1
|
Hodgson E, Thirouin M, Narayanan P, Romano T, Wise J, Bond S. A novel placement method of a calibration-free pH capsule for continuous wireless measurement of intragastric pH in horses. J Vet Intern Med 2025; 39:e17273. [PMID: 39715411 PMCID: PMC11665962 DOI: 10.1111/jvim.17273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Current methods to measure intragastric pH in horses have limitations. A wireless capsule has been designed for continuous esophageal pH monitoring in humans. OBJECTIVES To (1) determine the feasibility and describe the methodology of measuring intragastric pH wirelessly in horses; and (2) determine attachment duration of the capsules. ANIMALS Eleven healthy adult horses. METHODS Capsules were attached to squamous and glandular gastric mucosa under gastroscopic guidance, using suture loops and 1 to 4 hemostasis clips. pH was continuously recorded using a wireless recorder in both fed and fasted states. Gastroscopy was performed daily to assess capsule attachment and any mucosal damage. Data were analyzed using commercially available software. Values are reported as median (interquartile range). RESULTS Capsules were successfully placed and data obtained in squamous (n = 11) and glandular (n = 7) regions. The overall duration of squamous capsule attachment was 27 hours (15-32); 1 clip (n = 4) was 15 hours (11-20), 2 clips (n = 2) was 20 hours (16-23), 3 clips (n = 4) was 32 hours (30-32), and 4 clips (n = 1) was 33 hours. The overall duration of glandular capsule attachment was 10 hours (8-21); 1 clip (n = 2) was 11 hours (10-13), 2 clips (n = 2) was 19 hours (14-23), 3 clips (n = 2) was 7 hours (7-8), and 4 clips (n = 1) was 158 hours. There was no substantial damage to the gastric mucosa as a consequence of attachment. CONCLUSIONS AND CLINICAL IMPORTANCE This novel technique enables the wireless measurement of intragastric pH in horses at known locations under fed and fasted conditions, providing a viable alternative for continuous monitoring in both research and clinical scenarios.
Collapse
Affiliation(s)
- Evelyn Hodgson
- School of Veterinary Science, Faculty of ScienceUniversity of QueenslandGatton, Queensland 4343Australia
| | - Marthe Thirouin
- School of Veterinary Science, Faculty of ScienceUniversity of QueenslandGatton, Queensland 4343Australia
| | - Pranav Narayanan
- School of Veterinary Science, Faculty of ScienceUniversity of QueenslandGatton, Queensland 4343Australia
| | - Tallia‐Rume Romano
- School of Veterinary Science, Faculty of ScienceUniversity of QueenslandGatton, Queensland 4343Australia
| | - Jessica Wise
- School of Veterinary Science, Faculty of ScienceUniversity of QueenslandGatton, Queensland 4343Australia
| | - Stephanie Bond
- School of Veterinary Science, Faculty of ScienceUniversity of QueenslandGatton, Queensland 4343Australia
| |
Collapse
|
2
|
Zheng B, Wang L, Yi Y, Yin J, Liang A. Design strategies, advances and future perspectives of colon-targeted delivery systems for the treatment of inflammatory bowel disease. Asian J Pharm Sci 2024; 19:100943. [PMID: 39246510 PMCID: PMC11375318 DOI: 10.1016/j.ajps.2024.100943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/02/2024] [Accepted: 05/21/2024] [Indexed: 09/10/2024] Open
Abstract
Inflammatory bowel diseases (IBD) significantly contribute to high mortality globally and negatively affect patients' qualifications of life. The gastrointestinal tract has unique anatomical characteristics and physiological environment limitations. Moreover, certain natural or synthetic anti-inflammatory drugs are associated with poor targeting, low drug accumulation at the lesion site, and other side effects, hindering them from exerting their therapeutic effects. Colon-targeted drug delivery systems represent attractive alternatives as novel carriers for IBD treatment. This review mainly discusses the treatment status of IBD, obstacles to drug delivery, design strategies of colon-targeted delivery systems, and perspectives on the existing complementary therapies. Moreover, based on recent reports, we summarized the therapeutic mechanism of colon-targeted drug delivery. Finally, we addressed the challenges and future directions to facilitate the exploitation of advanced nanomedicine for IBD therapy.
Collapse
Affiliation(s)
- Baoxin Zheng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liping Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yan Yi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jun Yin
- School of Traditional Chinese Material, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Aihua Liang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
3
|
Ferraro F, Sonnleitner L, Neut C, Mahieux S, Verin J, Siepmann J, Siepmann F. Colon targeting in rats, dogs and IBD patients with species-independent film coatings. Int J Pharm X 2024; 7:100233. [PMID: 38379554 PMCID: PMC10876578 DOI: 10.1016/j.ijpx.2024.100233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/22/2024] Open
Abstract
Polysaccharides were identified, which allow for colon targeting in human Inflammatory Bowel Disease (IBD) patients, as well as in rats and dogs (which are frequently used as animals in preclinical studies). The polysaccharides are degraded by colonic enzymes (secreted by bacteria), triggering the onset of drug release at the target site. It has to be pointed out that the microbiota in rats, dogs and humans substantially differ. Thus, the performance of this type of colon targeting system observed in animals might not be predictive for patients. The aim of this study was to limit this risk. Different polysaccharides were exposed to culture medium inoculated with fecal samples from IBD patients, healthy dogs and "IBD rats" (in which colonic inflammation was induced). Dynamic changes in the pH of the culture medium were used as an indicator for the proliferation of the bacteria and, thus, the potential of the polysaccharides to serve as their substrate. Fundamental differences were observed with respect to the extent of the pH variations as well as their species-dependency. The most promising polysaccharides were used to prepare polymeric film coatings surrounding 5-aminosaliciylic acid (5-ASA)-loaded starter cores. To limit premature polysaccharide dissolution/swelling in the upper gastro intestinal tract, ethylcellulose was also included in the film coatings. Drug release was monitored upon exposure to culture medium inoculated with fecal samples from IBD patients, healthy dogs and "IBD rats". For reasons of comparison, also 5-ASA release in pure culture medium was measured. Most film coatings showed highly species-dependent drug release kinetics or limited colon targeting capacity. Interestingly, extracts from aloe vera and reishi (a mushroom) showed a promising potential for colon targeting in all species.
