Alcohol 2023; 107:73-90. [PMID: 36087859 DOI: 10.1016/j.alcohol.2022.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 02/06/2023]
Abstract
Ethanol is one of the most widely consumed drugs in the world and prolonged excessive ethanol intake might lead to alcohol use disorders (AUDs), which are characterized by neuroadaptations in different brain regions, such as in the reward circuitry. In addition, the global population is aging, and it appears that they are increasing their ethanol consumption. Although research involving the effects of alcohol in aging subjects is limited, differential effects have been described. For example, studies in human subjects show that older adults perform worse in tests assessing working memory, attention, and cognition as compared to younger adults. Interestingly, in the field of the neurobiological basis of ethanol actions, there is a significant dichotomy between what we know about the effects of ethanol on neurochemical targets in young animals and how it might affect them in the aging brain. To be able to understand the distinct effects of ethanol in the aging brain, the following questions need to be answered: (1) How does physiological aging impact the function of an ethanol-relevant region (e.g., the nucleus accumbens)? and (2) How does ethanol affect these neurobiological systems in the aged brain? This review discusses the available data to try to understand how aging affects the nucleus accumbens (nAc) and its neurochemical response to alcohol. The data show that there is little information on the effects of ethanol in aged mice and rats, and that many studies had considered 2-3-month-old mice as adults, which needs to be reconsidered since more recent literature defines 6 months as young adults and >18 months as an older mouse. Considering the actual relevance of an aged worldwide population and that this segment is drinking more frequently, it appears at least reasonable to explore how ethanol affects the brain in adult and aged models.
Collapse
Affiliation(s)
- Macarena Konar-Nié
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepcion, Concepcion, Chile.
| | - Alejandra Guzman-Castillo
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepcion, Concepcion, Chile; Programa en Neurociencia, Psiquiatría y Salud Mental, Universidad de Concepción, Concepcion, Chile.
| | - Lorena Armijo-Weingart
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepcion, Concepcion, Chile; Programa en Neurociencia, Psiquiatría y Salud Mental, Universidad de Concepción, Concepcion, Chile.
| | - Luis Gerardo Aguayo
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepcion, Concepcion, Chile; Programa en Neurociencia, Psiquiatría y Salud Mental, Universidad de Concepción, Concepcion, Chile.
| |
Collapse
|
15
|
Morrissey ZD, Gao J, Zhan L, Li W, Fortel I, Saido T, Saito T, Bakker A, Mackin S, Ajilore O, Lazarov O, Leow AD. Hippocampal functional connectivity across age in an App knock-in mouse model of Alzheimer's disease. Front Aging Neurosci 2023; 14:1085989. [PMID: 36711209 PMCID: PMC9878347 DOI: 10.3389/fnagi.2022.1085989] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction Alzheimer's disease (AD) is a progressive neurodegenerative disease. The early processes of AD, however, are not fully understood and likely begin years before symptoms manifest. Importantly, disruption of the default mode network, including the hippocampus, has been implicated in AD. Methods To examine the role of functional network connectivity changes in the early stages of AD, we performed resting-state functional magnetic resonance imaging (rs-fMRI) using a mouse model harboring three familial AD mutations (App NL-G-F/NL-G-F knock-in, APPKI) in female mice in early, middle, and late age groups. The interhemispheric and intrahemispheric functional connectivity (FC) of the hippocampus was modeled across age. Results We observed higher interhemispheric functional connectivity (FC) in the hippocampus across age. This was reduced, however, in APPKI mice in later age. Further, we observed loss of hemispheric asymmetry in FC in APPKI mice. Discussion Together, this suggests that there are early changes in hippocampal FC prior to heavy onset of amyloid β plaques, and which may be clinically relevant as an early biomarker of AD.
Collapse
Affiliation(s)
- Zachery D. Morrissey
- Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, IL, United States
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
- Department of Anatomy & Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Jin Gao
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL, United States
- Preclinical Imaging Core, University of Illinois at Chicago, Chicago, IL, United States
| | - Liang Zhan
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Weiguo Li
- Preclinical Imaging Core, University of Illinois at Chicago, Chicago, IL, United States
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
- Department of Radiology, Northwestern University, Chicago, IL, United States
| | - Igor Fortel
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University, Nagoya, Japan
| | - Arnold Bakker
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University, Baltimore, MD, United States
| | - Scott Mackin
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - Olusola Ajilore
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Orly Lazarov
- Department of Anatomy & Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Alex D. Leow
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
- Department of Computer Science, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
16
|
Kanishka, Jha SK. Compensatory cognition in neurological diseases and aging: A review of animal and human studies. AGING BRAIN 2023; 3:100061. [PMID: 36911258 PMCID: PMC9997140 DOI: 10.1016/j.nbas.2022.100061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/27/2022] Open
Abstract
Specialized individual circuits in the brain are recruited for specific functions. Interestingly, multiple neural circuitries continuously compete with each other to acquire the specialized function. However, the dominant among them compete and become the central neural network for that particular function. For example, the hippocampal principal neural circuitries are the dominant networks among many which are involved in learning processes. But, in the event of damage to the principal circuitry, many times, less dominant networks compensate for the primary network. This review highlights the psychopathologies of functional loss and the aspects of functional recuperation in the absence of the hippocampus.
Collapse
Affiliation(s)
- Kanishka
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sushil K Jha
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
17
|
Teal LB, Ingram SM, Bubser M, McClure E, Jones CK. The Evolving Role of Animal Models in the Discovery and Development of Novel Treatments for Psychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2023; 30:37-99. [PMID: 36928846 DOI: 10.1007/978-3-031-21054-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Historically, animal models have been routinely used in the characterization of novel chemical entities (NCEs) for various psychiatric disorders. Animal models have been essential in the in vivo validation of novel drug targets, establishment of lead compound pharmacokinetic to pharmacodynamic relationships, optimization of lead compounds through preclinical candidate selection, and development of translational measures of target occupancy and functional target engagement. Yet, with decades of multiple NCE failures in Phase II and III efficacy trials for different psychiatric disorders, the utility and value of animal models in the drug discovery process have come under intense scrutiny along with the widespread withdrawal of the pharmaceutical industry from psychiatric drug discovery. More recently, the development and utilization of animal models for the discovery of psychiatric NCEs has undergone a dynamic evolution with the application of the Research Domain Criteria (RDoC) framework for better design of preclinical to clinical translational studies combined with innovative genetic, neural circuitry-based, and automated testing technologies. In this chapter, the authors will discuss this evolving role of animal models for improving the different stages of the discovery and development in the identification of next generation treatments for psychiatric disorders.
Collapse
Affiliation(s)
- Laura B Teal
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Shalonda M Ingram
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Michael Bubser
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Elliott McClure
- College of Pharmacy and Health Sciences, Lipscomb University, Nashville, TN, USA
| | - Carrie K Jones
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
18
|
Konietzny A, Wegmann S, Mikhaylova M. The endoplasmic reticulum puts a new spin on synaptic tagging. Trends Neurosci 2023; 46:32-44. [PMID: 36428191 DOI: 10.1016/j.tins.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/12/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022]
Abstract
The heterogeneity of the endoplasmic reticulum (ER) makes it a versatile platform for a broad range of homeostatic processes, ranging from calcium regulation to synthesis and trafficking of proteins and lipids. It is not surprising that neurons use this organelle to fine-tune synaptic properties and thereby provide specificity to synaptic inputs. In this review, we discuss the mechanisms that enable activity-dependent ER recruitment into dendritic spines, with a focus on molecular mechanisms that mediate transport and retention of the ER in spines. The role of calcium signaling in spine ER, synaptopodin 'tagging' of active synapses, and the formation of the spine apparatus (SA) are highlighted. Finally, we discuss the role of liquid-liquid phase separation as a possible driving force in these processes.
