1
|
Thomson AM. Circuits and Synapses: Hypothesis, Observation, Controversy and Serendipity - An Opinion Piece. Front Neural Circuits 2021; 15:732315. [PMID: 34602985 PMCID: PMC8482872 DOI: 10.3389/fncir.2021.732315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/11/2021] [Indexed: 11/29/2022] Open
Abstract
More than a century of dedicated research has resulted in what we now know, and what we think we know, about synapses and neural circuits. This piece asks to what extent some of the major advances - both theoretical and practical - have resulted from carefully considered theory, or experimental design: endeavors that aim to address a question, or to refute an existing hypothesis. It also, however, addresses the important part that serendipity and chance have played. There are cases where hypothesis driven research has resulted in important progress. There are also examples where a hypothesis, a model, or even an experimental approach - particularly one that seems to provide welcome simplification - has become so popular that it becomes dogma and stifles advance in other directions. The nervous system rejoices in complexity, which should neither be ignored, nor run from. The emergence of testable "rules" that can simplify our understanding of neuronal circuits has required the collection of large amounts of data that were difficult to obtain. And although those collecting these data have been criticized for not advancing hypotheses while they were "collecting butterflies," the beauty of the butterflies always enticed us toward further exploration.
Collapse
Affiliation(s)
- Alex M. Thomson
- Department of Pharmacology, UCL School of Pharmacy, London, United Kingdom
| |
Collapse
|
2
|
Sutton NM, Ascoli GA. Spiking Neural Networks and Hippocampal Function: A Web-Accessible Survey of Simulations, Modeling Methods, and Underlying Theories. COGN SYST RES 2021; 70:80-92. [PMID: 34504394 DOI: 10.1016/j.cogsys.2021.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Computational modeling has contributed to hippocampal research in a wide variety of ways and through a large diversity of approaches, reflecting the many advanced cognitive roles of this brain region. The intensively studied neuron type circuitry of the hippocampus is a particularly conducive substrate for spiking neural models. Here we present an online knowledge base of spiking neural network simulations of hippocampal functions. First, we overview theories involving the hippocampal formation in subjects such as spatial representation, learning, and memory. Then we describe an original literature mining process to organize published reports in various key aspects, including: (i) subject area (e.g., navigation, pattern completion, epilepsy); (ii) level of modeling detail (Hodgkin-Huxley, integrate-and-fire, etc.); and (iii) theoretical framework (attractor dynamics, oscillatory interference, self-organizing maps, and others). Moreover, every peer-reviewed publication is also annotated to indicate the specific neuron types represented in the network simulation, establishing a direct link with the Hippocampome.org portal. The web interface of the knowledge base enables dynamic content browsing and advanced searches, and consistently presents evidence supporting every annotation. Moreover, users are given access to several types of statistical reports about the collection, a selection of which is summarized in this paper. This open access resource thus provides an interactive platform to survey spiking neural network models of hippocampal functions, compare available computational methods, and foster ideas for suitable new directions of research.
Collapse
Affiliation(s)
- Nate M Sutton
- Department of Bioengineering, 4400 University Drive, George Mason University, Fairfax, Virginia, 22030 (USA)
| | - Giorgio A Ascoli
- Department of Bioengineering, 4400 University Drive, George Mason University, Fairfax, Virginia, 22030 (USA).,Interdepartmental Neuroscience Program, 4400 University Drive, George Mason University, Fairfax, Virginia, 22030 (USA)
| |
Collapse
|
3
|
Michalikova M, Remme MW, Schmitz D, Schreiber S, Kempter R. Spikelets in pyramidal neurons: generating mechanisms, distinguishing properties, and functional implications. Rev Neurosci 2019; 31:101-119. [DOI: 10.1515/revneuro-2019-0044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/13/2019] [Indexed: 11/15/2022]
Abstract
Abstract
Spikelets are small spike-like depolarizations that are found in somatic recordings of many neuron types. Spikelets have been assigned important functions, ranging from neuronal synchronization to the regulation of synaptic plasticity, which are specific to the particular mechanism of spikelet generation. As spikelets reflect spiking activity in neuronal compartments that are electrotonically distinct from the soma, four modes of spikelet generation can be envisaged: (1) dendritic spikes or (2) axonal action potentials occurring in a single cell as well as action potentials transmitted via (3) gap junctions or (4) ephaptic coupling in pairs of neurons. In one of the best studied neuron type, cortical pyramidal neurons, the origins and functions of spikelets are still unresolved; all four potential mechanisms have been proposed, but the experimental evidence remains ambiguous. Here we attempt to reconcile the scattered experimental findings in a coherent theoretical framework. We review in detail the various mechanisms that can give rise to spikelets. For each mechanism, we present the biophysical underpinnings as well as the resulting properties of spikelets and compare these predictions to experimental data from pyramidal neurons. We also discuss the functional implications of each mechanism. On the example of pyramidal neurons, we illustrate that several independent spikelet-generating mechanisms fulfilling vastly different functions might be operating in a single cell.
