1
|
Tang F, Yan F, Zhong Y, Li J, Gong H, Li X. Optogenetic Brain-Computer Interfaces. Bioengineering (Basel) 2024; 11:821. [PMID: 39199779 PMCID: PMC11351350 DOI: 10.3390/bioengineering11080821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
The brain-computer interface (BCI) is one of the most powerful tools in neuroscience and generally includes a recording system, a processor system, and a stimulation system. Optogenetics has the advantages of bidirectional regulation, high spatiotemporal resolution, and cell-specific regulation, which expands the application scenarios of BCIs. In recent years, optogenetic BCIs have become widely used in the lab with the development of materials and software. The systems were designed to be more integrated, lightweight, biocompatible, and power efficient, as were the wireless transmission and chip-level embedded BCIs. The software is also constantly improving, with better real-time performance and accuracy and lower power consumption. On the other hand, as a cutting-edge technology spanning multidisciplinary fields including molecular biology, neuroscience, material engineering, and information processing, optogenetic BCIs have great application potential in neural decoding, enhancing brain function, and treating neural diseases. Here, we review the development and application of optogenetic BCIs. In the future, combined with other functional imaging techniques such as near-infrared spectroscopy (fNIRS) and functional magnetic resonance imaging (fMRI), optogenetic BCIs can modulate the function of specific circuits, facilitate neurological rehabilitation, assist perception, establish a brain-to-brain interface, and be applied in wider application scenarios.
Collapse
Affiliation(s)
- Feifang Tang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China; (F.T.); (F.Y.); (Y.Z.); (J.L.); (H.G.)
| | - Feiyang Yan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China; (F.T.); (F.Y.); (Y.Z.); (J.L.); (H.G.)
| | - Yushan Zhong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China; (F.T.); (F.Y.); (Y.Z.); (J.L.); (H.G.)
| | - Jinqian Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China; (F.T.); (F.Y.); (Y.Z.); (J.L.); (H.G.)
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China; (F.T.); (F.Y.); (Y.Z.); (J.L.); (H.G.)
| | - Xiangning Li
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
2
|
Vázquez D, Maulhardt SR, Stalnaker TA, Solway A, Charpentier CJ, Roesch MR. Optogenetic Inhibition of Rat Anterior Cingulate Cortex Impairs the Ability to Initiate and Stay on Task. J Neurosci 2024; 44:e1850232024. [PMID: 38569923 PMCID: PMC11097287 DOI: 10.1523/jneurosci.1850-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 04/05/2024] Open
Abstract
Our prior research has identified neural correlates of cognitive control in the anterior cingulate cortex (ACC), leading us to hypothesize that the ACC is necessary for increasing attention as rats flexibly learn new contingencies during a complex reward-guided decision-making task. Here, we tested this hypothesis by using optogenetics to transiently inhibit the ACC, while rats of either sex performed the same two-choice task. ACC inhibition had a profound impact on behavior that extended beyond deficits in attention during learning when expected outcomes were uncertain. We found that ACC inactivation slowed and reduced the number of trials rats initiated and impaired both their accuracy and their ability to complete sessions. Furthermore, drift-diffusion model analysis suggested that free-choice performance and evidence accumulation (i.e., reduced drift rates) were degraded during initial learning-leading to weaker associations that were more easily overridden in later trial blocks (i.e., stronger bias). Together, these results suggest that in addition to attention-related functions, the ACC contributes to the ability to initiate trials and generally stay on task.
Collapse
Affiliation(s)
- Daniela Vázquez
- Department of Psychology, University of Maryland, College Park, Maryland 20742
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742
| | - Sean R Maulhardt
- Department of Psychology, University of Maryland, College Park, Maryland 20742
| | - Thomas A Stalnaker
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland 21224
| | - Alec Solway
- Department of Psychology, University of Maryland, College Park, Maryland 20742
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742
| | - Caroline J Charpentier
- Department of Psychology, University of Maryland, College Park, Maryland 20742
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742
| | - Matthew R Roesch
- Department of Psychology, University of Maryland, College Park, Maryland 20742
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
3
|
Chen FD, Sharma A, Roszko DA, Xue T, Mu X, Luo X, Chua H, Lo PGQ, Sacher WD, Poon JKS. Development of wafer-scale multifunctional nanophotonic neural probes for brain activity mapping. LAB ON A CHIP 2024; 24:2397-2417. [PMID: 38623840 DOI: 10.1039/d3lc00931a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Optical techniques, such as optogenetic stimulation and functional fluorescence imaging, have been revolutionary for neuroscience by enabling neural circuit analysis with cell-type specificity. To probe deep brain regions, implantable light sources are crucial. Silicon photonics, commonly used for data communications, shows great promise in creating implantable devices with complex optical systems in a compact form factor compatible with high volume manufacturing practices. This article reviews recent developments of wafer-scale multifunctional nanophotonic neural probes. The probes can be realized on 200 or 300 mm wafers in commercial foundries and integrate light emitters for photostimulation, microelectrodes for electrophysiological recording, and microfluidic channels for chemical delivery and sampling. By integrating active optical devices to the probes, denser emitter arrays, enhanced on-chip biosensing, and increased ease of use may be realized. Silicon photonics technology makes possible highly versatile implantable neural probes that can transform neuroscience experiments.
Collapse
Affiliation(s)
- Fu Der Chen
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany.
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Ankita Sharma
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany.
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - David A Roszko
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany.
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Tianyuan Xue
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany.
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Xin Mu
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany.
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Xianshu Luo
- Advanced Micro Foundry Pte Ltd, 11 Science Park Road, Singapore Science Park II, 117685, Singapore
| | - Hongyao Chua
- Advanced Micro Foundry Pte Ltd, 11 Science Park Road, Singapore Science Park II, 117685, Singapore
| | - Patrick Guo-Qiang Lo
- Advanced Micro Foundry Pte Ltd, 11 Science Park Road, Singapore Science Park II, 117685, Singapore
| | - Wesley D Sacher
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany.
| | - Joyce K S Poon
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany.
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| |
Collapse
|
4
|
Zhan S, Qi Z, Cai F, Gao Z, Xie J, Hu J. Oxytocin neurons mediate stress-induced social memory impairment. Curr Biol 2024; 34:36-45.e4. [PMID: 38103551 DOI: 10.1016/j.cub.2023.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 10/27/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023]
Abstract
Oxytocin has long been thought to play a substantial role in social behaviors, such as social attachment and parenting behavior. However, how oxytocin neurons respond to social and non-social stimuli is largely unknown, especially in high temporal resolution. Here, we recorded the in vivo real-time responses of oxytocin neurons in the paraventricular nucleus of the hypothalamus (PVN) in freely behaving mice. Our results revealed that oxytocin neurons were activated more significantly by stressors than social stimuli. The activation of oxytocin neurons was precisely correlated with struggling behavior during stress. Furthermore, we found that oxytocin mediated stress-induced social memory impairment. Our results reveal an important role of PVN oxytocin neurons in stress-induced social amnesia.
Collapse
Affiliation(s)
- Shulu Zhan
- School of Life Science and Technology, ShanghaiTech University, 393 Huaxia Middle Road, Shanghai 201210, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Institute of Neuroscience, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenhua Qi
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Fang Cai
- School of Life Science and Technology, ShanghaiTech University, 393 Huaxia Middle Road, Shanghai 201210, China
| | - Zilong Gao
- Chinese Institute for Brain Research, Beijing (CIBR), Bldg. 3, No. 9, YIKE Rd, Zhongguancun Life Science Park, Changping District, Beijing 102206, China.
| | - Jingdun Xie
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China.
| | - Ji Hu
- School of Life Science and Technology, ShanghaiTech University, 393 Huaxia Middle Road, Shanghai 201210, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| |
Collapse
|
5
|
Catron MA, Howe RK, Besing GLK, St. John EK, Potesta CV, Gallagher MJ, Macdonald RL, Zhou C. Sleep slow-wave oscillations trigger seizures in a genetic epilepsy model of Dravet syndrome. Brain Commun 2022; 5:fcac332. [PMID: 36632186 PMCID: PMC9830548 DOI: 10.1093/braincomms/fcac332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Sleep is the preferential period when epileptic spike-wave discharges appear in human epileptic patients, including genetic epileptic seizures such as Dravet syndrome with multiple mutations including SCN1A mutation and GABAA receptor γ2 subunit Gabrg2Q390X mutation in patients, which presents more severe epileptic symptoms in female patients than male patients. However, the seizure onset mechanism during sleep still remains unknown. Our previous work has shown that the sleep-like state-dependent homeostatic synaptic potentiation can trigger epileptic spike-wave discharges in one transgenic heterozygous Gabrg2+/Q390X knock-in mouse model.1 Here, using this heterozygous knock-in mouse model, we hypothesized that slow-wave oscillations themselves in vivo could trigger epileptic seizures. We found that epileptic spike-wave discharges in heterozygous Gabrg2+/Q390X knock-in mice exhibited preferential incidence during non-rapid eye movement sleep period, accompanied by motor immobility/facial myoclonus/vibrissal twitching and more frequent spike-wave discharge incidence appeared in female heterozygous knock-in mice than male heterozygous knock-in mice. Optogenetically induced slow-wave oscillations in vivo significantly increased epileptic spike-wave discharge incidence in heterozygous Gabrg2+/Q390X knock-in mice with longer duration of non-rapid eye movement sleep or quiet-wakeful states. Furthermore, suppression of slow-wave oscillation-related homeostatic synaptic potentiation by 4-(diethylamino)-benzaldehyde injection (i.p.) greatly attenuated spike-wave discharge incidence in heterozygous knock-in mice, suggesting that slow-wave oscillations in vivo did trigger seizure activity in heterozygous knock-in mice. Meanwhile, sleep spindle generation in wild-type littermates and heterozygous Gabrg2+/Q390X knock-in mice involved the slow-wave oscillation-related homeostatic synaptic potentiation that also contributed to epileptic spike-wave discharge generation in heterozygous Gabrg2+/Q390X knock-in mice. In addition, EEG spectral power of delta frequency (0.1-4 Hz) during non-rapid eye movement sleep was significantly larger in female heterozygous Gabrg2+/Q390X knock-in mice than that in male heterozygous Gabrg2+/Q390X knock-in mice, which likely contributes to the gender difference in seizure incidence during non-rapid eye movement sleep/quiet-wake states of human patients. Overall, all these results indicate that slow-wave oscillations in vivo trigger the seizure onset in heterozygous Gabrg2+/Q390X knock-in mice, preferentially during non-rapid eye movement sleep period and likely generate the sex difference in seizure incidence between male and female heterozygous Gabrg2+/Q390X knock-in mice.