Collapse
Affiliation(s)
- Anja Konietzny
- AG Optobiology, Institute of Biology, Humboldt Universität zu Berlin, Berlin, Germany; Guest Group 'Neuronal Protein Transport', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susanne Wegmann
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Marina Mikhaylova
- AG Optobiology, Institute of Biology, Humboldt Universität zu Berlin, Berlin, Germany; Guest Group 'Neuronal Protein Transport', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
19
|
Billard JM, Freret T. Improved NMDA Receptor Activation by the Secreted Amyloid-Protein Precursor-α in Healthy Aging: A Role for D-Serine? Int J Mol Sci 2022; 23:ijms232415542. [PMID: 36555191 PMCID: PMC9779005 DOI: 10.3390/ijms232415542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Impaired activation of the N-methyl-D-aspartate subtype of glutamate receptors (NMDAR) by D-serine is linked to cognitive aging. Whether this deregulation may be used to initiate pharmacological strategies has yet to be considered. To this end, we performed electrophysiological extracellular recordings at CA3/CA1 synapses in hippocampal slices from young and aged mice. We show that 0.1 nM of the soluble N-terminal recombinant fragment of the secreted amyloid-protein precursor-α (sAPPα) added in the bath significantly increased NMDAR activation in aged but not adult mice without impacting basal synaptic transmission. In addition, sAPPα rescued the age-related deficit of theta-burst-induced long-term potentiation. Significant NMDAR improvement occurred in adult mice when sAPPα was raised to 1 nM, and this effect was drastically reduced in transgenic mice deprived of D-serine through genetic deletion of the synthesizing enzyme serine racemase. Altogether, these results emphasize the interest to consider sAPPα treatment targeting D-serine-dependent NMDAR deregulation to alleviate cognitive aging.
Collapse
|
20
|
Cox MF, Hascup ER, Bartke A, Hascup KN. Friend or Foe? Defining the Role of Glutamate in Aging and Alzheimer’s Disease. FRONTIERS IN AGING 2022; 3:929474. [PMID: 35821835 PMCID: PMC9261322 DOI: 10.3389/fragi.2022.929474] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022]
Abstract
Aging is a naturally occurring decline of physiological processes and biological pathways that affects both the structural and functional integrity of the body and brain. These physiological changes reduce motor skills, executive function, memory recall, and processing speeds. Aging is also a major risk factor for multiple neurodegenerative disorders including Alzheimer’s disease (AD). Identifying a biomarker, or biomarkers, that signals the transition from physiological to pathological aging would aid in earlier therapeutic options or interventional strategies. Considering the importance of glutamate signaling in synaptic plasticity, motor movement, and cognition, this neurotransmitter serves as a juncture between cognitive health and disease. This article discusses glutamatergic signaling during physiological aging and the pathological changes observed in AD patients. Findings from studies in mouse models of successful aging and AD are reviewed and provide a biological context for this transition. Finally, current techniques to monitor brain glutamate are highlighted. These techniques may aid in elucidating time-point specific therapeutic windows to modify disease outcome.
Collapse
Affiliation(s)
- MaKayla F. Cox
- Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Department of Neurology, Neurosciences Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Erin R. Hascup
- Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Department of Neurology, Neurosciences Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Andrzej Bartke
- Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Department of Neurology, Neurosciences Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, United States
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Kevin N. Hascup
- Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Department of Neurology, Neurosciences Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, United States
- *Correspondence: Kevin N. Hascup,
| |
Collapse
|
21
|
Nava-Gómez L, Calero-Vargas I, Higinio-Rodríguez F, Vázquez-Prieto B, Olivares-Moreno R, Ortiz-Retana J, Aranda P, Hernández-Chan N, Rojas-Piloni G, Alcauter S, López-Hidalgo M. AGING-ASSOCIATED COGNITIVE DECLINE IS REVERSED BY D-SERINE SUPPLEMENTATION. eNeuro 2022; 9:ENEURO.0176-22.2022. [PMID: 35584913 PMCID: PMC9186414 DOI: 10.1523/eneuro.0176-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 11/21/2022] Open
Abstract
Brain aging is a natural process that involves structural and functional changes that lead to cognitive decline, even in healthy subjects. This detriment has been associated with N-methyl-D-aspartate receptor (NMDAR) hypofunction due to a reduction in the brain levels of D-serine, the endogenous NMDAR co-agonist. However, it is not clear if D-serine supplementation could be used as an intervention to reduce or reverse age-related brain alterations. In the present work, we aimed to analyze the D-serine effect on aging-associated alterations in cellular and large-scale brain systems that could support cognitive flexibility in rats. We found that D-serine supplementation reverts the age-related decline in cognitive flexibility, frontal dendritic spine density, and partially restored large-scale functional connectivity without inducing nephrotoxicity; instead, D-serine restored the thickness of the renal epithelial cells that were affected by age. Our results suggest that D-serine could be used as a therapeutic target to reverse age-related brain alterations.SIGNIFICANT STATEMENTAge-related behavioral changes in cognitive performance occur as a physiological process of aging. Then, it is important to explore possible therapeutics to decrease, retard or reverse aging effects on the brain. NMDA receptor hypofunction contributes to the aging-associated cognitive decline. In the aged brain, there is a reduction in the brain levels of the NMDAR co-agonist, D-Serine. However, it is unclear if chronic D-serine supplementation could revert the age-detriment in brain functions. Our results show that D-serine supplementation reverts the age-associated decrease in cognitive flexibility, functional brain connectivity, and neuronal morphology. Our findings raise the possibility that restoring the brain levels of D-serine could be used as a therapeutic target to recover brain alterations associated with aging.
Collapse
Affiliation(s)
- L Nava-Gómez
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla. UNAM
- Facultad de Medicina. UAQ
| | - I Calero-Vargas
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla. UNAM
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - F Higinio-Rodríguez
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla. UNAM
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - B Vázquez-Prieto
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla. UNAM
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - R Olivares-Moreno
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - J Ortiz-Retana
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - P Aranda
- Facultad de Ciencias Naturales, UAQ
| | | | - G Rojas-Piloni
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - S Alcauter
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - M López-Hidalgo
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla. UNAM
| |
Collapse
|
22
|
The Role of NMDAR and BDNF in Cognitive Dysfunction Induced by Different Microwave Radiation Conditions in Rats. RADIATION 2021. [DOI: 10.3390/radiation1040023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: To investigate the effects of different levels of microwave radiation on learning and memory in Wistar rats and explore the underlying mechanisms of N-methyl-D-aspartate receptor (NMDAR/NR) and Brain-derived neurotropic factor (BDNF); Methods: A total of 140 Wistar rats were exposed to microwave radiation levels of 0, 10, 30 or 50 mW/cm2 for 6 min. Morris Water Maze Test, high-performance liquid chromatography, Transmission Electron Microscope and Western blotting were used; Results: The 30 and 50 mW/cm2 groups exhibited longer average escape latencies and fewer platform crossings than the 0 mW/cm2 group from 6 h to 3 d after microwave radiation. Alterations in the amino acid neurotransmitters of the hippocampi were shown at 6 h, 3 d and 7 d after exposure to 10, 30 or 50 mW/cm2 microwave radiation. The length and width of the Postsynaptic density were increased. The expression of NR1, NR2A and NR2B increased from day 1 to day 7; Postsynaptic density protein-95 and cortactin expression increased from day 3 to day 7; BDNF and Tyrosine kinase receptor B (TrkB) expression increased between 6 h and 1 d after 30 mW/cm2 microwave radiation exposure, but they decreased after 50mW/cm2 exposure. Conclusions: Microwave exposure (30 or 50 mW/cm2, for 6 min) may cause abnormalities in neurotransmitter release and synaptic structures, resulting in impaired learning and memory; BDNF and NMDAR-related signaling molecules might contribute differently to these alterations.