Collapse
Affiliation(s)
- Martina Michalikova
- Institute for Theoretical Biology, Department of Biology , Humboldt-Universität zu Berlin , D-10115 Berlin , Germany
| | - Michiel W.H. Remme
- Institute for Theoretical Biology, Department of Biology , Humboldt-Universität zu Berlin , D-10115 Berlin , Germany
| | - Dietmar Schmitz
- Neuroscience Research Center, Charite-University Medicine , D-10117 Berlin , Germany
- Bernstein Center for Computational Neuroscience Berlin , D-10115 Berlin , Germany
- Einstein Center for Neurosciences Berlin , D-10117 Berlin , Germany
- Berlin Institute of Health , D-10178 Berlin , Germany
- Cluster of Excellence NeuroCure , D-10117 Berlin , Germany
| | - Susanne Schreiber
- Institute for Theoretical Biology, Department of Biology , Humboldt-Universität zu Berlin , D-10115 Berlin , Germany
- Einstein Center for Neurosciences Berlin , D-10117 Berlin , Germany
- Bernstein Center for Computational Neuroscience Berlin , Philippstr. 13, D-10115 Berlin , Germany
| | - Richard Kempter
- Institute for Theoretical Biology, Department of Biology , Humboldt-Universität zu Berlin , D-10115 Berlin , Germany
- Einstein Center for Neurosciences Berlin , D-10117 Berlin , Germany
- Bernstein Center for Computational Neuroscience Berlin , Philippstr. 13, D-10115 Berlin , Germany
| |
Collapse
|
4
|
Geiller T, Royer S, Choi JS. Segregated Cell Populations Enable Distinct Parallel Encoding within the Radial Axis of the CA1 Pyramidal Layer. Exp Neurobiol 2017; 26:1-10. [PMID: 28243162 PMCID: PMC5326710 DOI: 10.5607/en.2017.26.1.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 02/05/2017] [Accepted: 02/05/2017] [Indexed: 12/20/2022] Open
Abstract
Numerous studies have implicated the hippocampus in the encoding and storage of declarative and spatial memories. Several models have considered the hippocampus and its distinct subfields to contain homogeneous pyramidal cell populations. Yet, recent studies have led to a consensus that the dorso-ventral and proximo-distal axes have different connectivities and physiologies. The remaining deep-superficial axis of the pyramidal layer, however, remains relatively unexplored due to a lack of techniques that can record from neurons simultaneously at different depths. Recent advances in transgenic mice, two-photon imaging and dense multisite recording have revealed extensive disparities between the pyramidal cells located in the deep and the superficial layers. Here, we summarize differences between the two populations in terms of gene expression and connectivity with other intra-hippocampal subregions and local interneurons that underlie distinct learning processes and spatial representations. A unified picture will emerge to describe how such local segregations can increase the capacity of the hippocampus to compute and process numerous tasks in parallel.