Collapse
Affiliation(s)
- Mackenzie A Catron
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Neuroscience Graduate Program, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachel K Howe
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Gai-Linn K Besing
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Emily K St. John
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Martin J Gallagher
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Neuroscience Graduate Program, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert L Macdonald
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Neuroscience Graduate Program, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Chengwen Zhou
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Neuroscience Graduate Program, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
6
|
Wilmerding LK, Yazdanbakhsh A, Hasselmo ME. Impact of optogenetic pulse design on CA3 learning and replay: A neural model. CELL REPORTS METHODS 2022; 2:100208. [PMID: 35637904 PMCID: PMC9142690 DOI: 10.1016/j.crmeth.2022.100208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 10/22/2021] [Accepted: 04/11/2022] [Indexed: 11/23/2022]
Abstract
Optogenetic manipulation of hippocampal circuitry is an important tool for investigating learning in vivo. Numerous approaches to pulse design have been employed to elicit desirable circuit and behavioral outcomes. Here, we systematically test the outcome of different single-pulse waveforms in a rate-based model of hippocampal memory function at the level of mnemonic replay extension and de novo synaptic weight formation in CA3 and CA1. Lower-power waveforms with long forward or forward and backward ramps yield more natural sequence replay dynamics and induce synaptic plasticity that allows for more natural memory replay timing, in contrast to square or backward ramps. These differences between waveform shape and amplitude are preserved with the addition of noise in membrane potential, light scattering, and protein expression, improving the potential validity of predictions for in vivo work. These results inform future optogenetic experimental design choices in the field of learning and memory.
Collapse
Affiliation(s)
- Lucius K. Wilmerding
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
| | - Arash Yazdanbakhsh
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
| | - Michael E. Hasselmo
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
| |
Collapse
|
7
|
Jiang S, Wu X, Rommelfanger NJ, Ou Z, Hong G. Shedding light on neurons: optical approaches for neuromodulation. Natl Sci Rev 2022; 9:nwac007. [PMID: 36196122 PMCID: PMC9522429 DOI: 10.1093/nsr/nwac007] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/17/2021] [Accepted: 12/29/2021] [Indexed: 11/14/2022] Open
Abstract
Today's optical neuromodulation techniques are rapidly evolving, benefiting from advances in photonics, genetics and materials science. In this review, we provide an up-to-date overview of the latest optical approaches for neuromodulation. We begin with the physical principles and constraints underlying the interaction between light and neural tissue. We then present advances in optical neurotechnologies in seven modules: conventional optical fibers, multifunctional fibers, optical waveguides, light-emitting diodes, upconversion nanoparticles, optical neuromodulation based on the secondary effects of light, and unconventional light sources facilitated by ultrasound and magnetic fields. We conclude our review with an outlook on new methods and mechanisms that afford optical neuromodulation with minimal invasiveness and footprint.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
| | - Xiang Wu
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
| | - Nicholas J Rommelfanger
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
- Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA
| | - Zihao Ou
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
| | - Guosong Hong
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
8
|
Dokshokova L, Pianca N, Zaglia T, Mongillo M. Optogenetic Control of Heart Rhythm: Lightly Guiding the Cardiac Pace. Methods Mol Biol 2022; 2483:205-229. [PMID: 35286678 DOI: 10.1007/978-1-0716-2245-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
It is well appreciated that, differently from skeletal muscles, the heart contracts independently from neurogenic inputs. However, the speed and force of heartbeats are finely modulated during stresses, emotions, and daily activities, by the autonomic neurons (both parasympathetic and sympathetic) which highly innervate the myocardium. Despite this aspect of cardiac physiology has been known for long, research has only recently shed light on the biophysical mechanisms underlying the meticulous adaptation of heart activity to the needs of the organism. A conceptual advancement in this regard has come from the use of optogenetics, a revolutionary methodology which allows to control the activity of a given excitable cell type, with high specificity, temporal and spatial resolution, within intact tissues and organisms. The method, widely affirmed in the field of neuroscience, has more recently been exploited also in research on heart physiology and pathology, including the study of the mechanisms regulating heart rhythm. The last point is the object of this book chapter which, starting from the description of the physiology of heart rhythm automaticity and the neurogenic modulation of heart rate, makes an excursus on the theoretical basis of such biotechnology (with its advantages and limitations), and presents a series of examples in cardiac and neuro-cardiac optogenetics.
Collapse
Affiliation(s)
- Lolita Dokshokova
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Nicola Pianca
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Tania Zaglia
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
- Veneto Institute of Molecular Medicine, Padova, Italy.
| | - Marco Mongillo
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
- Veneto Institute of Molecular Medicine, Padova, Italy.
| |
Collapse
|
9
|
Keshmiri Neghab H, Soheilifar MH, Grusch M, Ortega MM, Esmaeeli Djavid G, Saboury AA, Goliaei B. The state of the art of biomedical applications of optogenetics. Lasers Surg Med 2021; 54:202-216. [PMID: 34363230 DOI: 10.1002/lsm.23463] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 07/08/2021] [Accepted: 07/23/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND OBJECTIVE Optogenetics has opened new insights into biomedical research with the ability to manipulate and control cellular activity using light in combination with genetically engineered photosensitive proteins. By stimulating with light, this method provides high spatiotemporal and high specificity resolution, which is in contrast to conventional pharmacological or electrical stimulation. Optogenetics was initially introduced to control neural activities but was gradually extended to other biomedical fields. STUDY DESIGN In this paper, firstly, we summarize the current optogenetic tools stimulated by different light sources, including lasers, light-emitting diodes, and laser diodes. Second, we outline the variety of biomedical applications of optogenetics not only for neuronal circuits but also for various kinds of cells and tissues from cardiomyocytes to ganglion cells. Furthermore, we highlight the potential of this technique for treating neurological disorders, cardiac arrhythmia, visual impairment, hearing loss, and urinary bladder diseases as well as clarify the mechanisms underlying cancer progression and control of stem cell differentiation. CONCLUSION We sought to summarize the various types of promising applications of optogenetics to treat a broad spectrum of disorders. It is conceivable to expect that optogenetics profits a growing number of patients suffering from a range of different diseases in the near future.
Collapse
Affiliation(s)
- Hoda Keshmiri Neghab
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | | | - Michael Grusch
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Manoela Marques Ortega
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University, Bragança Paulista, São Paulo, Brazil
| | - Gholamreza Esmaeeli Djavid
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Ali Akbar Saboury
- Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Bahram Goliaei
- Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
10
|
Tisdale RK, Yamanaka A, Kilduff TS. Animal models of narcolepsy and the hypocretin/orexin system: Past, present, and future. Sleep 2021; 44:6031626. [PMID: 33313880 DOI: 10.1093/sleep/zsaa278] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/04/2020] [Indexed: 11/12/2022] Open
Abstract
Animal models have advanced not only our understanding of the etiology and phenotype of the sleep disorder narcolepsy but have also informed sleep/wake regulation more generally. The identification of an inheritable narcolepsy phenotype in dogs in the 1970s allowed the establishment of a breeding colony at Stanford University, resulting in studies that provided the first insights into the genetics and neurotransmitter systems that underlie cataplexy and rapid-eye movement sleep atonia. Although the discovery of the hypocretin/orexin neuropeptides in 1998 initially seemed unrelated to sleep/wake control, the description of the phenotype of the prepro-orexin knockout (KO) mouse as strongly resembling cataplexy, the pathognomonic symptom of narcolepsy, along with identification of a mutation in hypocretin receptor-2 gene as the source of canine narcolepsy, unequivocally established the relationship between this system and narcolepsy. The subsequent discovery of hypocretin neuron degeneration in human narcolepsy demystified a disorder whose etiology had been unknown since its initial description 120 years earlier. These breakthroughs prompted the development of numerous other animal models that have allowed manipulation of the hypocretin/orexin system, thereby advancing our understanding of sleep/wake circuitry. While animal models have greatly informed understanding of this fascinating disorder and the role of the hypocretin/orexin system in sleep/wake control, the question of why these neurons degenerate in human narcolepsy is only beginning to be understood. The development of new immune-mediated narcolepsy models are likely to further inform the etiology of this sleep disorder and animal models will undoubtedly play a critical role in the development of novel narcolepsy therapeutics.
Collapse
Affiliation(s)
- Ryan K Tisdale
- Center for Neuroscience, Biosciences Division, SRI International
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Japan.,Department of Neural Regulation, Nagoya University Graduate School of Medicine, Japan
| | - Thomas S Kilduff
- Center for Neuroscience, Biosciences Division, SRI International
| |
Collapse
|
11
|
Feroz H, Ferlez B, Oh H, Mohammadiarani H, Ren T, Baker CS, Gajewski JP, Lugar DJ, Gaudana SB, Butler P, Hühn J, Lamping M, Parak WJ, Blatt MR, Kerfeld CA, Smirnoff N, Vashisth H, Golbeck JH, Kumar M. Liposome-based measurement of light-driven chloride transport kinetics of halorhodopsin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183637. [PMID: 33930372 DOI: 10.1016/j.bbamem.2021.183637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 04/14/2021] [Accepted: 04/22/2021] [Indexed: 11/30/2022]
Abstract
We report a simple and direct fluorimetric vesicle-based method for measuring the transport rate of the light-driven ions pumps as specifically applied to the chloride pump, halorhodopsin, from Natronomonas pharaonis (pHR). Previous measurements were cell-based and methods to determine average single channel permeability challenging. We used a water-in-oil emulsion method for directional pHR reconstitution into two different types of vesicles: lipid vesicles and asymmetric lipid-block copolymer vesicles. We then used stopped-flow experiments combined with fluorescence correlation spectroscopy to determine per protein Cl- transport rates. We obtained a Cl- transport rate of 442 (±17.7) Cl-/protein/s in egg phosphatidyl choline (PC) lipid vesicles and 413 (±26) Cl-/protein/s in hybrid block copolymer/lipid (BCP/PC) vesicles with polybutadine-polyethylene oxide (PB12PEO8) on the outer leaflet and PC in the inner leaflet at a photon flux of 1450 photons/protein/s. Normalizing to a per photon basis, this corresponds to 0.30 (±0.07) Cl-/photon and 0.28 (±0.04) Cl-/photon for pure PC and BCP/PC hybrid vesicles respectively, both of which are in agreement with recently reported turnover of ~500 Cl-/protein/s from flash photolysis experiments and with voltage-clamp measurements of 0.35 (±0.16) Cl-/photon in pHR-expressing oocytes as well as with a pHR quantum efficiency of ~30%.