Collapse
|
23
|
Császár N, Scholkmann F, Bókkon I. Implications on hypnotherapy: Neuroplasticity, epigenetics and pain. Neurosci Biobehav Rev 2021; 131:755-764. [PMID: 34619172 DOI: 10.1016/j.neubiorev.2021.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/07/2021] [Accepted: 10/01/2021] [Indexed: 01/11/2023]
Abstract
We provide a brief review about the significance of hypnosis with respect to applications and physiological processes in hypnotherapy. Our review concludes that hypnosis is a promising method to manage acute and chronic pain. In addition, we discuss indications pointing toward the view that hypnosis can induce changes in neuroplasticity possibly involving epigenetic mechanisms.
Collapse
Affiliation(s)
- N Császár
- National University of Public Services, Budapest, Hungary; Psychosomatic Outpatient Clinics, Budapest, Hungary.
| | - F Scholkmann
- Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zurich, Switzerland.
| | - I Bókkon
- Psychosomatic Outpatient Clinics, Budapest, Hungary; Vision Research Institute, Neuroscience and Consciousness Research Department, Lowell, MA, USA.
| |
Collapse
|
24
|
Liu YY, Liu L, Zhu L, Yang X, Tong K, You Y, Yang L, Gao Y, Li X, Chen DS, Hao JR, Sun N, Gao C. dCA1-NAc shell glutamatergic projection mediates context-induced memory recall of morphine. Pharmacol Res 2021; 172:105857. [PMID: 34461223 DOI: 10.1016/j.phrs.2021.105857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/27/2021] [Accepted: 08/24/2021] [Indexed: 11/25/2022]
Abstract
Opioid relapse is generally caused by the recurrence of context-induced memory reinstatement of reward. However, the internal mechanisms that facilitate and modify these processes remain unknown. One of the key regions of the reward is the nucleus accumbens (NAc) which receives glutamatergic projections from the dorsal hippocampus CA1 (dCA1). It is not yet known whether the dCA1 projection to the NAc shell regulates the context-induced memory recall of morphine. Here, we used a common model of addiction-related behavior conditioned place preference paradigm, combined with immunofluorescence, chemogenetics, optogenetics, and electrophysiology techniques to characterize the projection of the dCA1 to the NAc shell, in context-induced relapse memory to morphine. We found that glutamatergic neurons of the dCA1 and gamma aminobutyric acidergic (GABA) neurons of the NAc shell are the key brain areas and neurons involved in the context-induced reinstatement of morphine memory. The dCA1-NAc shell glutamatergic input pathway and the excitatory synaptic transmission of the dCA1-NAc shell were enhanced via the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) when mice were re-exposed to environmental cues previously associated with drug intake. Furthermore, chemogenetic and optogenetic inactivation of the dCA1-NAc shell pathway decreased the recurrence of long- and short-term morphine-paired context memory in mice. These results provided evidence that the dCA1-NAc shell glutamatergic projections mediated the context-induced memory recall of morphine.
Collapse
Affiliation(s)
- Yue-Ying Liu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Le Liu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Lei Zhu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiu Yang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Kun Tong
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yue You
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Li Yang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yin Gao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xu Li
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Di-Shi Chen
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jing-Ru Hao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Nan Sun
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Can Gao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
25
|
Adulthood systemic inflammation accelerates the trajectory of age-related cognitive decline. Aging (Albany NY) 2021; 13:22092-22108. [PMID: 34587117 PMCID: PMC8507275 DOI: 10.18632/aging.203588] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/20/2021] [Indexed: 11/25/2022]
Abstract
In order to understand the long-term effects of systemic inflammation, it is important to distinguish inflammation-induced changes in baseline cognitive function from changes that interact with aging to influence the trajectory of cognitive decline. Lipopolysaccharide (LPS; 1 mg/kg) or vehicle was administered to young adult (6 months) male rats via intraperitoneal injections, once a week for 7 weeks. Longitudinal effects on cognitive decline were examined 6 and 12 months after the initial injections. Repeated LPS treatment, in adults, resulted in a long-term impairment in memory, examined in aged animals (age 18 months), but not in middle-age (age 12 months). At 12 months following injections, LPS treatment was associated with a decrease in N-methyl-D-aspartate receptor-mediated component of synaptic transmission and altered expression of genes linked to the synapse and to regulation of the response to inflammatory signals. The results of the current study suggest that the history of systemic inflammation is one component of environmental factors that contribute to the resilience or susceptibility to age-related brain changes and associated trajectory of cognitive decline.
Collapse
|
26
|
Gasiorowska A, Wydrych M, Drapich P, Zadrozny M, Steczkowska M, Niewiadomski W, Niewiadomska G. The Biology and Pathobiology of Glutamatergic, Cholinergic, and Dopaminergic Signaling in the Aging Brain. Front Aging Neurosci 2021; 13:654931. [PMID: 34326765 PMCID: PMC8315271 DOI: 10.3389/fnagi.2021.654931] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
The elderly population is growing worldwide, with important health and socioeconomic implications. Clinical and experimental studies on aging have uncovered numerous changes in the brain, such as decreased neurogenesis, increased synaptic defects, greater metabolic stress, and enhanced inflammation. These changes are associated with cognitive decline and neurobehavioral deficits. Although aging is not a disease, it is a significant risk factor for functional worsening, affective impairment, disease exaggeration, dementia, and general disease susceptibility. Conversely, life events related to mental stress and trauma can also lead to accelerated age-associated disorders and dementia. Here, we review human studies and studies on mice and rats, such as those modeling human neurodegenerative diseases, that have helped elucidate (1) the dynamics and mechanisms underlying the biological and pathological aging of the main projecting systems in the brain (glutamatergic, cholinergic, and dopaminergic) and (2) the effect of defective glutamatergic, cholinergic, and dopaminergic projection on disabilities associated with aging and neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. Detailed knowledge of the mechanisms of age-related diseases can be an important element in the development of effective ways of treatment. In this context, we briefly analyze which adverse changes associated with neurodegenerative diseases in the cholinergic, glutaminergic and dopaminergic systems could be targeted by therapeutic strategies developed as a result of our better understanding of these damaging mechanisms.