Collapse
Affiliation(s)
- Tristan Geiller
- Department of Psychology, Korea University, Seoul 02841, Korea.; Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Sebastien Royer
- Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - June-Seek Choi
- Department of Psychology, Korea University, Seoul 02841, Korea
| |
Collapse
|
5
|
Nagy JI. Evidence for connexin36 localization at hippocampal mossy fiber terminals suggesting mixed chemical/electrical transmission by granule cells. Brain Res 2012; 1487:107-22. [PMID: 22771400 PMCID: PMC3501615 DOI: 10.1016/j.brainres.2012.05.064] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 05/14/2012] [Accepted: 05/15/2012] [Indexed: 11/25/2022]
Abstract
Electrical synaptic transmission via gap junctions has become an accepted feature of neuronal communication in the mammalian brain, and occurs often between dendrites of interneurons in major brain structures, including the hippocampus. Electrical and dye-coupling has also been reported to occur between pyramidal cells in the hippocampus, but ultrastructurally-identified gap junctions between these cells have so far eluded detection. Gap junctions can be formed by nerve terminals, where they contribute the electrical component of mixed chemical/electrical synaptic transmission, but mixed synapses have only rarely been described in mammalian CNS. Here, we used immunofluorescence localization of the major gap junction forming protein connexin36 to examine its possible association with hippocampal pyramidal cells. In addition to labeling associated with gap junctions between dendrites of parvalbumin-positive interneurons, a high density of fine, punctate immunolabeling for Cx36, non-overlapping with parvalbumin, was found in subregions of the stratum lucidum in the ventral hippocampus of rat brain. A high percentage of Cx36-positive puncta in the stratum lucidum was localized to mossy fiber terminals, as indicated by co-localization of Cx36-puncta with the mossy terminal marker vesicular glutamate transporter-1, as well as with other proteins that are highly concentrated in, and diagnostic markers of, these terminals. These results suggest that mossy fiber terminals abundantly form mixed chemical/electrical synapses with pyramidal cells, where they may serve as intermediaries for the reported electrical and dye-coupling between ensembles of these principal cells. This article is part of a Special Issue entitled Electrical Synapses.
Collapse
Affiliation(s)
- James I Nagy
- Department of Physiology, Faculty of Medicine, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, Manitoba, Canada R3E 0J9.
| |
Collapse
|
6
|
Electrically coupled excitatory neurones in cortical regions. Brain Res 2012; 1487:192-7. [PMID: 22771395 DOI: 10.1016/j.brainres.2012.03.069] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 03/24/2012] [Indexed: 12/30/2022]
Abstract
Gap junctions between inhibitory neurones in cortical regions have been well documented over the years. However, although the presence of electrical coupling between pyramidal cells has been supported by dye-coupling and recordings of fast prepotentials called 'spikelets', direct evidence for such coupling remains sparse. Electrical coupling between pyramids has however been shown to play a significant role in oscillatory network activity, spatial exploration and learning and memory and full characterization of these synapses are overdue. In this review, an overview of the known properties of these electrical synapses is given, focusing on a study in the CA1 region of the hippocampus. This article is part of a Special Issue entitled Electrical Synapses.
Collapse
|
7
|
Curti S, Hoge G, Nagy JI, Pereda AE. Electrical transmission between mammalian neurons is supported by a small fraction of gap junction channels. J Membr Biol 2012; 245:283-90. [PMID: 22729690 DOI: 10.1007/s00232-012-9449-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/01/2012] [Indexed: 12/19/2022]
Abstract
Electrical synapses formed by gap junctions between neurons create networks of electrically coupled neurons in the mammalian brain, where these networks have been found to play important functional roles. In most cases, interneuronal gap junctions occur at remote dendro-dendritic contacts, making difficult accurate characterization of their physiological properties and correlation of these properties with their anatomical and morphological features of the gap junctions. In the mesencephalic trigeminal (MesV) nucleus where neurons are readily accessible for paired electrophysiological recordings in brain stem slices, our recent data indicate that electrical transmission between MesV neurons is mediated by connexin36 (Cx36)-containing gap junctions located at somato-somatic contacts. We here review evidence indicating that electrical transmission between these neurons is supported by a very small fraction of the gap junction channels present at cell-cell contacts. Acquisition of this evidence was enabled by the unprecedented experimental access of electrical synapses between MesV neurons, which allowed estimation of the average number of open channels mediating electrical coupling in relation to the average number of gap junction channels present at these contacts. Our results indicate that only a small proportion of channels (~0.1 %) appear to be conductive. On the basis of similarities with other preparations, we postulate that this phenomenon might constitute a general property of vertebrate electrical synapses, reflecting essential aspects of gap junction function and maintenance.