Collapse
Affiliation(s)
- F. Ferraro
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | | | - C. Neut
- Univ. Lille, Inserm, CHU Lille, U1286, F-59000 Lille, France
| | - S. Mahieux
- Univ. Lille, Inserm, CHU Lille, U1286, F-59000 Lille, France
| | - J. Verin
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - J. Siepmann
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - F. Siepmann
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| |
Collapse
|
4
|
Bal G, Kanakaraj L, Mohanta BC. Prediction of pharmacokinetics of an anaplastic lymphoma kinase inhibitor in rat and monkey: application of physiologically based pharmacokinetic model as an alternative tool to minimise animal studies. Xenobiotica 2023; 53:621-633. [PMID: 38111268 DOI: 10.1080/00498254.2023.2292725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/05/2023] [Indexed: 12/20/2023]
Abstract
The pharmacokinetic (PK) and toxicokinetic profile of a drug from its preclinical evaluation helps the researcher determine whether the drug should be tested in humans based on its safety and toxicity.Preclinical studies require time and resources and are prone to error. Moreover, according to the United States Food and Drug Administration Modernisation Act 2, animal testing is no longer mandatory for new drug development, and an animal-free alternative, such as cell-based assay and computer models, can be used.Different physiologically based PK models were developed for an anaplastic lymphoma kinase inhibitor in rats and monkeys after intravenous and oral administration using its physicochemical properties and in vitro characterisation data.The developed model was validated against the in vivo data available in the literature, and the validation results were found within the acceptable limit. A parameter sensitivity analysis was performed to identify the properties of the compound influencing the PK profile.This work demonstrates the application of the physiologically based PK model to predict the PKs of a drug, which will eventually assist in reducing the number of animal studies and save time and cost of drug discovery and development.
Collapse
Affiliation(s)
- Gobardhan Bal
- Chettinad School of Pharmaceutical Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| | - Lakshmi Kanakaraj
- Chettinad School of Pharmaceutical Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| | - Bibhash Chandra Mohanta
- Department of Pharmacy, School of Health Science, Central University of South Bihar, Gaya, Bihar, India
| |
Collapse
|
5
|
Thuy Nguyen H, Van Duong T, Taylor YS. Enteric coating of tablets containing an amorphous solid dispersion of an enteric polymer and a weakly basic drug: a strategy to enhance in vitro release. Int J Pharm 2023:123139. [PMID: 37311499 PMCID: PMC10390825 DOI: 10.1016/j.ijpharm.2023.123139] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/15/2023]
Abstract
Recent work has highlighted that amorphous solid dispersions (ASDs) containing delamanid (DLM) and an enteric polymer, hypromellose phthalate (HPMCP), appear to be susceptible to crystallization during immersion in simulated gastric fluids. The goal of this study was to minimize contact of the ASD particles with the acidic media via application of an enteric coating to tablets containing the ASD intermediate, and improve the subsequent drug release at higher pH conditions. DLM ASDs were prepared with HPMCP and formulated into a tablet that was then coated with a methacrylic acid copolymer (Acryl EZE II®). Drug release was studied in vitro using a two-stage dissolution test where the pH of the gastric compartment was altered to reflect physiological variations. The medium was subsequently switched to simulated intestinal fluid. The gastric resistance time of the enteric coating was probed over the pH range of 1.6-5.0. The enteric coating was found to be effective at protecting the drug against crystallization in pH conditions where HPMCP was insoluble. Consequently, the variability in drug release following gastric immersion under pH conditions reflecting different prandial states was notably reduced when compared to the reference product. These findings support closer examination of the potential for drug crystallization from ASDs in the gastric environment where acid-insoluble polymers may be less effective as crystallization inhibitors. Further, addition of a protective enteric coating appears to provide a promising remediation strategy to prevent crystallization at low pH environments, and may mitigate variability associated with prandial state that arises due to pH changes.
Collapse
Affiliation(s)
- Hanh Thuy Nguyen
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tu Van Duong
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States.
| |
Collapse
|
6
|
Nguyen HT, Van Duong T, Jaw-Tsai S, Bruning-Barry R, Pande P, Taneja R, Taylor LS. Fed- and Fasted-State Performance of Pretomanid Amorphous Solid Dispersions Formulated with an Enteric Polymer. Mol Pharm 2023. [PMID: 37220082 DOI: 10.1021/acs.molpharmaceut.3c00174] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Weakly acid polymers with pH-responsive solubility are being used with increasing frequency in amorphous solid dispersion (ASD) formulations of drugs with low aqueous solubility. However, drug release and crystallization in a pH environment where the polymer is insoluble are not well understood. The aim of the current study was to develop ASD formulations optimized for release and supersaturation longevity of a rapidly crystallizing drug, pretomanid (PTM), and to evaluate a subset of these formulations in vivo. Following screening of several polymers for their ability to inhibit crystallization, hypromellose acetate succinate HF grade (HPMCAS-HF; HF) was selected to prepare PTM ASDs. In vitro release studies were conducted in simulated fasted- and fed-state media. Drug crystallization in ASDs following exposure to dissolution media was evaluated by powder X-ray diffraction, scanning electron microscopy, and polarized light microscopy. In vivo oral pharmacokinetic evaluation was conducted in male cynomolgus monkeys (n = 4) given 30 mg PTM under both fasted and fed conditions in a crossover design. Three HPMCAS-based ASDs of PTM were selected for fasted-state animal studies based on their in vitro release performance. Enhanced bioavailability was observed for each of these formulations relative to the reference product that contained crystalline drug. The 20% drug loading PTM-HF ASD gave the best performance in the fasted state, with subsequent dosing in the fed state. Interestingly, while food improved drug absorption of the crystalline reference product, the exposure of the ASD formulation was negatively impacted. The failure of the HPMCAS-HF ASD to enhance absorption in the fed state was hypothesized to result from poor release in the reduced pH intestinal environment resulting from the fed state. In vitro experiments confirmed a reduced release rate under lower pH conditions, which was attributed to reduced polymer solubility and an enhanced crystallization tendency of the drug. These findings emphasize the limitations of in vitro assessment of ASD performance using standardized media conditions. Future studies are needed for improved understanding of food effects on ASD release and how this variability can be captured by in vitro testing methodologies for better prediction of in vivo outcomes, in particular for ASDs formulated with enteric polymers.