Collapse
Affiliation(s)
- Anna Gasiorowska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Malgorzata Wydrych
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Patrycja Drapich
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Maciej Zadrozny
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Steczkowska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Wiktor Niewiadomski
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Grazyna Niewiadomska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
27
|
Li Y, Xiao X, Wang L, Wang Q, Liang R, Zheng C, Yang J, Ming D. Comparison effects of chronic sleep deprivation on juvenile and young adult mice. J Sleep Res 2021; 31:e13399. [PMID: 34137107 DOI: 10.1111/jsr.13399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/04/2021] [Accepted: 05/10/2021] [Indexed: 11/30/2022]
Abstract
Sleeplessness leads to a spectrum of neuropsychiatric disorders, affecting both juveniles and young adults. Studies have shown different sleep patterns at different stages of development. However, the molecular mechanisms underlying the effects of the same chronic sleep deprivation (CSD) on behaviours of juveniles and young adults remain elusive. Here, we aimed to evaluate the effects of CSD (6 days, 19 h per day) on anxiety-like behaviour, cognitive performance and molecular alterations in juvenile and young adult mice. Change in body weight suggested impaired physical development in CSD animals, specifically juveniles gaining weight at a lower rate and young adults losing weight. Behavioural performance indicated that CSD had little effect on spatial memory, but induced analogous anxiety-like phenotypes in both juveniles and young adults, as evidenced by no significant difference in the Y-maze experiment (Y-M) or the Morris water maze experiment (MWM), as well as the decreased open-arm distance percentage in the elevated plus maze experiment (EPM). In addition, CSD reduced the N-methyl-D-aspartic receptor subunit 2B (NR2B) and postsynaptic density protein 95 (PSD95) levels in juveniles, but these were increased in young adults. In conclusion, our results suggested that although CSD resulted in analogous anxiety-like behaviours in both juvenile and young adult mice, the underlying mechanisms might be different, which was indicated by the opposite change of synaptic proteins under CSD. These findings may help to better understand the important role of sleep and have constructive significance for human health.
Collapse
Affiliation(s)
- Yaqing Li
- Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Xi Xiao
- Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Ling Wang
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, China
| | - Qian Wang
- Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Rong Liang
- Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Chenguang Zheng
- Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.,School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, China
| | - Jiajia Yang
- Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.,School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, China
| | - Dong Ming
- Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.,School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
28
|
Cariati I, Bonanni R, Annino G, Scimeca M, Bonanno E, D'Arcangelo G, Tancredi V. Dose-Response Effect of Vibratory Stimulus on Synaptic and Muscle Plasticity in a Middle-Aged Murine Model. Front Physiol 2021; 12:678449. [PMID: 34177622 PMCID: PMC8226218 DOI: 10.3389/fphys.2021.678449] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/04/2021] [Indexed: 12/20/2022] Open
Abstract
Whole body vibration plays a central role in many work categories and can represent a health risk to the musculoskeletal system and peripheral nervous system. However, studies in animal and human models have shown that vibratory training, experimentally and/or therapeutically induced, can exert beneficial effects on the whole body, as well as improve brain functioning and reduce cognitive decline related to the aging process. Since the effects of vibratory training depend on several factors, such as vibration frequency and vibration exposure time, in this work, we investigated whether the application of three different vibratory protocols could modulate synaptic and muscle plasticity in a middle-aged murine model, counteracting the onset of early symptoms linked to the aging process. To this end, we performed in vitro electrophysiological recordings of the field potential in the CA1 region of mouse hippocampal slices, as well as histomorphometric and ultrastructural analysis of muscle tissue by optic and transmission electron microscopy, respectively. Our results showed that protocols characterized by a low vibration frequency and/or a longer recovery time exert positive effects at both hippocampal and muscular level, and that these effects improve significantly by varying both parameters, with an action comparable with a dose-response effect. Thus, we suggested that vibratory training may be an effective strategy to counteract cognitive impairment, which is already present in the early stages of the aging process, and the onset of sarcopenia, which is closely related to a sedentary lifestyle. Future studies are needed to understand the underlying molecular mechanisms and to determine an optimal vibratory training protocol.
Collapse
Affiliation(s)
- Ida Cariati
- Ph.D. in Medical-Surgical Biotechnologies and Translational Medicine, Department of Clinical Sciences and Translational Medicine, "Tor Vergata" University of Rome, Rome, Italy
| | - Roberto Bonanni
- Department of Systems Medicine, "Tor Vergata" University of Rome, Rome, Italy
| | - Giuseppe Annino
- Department of Systems Medicine, "Tor Vergata" University of Rome, Rome, Italy.,Centre of Space Bio-Medicine, "Tor Vergata" University of Rome, Rome, Italy
| | - Manuel Scimeca
- Department of Biomedicine and Prevention, "Tor Vergata" University of Rome, Rome, Italy
| | - Elena Bonanno
- Department of Experimental Medicine, "Tor Vergata" University of Rome, Rome, Italy.,"Diagnostica Medica" and "Villa dei Platani", Neuromed Group, Avellino, Italy
| | - Giovanna D'Arcangelo
- Department of Systems Medicine, "Tor Vergata" University of Rome, Rome, Italy.,Centre of Space Bio-Medicine, "Tor Vergata" University of Rome, Rome, Italy
| | - Virginia Tancredi
- Department of Systems Medicine, "Tor Vergata" University of Rome, Rome, Italy.,Centre of Space Bio-Medicine, "Tor Vergata" University of Rome, Rome, Italy
| |
Collapse
|
29
|
Ebersole J, Rose G, Eid T, Behar K, Patrylo P. Altered hippocampal astroglial metabolism is associated with aging and preserved spatial learning and memory. Neurobiol Aging 2021; 102:188-199. [PMID: 33774381 DOI: 10.1016/j.neurobiolaging.2021.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 11/23/2022]
Abstract
An age-related decrease in hippocampal metabolism correlates with cognitive decline. Hippocampus-dependent learning and memory requires glutamatergic neurotransmission supported by glutamate-glutamine (GLU-GLN) cycling between neurons and astrocytes. We examined whether GLU-GLN cycling in hippocampal subregions (dentate gyrus and CA1) in Fischer 344 rats was altered with age and cognitive status. Hippocampal slices from young adult, aged cognitively-unimpaired (AU) and aged cognitively-impaired (AI) rats were incubated in artificial cerebrospinal fluid (aCSF) containing 1-13C-glucose to assess neural metabolism. Incorporation of 13C-glucose into glutamate and glutamine, measured by mass spectroscopy/liquid chromatography tandem mass spectroscopy, did not significantly differ between groups. However, when 13C-acetate, a preferential astrocytic metabolite, was used, a significant increase in 13C-labeled glutamate was observed in slices from AU rats. Taken together, the data suggest that resting state neural metabolism and GLU-GLN cycling may be preserved during aging when sufficient extracellular glucose is available, but that enhanced astroglial metabolism can occur under resting state conditions. This may be an aging-related compensatory change to maintain hippocampus-dependent cognitive function.
Collapse
Affiliation(s)
- Jeremy Ebersole
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | - Gregory Rose
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA; Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL, USA; Center for Integrated Research in the Cognitive and Neural Sciences, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | - Tore Eid
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Kevin Behar
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; MRRC Neurometabolism Research Laboratory, Yale University School of Medicine, New Haven, CT, USA
| | - Peter Patrylo
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA; Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL, USA; Center for Integrated Research in the Cognitive and Neural Sciences, Southern Illinois University School of Medicine, Carbondale, IL, USA.