Collapse
Affiliation(s)
- Sebastian Curti
- Facultad de Medicina, Departamento de Fisiología, Laboratorio de Neurofisiología Celular, Universidad de la República, Montevideo 11800, Uruguay.
| | | | | | | |
Collapse
|
8
|
|
9
|
Slomianka L, Amrein I, Knuesel I, Sørensen JC, Wolfer DP. Hippocampal pyramidal cells: the reemergence of cortical lamination. Brain Struct Funct 2011; 216:301-17. [PMID: 21597968 PMCID: PMC3197924 DOI: 10.1007/s00429-011-0322-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 04/26/2011] [Indexed: 12/16/2022]
Abstract
The increasing resolution of tract-tracing studies has led to the definition of segments along the transverse axis of the hippocampal pyramidal cell layer, which may represent functionally defined elements. This review will summarize evidence for a morphological and functional differentiation of pyramidal cells along the radial (deep to superficial) axis of the cell layer. In many species, deep and superficial sublayers can be identified histologically throughout large parts of the septotemporal extent of the hippocampus. Neurons in these sublayers are generated during different periods of development. During development, deep and superficial cells express genes (Sox5, SatB2) that also specify the phenotypes of superficial and deep cells in the neocortex. Deep and superficial cells differ neurochemically (e.g. calbindin and zinc) and in their adult gene expression patterns. These markers also distinguish sublayers in the septal hippocampus, where they are not readily apparent histologically in rat or mouse. Deep and superficial pyramidal cells differ in septal, striatal, and neocortical efferent connections. Distributions of deep and superficial pyramidal cell dendrites and studies in reeler or sparsely GFP-expressing mice indicate that this also applies to afferent pathways. Histological, neurochemical, and connective differences between deep and superficial neurons may correlate with (patho-) physiological phenomena specific to pyramidal cells at different radial locations. We feel that an appreciation of radial subdivisions in the pyramidal cell layer reminiscent of lamination in other cortical areas may be critical in the interpretation of studies of hippocampal anatomy and function.
Collapse
Affiliation(s)
- Lutz Slomianka
- Institute of Anatomy, University of Zürich, 8057 Zürich, Switzerland.
| | | | | | | | | |
Collapse
|
10
|
Beaumont M, Maccaferri G. Is connexin36 critical for GABAergic hypersynchronization in the hippocampus? J Physiol 2011; 589:1663-80. [PMID: 21300748 PMCID: PMC3099022 DOI: 10.1113/jphysiol.2010.201491] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 02/07/2011] [Indexed: 11/08/2022] Open
Abstract
Synchronous bursting of cortical GABAergic interneurons is important in epilepsies associated with excitatory GABAergic signalling. If electrical coupling was critical for the generation of this pathological activity, then the development of selective blockers of connexin36-based interneuronal gap junctions could be of therapeutic value. We have addressed this issue in the 4-aminopyridine model of epilepsy in vitro by comparing GABAergic epileptiform currents and their sensitivity to gap junction blockers in wild-type vs. connexin36 knockout mice. Although electrical coupling was abolished in stratum lacunosum-moleculare interneurons from knockout animals, epileptiform currents were not eliminated. Furthermore, epileptiform currents propagated similarly across hippocampal layers in the two genotypic groups. Blockade of electrical coupling with carbenoxolone suppressed amplitude, frequency and half-width of the epileptiform currents both in wild-type and in knockout animals, whereas mefloquine had no effects. Carbenoxolone also depressed responses to exogenous and synaptic GABA application onto interneurons. We conclude that, in the 4-aminopyridine model of epilepsy in vitro, connexin36 is not critical for the generation of epileptiform discharges in GABAergic networks and that the observed antiepileptic effects of carbenoxolone are likely to be due to blockade of GABAA receptors and not of connexin36-based gap junctions. Lastly, because of its chemical structure and its effects on amplitude and kinetics of GABAergic currents, we tested the hypothesis that carbenoxolone acted via specific sites on GABAA receptors, such as the one mediating the effects of the neurosteroid pregnenolone sulfate, or the allosteric regulatory site of benzodiazepines/β-carbolines. Our results suggest that neither of these is involved.