Collapse
Affiliation(s)
- Hasin Feroz
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Bryan Ferlez
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Hyeonji Oh
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | | | - Tingwei Ren
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Carol S Baker
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - John P Gajewski
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Daniel J Lugar
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Sandeep B Gaudana
- MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Peter Butler
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Jonas Hühn
- Department of Physics and Chemistry, Philipps University of Marburg, Marburg, Germany
| | - Matthias Lamping
- Department of Physics and Chemistry, Philipps University of Marburg, Marburg, Germany
| | - Wolfgang J Parak
- Center of Hybrid Nanostructures (CHyN), Universität Hamburg, Hamburg, Germany
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, Institute of Molecular Cell and Systems Biology, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA; Environmental Genomics and Systems Biology and Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Harish Vashisth
- Department of Chemical Engineering, The University of New Hampshire, Durham, NH, USA
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA; Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Manish Kumar
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
12
|
Shams Najafabadi H, Sadeghi M, Zibaii MI, Soheili ZS, Samiee S, Ghasemi P, Hosseini M, Gholami Pourbadie H, Ahmadieh H, Taghizadeh S, Ranaei Pirmardan E. Optogenetic control of neural differentiation in Opto-mGluR6 engineered retinal pigment epithelial cell line and mesenchymal stem cells. J Cell Biochem 2021; 122:851-869. [PMID: 33847009 DOI: 10.1002/jcb.29918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 11/11/2022]
Abstract
In retinal degenerative disorders, when neural retinal cells are damaged, cell transplantation is one of the most promising therapeutic approaches. Optogenetic technology plays an essential role in the neural differentiation of stem cells via membrane depolarization. This study explored the efficacy of blue light stimulation in neuroretinal differentiation of Opto-mGluR6-engineered mouse retinal pigment epithelium (mRPE) and bone marrow mesenchymal stem cells (BMSCs). mRPE and BMSCs were selected for optogenetic study due to their capability to differentiate into retinal-specific neurons. BMSCs were isolated and phenotypically characterized by the expression of mesenchymal stem cell-specific markers, CD44 (99%) and CD105 (98.8%). mRPE culture identity was confirmed by expression of RPE-specific marker, RPE65, and epithelial cell marker, ZO-1. mRPE cells and BMSCs were transduced with AAV-MCS-IRES-EGFP-Opto-mGluR6 viral vector and stimulated for 5 days with blue light (470 nm). RNA and protein expression of Opto-mGluR6 were verified. Optogenetic stimulation-induced elevated intracellular Ca2+ levels in mRPE- and BMS-treated cells. Significant increase in cell growth rate and G1/S phase transition were detected in mRPE- and BMSCs-treated cultures. Pou4f1, Dlx2, Eomes, Barlh2, Neurod2, Neurod6, Rorb, Rxrg, Nr2f2, Ascl1, Hes5, and Sox8 were overexpressed in treated BMSCs and Barlh2, Rorb, and Sox8 were overexpressed in treated mRPE cells. Expression of Rho, Thy1, OPN1MW, Recoverin, and CRABP, as retinal-specific neuron markers, in mRPE and BMS cell cultures were demonstrated. Differentiation of ganglion, amacrine, photoreceptor cells, and bipolar and Muller precursors were determined in BMSCs-treated culture and were compared with mRPE. mRPE cells represented more abundant terminal Muller glial differentiation compared with BMSCs. Our results also demonstrated that optical stimulation increased the intracellular Ca2+ level and proliferation and differentiation of Opto-mGluR6-engineered BMSCs. It seems that optogenetic stimulation of mRPE- and BMSCs-engineered cells would be a potential therapeutic approach for retinal degenerative disorders.
Collapse
Affiliation(s)
- Hoda Shams Najafabadi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mehdi Sadeghi
- Department of Medical Genetics, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohammad I Zibaii
- Laser & Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Zahra-Soheila Soheili
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Shahram Samiee
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Pouria Ghasemi
- Laser & Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Mohammad Hosseini
- Laser & Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | | | - Hamid Ahmadieh
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Taghizadeh
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Ehsan Ranaei Pirmardan
- Molecular Biomarkers Nano-imaging Laboratory, Brigham & Women's Hospital, Department of Radiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Berglund K, Stern MA, Gross RE. Bioluminescence-Optogenetics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:281-293. [PMID: 33398820 DOI: 10.1007/978-981-15-8763-4_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
In this chapter, we introduce a relatively new, emerging method for molecular neuromodulation-bioluminescence-optogenetics. Bioluminescence-optogenetics is mediated by luminopsin fusion proteins-light-sensing opsins fused to light-emitting luciferases. We describe their structures and working mechanisms and discuss their unique benefits over conventional optogenetics and chemogenetics. We also summarize applications of bioluminescence-optogenetics in various neurological disease models in rodents.
Collapse
Affiliation(s)
- Ken Berglund
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA.
| | - Matthew A Stern
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Robert E Gross
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
14
|
Yamamoto N, Marks WD, Kitamura T. Cell-Type-Specific Optogenetic Techniques Reveal Neural Circuits Crucial for Episodic Memories. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:429-447. [PMID: 33398831 PMCID: PMC8612024 DOI: 10.1007/978-981-15-8763-4_28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The formation and maintenance of episodic memories are important for our daily life. Accumulating evidence from extensive studies with pharmacological, electrophysiological, and molecular biological approaches has shown that both entorhinal cortex (EC) and hippocampus (HPC) are crucial for the formation and recall of episodic memory. However, to further understand the neural mechanisms of episodic memory processes in the EC-HPC network, cell-type-specific manipulation of neural activity with high temporal resolution during memory process has become necessary. Recently, the technological innovation of optogenetics combined with pharmacological, molecular biological, and electrophysiological approaches has significantly advanced our understanding of the circuit mechanisms for learning and memory. Optogenetic techniques with transgenic mice and/or viral vectors enable us to manipulate the neural activity of specific cell populations as well as specific neural projections with millisecond-scale temporal control during animal behavior. Integrating optogenetics with drug-regulatable activity-dependent gene expression systems has identified memory engram cells, which are a subpopulation of cells that encode a specific episode. Finally, millisecond pulse stimulation of neural activity by optogenetics has further achieved (a) identification of synaptic connectivity between targeted pairs of neural populations, (b) cell-type-specific single-unit electrophysiological recordings, and (c) artificial induction and modification of synaptic plasticity in targeted synapses. In this chapter, we summarize technological and conceptual advancements in the field of neurobiology of learning and memory as revealed by optogenetic approaches in the rodent EC-HPC network for episodic memories.
Collapse
Affiliation(s)
- Naoki Yamamoto
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - William D Marks
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Takashi Kitamura
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
15
|
Bansal H, Gupta N, Roy S. Theoretical Analysis of Low-power Bidirectional Optogenetic Control of High-frequency Neural Codes with Single Spike Resolution. Neuroscience 2020; 449:165-188. [DOI: 10.1016/j.neuroscience.2020.09.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023]
|
16
|
Zhang CQ, Catron MA, Ding L, Hanna CM, Gallagher MJ, Macdonald RL, Zhou C. Impaired State-Dependent Potentiation of GABAergic Synaptic Currents Triggers Seizures in a Genetic Generalized Epilepsy Model. Cereb Cortex 2020; 31:768-784. [PMID: 32930324 DOI: 10.1093/cercor/bhaa256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 11/14/2022] Open
Abstract
Epileptic activity in genetic generalized epilepsy (GGE) patients preferentially appears during sleep and its mechanism remains unknown. Here, we found that sleep-like slow-wave oscillations (0.5 Hz SWOs) potentiated excitatory and inhibitory synaptic currents in layer V cortical pyramidal neurons from wild-type (wt) mouse brain slices. In contrast, SWOs potentiated excitatory, but not inhibitory, currents in cortical neurons from a heterozygous (het) knock-in (KI) Gabrg2+Q/390X model of Dravet epilepsy syndrome. This created an imbalance between evoked excitatory and inhibitory currents to effectively prompt neuronal action potential firings. Similarly, physiologically similar up-/down-state induction (present during slow-wave sleep) in cortical neurons also potentiated excitatory synaptic currents within brain slices from wt and het KI mice. Moreover, this state-dependent potentiation of excitatory synaptic currents entailed some signaling pathways of homeostatic synaptic plasticity. Consequently, in het KI mice, in vivo SWO induction (using optogenetic methods) triggered generalized epileptic spike-wave discharges (SWDs), being accompanied by sudden immobility, facial myoclonus, and vibrissa twitching. In contrast, in wt littermates, SWO induction did not cause epileptic SWDs and motor behaviors. To our knowledge, this is the first mechanism to explain why epileptic SWDs preferentially happen during non rapid eye-movement sleep and quiet-wakefulness in human GGE patients.
Collapse
Affiliation(s)
- Chun-Qing Zhang
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mackenzie A Catron
- Department of Neuroscience Graduate Program, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Li Ding
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Caitlyn M Hanna
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Martin J Gallagher
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Neuroscience Graduate Program, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert L Macdonald
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Neuroscience Graduate Program, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Chengwen Zhou
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Neuroscience Graduate Program, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
17
|
Harris JM, Wang AYD, Boulanger-Weill J, Santoriello C, Foianini S, Lichtman JW, Zon LI, Arlotta P. Long-Range Optogenetic Control of Axon Guidance Overcomes Developmental Boundaries and Defects. Dev Cell 2020; 53:577-588.e7. [PMID: 32516597 PMCID: PMC7375170 DOI: 10.1016/j.devcel.2020.05.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 03/12/2020] [Accepted: 05/11/2020] [Indexed: 01/12/2023]
Abstract
Axons connect neurons together, establishing the wiring architecture of neuronal networks. Axonal connectivity is largely built during embryonic development through highly constrained processes of axon guidance, which have been extensively studied. However, the inability to control axon guidance, and thus neuronal network architecture, has limited investigation of how axonal connections influence subsequent development and function of neuronal networks. Here, we use zebrafish motor neurons expressing a photoactivatable Rac1 to co-opt endogenous growth cone guidance machinery to precisely and non-invasively direct axon growth using light. Axons can be guided over large distances, within complex environments of living organisms, overriding competing endogenous signals and redirecting axons across potent repulsive barriers to construct novel circuitry. Notably, genetic axon guidance defects can be rescued, restoring functional connectivity. These data demonstrate that intrinsic growth cone guidance machinery can be co-opted to non-invasively build new connectivity, allowing investigation of neural network dynamics in intact living organisms.