| |
Collapse
|
30
|
Shamsi M, Soodi M, Shahbazi S, Omidi A. Effect of Acetamiprid on spatial memory and hippocampal glutamatergic system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:27933-27941. [PMID: 33523378 DOI: 10.1007/s11356-020-12314-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Acetamiprid (ACE) is one of the widely used neonicotinoid insecticides. In mammals, in spite of the low-affinity nAChRs, neurotoxic effects following the Acetamiprid exposure have recently been reported, which suggests some concerns regarding the impacts on the nervous system of mammals. This study aims to investigate the effect of Acetamiprid on spatial memory and possible vulnerability of hippocampal glutamatergic system following the Acetamiprid exposure. 10, 20, and 40 mg/kg doses of Acetamiprid were administered to male rats by gavage once per day for 28 days. The spatial memory was examined with the Morris water maze apparatus. The amount of Acetamiprid in the serum and hippocampus was measured. In addition, glutamate level and changes in the expression of NR1, NR2, and NR2B genes were measured in the hippocampus; also, the hippocampus tissue was histologically evaluated. A significant increase in training parameters which consist of escape latency and traveled distance was observed on the first and second day of training in Acetamiprid-treated groups (20 and 40 mg/kg) compared to the control group (p < 0.001). In the probe test, rats in all Acetamiprid-treated groups significantly spent less time in the target quadrant compared to the control group (p < 0.001). Acetamiprid concentration dose dependently increased in the serum and in the hippocampus followed by Acetamiprid exposure. In all Acetamiprid-treated groups, a significant reduction of glutamate level in the hippocampus was observed (p < 0.05). The reduction of NR1, NR2A, and NR2B gene expression in the hippocampus was observed at a dose of 20 mg/kg. The histological evaluation showed neural degeneration in the dentate gyrus area of the hippocampus at a dose of 40 mg/kg in the Acetamiprid-treated group. The results of the present study indicate that Acetamiprid impairs memory consolidation through the reduction of glutamate and the expression of NMDA receptor subunits in the hippocampus at low doses, along with the loss of neural cells in dentate gyrus at high dose.
Collapse
Affiliation(s)
- Mohsen Shamsi
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maliheh Soodi
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Shirin Shahbazi
- Department of Genetic, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ameneh Omidi
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
31
|
Wang S, Ke S, Wu Y, Zhang D, Liu B, He YH, Liu W, Mu H, Song X. Functional Network of the Long Non-coding RNA Growth Arrest-Specific Transcript 5 and Its Interacting Proteins in Senescence. Front Genet 2021; 12:615340. [PMID: 33777096 PMCID: PMC7987947 DOI: 10.3389/fgene.2021.615340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/01/2021] [Indexed: 11/24/2022] Open
Abstract
Increasing studies show that long non-coding RNAs (lncRNAs) play essential roles in various fundamental biological processes. Long non-coding RNA growth arrest-specific transcript 5 (GAS5) showed differential expressions between young and old mouse brains in our previous RNA-Seq data, suggesting its potential role in senescence and brain aging. Examination using quantitative reverse transcription-polymerase chain reaction revealed that GAS5 had a significantly higher expression level in the old mouse brain hippocampus region than the young one. Cellular fractionation using hippocampus-derived HT22 cell line confirmed its nucleoplasm and cytoplasm subcellular localization. Overexpression or knockdown of GAS5 in HT22 cell line revealed that GAS5 inhibits cell cycle progression and promotes cell apoptosis. RNA-Seq analysis of GAS5-knockdown HT22 cells identified differentially expressed genes related to cell proliferation (e.g., DNA replication and nucleosome assembly biological processes). RNA pull-down assay using mouse brain hippocampus tissues showed that potential GAS5 interacting proteins could be enriched into several Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and some of them are involved in senescence-associated diseases such as Parkinson’s and Alzheimer’s diseases. These results contribute to understand better the underlying functional network of GAS5 and its interacting proteins in senescence at brain tissue and brain-derived cell line levels. Our study may also provide a reference for developing diagnostic and clinic biomarkers of GAS5 in senescence and brain aging.
Collapse
Affiliation(s)
- Siqi Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Shengwei Ke
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yueming Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Duo Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, China
| | - Baowei Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yao-Hui He
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Wen Liu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Huawei Mu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xiaoyuan Song
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
32
|
Dong L, Li J, Zhang C, Liu D. Gut microbiota: a new player in the pathogenesis of perioperative neurocognitive disorder? IBRAIN 2021; 7:37-43. [PMID: 37786871 PMCID: PMC10529199 DOI: 10.1002/j.2769-2795.2021.tb00063.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/21/2021] [Accepted: 03/07/2021] [Indexed: 10/04/2023]
Abstract
Perioperative neurocognitive disorder (PND), including postoperative delirium and postoperative cognitive dysfunction (POCD), is a common postoperative complication in elderly patients, who represent an expanding segment of our population. PND is a multifactorial disease resulting in higher morbidity and mortality. The precise mechanism of PND is yet to be fully delineated. Identifying the modifiable risk factors and mechanisms for PND would be an important step forward in preventing such adverse events and thus improving patients' outcomes. It is increasingly recognized that gut microbiota also manifest effects in the central nervous system via the microbiota-gut-brain axis, which has emerged as an important player in shaping aspects of behavior and cognitive function. Recent studies have found that patients with cognitive dysfunction after surgery and anesthesia have obvious gut microbiome disorders. These findings are paralleled by a growing body of preclinical investigations aimed at better understanding how surgery and anesthesia affect the central nervous system and possibly contribute to cognitive decline. Here, we present a broad topical review of the literature supporting the role of gut microbiota in PND. We provide an overview of the mechanisms underlying the pathogenesis of PND from pre-clinical and human studies. Therefore, gut microbiota could be a putative therapeutic target for PND in the future.
Collapse
Affiliation(s)
| | - Juan Li
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Chao Zhang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - De‐Xing Liu
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
33
|
Yegla B, Boles J, Kumar A, Foster TC. Partial microglial depletion is associated with impaired hippocampal synaptic and cognitive function in young and aged rats. Glia 2021; 69:1494-1514. [PMID: 33586813 DOI: 10.1002/glia.23975] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/11/2022]
Abstract
The role of microglia in mediating age-related changes in cognition and hippocampal synaptic function was examined by microglial depletion and replenishment using PLX3397. We observed age-related differences in microglial number and morphology, as well as increased Iba-1 expression, indicating microglial activation. PLX3397 treatment decreased microglial number, with aged rats exhibiting the lowest density. Young rats exhibited increased expression of pro-inflammatory cytokines during depletion and repopulation and maintenance of Iba-1 levels despite reduced microglial number. For aged rats, several cytokines increased with depletion and recovered during repopulation; however, aged rats did not fully recover microglial cell number or Iba-1 expression during repopulation, with a recovery comparable to young control levels rather than aged controls. Hippocampal CA3-CA1 synaptic transmission was impaired with age, and microglial depletion was associated with decreased total synaptic transmission in young and aged rats. A robust decline in N-methyl-d-aspartate-receptor-mediated synaptic transmission arose in young depleted rats specifically. Microglial replenishment normalized depletion-induced synaptic function to control levels; however, recovery of aged animals did not mirror young. Microglial depletion was associated with decreased context-object discrimination memory in both age groups, which recovered with microglial repopulation. Aged rats displayed impaired contextual and cued fear memory, and microglial replenishment did not recover their memory to the level of young. The current study indicates that cognitive function and synaptic transmission benefit from the support of aged microglia and are hindered by removal of these cells. Replenishment of microglia in aging did not ameliorate age-related cognitive impairments or senescent synaptic function.