Collapse
Affiliation(s)
- Michael Beaumont
- Northwestern University Interdepartmental Neuroscience Program, Department of Physiology, Feinberg School of Medicine, 303 E Chicago Ave, Tarry Blg Rm 5-707, Chicago, IL 60611, USA
| | | |
Collapse
|
11
|
Pannexin channels in ATP release and beyond: an unexpected rendezvous at the endoplasmic reticulum. Cell Signal 2010; 23:305-16. [PMID: 20688156 DOI: 10.1016/j.cellsig.2010.07.018] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 07/22/2010] [Indexed: 01/13/2023]
Abstract
The pannexin (Panx) family of proteins, which is co-expressed with connexins (Cxs) in vertebrates, was found to be a new GJ-forming protein family related to invertebrate innexins. During the past ten years, different studies showed that Panxs mainly form hemichannels in the plasma membrane and mediate paracrine signalling by providing a flux pathway for ions such as Ca²(+), for ATP and perhaps for other compounds, in response to physiological and pathological stimuli. Although the physiological role of Panxs as a hemichannel was questioned, there is increasing evidence that Panx play a role in vasodilatation, initiation of inflammatory responses, ischemic death of neurons, epilepsy and in tumor suppression. Moreover, it is intriguing that Panxs may also function at the endoplasmic reticulum (ER) as intracellular Ca²(+)-leak channel and may be involved in ER-related functions. Although the physiological significance and meaning of such Panx-regulated intracellular Ca²(+) leak requires further exploration, this functional property places Panx at the centre of many physiological and pathophysiological processes, given the fundamental role of intracellular Ca²(+) homeostasis and dynamics in a plethora of physiological processes. In this review, we therefore want to focus on Panx as channels at the plasma membrane and at the ER membranes with a particular emphasis on the potential implications of the latter in intracellular Ca²(+) signalling.
Collapse
|
12
|
Hettiarachchi NT, Dallas ML, Pearson HA, Bruce G, Deuchars S, Boyle JP, Peers C. Gap junction-mediated spontaneous Ca(2+) waves in differentiated cholinergic SN56 cells. Biochem Biophys Res Commun 2010; 397:564-8. [PMID: 20573603 DOI: 10.1016/j.bbrc.2010.05.159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 05/31/2010] [Indexed: 11/27/2022]
Abstract
Neuronal gap junctions are receiving increasing attention as a physiological means of intercellular communication, yet our understanding of them is poorly developed when compared to synaptic communication. Using microfluorimetry, we demonstrate that differentiation of SN56 cells (hybridoma cells derived from murine septal neurones) leads to the spontaneous generation of Ca(2+) waves. These waves were unaffected by tetrodotoxin (1microM), but blocked by removal of extracellular Ca(2+), or addition of non-specific Ca(2+) channel inhibitors (Cd(2+) (0.1mM) or Ni(2+) (1mM)). Combined application of antagonists of NMDA receptors (AP5; 100microM), AMPA/kainate receptors (NBQX; 20microM), nicotinic AChR receptors (hexamethonium; 100microM) or inotropic purinoceptors (brilliant blue; 100nM) was also without effect. However, Ca(2+) waves were fully prevented by carbenoxolone (200microM), halothane (3mM) or niflumic acid (100microM), three structurally diverse inhibitors of gap junctions, and mRNA for connexin 36 was detected by PCR. Whole-cell patch-clamp recordings revealed spontaneous inward currents in voltage-clamped cells which we inhibited by Cd(2+), Ni(2+) or niflumic acid. Our data suggest that differentiated SN56 cells generated spontaneous Ca(2+) waves which are propagated by intercellular gap junctions. We propose that this system can be exploited conveniently for the development of neuronal gap junction modulators.
Collapse
|
13
|
Weiss SA, Faber DS. Field effects in the CNS play functional roles. Front Neural Circuits 2010; 4:15. [PMID: 20508749 PMCID: PMC2876880 DOI: 10.3389/fncir.2010.00015] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Accepted: 04/23/2010] [Indexed: 11/22/2022] Open
Abstract
An endogenous electrical field effect, i.e., ephaptic transmission, occurs when an electric field associated with activity occurring in one neuron polarizes the membrane of another neuron. It is well established that field effects occur during pathological conditions, such as epilepsy, but less clear if they play a functional role in the healthy brain. Here, we describe the principles of field effect interactions, discuss identified field effects in diverse brain structures from the teleost Mauthner cell to the mammalian cortex, and speculate on the function of these interactions. Recent evidence supports that relatively weak endogenous and exogenous field effects in laminar structures reach significance because they are amplified by network interactions. Such interactions may be important in rhythmogenesis for the cortical slow wave and hippocampal sharp wave-ripple, and also during transcranial stimulation.