Collapse
Affiliation(s)
- James M. Harris
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA.,Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02138, USA
| | - Andy Yu-Der Wang
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA.,Current Address: Tufts University School of Medicine, Boston, MA 02115, USA
| | - Jonathan Boulanger-Weill
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Cristina Santoriello
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA.,Stem Cell Program and Division of Hematology/Oncology, Children’s Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA 02115, USA
| | - Stephan Foianini
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Jeff W. Lichtman
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.,Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Leonard I. Zon
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA.,Stem Cell Program and Division of Hematology/Oncology, Children’s Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA 02115, USA
| | - Paola Arlotta
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02138, USA.,Lead contact. Correspondence:
| |
Collapse
|
18
|
Bansal H, Gupta N, Roy S. Comparison of low-power, high-frequency and temporally precise optogenetic inhibition of spiking in NpHR, eNpHR3.0 and Jaws-expressing neurons. Biomed Phys Eng Express 2020; 6:045011. [PMID: 33444272 DOI: 10.1088/2057-1976/ab90a1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A detailed theoretical analysis of low-power, high-frequency and temporally precise optogenetic inhibition of neuronal spiking, with red-shifted opsins namely, NpHR, eNpHR3.0 and Jaws, has been presented. An accurate model for inhibition of spiking in these opsins expressed hippocampal neurons that includes the important rebound activity of chloride ions across the membrane has been formulated. The effect of various parameters including irradiance, pulse width, frequency, opsin-expression density and chloride concentration has been studied in detail. Theoretical simulations are in very good agreement with reported experimental results. The chloride concentration gradient directly affects the photocurrent and inhibition capacity in all three variants. eNpHR3.0 shows smallest inhibitory post-synaptic potential plateau at higher frequencies. The time delay between light stimulus and target spike is crucial to minimize irradiance and expression density thresholds for suppressing individual spike. Good practical values of photostimulation parameters have been obtained empirically for peak photocurrent, time delay and 100% spiking inhibition, at continuous and pulsed illumination. Under continuous illumination, complete inhibition of neural activity in Jaws-expressing neurons takes place at minimum irradiance of 0.2 mW mm-2 and expression density of 0.2 mS cm-2, whereas for pulsed stimulation, it is at minimum irradiance of 0.6 mW mm-2 and 5 ms pulse width, at 10 Hz. It is shown that Jaws and eNpHR3.0 are able to invoke single spike precise inhibition up to 160 and 200 Hz, respectively. The study is useful in designing new experiments, understanding temporal spike coding and bidirectional control, and curing neurological disorders.
Collapse
Affiliation(s)
- Himanshu Bansal
- Department of Physics and Computer Science, Dayalbagh Educational Institute, Agra-282005, India
| | | | | |
Collapse
|
19
|
Hughes C, Herrera A, Gaunt R, Collinger J. Bidirectional brain-computer interfaces. BRAIN-COMPUTER INTERFACES 2020; 168:163-181. [DOI: 10.1016/b978-0-444-63934-9.00013-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
Zhang JY, Tung JK, Wang Z, Yu SP, Gross RE, Wei L, Berglund K. Improved trafficking and expression of luminopsins for more efficient optical and pharmacological control of neuronal activity. J Neurosci Res 2019; 98:481-490. [PMID: 31670406 DOI: 10.1002/jnr.24546] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 09/25/2019] [Accepted: 10/11/2019] [Indexed: 01/08/2023]
Abstract
Luminopsins (LMOs) are chimeric proteins consisting of a luciferase fused to an opsin that provide control of neuronal activity, allowing for less cumbersome and less invasive optogenetic manipulation. It was previously shown that both an external light source and the luciferase substrate, coelenterazine (CTZ), could modulate activity of LMO-expressing neurons, although the magnitudes of the photoresponses remained subpar. In this study, we created an enhanced iteration of the excitatory luminopsin LMO3, termed eLMO3, that has improved membrane targeting due to the insertion of a Golgi trafficking signal sequence. In cortical neurons in culture, the expression of eLMO3 resulted in significant reductions in the formation of intracellular aggregates, as well as in a significant increase in total photocurrents. Furthermore, we corroborated the findings with injections of adeno-associated viral vectors into the deep layers of the somatosensory cortex (the barrel cortex) of male mice. We observed greatly reduced numbers of intracellular puncta in eLMO3-expressing cortical neurons compared to those expressing the original LMO3. Finally, we quantified CTZ-driven behavior, namely whisker-touching behavior, in male mice with LMO3 expression in the barrel cortex. After CTZ administration, mice with eLMO3 displayed significantly longer whisker responses than mice with LMO3. In summary, we have engineered the superior LMO by resolving membrane trafficking defects, and we demonstrated improved membrane targeting, greater photocurrents, and greater functional responses to stimulate with CTZ.
Collapse
Affiliation(s)
- James Y Zhang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jack K Tung
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Zuhui Wang
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Robert E Gross
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ken Berglund
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
21
|
Stanley CE, Mauss AS, Borst A, Cooper RL. The Effects of Chloride Flux on Drosophila Heart Rate. Methods Protoc 2019; 2:mps2030073. [PMID: 31443492 PMCID: PMC6789470 DOI: 10.3390/mps2030073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 11/16/2022] Open
Abstract
Approaches are sought after to regulate ionotropic and chronotropic properties of the mammalian heart. Electrodes are commonly used for rapidly exciting cardiac tissue and resetting abnormal pacing. With the advent of optogenetics and the use of tissue-specific expression of light-activated channels, cardiac cells cannot only be excited but also inhibited with ion-selective conductance. As a proof of concept for the ability to slow down cardiac pacing, anion-conducting channelrhodopsins (GtACR1/2) and the anion pump halorhodopsin (eNpHR) were expressed in hearts of larval Drosophila and activated by light. Unlike body wall muscles in most animals, the equilibrium potential for Cl− is more positive as compared to the resting membrane potential in larval Drosophila. As a consequence, upon activating the two forms of GtACR1 and 2 with low light intensity the heart rate increased, likely due to depolarization and opening of voltage-gated Ca2+ channels. However, with very intense light activation the heart rate ceases, which may be due to Cl– shunting to the reversal potential for chloride. Activating eNpHR hyperpolarizes body wall and cardiac muscle in larval Drosophila and rapidly decreases heart rate. The decrease in heart rate is related to light intensity. Intense light activation of eNpHR stops the heart from beating, whereas lower intensities slowed the rate. Even with upregulation of the heart rate with serotonin, the pacing of the heart was slowed with light. Thus, regulation of the heart rate in Drosophila can be accomplished by activating anion-conducting channelrhodopsins using light. These approaches are demonstrated in a genetically amenable insect model.
Collapse
Affiliation(s)
- Catherine E Stanley
- Department of Biology, Center for Muscle Biology. University of Kentucky, Lexington, KY 40506-0225, USA
| | - Alex S Mauss
- Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Alexander Borst
- Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Robin L Cooper
- Department of Biology, Center for Muscle Biology. University of Kentucky, Lexington, KY 40506-0225, USA.
| |
Collapse
|
22
|
Feroz H, Meisenhelter J, Jokhadze G, Bruening M, Kumar M. Rapid screening and scale‐up of ultracentrifugation‐free, membrane‐based procedures for purification of His‐tagged membrane proteins. Biotechnol Prog 2019; 35:e2859. [DOI: 10.1002/btpr.2859] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 04/13/2019] [Accepted: 05/03/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Hasin Feroz
- Department of Chemical Engineering The Pennsylvania State University University Park Pennsylvania
| | - Joshua Meisenhelter
- Department of Chemical Engineering The Pennsylvania State University University Park Pennsylvania
| | | | - Merlin Bruening
- Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame Indiana
| | - Manish Kumar
- Department of Chemical Engineering The Pennsylvania State University University Park Pennsylvania
| |
Collapse
|
23
|
Han HW, Ko LN, Yang CS, Hsu SH. Potential of Engineered Bacteriorhodopsins as Photoactivated Biomaterials in Modulating Neural Stem Cell Behavior. ACS Biomater Sci Eng 2019; 5:3068-3078. [PMID: 33405539 DOI: 10.1021/acsbiomaterials.9b00367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bacteriorhodopsin (BR), a light-sensitive bacterial proton pump, has been demonstrated the capacity for regulating the neural activity in mammalian cells. Because of the difficulty in production and purification in large quantities, the BR proteins have neither been directly employed to biomedical applications nor verified the functionality by protein administration. Previously, we have invented a highly expressible bacteriorhodopsin (HEBR) and established the massive production protocol. In the current study, we mass-produced the two types of HEBR proteins that have normal or abnormal activity on the proton pumping, and then we treated murine neural stem cells (NSCs) with these HEBR proteins. We discovered that the cell behaviors including growth, metabolism, mitochondrial inner membrane potential, and differentiation were obviously affected in NSCs after the treatment of HEBR proteins. Particularly, these effects induced by HEBR proteins were correlated to their proton pump activity and could be altered by cell culture substrate materials. Current findings suggest that the engineered light-sensitive HEBR protein can serve as a biological material to directly influence the multiple behaviors of mammalian cells, which is further modified by the cell culture substrate material, revealing the versatile potential of HEBR protein in biomaterial applications.
Collapse
Affiliation(s)
| | | | | | - Shan-Hui Hsu
- Institute of Cellular and System Medicine, National Health Research Institutes, No. 35 Keyan Road, Zhunan, Miaoli County, Taiwan 35053, R.O.C
| |
Collapse
|
24
|
Jung K, Park JH, Kim SY, Jeon NL, Cho SR, Hyung S. Optogenetic stimulation promotes Schwann cell proliferation, differentiation, and myelination in vitro. Sci Rep 2019; 9:3487. [PMID: 30837563 PMCID: PMC6401157 DOI: 10.1038/s41598-019-40173-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/24/2019] [Indexed: 11/18/2022] Open
Abstract
Schwann cells (SCs) constitute a crucial element of the peripheral nervous system, by structurally supporting the formation of myelin and conveying vital trophic factors to the nervous system. However, the functions of SCs in developmental and regenerative stages remain unclear. Here, we investigated how optogenetic stimulation (OS) of SCs regulates their development. In SC monoculture, OS substantially enhanced SC proliferation and the number of BrdU+-S100ß+-SCs over time. In addition, OS also markedly promoted the expression of both Krox20 and myelin basic protein (MBP) in SC culture medium containing dBcAMP/NRG1, which induced differentiation. We found that the effects of OS are dependent on the intracellular Ca2+ level. OS induces elevated intracellular Ca2+ levels through the T-type voltage-gated calcium channel (VGCC) and mobilization of Ca2+ from both inositol 1,4,5-trisphosphate (IP3)-sensitive stores and caffeine/ryanodine-sensitive stores. Furthermore, we confirmed that OS significantly increased expression levels of both Krox20 and MBP in SC-motor neuron (MN) coculture, which was notably prevented by pharmacological intervention with Ca2+. Taken together, our results demonstrate that OS of SCs increases the intracellular Ca2+ level and can regulate proliferation, differentiation, and myelination, suggesting that OS of SCs may offer a new approach to the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Kyuhwan Jung
- Graduate Program of Nano Science and Technology, Graduate School of Yonsei University, Seoul, Korea
| | - Ji Hye Park
- Gradaute Program of Translational Neuroscience, Institute for Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Sung-Yon Kim
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul, South Korea
| | - Noo Li Jeon
- Multiscale Mechanical Design School of Mechanical and Aerospace Engineering Institute of Advanced Machinery and Design, Seoul National University, Seoul, Korea. .,Institute of Bioengineering, Seoul National University, Seoul, Korea.