Collapse
Affiliation(s)
- Hanh Thuy Nguyen
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tu Van Duong
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Sarah Jaw-Tsai
- Sarah Jaw-Tsai Consulting Services, 12279 Skyracer Drive, Las Vegas, Nevada 89138, United States
| | - Rebecca Bruning-Barry
- Global Health Technologies Program, RTI International, Research Triangle Park, North Carolina 27704, United States
| | - Poonam Pande
- Global Alliance for TB Drug Development (TB Alliance), 80 Pine Street, 20th Floor, New York, New York 10005, United States
| | - Rajneesh Taneja
- Global Alliance for TB Drug Development (TB Alliance), 80 Pine Street, 20th Floor, New York, New York 10005, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
7
|
Jesus ADS, El Bizri HR, Fa JE, Valsecchi J, Rabelo RM, Mayor P. Comparative gastrointestinal organ lengths among Amazonian primates (Primates: Platyrrhini). AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023. [PMID: 37092603 DOI: 10.1002/ajpa.24751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 04/11/2023] [Accepted: 04/16/2023] [Indexed: 04/25/2023]
Abstract
OBJECTIVES The morphological features of the gastrointestinal tract (GIT) in mammals reflect a species' food niche breadth and dietary adaptations. For many wild mammals, the relationship between the structure of the GIT and diet is still poorly understood, for example, the GIT for frugivorous primates is usually classified as unspecialized and homogeneous. Here, we compare the GIT structure of 13 primate species from the three families of extant platyrrhines (Atelidae, Pitheciidae, and Cebidae) in Amazonia, and discuss possible evolutionary adaptations to different diets and trophic niches. METHODS We measured the length of the esophagus, stomach, small intestine, large intestine, cecum, colon, and rectum of the digestive tracts of 289 primate specimens. We determined the allometric relationships of the different tubular organs with the total length of the GIT as a proxy of specimen body size. Allometric parameters were used to establish the quotients of differentiation of every organ for each primate specimen. RESULTS There was a high differentiation in structure of the digestive organs among genera. Alouatta specimens clearly separated from the other genera based on dissimilarities in gastric, colonic, and rectal quotients, likely linked to the fermentation of plant contents. In contrast, all cebines (Sapajus, Cebus, and Saimiri) and Cacajao species had similar small intestine quotients, which is expected due to their high rates of animal matter consumed. CONCLUSIONS We show that diverse adaptations in digestive structure exist among frugivorous primates, which in turn reflect different dietary patterns within this group that may enable the geographic coexistence of different primate species.
Collapse
Affiliation(s)
- Anamélia de Souza Jesus
- Programa de Pós-Graduação em Saúde e Produção Animal na Amazônia, Universidade Federal Rural da Amazônia, Belém, Brazil
- Grupo de Pesquisa em Ecologia de Vertebrados Terrestres, Instituto de Desenvolvimento Sustentável Mamirauá, Tefé, Brazil
- Grupo de Pesquisa em Biologia e Conservação de Primatas, Instituto de Desenvolvimento Sustentável Mamirauá, Tefé, Brazil
- Rede de Pesquisa para Estudos sobre Diversidade, Conservação e Uso da Fauna na Amazônia (RedeFauna), Manaus, Brazil
| | - Hani R El Bizri
- Grupo de Pesquisa em Ecologia de Vertebrados Terrestres, Instituto de Desenvolvimento Sustentável Mamirauá, Tefé, Brazil
- Rede de Pesquisa para Estudos sobre Diversidade, Conservação e Uso da Fauna na Amazônia (RedeFauna), Manaus, Brazil
- School of Science, Engineering and Environment, University of Salford, Salford, UK
- Comunidad de Manejo de Fauna Silvestre en la Amazonía y en Latinoamérica (ComFauna), Iquitos, Peru
| | - Julia E Fa
- Department of Natural Sciences, School of Science and the Environment, Manchester Metropolitan University, Manchester, UK
- CIFOR Headquarters, Center for International Forestry Research (CIFOR), Bogor, Indonesia
| | - João Valsecchi
- Grupo de Pesquisa em Ecologia de Vertebrados Terrestres, Instituto de Desenvolvimento Sustentável Mamirauá, Tefé, Brazil
- Rede de Pesquisa para Estudos sobre Diversidade, Conservação e Uso da Fauna na Amazônia (RedeFauna), Manaus, Brazil
| | - Rafael Magalhães Rabelo
- Grupo de Pesquisa em Ecologia de Vertebrados Terrestres, Instituto de Desenvolvimento Sustentável Mamirauá, Tefé, Brazil
| | - Pedro Mayor
- Programa de Pós-Graduação em Saúde e Produção Animal na Amazônia, Universidade Federal Rural da Amazônia, Belém, Brazil
- Comunidad de Manejo de Fauna Silvestre en la Amazonía y en Latinoamérica (ComFauna), Iquitos, Peru
- Departamento Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Nguyen HT, Van Duong T, Taylor LS. Impact of Gastric pH Variations on the Release of Amorphous Solid Dispersion Formulations Containing a Weakly Basic Drug and Enteric Polymers. Mol Pharm 2023; 20:1681-1695. [PMID: 36730186 PMCID: PMC9997068 DOI: 10.1021/acs.molpharmaceut.2c00895] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Enteric polymers are widely used in amorphous solid dispersion (ASD) formulations. The aim of the current study was to explore ASD failure mechanisms across a wide range of pH conditions that mimic in vivo gastric compartment variations where enteric polymers such as hydroxypropyl methylcellulose phthalate (HPMCP) and hydroxypropyl methylcellulose acetate succinate (HPMCAS) are largely insoluble. Delamanid (DLM), a weakly basic drug used to treat tuberculosis, was selected as the model compound. Both DLM free base and the edisylate salt were formulated with HPMCP, while DLM edisylate ASDs were also prepared with different grades of HPMCAS. Two-stage release testing was conducted with the gastric stage pH varied between pH 1.6 and 5.0, prior to transfer to intestinal conditions of pH 6.5. ASD particles were collected following suspension in the gastric compartment and evaluated using X-ray powder diffraction and scanning electron microscopy. Additional samples were also evaluated with polarized light microscopy. In general, ASDs with HPMCP showed improved overall release for all testing conditions, relative to ASDs with HPMCAS. ASDs with the edisylate salt likewise outperformed those with DLM free base. Impaired release for certain formulations at intestinal pH conditions was attributed to surface drug crystallization that initiated during suspension in the gastric compartment where the polymer is insoluble; crystallization appeared more extensive for HPMCAS ASDs. These findings suggest that gastric pH variations should be evaluated for ASD formulations containing weakly basic drugs and enteric polymers.