Collapse
Affiliation(s)
- Shennan A. Weiss
- Department of Neuroscience, Albert Einstein College of MedicineBronx, NY, USA
| | - Donald S. Faber
- Department of Neuroscience, Albert Einstein College of MedicineBronx, NY, USA
| |
Collapse
|
14
|
Hameroff S. The "conscious pilot"-dendritic synchrony moves through the brain to mediate consciousness. J Biol Phys 2010; 36:71-93. [PMID: 19669425 PMCID: PMC2791805 DOI: 10.1007/s10867-009-9148-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Accepted: 02/18/2009] [Indexed: 11/24/2022] Open
Abstract
Cognitive brain functions including sensory processing and control of behavior are understood as "neurocomputation" in axonal-dendritic synaptic networks of "integrate-and-fire" neurons. Cognitive neurocomputation with consciousness is accompanied by 30- to 90-Hz gamma synchrony electroencephalography (EEG), and non-conscious neurocomputation is not. Gamma synchrony EEG derives largely from neuronal groups linked by dendritic-dendritic gap junctions, forming transient syncytia ("dendritic webs") in input/integration layers oriented sideways to axonal-dendritic neurocomputational flow. As gap junctions open and close, a gamma-synchronized dendritic web can rapidly change topology and move through the brain as a spatiotemporal envelope performing collective integration and volitional choices correlating with consciousness. The "conscious pilot" is a metaphorical description for a mobile gamma-synchronized dendritic web as vehicle for a conscious agent/pilot which experiences and assumes control of otherwise non-conscious auto-pilot neurocomputation.
Collapse
Affiliation(s)
- Stuart Hameroff
- Department of Anesthesiology, Center for Consciousness Studies, University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
15
|
Nielsen JV, Blom JB, Noraberg J, Jensen NA. Zbtb20-induced CA1 pyramidal neuron development and area enlargement in the cerebral midline cortex of mice. ACTA ACUST UNITED AC 2009; 20:1904-14. [PMID: 19955470 DOI: 10.1093/cercor/bhp261] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Expression of the transcriptional repressor Zbtb20 is confined to the hippocampal primordium of the developing dorsal midline cortex in mice. Here, we show that misexpression of Zbtb20 converts projection neurons of the subiculum and postsubiculum (dorsal presubiculum) to CA1 pyramidal neurons that are innervated by Schaffer collateral projections in ectopic strata oriens and radiatum. The Zbtb20-transformed neurons express Bcl11B, Satb2, and Calbindin-D28k, which are markers of adult CA1 pyramidal neurons. Downregulation of Zbtb20 expression by RNA interference impairs the normal maturation of CA1 pyramidal neurons resulting in deficiencies in Calbindin-D28k expression and in reduced apical dendritic arborizations in stratum lacunosum moleculare. Overall, the results show that Zbtb20 is required for various aspects of CA1 pyramidal neuron development such as the postnatal extension of apical dendritic arbors in the distal target zone and the subtype differentiation of Calbindin-D28k-positive subsets. They further suggest that Zbtb20 plays a role in arealization of the midline cortex.
Collapse
Affiliation(s)
- Jakob V Nielsen
- Molecular Neurobiology Laboratory, Medical Biotechnology Center, Department of Molecular Medicine, University of Southern Denmark, J.B. Winslows Vej 25, DK-5000 Odense C, Denmark
| | | | | | | |
Collapse
|
16
|
Thompson RJ, Jackson MF, Olah ME, Rungta RL, Hines DJ, Beazely MA, MacDonald JF, MacVicar BA. Activation of pannexin-1 hemichannels augments aberrant bursting in the hippocampus. Science 2008; 322:1555-9. [PMID: 19056988 DOI: 10.1126/science.1165209] [Citation(s) in RCA: 280] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pannexin-1 (Px1) is expressed at postsynaptic sites in pyramidal neurons, suggesting that these hemichannels contribute to dendritic signals associated with synaptic function. We found that, in pyramidal neurons, N-methyl-d-aspartate receptor (NMDAR) activation induced a secondary prolonged current and dye flux that were blocked with a specific inhibitory peptide against Px1 hemichannels; knockdown of Px1 by RNA interference blocked the current in cultured neurons. Enhancing endogenous NMDAR activation in brain slices by removing external magnesium ions (Mg2+) triggered epileptiform activity, which had decreased spike amplitude and prolonged interburst interval during application of the Px1 hemichannel blocking peptide. We conclude that Px1 hemichannel opening is triggered by NMDAR stimulation and can contribute to epileptiform seizure activity.
Collapse
Affiliation(s)
- Roger J Thompson
- Department of Psychiatry and Brain Research Centre, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada.
| | | | | | | | | | | | | | | |
Collapse
|