| | - Sung-Rae Cho
- Graduate Program of Nano Science and Technology, Graduate School of Yonsei University, Seoul, Korea. .,Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea.
| | - Sujin Hyung
- Multiscale Mechanical Design School of Mechanical and Aerospace Engineering Institute of Advanced Machinery and Design, Seoul National University, Seoul, Korea. .,BK21 Plus Transformative Training Program for Creative Mechanical and Aerospace Engineers, Seoul National University, Seoul, Korea. .,Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, USA.
| |
Collapse
|
25
|
Feroz H, Kwon H, Peng J, Oh H, Ferlez B, Baker CS, Golbeck JH, Bazan GC, Zydney AL, Kumar M. Improving extraction and post-purification concentration of membrane proteins. Analyst 2019; 143:1378-1386. [PMID: 29220051 DOI: 10.1039/c7an01470h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Membrane proteins (MPs), despite being critically important drug targets for the pharmaceutical industry, are difficult to study due to challenges in obtaining high yields of functional protein. Most current extraction efforts use specialized non-ionic detergents to solubilize and stabilize MPs, with MPs being concentrated by ultrafiltration (UF). However, many detergents are retained during the UF step, which can destabilize MPs and/or interfere with their characterization. Here, we studied the influence of detergent selection on the extraction and UF-based concentration of biomedically-relevant MPs, the light-driven sodium and chloride transporters, KR2 and halorhodopsin (pHR) which are also model proteins for more complex mammalian rhodopsins. We also designed a flat-bottomed centrifugal filter that can concentrate MPs with enhanced removal of free detergents by promoting concentration polarization (CP). We tested the performance of this new filter using four commonly employed MP detergents, octyl-β-D maltoside (OM), decyl-β-D maltoside (DM), dodecyl-β-D maltoside (DDM) and octyl-β-D glucoside (OG), over a range of detergent and salt concentrations. Detergent passage is significantly higher for the flat-bottomed filter achieving up to 2-fold greater sieving of detergent in DM-solubilized pHR system due to the high degree of CP. We observe more efficient, up to 5-fold higher extraction of KR2 in the presence of a longer 12-carbon alkyl chain detergent, DDM compared to a shorter 8-carbon detergent, OM. Assuming complete binding and elution of the extracted protein, DDM-based extraction of KR2 could lead to a potential 7-fold improvement in purification yields compared to conventional methods which yield ∼1 mg MP per liter of cell culture. However, the longer chain detergents like DDM form larger micelles that are difficult to remove by UF. Thus, there exists a trade-off between choosing a detergent that will enable efficient extraction of MP while showing easier removal during subsequent UF. The extraction efficiency and UF-based separation of detergent micelles provide insights for other applications involving detergent-mediated separation/extraction.
Collapse
Affiliation(s)
- Hasin Feroz
- Department of Chemical Engineering, The Pennsylvania State University, Pennsylvania, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Next-Generation Tools to Study Autonomic Regulation In Vivo. Neurosci Bull 2018; 35:113-123. [PMID: 30560436 DOI: 10.1007/s12264-018-0319-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/29/2018] [Indexed: 12/31/2022] Open
Abstract
The recent development of tools to decipher the intricacies of neural networks has improved our understanding of brain function. Optogenetics allows one to assess the direct outcome of activating a genetically-distinct population of neurons. Neurons are tagged with light-sensitive channels followed by photo-activation with an appropriate wavelength of light to functionally activate or silence them, resulting in quantifiable changes in the periphery. Capturing and manipulating activated neuron ensembles, is a recently-designed technique to permanently label activated neurons responsible for a physiological function and manipulate them. On the other hand, neurons can be transfected with genetically-encoded Ca2+ indicators to capture the interplay between them that modulates autonomic end-points or somatic behavior. These techniques work with millisecond temporal precision. In addition, neurons can be manipulated chronically to simulate physiological aberrations by transfecting designer G-protein-coupled receptors exclusively activated by designer drugs. In this review, we elaborate on the fundamental concepts and applications of these techniques in research.
Collapse
|
27
|
Luchkina NV, Bolshakov VY. Diminishing fear: Optogenetic approach toward understanding neural circuits of fear control. Pharmacol Biochem Behav 2018; 174:64-79. [PMID: 28502746 PMCID: PMC5681900 DOI: 10.1016/j.pbb.2017.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/13/2017] [Accepted: 05/10/2017] [Indexed: 02/05/2023]
Abstract
Understanding complex behavioral processes, both learned and innate, requires detailed characterization of the principles governing signal flow in corresponding neural circuits. Previous studies were hampered by the lack of appropriate tools needed to address the complexities of behavior-driving micro- and macrocircuits. The development and implementation of optogenetic methodologies revolutionized the field of behavioral neuroscience, allowing precise spatiotemporal control of specific, genetically defined neuronal populations and their functional connectivity both in vivo and ex vivo, thus providing unprecedented insights into the cellular and network-level mechanisms contributing to behavior. Here, we review recent pioneering advances in behavioral studies with optogenetic tools, focusing on mechanisms of fear-related behavioral processes with an emphasis on approaches which could be used to suppress fear when it is pathologically expressed. We also discuss limitations of these methodologies as well as review new technological developments which could be used in future mechanistic studies of fear behavior.
Collapse
Affiliation(s)
- Natalia V Luchkina
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA.
| | - Vadim Y Bolshakov
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA.
| |
Collapse
|
28
|
He Q, Wang J, Hu H. Illuminating the Activated Brain: Emerging Activity-Dependent Tools to Capture and Control Functional Neural Circuits. Neurosci Bull 2018; 35:369-377. [PMID: 30255458 DOI: 10.1007/s12264-018-0291-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/13/2018] [Indexed: 01/25/2023] Open
Abstract
Immediate-early genes (IEGs) have long been used to visualize neural activations induced by sensory and behavioral stimuli. Recent advances in imaging techniques have made it possible to use endogenous IEG signals to visualize and discriminate neural ensembles activated by multiple stimuli, and to map whole-brain-scale neural activation at single-neuron resolution. In addition, a collection of IEG-dependent molecular tools has been developed that can be used to complement the labeling of endogenous IEG genes and, especially, to manipulate activated neural ensembles in order to reveal the circuits and mechanisms underlying different behaviors. Here, we review these techniques and tools in terms of their utility in studying functional neural circuits. In addition, we provide an experimental strategy to measure the signal-to-noise ratio of IEG-dependent molecular tools, for evaluating their suitability for investigating relevant circuits and behaviors.
Collapse
Affiliation(s)
- Qiye He
- Center for Neuroscience, and Department of Psychiatry of First Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, 310012, China.
| | - Jihua Wang
- Center for Neuroscience, and Department of Psychiatry of First Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hailan Hu
- Center for Neuroscience, and Department of Psychiatry of First Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, 310012, China.
| |
Collapse
|
29
|
Maimon BE, Diaz M, Revol ECM, Schneider AM, Leaker B, Varela CE, Srinivasan S, Weber MB, Herr HM. Optogenetic Peripheral Nerve Immunogenicity. Sci Rep 2018; 8:14076. [PMID: 30232391 PMCID: PMC6145901 DOI: 10.1038/s41598-018-32075-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/28/2018] [Indexed: 12/20/2022] Open
Abstract
Optogenetic technologies have been the subject of great excitement within the scientific community for their ability to demystify complex neurophysiological pathways in the central (CNS) and peripheral nervous systems (PNS). The excitement surrounding optogenetics has also extended to the clinic with a trial for ChR2 in the treatment of retinitis pigmentosa currently underway and additional trials anticipated for the near future. In this work, we identify the cause of loss-of-expression in response to transdermal illumination of an optogenetically active peroneal nerve following an anterior compartment (AC) injection of AAV6-hSyn-ChR2(H134R) with and without a fluorescent reporter. Using Sprague Dawley Rag2-/- rats and appropriate controls, we discover optogenetic loss-of-expression is chiefly elicited by ChR2-mediated immunogenicity in the spinal cord, resulting in both CNS motor neuron death and ipsilateral muscle atrophy in both low and high Adeno-Associated Virus (AAV) dosages. We further employ pharmacological immunosuppression using a slow-release tacrolimus pellet to demonstrate sustained transdermal optogenetic expression up to 12 weeks. These results suggest that all dosages of AAV-mediated optogenetic expression within the PNS may be unsafe. Clinical optogenetics for both PNS and CNS applications should take extreme caution when employing opsins to treat disease and may require concurrent immunosuppression. Future work in optogenetics should focus on designing opsins with lesser immunogenicity.
Collapse
Affiliation(s)
- Benjamin E Maimon
- MIT Media Lab, Center for Extreme Bionics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Division of Health Sciences and Technology (HST), Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Maurizio Diaz
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emilie C M Revol
- Department of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alexis M Schneider
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ben Leaker
- Harvard-MIT Division of Health Sciences and Technology (HST), Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Claudia E Varela
- Harvard-MIT Division of Health Sciences and Technology (HST), Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shriya Srinivasan
- MIT Media Lab, Center for Extreme Bionics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Division of Health Sciences and Technology (HST), Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew B Weber
- MIT Media Lab, Center for Extreme Bionics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Division of Health Sciences and Technology (HST), Harvard Medical School, Boston, MA, USA
| | - Hugh M Herr
- MIT Media Lab, Center for Extreme Bionics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
30
|
Mattingly M, Weineck K, Costa J, Cooper RL. Hyperpolarization by activation of halorhodopsin results in enhanced synaptic transmission: Neuromuscular junction and CNS circuit. PLoS One 2018; 13:e0200107. [PMID: 29969493 PMCID: PMC6029800 DOI: 10.1371/journal.pone.0200107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 06/19/2018] [Indexed: 12/22/2022] Open
Abstract
Optogenetics offers a unique method to regulate the activity of select neural circuits. However, the electrophysiological consequences of targeted optogenetic manipulation upon the entire circuit remain poorly understood. Analysis of the sensory-CNS-motor circuit in Drosophila larvae expressing eHpHR and ChR2-XXL revealed unexpected patterns of excitability. Optical stimulation of motor neurons targeted to express eNpHR resulted in inhibition followed by excitation of body wall contraction with repetitive stimulation in intact larvae. In situ preparations with direct electrophysiological measures showed an increased responsiveness to excitatory synaptic activity induced by sensory stimulation within a functional neural circuit. To ensure proper function of eNpHR and ChR2-XXL they were expressed in body wall muscle and direct electrophysiological measurements were obtained. Under eNpHR induced hyperpolarization the muscle remained excitable with increased amplitude of excitatory postsynaptic synaptic potentials. Theoretical models to explain the observations are presented. This study aids in increasing the understanding of the varied possible influences with light activated proteins within intact neural circuits.