Collapse
Affiliation(s)
- Hanh Thuy Nguyen
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tu Van Duong
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
9
|
Khoshnood S, Negahdari B, Kaviar VH, Sadeghifard N, Abdullah MA, El-Shazly M, Haddadi MH. Amoxicillin-docosahexaenoic acid encapsulated chitosan-alginate nanoparticles as a delivery system with enhanced biocidal activities against Helicobacter pylori and improved ulcer healing. Front Microbiol 2023; 14:1083330. [PMID: 36846798 PMCID: PMC9948253 DOI: 10.3389/fmicb.2023.1083330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
Encapsulation of amoxicillin (AMX) for drug delivery against Helicobacter pylori infection and aspirin-induced ulcers in rat's stomachs was performed using docosahexaenoic acid (DHA)-loaded chitosan/alginate (CA) nanoparticles (NPs) developed by ionotropic gelation method. The physicochemical analyses of the composite NPs were performed by scanning electron microscopy, Fourier transform infrared spectroscopy, zeta potential, X-ray diffraction, and atomic force microscopy. The encapsulation efficiency of AMX was increased to 76% by incorporating DHA, which resulted in a reduction in the particle size. The formed CA-DHA-AMX NPs effectively adhered to the bacteria and rat gastric mucosa. Their antibacterial properties were more potent than those of the single AMX and CA-DHA NPs as demonstrated by the in vivo assay. The composite NPs attained higher mucoadhesive potential during food intake than during fasting (p = 0.029). At 10 and 20 mg/kg AMX, the CA-AMX-DHA showed more potent activities against H. pylori than the CA-AMX, CA-DHA, and single AMX. The in vivo study showed that the effective dose of AMX was lower when DHA was included, indicating better drug delivery and stability of the encapsulated AMX. Both mucosal thickening and ulcer index were significantly higher in the groups receiving CA-DHA-AMX than in the groups receiving CA-AMX and single AMX. The presence of DHA declines the pro-inflammatory cytokines including IL-1β, IL-6, and IL-17A. The synergistic effects of AMX and the CA-DHA formulation increased the biocidal activities against H. pylori infection and improved ulcer healing properties.
Collapse
Affiliation(s)
- Saeed Khoshnood
- Clinical Microbiology Research Centre, Ilam University of Medical Sciences, Ilam, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahab Hassan Kaviar
- Clinical Microbiology Research Centre, Ilam University of Medical Sciences, Ilam, Iran
| | - Nourkhoda Sadeghifard
- Clinical Microbiology Research Centre, Ilam University of Medical Sciences, Ilam, Iran
| | - Mohd Azmuddin Abdullah
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Mohammad Hossein Haddadi
- Clinical Microbiology Research Centre, Ilam University of Medical Sciences, Ilam, Iran,*Correspondence: Mohammad Hossein Haddadi,✉ ;✉
| |
Collapse
|
10
|
Zeybek N, Büyükkileci AO, Güleç S, Polat M, Polat H. Designing robust xylan/chitosan composite shells around drug-loaded MSNs: Stability in upper GIT and degradation in the colon microbiota. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Telles NJ, Simon BT, Scallan EM, Gould EN, Papich MG, He Y, Lee MT, Lidbury JA, Steiner JM, Kathrani A, Katherine Tolbert M. Evaluation of gastrointestinal transit times and pH in healthy cats using a continuous pH monitoring system. J Feline Med Surg 2022; 24:954-961. [PMID: 34878315 PMCID: PMC10812322 DOI: 10.1177/1098612x211062096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The aim of this study was to characterize gastrointestinal (GI) transit times and pH in healthy cats. METHODS GI transit times and pH were measured in six healthy, colony-housed, purpose-bred spayed female cats using a continuous, non-invasive pH monitoring system in a sequential order design. For the first period ('pre-feeding'), food was withheld for 20 h, followed by oral administration of a pH capsule. Five hours post-capsule administration, cats were meal-fed by offering them their daily allowance of food for 1 h. For the second period ('post-feeding'), food was withheld for 24 h and cats were fed for 1 h, after which a pH capsule was orally administered. Studies in both periods were repeated three times. GI transit times and pH were compared between the two periods. RESULTS The median transit times for the pre- and post-feeding periods, respectively, were: gastric - 94 mins (range 1-4101) and 1068 mins (range 484-5521); intestinal - 1350 mins (range 929-2961) and 1534 mins (range 442-2538); and GI - 1732 mins (range 1105-5451) and 2795 mins (range 926-6563). The median GI pH values for the first and second periods, respectively, were: esophageal - 7.0 (range 3.5-7.8) and 4.5 (range 2.9-6.4); gastric - 2.7 (range 1.7-6.2) and 2.0 (range 1.1-3.3); intestinal - 8.2 (range 7.6-8.7) and 7.8 (range 6.7-8.5); first-hour small intestinal - 8.2 (range 7.4-8.7) and 8.3 (range 7.9-8.6); and last-hour large intestinal - 8.5 (range 7.0-8.9) and 7.8 (range 6.3-8.7). Gastric (P <0.0020) and intestinal pH (P <0.0059) were significantly increased in the pre-feeding period compared with the post-feeding period. CONCLUSIONS AND RELEVANCE Gastric and intestinal pH differed significantly when the capsule was administered 5 h prior to feeding compared with 1 h after feeding. Transit times for both periods showed high degrees of intra- and inter-individual variability.
Collapse
Affiliation(s)
- Naila J Telles
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Bradley T Simon
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Elizabeth M Scallan
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Emily N Gould
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | | | - Yuqing He
- North Carolina State University, Raleigh, NC, USA
| | - Mu-Tien Lee
- North Carolina State University, Raleigh, NC, USA
| | - Jonathan A Lidbury
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Jörg M Steiner
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | | | - M Katherine Tolbert
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
12
|
Awad A, Madla CM, McCoubrey LE, Ferraro F, Gavins FK, Buanz A, Gaisford S, Orlu M, Siepmann F, Siepmann J, Basit AW. Clinical translation of advanced colonic drug delivery technologies. Adv Drug Deliv Rev 2022; 181:114076. [PMID: 34890739 DOI: 10.1016/j.addr.2021.114076] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/26/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022]
Abstract
Targeted drug delivery to the colon offers a myriad of benefits, including treatment of local diseases, direct access to unique therapeutic targets and the potential for increasing systemic drug bioavailability and efficacy. Although a range of traditional colonic delivery technologies are available, these systems exhibit inconsistent drug release due to physiological variability between and within individuals, which may be further exacerbated by underlying disease states. In recent years, significant translational and commercial advances have been made with the introduction of new technologies that incorporate independent multi-stimuli release mechanisms (pH and/or microbiota-dependent release). Harnessing these advanced technologies offers new possibilities for drug delivery via the colon, including the delivery of biopharmaceuticals, vaccines, nutrients, and microbiome therapeutics for the treatment of both local and systemic diseases. This review details the latest advances in colonic drug delivery, with an emphasis on emerging therapeutic opportunities and clinical technology translation.