Collapse
Affiliation(s)
- Brittney Yegla
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Jake Boles
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Thomas C Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA.,Genetics and Genomics Program, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
34
|
Free Wanderer Powder regulates AMPA receptor homeostasis in chronic restraint stress-induced rat model of depression with liver-depression and spleen-deficiency syndrome. Aging (Albany NY) 2020; 12:19563-19584. [PMID: 33052137 PMCID: PMC7732332 DOI: 10.18632/aging.103912] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/23/2020] [Indexed: 01/24/2023]
Abstract
Free Wanderer Powder (FWP) is a classic formula for depression with digestive dysfunctions, i.e., liver-depression and spleen-deficiency syndrome (LDSDS) in Chinese Medicine. But its protective mechanism has not been fully clarified. Here a chronic restraint stress (CRS) induced rat model showed depression with LDSDS in food intake, metabolism, and behaviour tests. Then 75 rats were randomly divided, and received CRS and different treatment with behaviour tests. Expressions of c-Fos and AMPA-type glutamate receptor subunits GluR1-3 in hippocampus CA1, CA3, DG and amygdala BLA were detected by immunohistochemistry, western blot and RT-PCR, respectively. In CRS rats, FWP alleviated depressive behaviour and c-Fos expression. FWP suppressed the increasement of GluR1 in CA1 and DG, p-GluR1 in CA1, and p-GluR2 and GluR3 in BLA. FWP also blocked the decrease of GluR1 and Glur2/3 in CA3, p-GluR1 in CA3, and p-GluR2 in CA1 and CA3. Furthermore, constituents of FWP and their potential targets were explored using UHPLC-MS and systematic bioinformatics analysis. There were 23 constituents identified in FWP, 9 of which regulated glutamatergic synapse. Together, these results suggest that FWP contains effective constituents and alleviates depression with LDSDS by regulating AMPA-type glutamate receptor homeostasis in amygdala and hippocampus.
Collapse
|
35
|
Sánchez-Melgar A, Albasanz JL, Pallàs M, Martín M. Adenosine Metabolism in the Cerebral Cortex from Several Mice Models during Aging. Int J Mol Sci 2020; 21:ijms21197300. [PMID: 33023260 PMCID: PMC7582336 DOI: 10.3390/ijms21197300] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/27/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022] Open
Abstract
Adenosine is a neuromodulator that has been involved in aging and neurodegenerative diseases as Alzheimer’s disease (AD). In the present work, we analyzed the possible modulation of purine metabolites, 5’nucleotidase (5′NT) and adenosine deaminase (ADA) activities, and adenosine monophosphate (AMP)-activated protein kinase (AMPK) and its phosphorylated form during aging in the cerebral cortex. Three murine models were used: senescence-accelerated mouse-resistant 1 (SAMR1, normal senescence), senescence-accelerated mouse-prone 8 (SAMP8, a model of AD), and the wild-type C57BL/6J (model of aging) mice strains. Glutamate and excitatory amino acid transporter 2 (EAAT2) levels were also measured in these animals. HPLC, Western blotting, and enzymatic activity evaluation were performed to this aim. 5′-Nucleotidase (5′NT) activity was decreased at six months and recovered at 12 months in SAMP8 while opposite effects were observed in SAMR1 at the same age, and no changes in C57BL/6J mice. ADA activity significantly decreased from 3 to 12 months in the SAMR1 mice strain, while a significant decrease from 6 to 12 months was observed in the SAMP8 mice strain. Regarding purine metabolites, xanthine and guanosine levels were increased at six months in SAMR1 without significant differences in SAMP8 mice. In C57BL/6J mice, inosine and xanthine were increased, while adenosine decreased, from 4 to 24 months. The AMPK level was decreased at six months in SAMP8 without significant changes nor in SAMR1 or C57BL/6J strains. Glutamate and EAAT2 levels were also modulated during aging. Our data show a different modulation of adenosine metabolism participants in the cerebral cortex of these animal models. Interestingly, the main differences between SAMR1 and SAMP8 mice were found at six months of age, SAMP8 being the most affected strain. As SAMP8 is an AD model, results suggest that adenosinergic metabolism is involved in the neurodegeneration of AD.
Collapse
Affiliation(s)
- Alejandro Sánchez-Melgar
- Department of Inorganic, Organic and Biochemistry, Faculty of Chemical and Technological Sciences, Universidad de Castilla-La Mancha, School of Medicine of Ciudad Real, Regional Center of Biomedical Research (CRIB), 13071 Ciudad Real, Spain; (A.S.-M.); (M.M.)
| | - José Luis Albasanz
- Department of Inorganic, Organic and Biochemistry, Faculty of Chemical and Technological Sciences, Universidad de Castilla-La Mancha, School of Medicine of Ciudad Real, Regional Center of Biomedical Research (CRIB), 13071 Ciudad Real, Spain; (A.S.-M.); (M.M.)
- Correspondence:
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain;
| | - Mairena Martín
- Department of Inorganic, Organic and Biochemistry, Faculty of Chemical and Technological Sciences, Universidad de Castilla-La Mancha, School of Medicine of Ciudad Real, Regional Center of Biomedical Research (CRIB), 13071 Ciudad Real, Spain; (A.S.-M.); (M.M.)
| |
Collapse
|
36
|
Dahan L, Rampon C, Florian C. Age-related memory decline, dysfunction of the hippocampus and therapeutic opportunities. Prog Neuropsychopharmacol Biol Psychiatry 2020; 102:109943. [PMID: 32298784 DOI: 10.1016/j.pnpbp.2020.109943] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 12/13/2022]
Abstract
While the aging of the population is a sign of progress for societies, it also carries its load of negative aspects. Among them, cognitive decline and in particular memory loss is a common feature of non-pathological aging. Autobiographical memories, which rely on the hippocampus, are a primary target of age-related cognitive decline. Here, focusing on the neurobiological mechanisms of memory formation and storage, we describe how hippocampal functions are altered across time in non-pathological mammalian brains. Several hallmarks of aging have been well described over the last decades; among them, we consider altered synaptic communication and plasticity, reduction of adult neurogenesis and epigenetic alterations. Building on the neurobiological processes of cognitive aging that have been identified to date, we review some of the strategies based on lifestyle manupulation allowing to address age-related cognitive deficits.
Collapse
Affiliation(s)
- Lionel Dahan
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, Toulouse Cedex 9, France
| | - Claire Rampon
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, Toulouse Cedex 9, France
| | - Cédrick Florian
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, Toulouse Cedex 9, France.
| |
Collapse
|
37
|
Teissier T, Boulanger E, Deramecourt V. Normal ageing of the brain: Histological and biological aspects. Rev Neurol (Paris) 2020; 176:649-660. [PMID: 32418702 DOI: 10.1016/j.neurol.2020.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 02/02/2023]
Abstract
All the hallmarks of ageing are observed in the brain, and its cells, especially neurons, are characterized by their remarkably long lifetime. Like any organ or system, the brain is exposed to ageing processes which affect molecules, cells, blood vessels, gross morphology and, uniquely for this organ, cognition. The preponderant cerebral structures are characterized by the cellular processes of neurons and glial cells and while the quantity of cerebral interstitial fluid is limited, it is now recognized as playing a crucial role in maintaining cerebral homeostasis. Most of our current knowledge of the ageing brain derives from studies of neurodegenerative disorders. It is interesting to note that common features of these disorders, like Tau, phosphoTau and amyloid peptide accumulation, can begin relatively early in life as a result of physiological ageing and are present in subclinical cases while also being used as early-stage markers of neurodegenerative diseases in progression. In this article, we review tissue and cellular modifications in the ageing brain. Commonly described macroscopic, microscopic and vascular changes that in the ageing brain are contrasted with those seen in neurodegenerative contexts. We also review the molecular changes that occur with age in the brain, such as modifications in gene expression, insulin/insulin-like growth factor 1 signalling dysfunction, post-translational protein modifications, mitochondrial dysfunction, autophagy and calcium conductance changes.