Collapse
Affiliation(s)
- Matthew Mattingly
- Department of Biology and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Kristin Weineck
- Department of Biology and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, United States of America
- Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Jennifer Costa
- Department of Biology and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Robin L. Cooper
- Department of Biology and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
31
|
Electrical properties, substrate specificity and optogenetic potential of the engineered light-driven sodium pump eKR2. Sci Rep 2018; 8:9316. [PMID: 29915394 PMCID: PMC6006383 DOI: 10.1038/s41598-018-27690-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/24/2018] [Indexed: 01/22/2023] Open
Abstract
A new microbial rhodopsin class that actively transports sodium out of the cell upon illumination was described in 2013. However, poor membrane targeting of the first-identified sodium pump KR2 in mammalian cells has hindered the direct electrical investigation of its transport mechanism and optogenetic application to date. Accordingly, we designed enhanced KR2 (eKR2), which exhibits improved membrane targeting and higher photocurrents in mammalian cells to facilitate molecular characterization and future optogenetic applications. Our selectivity measurements revealed that stationary photocurrents are primarily carried by sodium, whereas protons only play a minor role, if any. Combining laser-induced photocurrent and absorption measurements, we found that spectral changes were not necessarily related to changes in transport activity. Finally, we showed that eKR2 can be expressed in cultured hippocampal mouse neurons and induce reversible inhibition of action potential firing with millisecond precision upon illumination with moderate green-light. Hence, the light-driven sodium pump eKR2 is a reliable inhibitory optogenetic tool applicable to situations in which the proton and chloride gradients should not be altered.
Collapse
|
32
|
Jarvis S, Nikolic K, Schultz SR. Neuronal gain modulability is determined by dendritic morphology: A computational optogenetic study. PLoS Comput Biol 2018. [PMID: 29522509 PMCID: PMC5862493 DOI: 10.1371/journal.pcbi.1006027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The mechanisms by which the gain of the neuronal input-output function may be modulated have been the subject of much investigation. However, little is known of the role of dendrites in neuronal gain control. New optogenetic experimental paradigms based on spatial profiles or patterns of light stimulation offer the prospect of elucidating many aspects of single cell function, including the role of dendrites in gain control. We thus developed a model to investigate how competing excitatory and inhibitory input within the dendritic arbor alters neuronal gain, incorporating kinetic models of opsins into our modeling to ensure it is experimentally testable. To investigate how different topologies of the neuronal dendritic tree affect the neuron’s input-output characteristics we generate branching geometries which replicate morphological features of most common neurons, but keep the number of branches and overall area of dendrites approximately constant. We found a relationship between a neuron’s gain modulability and its dendritic morphology, with neurons with bipolar dendrites with a moderate degree of branching being most receptive to control of the gain of their input-output relationship. The theory was then tested and confirmed on two examples of realistic neurons: 1) layer V pyramidal cells—confirming their role in neural circuits as a regulator of the gain in the circuit in addition to acting as the primary excitatory neurons, and 2) stellate cells. In addition to providing testable predictions and a novel application of dual-opsins, our model suggests that innervation of all dendritic subdomains is required for full gain modulation, revealing the importance of dendritic targeting in the generation of neuronal gain control and the functions that it subserves. Finally, our study also demonstrates that neurophysiological investigations which use direct current injection into the soma and bypass the dendrites may miss some important neuronal functions, such as gain modulation. New experimental techniques based on optogenetics allow neuronal activity to be manipulated with a high degree of spatial and temporal precision. This opens up new prospects for testing computational models of neuronal function, including questions such as the role of dendrites in neuronal gain control. However, compartmental models in computational neuroscience have not, until now, incorporated the kinetic models of opsins that are required in order to directly match the predictions of a computational model with observed optogenetic experimental results. Here, we introduce an approach for computational optogenetic modeling to test hypotheses, demonstrating it with application to the role of dendrites in neuronal gain control. We find that gain modulability is indicated by dendritic morphology, with pyramidal cell-like shapes optimally receptive to modulation. All dendritic subdomains are required for gain modulation—partial illumination is insufficient. Due to the simulation framework used, these results are directly testable through optogenetic experiments. Computational optogenetic models thus can be used to improve and refine experimental protocols for direct testing of theories of neural function.
Collapse
Affiliation(s)
- Sarah Jarvis
- Centre for Neurotechnology and Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Konstantin Nikolic
- Centre for Bio-Inspired Technology and Department of Electrical & Electronic Engineering, Imperial College London, London, United Kingdom
| | - Simon R. Schultz
- Centre for Neurotechnology and Department of Bioengineering, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
33
|
Dobbins DL, Klorig DC, Smith T, Godwin DW. Expression of channelrhodopsin-2 localized within the deep CA1 hippocampal sublayer in the Thy1 line 18 mouse. Brain Res 2018; 1679:179-184. [PMID: 29191773 PMCID: PMC5752121 DOI: 10.1016/j.brainres.2017.11.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 12/21/2022]
Abstract
Optogenetic proteins are powerful tools for advancing our understanding of neural circuitry. However, the precision of optogenetics is dependent in part on the extent to which expression is limited to cells of interest. The Thy1-ChR2 transgenic mouse is commonly used in optogenetic experiments. Although general expression patterns in these animals have been characterized, a detailed evaluation of cell-type specificity is lacking. This information is critical for interpretation of experimental results using these animals. We characterized ChR2 expression under the Thy1promoter in line 18 in comparison to known expression profiles of hippocampal cell types using immunohistochemistry in CA1. ChR2 expression did not colocalize with parvalbumin or calbindin expressing interneurons. However, we found ChR2 expression to be localized in the deep sublayer of CA1 in calbindin-negative pyramidal cells. These findings demonstrate the utility of the Thy1-ChR2-YFP mouse to study the activity and functional role of excitatory neurons located in the deep CA1 pyramidal cell layer.
Collapse
Affiliation(s)
- Dorothy L Dobbins
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| | - David C Klorig
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Thuy Smith
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Dwayne W Godwin
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
34
|
Liu Q, Gan L, Ni J, Chen Y, Chen Y, Huang Z, Huang X, Wen T. Dcf1 Improves Behavior Deficit in Drosophila and Mice Caused by Optogenetic Suppression. J Cell Biochem 2017; 118:4210-4215. [PMID: 28401598 DOI: 10.1002/jcb.26048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 04/10/2017] [Indexed: 11/11/2022]
Abstract
Optogenetics play a significant role in neuroscientific research by providing a tool for understanding neural circuits and brain functions. Natronomonas pharaonis halorhodopsin (NpHR) actively pumps chloride ions into the cells and hyperpolarizes neuronal membranes in response to yellow light. In this study, we generated transgenic Drosophila expressing NpHR under the control of the Gal4/UAS system and virus-infected mice expressing NpHR to explore the effect of dendritic cell factor 1 (Dcf1) on the behavior mediated by the mushroom body in Drosophila and the dentate gyrus (DG) in mice. Study of optogenetic behavior showed that NpHR suppressed the behavior in Drosophila larvae and mice, whereas Dcf1 rescued this suppression. These results suggest that Dcf1 plays an important role in behavior induced by the mushroom body and the hippocampus and provides novel insights into their functions. J. Cell. Biochem. 118: 4210-4215, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Qiang Liu
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Linhua Gan
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Jian Ni
- Department of Pharmacology, Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Yu Chen
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Yanlu Chen
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Zhili Huang
- Department of Pharmacology, Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Xu Huang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Tieqiao Wen
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| |
Collapse
|
35
|
Li Q, Ni RR, Hong H, Goh KY, Rossi M, Fast VG, Zhou L. Electrophysiological Properties and Viability of Neonatal Rat Ventricular Myocyte Cultures with Inducible ChR2 Expression. Sci Rep 2017; 7:1531. [PMID: 28484220 PMCID: PMC5431527 DOI: 10.1038/s41598-017-01723-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 04/03/2017] [Indexed: 11/25/2022] Open
Abstract
Channelrhodopsin-2 (ChR2)-based optogenetic technique has been increasingly applied to cardiovascular research. However, the potential effects of ChR2 protein overexpression on cardiomyocytes are not completely understood. The present work aimed to examine how the doxycycline-inducible lentiviral-mediated ChR2 expression may affect cell viability and electrophysiological property of neonatal rat ventricular myocyte (NRVM) cultures. Primary NVRMs were infected with lentivirus containing ChR2 or YFP gene and subjected to cytotoxicity analysis. ChR2-expressing cultures were then paced electrically or optically with a blue light-emitting diode, with activation spread recorded simultaneously using optical mapping. Results showed that ChR2 could be readily transduced to NRVMs by the doxycycline-inducible lentiviral system; however, high-level ChR2 (but not YFP) expression was associated with substantial cytotoxicity, which hindered optical pacing. Application of bromodeoxyuridine significantly reduced cell damage, allowing stimulation with light. Simultaneous optical Vm mapping showed that conduction velocity, action potential duration, and dVm/dtmax were similar in ChR2-expressing and control cultures. Finally, the ChR2-expressing cultures could be optically paced at multiple sites, with significantly reduced overall activation time. In summary, we demonstrated that inducible lentiviral-mediated ChR2 overexpression might cause cytotoxicity in NRVM cultures, which could be alleviated without impairing electrophysiological function, allowing simultaneous optical pacing and Vm mapping.