Collapse
|
13
|
Kambayashi A, Murano M, Imai S, Miyata K, Sugita K, Fujii Y, Kinoshita M, Nomura A, Kimoto T, Miyazaki Y, Sakakibara H, Kakuda S, Tsujimoto T, Fujita Y, Kano M, Nakamura H, Akaogi S, Honda M, Anraku M, Kamada N, Ohta K, Uchida M, Kataoka M, Kikuchi H, Yamashita S, Kondo H. Interspecies differences in gastrointestinal physiology affecting the in vivo performance of oral pharmaceutical solid dosage forms. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Stamatopoulos K, O'Farrell C, Simmons M, Batchelor H. In vivo models to evaluate ingestible devices: Present status and current trends. Adv Drug Deliv Rev 2021; 177:113915. [PMID: 34371085 DOI: 10.1016/j.addr.2021.113915] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/27/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022]
Abstract
Evaluation of orally ingestible devices is critical to optimize their performance early in development. Using animals as a pre-clinical tool can provide useful information on functionality, yet it is important to recognize that animal gastrointestinal physiology, pathophysiology and anatomy can differ to that in humans and that the most suitable species needs to be selected to inform the evaluation. There has been a move towards in vitro and in silico models rather than animal models in line with the 3Rs (Replacement, Reduction and Refinement) as well as the better control and reproducibility associated with these systems. However, there are still instances where animal models provide the greatest understanding. This paper provides an overview of key aspects of human gastrointestinal anatomy and physiology and compares parameters to those reported in animal species. The value of each species can be determined based upon the parameter of interest from the ingested device when considering the use of pre-clinical animal testing.
Collapse
Affiliation(s)
- Konstantinos Stamatopoulos
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Biopharmaceutics, Pharmaceutical Development, PDS, MST, RD Platform Technology & Science, GSK, David Jack Centre, Park Road, Ware, Hertfordshire SG12 0DP, UK
| | - Connor O'Farrell
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Mark Simmons
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Hannah Batchelor
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
15
|
Charbonneau MR, Denney WS, Horvath NG, Cantarella P, Castillo MJ, Puurunen MK, Brennan AM. Development of a mechanistic model to predict synthetic biotic activity in healthy volunteers and patients with phenylketonuria. Commun Biol 2021; 4:898. [PMID: 34294862 PMCID: PMC8298439 DOI: 10.1038/s42003-021-02183-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 04/30/2021] [Indexed: 11/09/2022] Open
Abstract
The development of therapeutics depends on predictions of clinical activity from pre-clinical data. We have previously described SYNB1618, an engineered bacterial therapeutic (synthetic biotic) for the treatment of Phenylketonuria (PKU), a rare genetic disease that leads to accumulation of plasma phenylalanine (Phe) and severe neurological complications. SYNB1618 consumes Phe in preclinical models, healthy human volunteers, and PKU patients. However, it remains unclear to what extent Phe consumption by SYNB1618 in the gastrointestinal tract lowers plasma Phe levels in PKU patients. Here, we construct a mechanistic model that predicts SYNB1618 function in non-human primates and healthy subjects by combining in vitro simulations and prior knowledge of human physiology. In addition, we extend a model of plasma Phe kinetics in PKU patients, in order to estimate plasma Phe lowering by SYNB1618. This approach provides a framework that can be used more broadly to define the therapeutic potential of synthetic biotics.
Collapse
|
16
|
Namken S, Songvut P, Nuengchamnong N, Kemthong T, Khemawoot P, Malaivijitnond S. Comparative Pharmacokinetics of Puerarin Alone and in Pueraria mirifica Extract in Female Cynomolgus Monkeys. PLANTA MEDICA 2021; 87:395-403. [PMID: 33063303 DOI: 10.1055/a-1271-7092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pueraria mirifica is an endemic Thai plant that has been used for rejuvenation and in the relief of various aging diseases. Puerarin is one of the major isoflavones found in this plant and shows several pharmacological activities in relation to the Thai traditional use of P. mirifica. Therefore, comparative pharmacokinetics of pure puerarin alone and that in a P. mirifica extract in cynomolgus monkeys were conducted in order to investigate the pharmacokinetic profiles of the 2 preparations. To this end, puerarin and P. mirifica extract, at an equivalent dose of 10 mg/kg of puerarin, were orally dosed to adult female monkeys for 7 consecutive days. A single intravenous injection of puerarin at a dose of 1 mg/kg was also peformed. Serial blood samples and excreta were collected from 0 - 24 h and 0 - 48 h after dosing. Determination of the puerarin levels and its metabolites in biological samples was conducted by liquid chromatography tandem mass spectrometry. Plasma levels of aspartate aminotransferase, alanine aminotransferase, and creatinine fluctuated in the normal range, with no abnormal physical signs in the animal. The absolute oral bioavailability of puerarin was approximately 1% in both preparations. Accumulation of puerarin was found after oral dosing for 7 consecutive days in both groups. Major metabolites of puerarin found in monkeys were hydroxylation and deglycosylation products. A negligible amount of unchanged puerarin was detected in urine and feces. Pharmacokinetic profiles obtained from this study could help to design the prescribed remedy of puerarin and P. mirifica extract phytopharmaceutical products for human use.
Collapse
Affiliation(s)
- Sureerat Namken
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Phanit Songvut
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Translational Research Unit, Chulabhorn Research Institute, Bangkok, Thailand
| | - Nitra Nuengchamnong
- Science Laboratory Centre, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Taratorn Kemthong
- National Primate Research Center of Thailand-Chulalongkorn University, Saraburi, Thailand
| | - Phisit Khemawoot
- Preclinical Pharmacokinetics and Interspecies Scaling for Drug Development Research Unit, Chulalongkorn University, Bangkok, Thailand
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn, Thailand
| | - Suchinda Malaivijitnond
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- National Primate Research Center of Thailand-Chulalongkorn University, Saraburi, Thailand
- Preclinical Pharmacokinetics and Interspecies Scaling for Drug Development Research Unit, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
17
|
Broesder A, Kosta AMMAC, Woerdenbag HJ, Nguyen DN, Frijlink HW, Hinrichs WLJ. pH-dependent ileocolonic drug delivery, part II: preclinical evaluation of novel drugs and novel excipients. Drug Discov Today 2020; 25:1374-1388. [PMID: 32562842 DOI: 10.1016/j.drudis.2020.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/18/2020] [Accepted: 06/08/2020] [Indexed: 01/18/2023]
Abstract
Novel drugs and novel excipients in pH-dependent ileocolonic drug delivery systems have to be tested in animals. Which animal species are suitable and what in vivo methods are used to verify ileocolonic drug delivery?