Collapse
Affiliation(s)
- T Teissier
- Inserm, université de Lille, CHU de Lille, Institut Pasteur de Lille, U1167 - RID-AGE - facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, équipe « de l'inflammation au vieillissement, 59000 Lille, France.
| | - E Boulanger
- Inserm, université de Lille, CHU de Lille, Institut Pasteur de Lille, U1167 - RID-AGE - facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, équipe « de l'inflammation au vieillissement, 59000 Lille, France; Pôle de gérontologie, CHU de Lille, 59000 Lille, France
| | - V Deramecourt
- Inserm, UMR-S 1172 « Alzheimer et Tauopathies », centre mémoire de ressources et de recherche, Labex DISTALZ, université de Lille, CHU de Lille, 59000 Lille, France; Pôle de neurologie, CHU de Lille, 59000 Lille, France
| |
Collapse
|
38
|
Berry T, Abohamza E, Moustafa AA. A disease-modifying treatment for Alzheimer's disease: focus on the trans-sulfuration pathway. Rev Neurosci 2020; 31:319-334. [PMID: 31751299 DOI: 10.1515/revneuro-2019-0076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/31/2019] [Indexed: 12/16/2022]
Abstract
High homocysteine levels in Alzheimer's disease (AD) result from low activity of the trans-sulfuration pathway. Glutathione levels are also low in AD. L-cysteine is required for the synthesis of glutathione. The synthesis of coenzyme A (CoA) requires L-cysteine, which is synthesized via the trans-sulfuration pathway. CoA is required for the synthesis of acetylcholine and appropriate cholinergic neurotransmission. L-cysteine is required for the synthesis of molybdenum-containing proteins. Sulfite oxidase (SUOX), which is a molybdenum-containing protein, could be dysregulated in AD. SUOX detoxifies the sulfites. Glutaminergic neurotransmission could be dysregulated in AD due to low levels of SUOX and high levels of sulfites. L-cysteine provides sulfur for iron-sulfur clusters. Oxidative phosphorylation (OXPHOS) is heavily dependent on iron-sulfur proteins. The decrease in OXPHOS seen in AD could be due to dysregulations of the trans-sulfuration pathway. There is a decrease in aconitase 1 (ACO1) in AD. ACO1 is an iron-sulfur enzyme in the citric acid cycle that upon loss of an iron-sulfur cluster converts to iron regulatory protein 1 (IRP1). With the dysregulation of iron-sulfur cluster formation ACO1 will convert to IRP1 which will decrease the 2-oxglutarate synthesis dysregulating the citric acid cycle and also dysregulating iron metabolism. Selenomethionine is also metabolized by the trans-sulfuration pathway. With the low activity of the trans-sulfuration pathway in AD selenoproteins will be dysregulated in AD. Dysregulation of selenoproteins could lead to oxidant stress in AD. In this article, we propose a novel treatment for AD that addresses dysregulations resulting from low activity of the trans-sulfuration pathway and low L-cysteine.
Collapse
Affiliation(s)
- Thomas Berry
- School of Social Sciences and Psychology, Western Sydney University, 2 Bullecourt Ave, Milperra, 2214 Sydney, New South Wales, Australia
| | - Eid Abohamza
- Department of Social Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Ahmed A Moustafa
- School of Social Sciences and Psychology, Western Sydney University, 2 Bullecourt Ave, Milperra, 2214 Sydney, New South Wales, Australia
| |
Collapse
|
39
|
Kumar A. Calcium Signaling During Brain Aging and Its Influence on the Hippocampal Synaptic Plasticity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:985-1012. [PMID: 31646542 DOI: 10.1007/978-3-030-12457-1_39] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Calcium (Ca2+) ions are highly versatile intracellular signaling molecules and are universal second messenger for regulating a variety of cellular and physiological functions including synaptic plasticity. Ca2+ homeostasis in the central nervous system endures subtle dysregulation with advancing age. Research has provided abundant evidence that brain aging is associated with altered neuronal Ca2+ regulation and synaptic plasticity mechanisms. Much of the work has focused on the hippocampus, a brain region critically involved in learning and memory, which is particularly susceptible to dysfunction during aging. The current chapter takes a specific perspective, assessing various Ca2+ sources and the influence of aging on Ca2+ sources and synaptic plasticity in the hippocampus. Integrating the knowledge of the complexity of age-related alterations in neuronal Ca2+ signaling and synaptic plasticity mechanisms will positively shape the development of highly effective therapeutics to treat brain disorders including cognitive impairment associated with aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
40
|
Rojic-Becker D, Portero-Tresserra M, Martí-Nicolovius M, Vale-Martínez A, Guillazo-Blanch G. Caloric restriction modulates the monoaminergic and glutamatergic systems in the hippocampus, and attenuates age-dependent spatial memory decline. Neurobiol Learn Mem 2019; 166:107107. [DOI: 10.1016/j.nlm.2019.107107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 12/27/2022]
|
41
|
Nunes PT, Kipp BT, Reitz NL, Savage LM. Aging with alcohol-related brain damage: Critical brain circuits associated with cognitive dysfunction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 148:101-168. [PMID: 31733663 PMCID: PMC7372724 DOI: 10.1016/bs.irn.2019.09.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alcoholism is associated with brain damage and impaired cognitive functioning. The relative contributions of different etiological factors, such as alcohol, thiamine deficiency and age vulnerability, to the development of alcohol-related neuropathology and cognitive impairment are still poorly understood. One reason for this quandary is that both alcohol toxicity and thiamine deficiency produce brain damage and cognitive problems that can be modulated by age at exposure, aging following alcohol toxicity or thiamine deficiency, and aging during chronic alcohol exposure. Pre-clinical models of alcohol-related brain damage (ARBD) have elucidated some of the contributions of ethanol toxicity and thiamine deficiency to neuroinflammation, neuronal loss and functional deficits. However, the critical variable of age at the time of exposure or long-term aging with ARBD has been relatively ignored. Acute thiamine deficiency created a massive increase in neuroimmune genes and proteins within the thalamus and significant increases within the hippocampus and frontal cortex. Chronic ethanol treatment throughout adulthood produced very minor fluctuations in neuroimmune genes, regardless of brain region. Intermittent "binge-type" ethanol during the adolescent period established an intermediate neuroinflammatory response in the hippocampus and frontal cortex, that can persist into adulthood. Chronic excessive drinking throughout adulthood, adolescent intermittent ethanol exposure, and thiamine deficiency all led to a loss of the cholinergic neuronal phenotype within the basal forebrain, reduced hippocampal neurogenesis, and alterations in the frontal cortex. Only thiamine deficiency results in gross pathological lesions of the thalamus. The behavioral impairment following these types of treatments is hierarchical: Thiamine deficiency produces the greatest impairment of hippocampal- and prefrontal-dependent behaviors, chronic ethanol drinking ensues mild impairments on both types of tasks and adolescent intermittent ethanol exposure leads to impairments on frontocortical tasks, with sparing on most hippocampal-dependent tasks. However, our preliminary data suggest that as rodents age following adolescent intermittent ethanol exposure, hippocampal functional deficits began to emerge. A necessary requirement for the advancement of understanding the neural consequences of alcoholism is a more comprehensive assessment and understanding of how excessive alcohol drinking at different development periods (adolescence, early adulthood, middle-aged and aged) influences the trajectory of the aging process, including pathological aging and disease.