Collapse
Affiliation(s)
- Qince Li
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, 1900 University Blvd, Birmingham, 35294, Alabama, USA.,Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, 35294, Alabama, USA
| | - Rong Ruby Ni
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, 1900 University Blvd, Birmingham, 35294, Alabama, USA.,Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, 35294, Alabama, USA
| | - Huixian Hong
- Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, 35294, Alabama, USA
| | - Kah Yong Goh
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, 1900 University Blvd, Birmingham, 35294, Alabama, USA.,Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, 35294, Alabama, USA
| | - Michael Rossi
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1670 University Blvd, Birmingham, 35294, Alabama, USA
| | - Vladimir G Fast
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1670 University Blvd, Birmingham, 35294, Alabama, USA. .,Cardiac Rhythm Management Laboratory, University of Alabama at Birmingham, Birmingham, 35294, Alabama, USA.
| | - Lufang Zhou
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, 1900 University Blvd, Birmingham, 35294, Alabama, USA. .,Department of Biomedical Engineering, University of Alabama at Birmingham, 1670 University Blvd, Birmingham, 35294, Alabama, USA. .,Cardiac Rhythm Management Laboratory, University of Alabama at Birmingham, Birmingham, 35294, Alabama, USA. .,Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, 35294, Alabama, USA.
| |
Collapse
|
36
|
McCullough KM, Choi D, Guo J, Zimmerman K, Walton J, Rainnie DG, Ressler KJ. Molecular characterization of Thy1 expressing fear-inhibiting neurons within the basolateral amygdala. Nat Commun 2016; 7:13149. [PMID: 27767183 PMCID: PMC5078744 DOI: 10.1038/ncomms13149] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 09/07/2016] [Indexed: 12/21/2022] Open
Abstract
Molecular characterization of neuron populations, particularly those controlling threat responses, is essential for understanding the cellular basis of behaviour and identifying pharmacological agents acting selectively on fear-controlling circuitry. Here we demonstrate a comprehensive workflow for identification of pharmacologically tractable markers of behaviourally characterized cell populations. Thy1-eNpHR-, Thy1-Cre- and Thy1-eYFP-labelled neurons of the BLA consistently act as fear inhibiting or 'Fear-Off' neurons during behaviour. We use cell-type-specific optogenetics and chemogenetics (DREADDs) to modulate activity in this population during behaviour to block or enhance fear extinction. Dissociated Thy1-eYFP neurons are isolated using FACS. RNA sequencing identifies genes strongly upregulated in RNA of this population, including Ntsr2, Dkk3, Rspo2 and Wnt7a. Pharmacological manipulation of neurotensin receptor 2 confirms behavioural effects observed in optogenetic and chemogenetic experiments. These experiments identify and validate Ntsr2-expressing neurons within the BLA, as a putative 'Fear-Off' population.
Collapse
Affiliation(s)
- Kenneth M. McCullough
- Behavioral Neuroscience, Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia 30322, USA
- Division of Depression & Anxiety Disorders, McLean Hospital, Belmont, Massachusetts 02478, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts 02478, USA
| | - Dennis Choi
- Behavioral Neuroscience, Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia 30322, USA
| | - Jidong Guo
- Behavioral Neuroscience, Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia 30322, USA
| | - Kelsey Zimmerman
- School of Psychology, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jordan Walton
- Behavioral Neuroscience, Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia 30322, USA
- Division of Depression & Anxiety Disorders, McLean Hospital, Belmont, Massachusetts 02478, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts 02478, USA
| | - Donald G. Rainnie
- Behavioral Neuroscience, Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia 30322, USA
| | - Kerry J. Ressler
- Behavioral Neuroscience, Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia 30322, USA
- Division of Depression & Anxiety Disorders, McLean Hospital, Belmont, Massachusetts 02478, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts 02478, USA
| |
Collapse
|
37
|
Bang J, Kim HY, Lee H. Optogenetic and Chemogenetic Approaches for Studying Astrocytes and Gliotransmitters. Exp Neurobiol 2016; 25:205-221. [PMID: 27790055 PMCID: PMC5081467 DOI: 10.5607/en.2016.25.5.205] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 08/19/2016] [Accepted: 08/19/2016] [Indexed: 12/20/2022] Open
Abstract
The brain consists of heterogeneous populations of neuronal and non-neuronal cells. The revelation of their connections and interactions is fundamental to understanding normal brain functions as well as abnormal changes in pathological conditions. Optogenetics and chemogenetics have been developed to allow functional manipulations both in vitro and in vivo to examine causal relationships between cellular changes and functional outcomes. These techniques are based on genetically encoded effector molecules that respond exclusively to exogenous stimuli, such as a certain wavelength of light or a synthetic ligand. Activation of effector molecules provokes diverse intracellular changes, such as an influx or efflux of ions, depolarization or hyperpolarization of membranes, and activation of intracellular signaling cascades. Optogenetics and chemogenetics have been applied mainly to the study of neuronal circuits, but their use in studying non-neuronal cells has been gradually increasing. Here we introduce recent studies that have employed optogenetics and chemogenetics to reveal the function of astrocytes and gliotransmitters.
Collapse
Affiliation(s)
- Juwon Bang
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Korea
| | - Hak Yeong Kim
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Korea
| | - Hyosang Lee
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Korea
| |
Collapse
|
38
|
Fang-Yen C, Alkema MJ, Samuel ADT. Illuminating neural circuits and behaviour in Caenorhabditis elegans with optogenetics. Philos Trans R Soc Lond B Biol Sci 2016; 370:20140212. [PMID: 26240427 DOI: 10.1098/rstb.2014.0212] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The development of optogenetics, a family of methods for using light to control neural activity via light-sensitive proteins, has provided a powerful new set of tools for neurobiology. These techniques have been particularly fruitful for dissecting neural circuits and behaviour in the compact and transparent roundworm Caenorhabditis elegans. Researchers have used optogenetic reagents to manipulate numerous excitable cell types in the worm, from sensory neurons, to interneurons, to motor neurons and muscles. Here, we show how optogenetics applied to this transparent roundworm has contributed to our understanding of neural circuits.
Collapse
Affiliation(s)
- Christopher Fang-Yen
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark J Alkema
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Aravinthan D T Samuel
- Department of Physics and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
39
|
Abstract
After the discovery of Channelrhodopsin, a light-gated ion channel, only a few people saw the diverse range of applications for such a protein. Now, more than 10 years later Channelrhodopsins have become widely accepted as the ultimate tool to control the membrane potential of excitable cells via illumination. The demand for more application-specific Channelrhodopsin variants started a race between protein engineers to design improved variants. Even though many engineered variants have undisputable advantages compared to wild-type variants, many users are alienated by the tremendous amount of new variants and their perplexing names. Here, we review new variants whose efficacy has already been proven in neurophysiological experiments, or variants which are likely to extend the optogenetic toolbox. Variants are described based on their mechanistic and operational properties in terms of expression, kinetics, ion selectivity, and wavelength responsivity.
Collapse
Affiliation(s)
- Jonas Wietek
- Experimental Biophysics, Humboldt University Berlin, Invalidenstrasse 42, 10115, Berlin, Germany
| | - Matthias Prigge
- Department of Neurobiology, Weizmann Institute of Science, Herzel 234, 76100, Rehovot, Israel.
| |
Collapse
|
40
|
Abstract
Over the past 10 years, the development and convergence of microbial opsin engineering, modular genetic methods for cell-type targeting and optical strategies for guiding light through tissue have enabled versatile optical control of defined cells in living systems, defining modern optogenetics. Despite widespread recognition of the importance of spatiotemporally precise causal control over cellular signaling, for nearly the first half (2005-2009) of this 10-year period, as optogenetics was being created, there were difficulties in implementation, few publications and limited biological findings. In contrast, the ensuing years have witnessed a substantial acceleration in the application domain, with the publication of thousands of discoveries and insights into the function of nervous systems and beyond. This Historical Commentary reflects on the scientific landscape of this decade-long transition.
Collapse
Affiliation(s)
- Karl Deisseroth
- Departments of Bioengineering and of Psychiatry and Behavioral Sciences and the Howard Hughes Medical Institute, Stanford University, Stanford, California, USA
| |
Collapse
|
41
|
Abstract
This review, one of a series of articles, tries to make sense of optogenetics, a recently developed technology that can be used to control the activity of genetically-defined neurons with light. Cells are first genetically engineered to express a light-sensitive opsin, which is typically an ion channel, pump, or G protein-coupled receptor. When engineered cells are then illuminated with light of the correct frequency, opsin-bound retinal undergoes a conformational change that leads to channel opening or pump activation, cell depolarization or hyperpolarization, and neural activation or silencing. Since the advent of optogenetics, many different opsin variants have been discovered or engineered, and it is now possible to stimulate or inhibit neuronal activity or intracellular signaling pathways on fast or slow timescales with a variety of different wavelengths of light. Optogenetics has been successfully employed to enhance our understanding of the neural circuit dysfunction underlying mood disorders, addiction, and Parkinson's disease, and has enabled us to achieve a better understanding of the neural circuits mediating normal behavior. It has revolutionized the field of neuroscience, and has enabled a new generation of experiments that probe the causal roles of specific neural circuit components.
Collapse
Affiliation(s)
- Akash Guru
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY (Mr Guru and Post, Ms Ho, and Dr Warden)
| | - Ryan J Post
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY (Mr Guru and Post, Ms Ho, and Dr Warden)
| | - Yi-Yun Ho
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY (Mr Guru and Post, Ms Ho, and Dr Warden)
| | - Melissa R Warden
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY (Mr Guru and Post, Ms Ho, and Dr Warden).
| |
Collapse
|
42
|
Wyatt C, Bartoszek EM, Yaksi E. Methods for studying the zebrafish brain: past, present and future. Eur J Neurosci 2015; 42:1746-63. [PMID: 25900095 DOI: 10.1111/ejn.12932] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 04/16/2015] [Accepted: 04/20/2015] [Indexed: 01/16/2023]
Abstract
The zebrafish (Danio rerio) is one of the most promising new model organisms. The increasing popularity of this amazing small vertebrate is evident from the exponentially growing numbers of research articles, funded projects and new discoveries associated with the use of zebrafish for studying development, brain function, human diseases and screening for new drugs. Thanks to the development of novel technologies, the range of zebrafish research is constantly expanding with new tools synergistically enhancing traditional techniques. In this review we will highlight the past and present techniques which have made, and continue to make, zebrafish an attractive model organism for various fields of biology, with a specific focus on neuroscience.
Collapse
Affiliation(s)
- Cameron Wyatt
- Neuro-Electronics Research Flanders, Imec Campus, Kapeldreef, Leuven, Belgium.,VIB, Leuven, Belgium
| | - Ewelina M Bartoszek
- Neuro-Electronics Research Flanders, Imec Campus, Kapeldreef, Leuven, Belgium.,VIB, Leuven, Belgium.,Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Emre Yaksi
- Neuro-Electronics Research Flanders, Imec Campus, Kapeldreef, Leuven, Belgium.,VIB, Leuven, Belgium.,KU Leuven, Leuven, Belgium.,Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
43
|
Emerging neural stimulation technologies for bladder dysfunctions. Int Neurourol J 2015; 19:3-11. [PMID: 25833475 PMCID: PMC4386488 DOI: 10.5213/inj.2015.19.1.3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 01/16/2023] Open
Abstract
In the neural engineering field, physiological dysfunctions are approached by identifying the target nerves and providing artificial stimulation to restore the function. Neural stimulation and recording technologies play a central role in this approach, and various engineering devices and stimulation techniques have become available to the medical community. For bladder control problems, electrical stimulation has been used as one of the treatments, while only a few emerging neurotechnologies have been used to tackle these problems. In this review, we introduce some recent developments in neural stimulation technologies including microelectrode array, closed-loop neural stimulation, optical stimulation, and ultrasound stimulation.