Collapse
Affiliation(s)
- Annemarie Broesder
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Anne-Marijke M A C Kosta
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells and Systems, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Herman J Woerdenbag
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Duong N Nguyen
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Henderik W Frijlink
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Wouter L J Hinrichs
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
18
|
Gareb B, Otten AT, Frijlink HW, Dijkstra G, Kosterink JGW. Review: Local Tumor Necrosis Factor-α Inhibition in Inflammatory Bowel Disease. Pharmaceutics 2020; 12:E539. [PMID: 32545207 PMCID: PMC7356880 DOI: 10.3390/pharmaceutics12060539] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/28/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023] Open
Abstract
Crohn's disease (CD) and ulcerative colitis (UC) are inflammatory bowel diseases (IBD) characterized by intestinal inflammation. Increased intestinal levels of the proinflammatory cytokine tumor necrosis factor-α (TNF-α) are associated with disease activity and severity. Anti-TNF-α therapy is administered systemically and efficacious in the treatment of IBD. However, systemic exposure is associated with adverse events that may impede therapeutic treatment. Clinical studies show that the efficacy correlates with immunological effects localized in the gastrointestinal tract (GIT) as opposed to systemic effects. These data suggest that site-specific TNF-α inhibition in IBD may be efficacious with fewer expected side effects related to systemic exposure. We therefore reviewed the available literature that investigated the efficacy or feasibility of local TNF-α inhibition in IBD. A literature search was performed on PubMed with given search terms and strategy. Of 8739 hits, 48 citations were included in this review. These studies ranged from animal studies to randomized placebo-controlled clinical trials. In these studies, local anti-TNF-α therapy was achieved with antibodies, antisense oligonucleotides (ASO), small interfering RNA (siRNA), microRNA (miRNA) and genetically modified organisms. This narrative review summarizes and discusses these approaches in view of the clinical relevance of local TNF-α inhibition in IBD.
Collapse
Affiliation(s)
- Bahez Gareb
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
- Martini Hospital Groningen, Department of Clinical Pharmacy and Toxicology, Van Swietenplein 1, 9728 NT Groningen, The Netherlands
| | - Antonius T. Otten
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (A.T.O.); (G.D.)
| | - Henderik W. Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (A.T.O.); (G.D.)
| | - Jos G. W. Kosterink
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
- Department of PharmacoTherapy, -Epidemiology and -Economics, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
19
|
Crowe JS, Roberts KJ, Carlton TM, Maggiore L, Cubitt MF, Ray KP, Donnelly MC, Wahlich JC, Humphreys JI, Robinson JR, Whale GA, West MR. Oral delivery of the anti-tumor necrosis factor α domain antibody, V565, results in high intestinal and fecal concentrations with minimal systemic exposure in cynomolgus monkeys. Drug Dev Ind Pharm 2018; 45:387-394. [DOI: 10.1080/03639045.2018.1542708] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- J. Scott Crowe
- VHsquared Ltd., Babraham, UK
- VHsquared Ltd., Wellcome Sanger Institute, Hinxton, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Scalable Gastric Resident Systems for Veterinary Application. Sci Rep 2018; 8:11816. [PMID: 30087406 PMCID: PMC6081402 DOI: 10.1038/s41598-018-30212-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/25/2018] [Indexed: 11/25/2022] Open
Abstract
Gastric resident dosage forms have been used successfully in farm animals for the delivery of a variety of drugs helping address the challenge of extended dosing. Despite these advances, there remains a significant challenge across the range of species with large variation in body size. To address this, we investigate a scalable gastric resident platform capable of prolonged retention. We investigate prototypes in dimensions consistent with administration and retention in the stomachs of two species (rabbit and pig). We investigate sustained gastric retention of our scalable dosage form platform, and in pigs show the capacity to modulate drug release kinetics of a model drug in veterinary practice, meloxicam, with our dosage form. The ability to achieve gastric residence and thereby enable sustained drug levels across different species may have a significant impact in the welfare of animals in both research, agricultural, zoological, and clinical practice settings.
Collapse
|
21
|
Remington B, Broekman HCH, Blom WM, Capt A, Crevel RWR, Dimitrov I, Faeste CK, Fernandez-Canton R, Giavi S, Houben GF, Glenn KC, Madsen CB, Kruizinga AK, Constable A. Approaches to assess IgE mediated allergy risks (sensitization and cross-reactivity) from new or modified dietary proteins. Food Chem Toxicol 2017; 112:97-107. [PMID: 29258956 DOI: 10.1016/j.fct.2017.12.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 11/03/2017] [Accepted: 12/15/2017] [Indexed: 11/16/2022]
Abstract
The development and introduction of new dietary protein sources has the potential to improve food supply sustainability. Understanding the potential allergenicity of these new or modified proteins is crucial to ensure protection of public health. Exposure to new proteins may result in de novo sensitization, with or without clinical allergy, or clinical reactions through cross-reactivity. In this paper we review the potential of current methodologies (in silico, in vitro degradation, in vitro IgE binding, animal models and clinical studies) to address these outcomes for risk assessment purposes for new proteins, and especially to identify and characterise the risk of sensitization for IgE mediated allergy from oral exposure. Existing tools and tests are capable of assessing potential crossreactivity. However, there are few possibilities to assess the hazard due to de novo sensitization. The only methods available are in vivo models, but many limitations exist to use them for assessing risk. We conclude that there is a need to understand which criteria adequately define allergenicity for risk assessment purposes, and from these criteria develop a more suitable battery of tests to distinguish between proteins of high and low allergenicity, which can then be applied to assess new proteins with unknown risks.