Collapse
Affiliation(s)
- Polliana Toledo Nunes
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University, State University of New York, Binghamton, NY, United States
| | - Brian T Kipp
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University, State University of New York, Binghamton, NY, United States
| | - Nicole L Reitz
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University, State University of New York, Binghamton, NY, United States
| | - Lisa M Savage
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University, State University of New York, Binghamton, NY, United States.
| |
Collapse
|
42
|
Dong Y, Sameni S, Digman MA, Brewer GJ. Reversibility of Age-related Oxidized Free NADH Redox States in Alzheimer's Disease Neurons by Imposed External Cys/CySS Redox Shifts. Sci Rep 2019; 9:11274. [PMID: 31375701 PMCID: PMC6677822 DOI: 10.1038/s41598-019-47582-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/10/2019] [Indexed: 12/21/2022] Open
Abstract
Redox systems including extracellular cysteine/cystine (Cys/CySS), intracellular glutathione/oxidized glutathione (GSH/GSSG) and nicotinamide adenine dinucleotide reduced/oxidized forms (NADH/NAD+) are critical for maintaining redox homeostasis. Aging as a major risk factor for Alzheimer’s disease (AD) is associated with oxidative shifts, decreases in anti-oxidant protection and dysfunction of mitochondria. Here, we examined the flexibility of mitochondrial-specific free NADH in live neurons from non-transgenic (NTg) or triple transgenic AD-like mice (3xTg-AD) of different ages under an imposed extracellular Cys/CySS oxidative or reductive condition. We used phasor fluorescence lifetime imaging microscopy (FLIM) to distinguish free and bound NADH in mitochondria, nuclei and cytoplasm. Under an external oxidative stress, a lower capacity for maintaining mitochondrial free NADH levels was found in old compared to young neurons and a further decline with genetic load. Remarkably, an imposed Cys/CySS reductive state rejuvenated the mitochondrial free NADH levels of old NTg neurons by 71% and old 3xTg-AD neurons by 89% to levels corresponding to the young neurons. Using FLIM as a non-invasive approach, we were able to measure the reversibility of aging subcellular free NADH levels in live neurons. Our results suggest a potential reductive treatment to reverse the loss of free NADH in old and Alzheimer’s neurons.
Collapse
Affiliation(s)
- Yue Dong
- Department of Biomedical Engineering, University of California Irvine, Irvine, California, United States of America
| | - Sara Sameni
- Department of Biomedical Engineering, University of California Irvine, Irvine, California, United States of America.,Laboratory of Fluorescence Dynamics, Department of Biomedical Engineering, University of California Irvine, Irvine, California, United States of America
| | - Michelle A Digman
- Department of Biomedical Engineering, University of California Irvine, Irvine, California, United States of America.,Laboratory of Fluorescence Dynamics, Department of Biomedical Engineering, University of California Irvine, Irvine, California, United States of America
| | - Gregory J Brewer
- Department of Biomedical Engineering, University of California Irvine, Irvine, California, United States of America. .,MIND Institute, Center for Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA, United States of America.
| |
Collapse
|
43
|
Pritchard R, Chen H, Romoli B, Spitzer NC, Dulcis D. Photoperiod-induced neurotransmitter plasticity declines with aging: An epigenetic regulation? J Comp Neurol 2019; 528:199-210. [PMID: 31343079 DOI: 10.1002/cne.24747] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/22/2022]
Abstract
Neuroplasticity has classically been understood to arise through changes in synaptic strength or synaptic connectivity. A newly discovered form of neuroplasticity, neurotransmitter switching, involves changes in neurotransmitter identity. Chronic exposure to different photoperiods alters the number of dopamine (tyrosine hydroxylase, TH+) and somatostatin (SST+) neurons in the paraventricular nucleus (PaVN) of the hypothalamus of adult rats and results in discrete behavioral changes. Here, we investigate whether photoperiod-induced neurotransmitter switching persists during aging and whether epigenetic mechanisms of histone acetylation and DNA methylation may contribute to this neurotransmitter plasticity. We show that this plasticity in rats is robust at 1 and at 3 months but reduced in TH+ neurons at 12 months and completely abolished in both TH+ and SST+ neurons by 18 months. De novo expression of DNMT3a catalyzing DNA methylation and anti-AcetylH3 assessing histone 3 acetylation were observed following short-day photoperiod exposure in both TH+ and SST+ neurons at 1 and 3 months while an overall increase in DNMT3a in SST+ neurons paralleled neuroplasticity reduction at 12 and 18 months. Histone acetylation increased in TH+ neurons and decreased in SST+ neurons following short-day exposure at 3 months while the total number of anti-AcetylH3+ PaVN neurons remained constant. Reciprocal histone acetylation in TH+ and SST+ neurons indicates the importance of studying epigenetic regulation at the circuit level for identified cell phenotypes. The findings may be useful for developing approaches for noninvasive treatment of disorders characterized by neurotransmitter dysfunction.
Collapse
Affiliation(s)
- Rory Pritchard
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, California.,Neurobiology Section, Division of Biological Sciences and Center for Neural Circuits and Behavior, Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, California
| | - Helene Chen
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, California
| | - Ben Romoli
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, California
| | - Nicholas C Spitzer
- Neurobiology Section, Division of Biological Sciences and Center for Neural Circuits and Behavior, Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, California
| | - Davide Dulcis
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, California
| |
Collapse
|
44
|
Birla H, Keswani C, Rai SN, Singh SS, Zahra W, Dilnashin H, Rathore AS, Singh SP. Neuroprotective effects of Withania somnifera in BPA induced-cognitive dysfunction and oxidative stress in mice. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2019; 15:9. [PMID: 31064381 PMCID: PMC6503545 DOI: 10.1186/s12993-019-0160-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/26/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND Bisphenol A (BPA), a major endocrine disruptor and a xenobiotic compound is used abundantly in the production of polycarbonate plastics and epoxy resins. Human exposure to this compound is primarily via its leaching from the protective internal epoxy resin coatings of containers into the food and beverages. In addition, the plastics used in dental prostheses and sealants also contain considerable amount of BPA and have a high risk of human exposure. Since it is a well-known endocrine disruptor and closely mimics the molecular structure of human estrogen thereby impairing learning and memory. Withania somnifera (Ws), commonly known as Ashwagandha is known for its varied therapeutic uses in Ayurvedic system of medicine. The present study was undertaken to demonstrate the impairment induced by BPA on the spatial learning, working memory and its alleviation by Ws in Swiss albino mice. The study was conducted on thirty Swiss albino mice, randomly distributed among three groups: control, BPA and BPA + Ws. The behavioral recovery after treatment with Ws was investigated using the Y-maize and Morris water maize test. Whereas, for the estimation of recovery of NMDA receptor which is related to learning and memory in hippocampus region by western blot and immunohistochemistry. Furthermore, the oxidative stress and antioxidant level was assessed by biochemical tests like MDA, SOD and catalase. RESULTS The study revealed that administration of Ws alleviated the behavioral deficits induced by BPA. Alongside, Ws treatment reinstated the number of NMDA receptors in hippocampus region and showed anti-oxidative property while ameliorating the endogenous anti-oxidant level in the brain. CONCLUSION These findings suggest that Ws significantly ameliorates the level of BPA intoxicated oxidative stress thereby potentially treating cognitive dysfunction which acts as the primary symptom in a number of neurodegenerative diseases.
Collapse
Affiliation(s)
- Hareram Birla
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Chetan Keswani
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Sachchida Nand Rai
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Saumitra Sen Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Walia Zahra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Hagera Dilnashin
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Aaina Singh Rathore
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Surya Pratap Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| |
Collapse
|