Collapse
|
44
|
Allen BD, Singer AC, Boyden ES. Principles of designing interpretable optogenetic behavior experiments. ACTA ACUST UNITED AC 2015; 22:232-8. [PMID: 25787711 PMCID: PMC4371169 DOI: 10.1101/lm.038026.114] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Over the last decade, there has been much excitement about the use of optogenetic tools to test whether specific cells, regions, and projection pathways are necessary or sufficient for initiating, sustaining, or altering behavior. However, the use of such tools can result in side effects that can complicate experimental design or interpretation. The presence of optogenetic proteins in cells, the effects of heat and light, and the activity of specific ions conducted by optogenetic proteins can result in cellular side effects. At the network level, activation or silencing of defined neural populations can alter the physiology of local or distant circuits, sometimes in undesired ways. We discuss how, in order to design interpretable behavioral experiments using optogenetics, one can understand, and control for, these potential confounds.
Collapse
Affiliation(s)
- Brian D Allen
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Departments of Biological Engineering and Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Annabelle C Singer
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Departments of Biological Engineering and Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Edward S Boyden
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Departments of Biological Engineering and Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
45
|
Madisen L, Garner AR, Shimaoka D, Chuong AS, Klapoetke NC, Li L, van der Bourg A, Niino Y, Egolf L, Monetti C, Gu H, Mills M, Cheng A, Tasic B, Nguyen TN, Sunkin SM, Benucci A, Nagy A, Miyawaki A, Helmchen F, Empson RM, Knöpfel T, Boyden ES, Reid RC, Carandini M, Zeng H. Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance. Neuron 2015; 85:942-58. [PMID: 25741722 PMCID: PMC4365051 DOI: 10.1016/j.neuron.2015.02.022] [Citation(s) in RCA: 737] [Impact Index Per Article: 81.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 01/08/2015] [Accepted: 02/11/2015] [Indexed: 12/25/2022]
Abstract
An increasingly powerful approach for studying brain circuits relies on targeting genetically encoded sensors and effectors to specific cell types. However, current approaches for this are still limited in functionality and specificity. Here we utilize several intersectional strategies to generate multiple transgenic mouse lines expressing high levels of novel genetic tools with high specificity. We developed driver and double reporter mouse lines and viral vectors using the Cre/Flp and Cre/Dre double recombinase systems and established a new, retargetable genomic locus, TIGRE, which allowed the generation of a large set of Cre/tTA-dependent reporter lines expressing fluorescent proteins, genetically encoded calcium, voltage, or glutamate indicators, and optogenetic effectors, all at substantially higher levels than before. High functionality was shown in example mouse lines for GCaMP6, YCX2.60, VSFP Butterfly 1.2, and Jaws. These novel transgenic lines greatly expand the ability to monitor and manipulate neuronal activities with increased specificity. VIDEO ABSTRACT
Collapse
Affiliation(s)
- Linda Madisen
- Allen Institute for Brain Science, 551 N 34(th) Street, Seattle, WA 98103, USA
| | - Aleena R Garner
- Allen Institute for Brain Science, 551 N 34(th) Street, Seattle, WA 98103, USA
| | - Daisuke Shimaoka
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Amy S Chuong
- MIT Media Lab and McGovern Institute, Massachusetts Institute of Technology, 20 Ames Street, Cambridge, MA 02139, USA
| | - Nathan C Klapoetke
- MIT Media Lab and McGovern Institute, Massachusetts Institute of Technology, 20 Ames Street, Cambridge, MA 02139, USA
| | - Lu Li
- Allen Institute for Brain Science, 551 N 34(th) Street, Seattle, WA 98103, USA
| | - Alexander van der Bourg
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Yusuke Niino
- Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Ladan Egolf
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Claudio Monetti
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Hong Gu
- Allen Institute for Brain Science, 551 N 34(th) Street, Seattle, WA 98103, USA
| | - Maya Mills
- Allen Institute for Brain Science, 551 N 34(th) Street, Seattle, WA 98103, USA
| | - Adrian Cheng
- Allen Institute for Brain Science, 551 N 34(th) Street, Seattle, WA 98103, USA
| | - Bosiljka Tasic
- Allen Institute for Brain Science, 551 N 34(th) Street, Seattle, WA 98103, USA
| | - Thuc Nghi Nguyen
- Allen Institute for Brain Science, 551 N 34(th) Street, Seattle, WA 98103, USA
| | - Susan M Sunkin
- Allen Institute for Brain Science, 551 N 34(th) Street, Seattle, WA 98103, USA
| | - Andrea Benucci
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK; Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Andras Nagy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Atsushi Miyawaki
- Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Fritjof Helmchen
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Ruth M Empson
- Department of Physiology, Brain Health Research Centre, University of Otago, PO Box 913, Dunedin 9054, New Zealand
| | - Thomas Knöpfel
- The Division of Brain Sciences, Department of Medicine, Imperial College London, 160 DuCane Road, London, W12 0NN, UK
| | - Edward S Boyden
- MIT Media Lab and McGovern Institute, Massachusetts Institute of Technology, 20 Ames Street, Cambridge, MA 02139, USA
| | - R Clay Reid
- Allen Institute for Brain Science, 551 N 34(th) Street, Seattle, WA 98103, USA
| | - Matteo Carandini
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Hongkui Zeng
- Allen Institute for Brain Science, 551 N 34(th) Street, Seattle, WA 98103, USA.
| |
Collapse
|
46
|
Pienaar IS, Dexter DT, Gradinaru V. Neurophysiological and Optogenetic Assessment of Brain Networks Involved in Motor Control. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
47
|
Abstract
Brain neural network is composed of densely packed, intricately wired neurons whose activity patterns ultimately give rise to every behavior, thought, or emotion that we experience. Over the past decade, a novel neurotechnique, optogenetics that combines light and genetic methods to control or monitor neural activity patterns, has proven to be revolutionary in understanding the functional role of specific neural circuits. We here briefly describe recent advance in optogenetics and compare optogenetics with deep brain stimulation technology that holds the promise for treating many neurological and psychiatric disorders.
Collapse
|
48
|
Pashaie R, Anikeeva P, Lee JH, Prakash R, Yizhar O, Prigge M, Chander D, Richner TJ, Williams J. Optogenetic brain interfaces. IEEE Rev Biomed Eng 2014; 7:3-30. [PMID: 24802525 DOI: 10.1109/rbme.2013.2294796] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The brain is a large network of interconnected neurons where each cell functions as a nonlinear processing element. Unraveling the mysteries of information processing in the complex networks of the brain requires versatile neurostimulation and imaging techniques. Optogenetics is a new stimulation method which allows the activity of neurons to be modulated by light. For this purpose, the cell-types of interest are genetically targeted to produce light-sensitive proteins. Once these proteins are expressed, neural activity can be controlled by exposing the cells to light of appropriate wavelengths. Optogenetics provides a unique combination of features, including multimodal control over neural function and genetic targeting of specific cell-types. Together, these versatile features combine to a powerful experimental approach, suitable for the study of the circuitry of psychiatric and neurological disorders. The advent of optogenetics was followed by extensive research aimed to produce new lines of light-sensitive proteins and to develop new technologies: for example, to control the distribution of light inside the brain tissue or to combine optogenetics with other modalities including electrophysiology, electrocorticography, nonlinear microscopy, and functional magnetic resonance imaging. In this paper, the authors review some of the recent advances in the field of optogenetics and related technologies and provide their vision for the future of the field.
Collapse
|
49
|
Mantoan Ritter L, Golshani P, Takahashi K, Dufour S, Valiante T, Kokaia M. WONOEP appraisal: optogenetic tools to suppress seizures and explore the mechanisms of epileptogenesis. Epilepsia 2014; 55:1693-702. [PMID: 25303540 DOI: 10.1111/epi.12804] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2014] [Indexed: 02/04/2023]
Abstract
Optogenetics is a novel technology that combines optics and genetics by optical control of microbial opsins, targeted to living cell membranes. The versatility and the electrophysiologic characteristics of the light-sensitive ion-channels channelrhodopsin-2 (ChR2), halorhodopsin (NpHR), and the light-sensitive proton pump archaerhodopsin-3 (Arch) make these optogenetic tools potent candidates in controlling neuronal firing in models of epilepsy and in providing insights into the physiology and pathology of neuronal network organization and synchronization. Opsins allow selective activation of excitatory neurons and inhibitory interneurons, or subclasses of interneurons, to study their activity patterns in distinct brain-states in vivo and to dissect their role in generation of synchrony and seizures. The influence of gliotransmission on epileptic network function is another topic of great interest that can be further explored by using light-activated Gq protein-coupled opsins for selective activation of astrocytes. The ever-growing optogenetic toolbox can also be combined with emerging techniques that have greatly expanded our ability to record specific subtypes of cortical and hippocampal neurons in awake behaving animals such as juxtacellular recording and two-photon guided whole-cell recording, to identify the specific subtypes of neurons that are altered in epileptic networks. Finally, optogenetic tools allow rapid and reversible suppression of epileptic electroencephalography (EEG) activity upon photoactivation. This review outlines the most recent advances achieved with optogenetic techniques in the field of epilepsy by summarizing the presentations contributed to the 13th ILAE WONOEP meeting held in the Laurentian Mountains, Quebec, in June 2013.
Collapse
Affiliation(s)
- Laura Mantoan Ritter
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, United Kingdom
| | | | | | | | | | | |
Collapse
|
50
|
Adamantidis AR, Zhang F, de Lecea L, Deisseroth K. Optogenetics: opsins and optical interfaces in neuroscience. Cold Spring Harb Protoc 2014; 2014:815-22. [PMID: 25086025 DOI: 10.1101/pdb.top083329] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Optogenetics is defined as the integration of optics and genetics to control well-defined events within specified cells of living tissue. In this introduction, we focus on the basic techniques necessary for employing microbial opsins as optogenetic tools in mammalian brains. We provide a guide for the fundamentals of optogenetic application-selecting an opsin, implementing expression of opsins based on the neuroscientific experimental requirements, and adapting the corresponding optical hardware for delivery of light into mammalian brains.
Collapse
|