Collapse
Affiliation(s)
| | - H C H Broekman
- Dep. Dermatology/Allergology, University Medical Centre Utrecht (UMCU), P.O. Box 85500, The Netherlands
| | | | - A Capt
- Bayer SAS, Sophia Antipolis, France
| | - R W R Crevel
- Safety & Environmental Assurance Centre, Unilever, Bedford, UK
| | - I Dimitrov
- Faculty of Pharmacy, Medical University of Sofia, Sofia, 1000 Bulgaria
| | - C K Faeste
- Norwegian Veterinary Institute, Oslo, Norway
| | - R Fernandez-Canton
- Monsanto Europe S.A., Avenue de Tervuren 270-272, B-1150 Brussels, Belgium
| | - S Giavi
- Allergy Department, 2nd Paediatric Clinic, University of Athens, Athens, Greece
| | | | - K C Glenn
- Monsanto Company, 800 N. Lindbergh Boulevard, St. Louis, MO 63017, USA
| | - C B Madsen
- National Food Institute, Technical University of Denmark, Søborg, Denmark
| | | | - A Constable
- Nestec Ltd, P.O. Box 44, CH-1000 Lausanne 26, Switzerland
| |
Collapse
|
22
|
Wang R, Edrington TC, Storrs SB, Crowley KS, Ward JM, Lee TC, Liu ZL, Li B, Glenn KC. Analyzing pepsin degradation assay conditions used for allergenicity assessments to ensure that pepsin susceptible and pepsin resistant dietary proteins are distinguishable. PLoS One 2017; 12:e0171926. [PMID: 28207780 PMCID: PMC5312868 DOI: 10.1371/journal.pone.0171926] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/29/2017] [Indexed: 11/18/2022] Open
Abstract
The susceptibility of a dietary protein to proteolytic degradation by digestive enzymes, such as gastric pepsin, provides information on the likelihood of systemic exposure to a structurally intact and biologically active macromolecule, thus informing on the safety of proteins for human and animal consumption. Therefore, the purpose of standardized in vitro degradation studies that are performed during protein safety assessments is to distinguish whether proteins of interest are susceptible or resistant to pepsin degradation via a study design that enables study-to-study comparison. Attempting to assess pepsin degradation under a wide-range of possible physiological conditions poses a problem because of the lack of robust and consistent data collected under a large-range of sub-optimal conditions, which undermines the needs to harmonize in vitro degradation conditions. This report systematically compares the effects of pH, incubation time, and pepsin-to-substrate protein ratio on the relative degradation of five dietary proteins: three pepsin susceptible proteins [ribulose 1,5-bisphosphate carboxylase-oxygenase (Rubisco), horseradish peroxidase (HRP), hemoglobin (Hb)], and two pepsin resistant proteins [lipid transfer protein (LTP) and soybean trypsin inhibitor (STI)]. The results indicate that proteins susceptible to pepsin degradation are readily distinguishable from pepsin-resistant proteins when the reaction conditions are within the well-characterized optima for pepsin. The current standardized in vitro pepsin resistant assay with low pH and high pepsin-to-substrate ratio fits this purpose. Using non-optimal pH and/or pepsin-to-substrate protein ratios resulted in susceptible proteins no longer being reliably degraded by this stomach enzyme, which compromises the ability of this in vitro assay to distinguish between resistant and susceptible proteins and, therefore, no longer providing useful data to an overall weight-of-evidence approach to assessing safety of proteins.
Collapse
Affiliation(s)
- Rong Wang
- Monsanto Company, St. Louis, Missouri, United States of America
- * E-mail:
| | | | | | | | - Jason M. Ward
- Monsanto Company, St. Louis, Missouri, United States of America
| | - Thomas C. Lee
- Monsanto Company, St. Louis, Missouri, United States of America
| | - Zi L. Liu
- Monsanto Company, St. Louis, Missouri, United States of America
| | - Bin Li
- Monsanto Company, St. Louis, Missouri, United States of America
| | - Kevin C. Glenn
- Monsanto Company, St. Louis, Missouri, United States of America
| |
Collapse
|
23
|
Liu Y, Zhang Y, Jiang W, Wang J, Pan X, Wu W, Cao M, Dong P, Liang X. Nucleic acids digestion by enzymes in the stomach of snakehead (Channa argus) and banded grouper (Epinephelus awoara). FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:127-136. [PMID: 27531133 DOI: 10.1007/s10695-016-0273-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/05/2016] [Indexed: 06/06/2023]
Abstract
Dietary nucleic acids (NAs) were important nutrients. However, the digestion of NAs in stomach has not been studied. In this study, the digestion of NAs by enzymes from fish stomach was investigated. The snakehead pepsins (SP) which were the main enzymes in stomach were extracted and purified. The purity of SP was evaluated by SDS-PAGE and HPLC. The snakehead pepsin 2 (SP2) which was the main component in the extracts was used for investigating the protein and NAs digestion activity. SP2 could digest NAs, including λ DNA and salmon sperm DNA. Interestingly, the digestion could be inhibited by treatment of alkaline solution at pH 8.0 and pepstatin A, and the digestion could happen either in the presence or absence of hemoglobin (Hb) and BSA as the protein substrates. Similarly, the stomach enzymes of banded grouper also showed the NAs digestion activity. NAs could be digested by the stomach enzymes of snakehead and banded grouper. It may be helpful for understanding both animal nutrition and NAs metabolic pathway.
Collapse
Affiliation(s)
- Yu Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- Innovation and Application Institute, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Yanfang Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Wei Jiang
- Innovation and Application Institute, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Jing Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xiaoming Pan
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Wei Wu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Minjie Cao
- College of Biological Engineering, Jimei University, Xiamen, China
- Key Laboratory of Science and Technology for Aquaculture and Food Safety, Jimei University, Xiamen, China
| | - Ping Dong
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.
| | - Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.
| |
Collapse
|
24
|
Liu Y, Zhang Y, Guo H, Wu W, Dong P, Liang X. Accelerated digestion of nucleic acids by pepsin from the stomach of chicken. Br Poult Sci 2016; 57:674-681. [PMID: 27535578 DOI: 10.1080/00071668.2016.1200012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Nucleic acids have become an important nutritional supplement in poultry feed; however, the digestion of nucleic acids in poultry is unclear. The objective of this study was to investigate the digestion of nucleic acids by chicken pepsin in vitro. The extracted pepsinogen from the stomach of the chicken was purified to homogeneity. Upon activation at pH 2.0, chicken pepsinogen was converted to its active form. Nucleic acids, including λ-DNA, salmon sperm DNA and single-strand DNA (ssDNA), can be used as substrates and digested into short-chain oligonucleotides by pepsin. Interestingly, the digestion of the nucleic acids was inhibited when pepsin was treated by alkaline solution (pH 8.0) or pepstatin A. Also, the digestion of the nucleic acids was not affected by the addition of haemoglobin or bovine serum albumin. The results suggested that nucleic acids could be digested by chicken pepsin. Thus pepsin may have a role in digesting nucleic acids in vivo. Nucleic acids added to poultry fed may be digested, starting from the stomach.
Collapse
Affiliation(s)
- Y Liu
- a College of Food Science and Engineering , Ocean University of China , Qingdao , China.,b Innovation and Application Institute , Zhejiang Ocean University , Zhoushan , China
| | - Y Zhang
- a College of Food Science and Engineering , Ocean University of China , Qingdao , China
| | - H Guo
- a College of Food Science and Engineering , Ocean University of China , Qingdao , China
| | - W Wu
- a College of Food Science and Engineering , Ocean University of China , Qingdao , China
| | - P Dong
- a College of Food Science and Engineering , Ocean University of China , Qingdao , China
| | - X Liang
- a College of Food Science and Engineering , Ocean University of China , Qingdao , China
| |
Collapse
|
25
|
Renner S, Dobenecker B, Blutke A, Zöls S, Wanke R, Ritzmann M, Wolf E. Comparative aspects of rodent and nonrodent animal models for mechanistic and translational diabetes research. Theriogenology 2016; 86:406-21. [PMID: 27180329 DOI: 10.1016/j.theriogenology.2016.04.055] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/22/2016] [Accepted: 03/14/2016] [Indexed: 12/31/2022]
Abstract
The prevalence of diabetes mellitus, which currently affects 387 million people worldwide, is permanently rising in both adults and adolescents. Despite numerous treatment options, diabetes mellitus is a progressive disease with severe comorbidities, such as nephropathy, neuropathy, and retinopathy, as well as cardiovascular disease. Therefore, animal models predictive of the efficacy and safety of novel compounds in humans are of great value to address the unmet need for improved therapeutics. Although rodent models provide important mechanistic insights, their predictive value for therapeutic outcomes in humans is limited. In recent years, the pig has gained importance for biomedical research because of its close similarity to human anatomy, physiology, size, and, in contrast to non-human primates, better ethical acceptance. In this review, anatomic, biochemical, physiological, and morphologic aspects relevant to diabetes research will be compared between different animal species, that is, mouse, rat, rabbit, pig, and non-human primates. The value of the pig as a model organism for diabetes research will be highlighted, and (dis)advantages of the currently available approaches for the generation of pig models exhibiting characteristics of metabolic syndrome or type 2 diabetes mellitus will be discussed.
Collapse
Affiliation(s)
- Simone Renner
- Gene Center and Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, Munich, Germany; German Center for Diabetes Research (DZD), Helmholtz Zentrum München, Neuherberg, Germany.
| | - Britta Dobenecker
- Chair of Animal Nutrition and Dietetics, Department of Veterinary Science, LMU Munich, Munich, Germany
| | - Andreas Blutke
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, Germany
| | - Susanne Zöls
- Clinic for Swine, Center for Clinical Veterinary Medicine, LMU Munich, Germany
| | - Rüdiger Wanke
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, Germany
| | - Mathias Ritzmann
- Clinic for Swine, Center for Clinical Veterinary Medicine, LMU Munich, Germany
| | - Eckhard Wolf
- Gene Center and Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, Munich, Germany; German Center for Diabetes Research (DZD), Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
26
|
Al-Saffar A, Nogueira da Costa A, Delaunois A, Leishman DJ, Marks L, Rosseels ML, Valentin JP. Gastrointestinal Safety Pharmacology in Drug Discovery and Development. Handb Exp Pharmacol 2015; 229:291-321. [PMID: 26091645 DOI: 10.1007/978-3-662-46943-9_12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although the basic structure of the gastrointestinal tract (GIT) is similar across species, there are significant differences in the anatomy, physiology, and biochemistry between humans and laboratory animals, which should be taken into account when conducting a gastrointestinal (GI) assessment. Historically, the percentage of cases of drug attrition associated with GI-related adverse effects is small; however, this incidence has increased over the last few years. Drug-related GI effects are very diverse, usually functional in nature, and not limited to a single pharmacological class. The most common GI signs are nausea and vomiting, diarrhea, constipation, and gastric ulceration. Despite being generally not life-threatening, they can greatly affect patient compliance and quality of life. There is therefore a real need for improved and/or more extensive GI screening of candidate drugs in preclinical development, which may help to better predict clinical effects. Models to identify drug effects on GI function cover GI motility, nausea and emesis liability, secretory function (mainly gastric secretion), and absorption aspects. Both in vitro and in vivo assessments are described in this chapter. Drug-induced effects on GI function can be assessed in stand-alone safety pharmacology studies or as endpoints integrated into toxicology studies. In silico approaches are also being developed, such as the gut-on-a-chip model, but await further optimization and validation before routine use in drug development. GI injuries are still in their infancy with regard to biomarkers, probably due to their greater diversity. Nevertheless, several potential blood, stool, and breath biomarkers have been investigated. However, additional validation studies are necessary to assess the relevance of these biomarkers and their predictive value for GI injuries.
Collapse
Affiliation(s)
- Ahmad Al-Saffar
- Faculty of Medicine, Department of Medical Sciences, Uppsala University, 751 85, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
27
|
Hatton GB, Yadav V, Basit AW, Merchant HA. Animal Farm: Considerations in Animal Gastrointestinal Physiology and Relevance to Drug Delivery in Humans. J Pharm Sci 2015; 104:2747-76. [DOI: 10.1002/jps.24365] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/22/2014] [Accepted: 12/22/2014] [Indexed: 12/30/2022]
|
28
|
Beasley DE, Koltz AM, Lambert JE, Fierer N, Dunn RR. The Evolution of Stomach Acidity and Its Relevance to the Human Microbiome. PLoS One 2015. [PMID: 26222383 PMCID: PMC4519257 DOI: 10.1371/journal.pone.0134116] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Gastric acidity is likely a key factor shaping the diversity and composition of microbial communities found in the vertebrate gut. We conducted a systematic review to test the hypothesis that a key role of the vertebrate stomach is to maintain the gut microbial community by filtering out novel microbial taxa before they pass into the intestines. We propose that species feeding either on carrion or on organisms that are close phylogenetic relatives should require the most restrictive filter (measured as high stomach acidity) as protection from foreign microbes. Conversely, species feeding on a lower trophic level or on food that is distantly related to them (e.g. herbivores) should require the least restrictive filter, as the risk of pathogen exposure is lower. Comparisons of stomach acidity across trophic groups in mammal and bird taxa show that scavengers and carnivores have significantly higher stomach acidities compared to herbivores or carnivores feeding on phylogenetically distant prey such as insects or fish. In addition, we find when stomach acidity varies within species either naturally (with age) or in treatments such as bariatric surgery, the effects on gut bacterial pathogens and communities are in line with our hypothesis that the stomach acts as an ecological filter. Together these results highlight the importance of including measurements of gastric pH when investigating gut microbial dynamics within and across species.
Collapse
Affiliation(s)
- DeAnna E. Beasley
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| | - Amanda M. Koltz
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Joanna E. Lambert
- Department of Anthropology, University of Colorado, Boulder, Colorado, United States of America
| | - Noah Fierer
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado United States of America
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, United States of America
| | - Rob R. Dunn
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
29
|
Sjögren E, Abrahamsson B, Augustijns P, Becker D, Bolger MB, Brewster M, Brouwers J, Flanagan T, Harwood M, Heinen C, Holm R, Juretschke HP, Kubbinga M, Lindahl A, Lukacova V, Münster U, Neuhoff S, Nguyen MA, Peer AV, Reppas C, Hodjegan AR, Tannergren C, Weitschies W, Wilson C, Zane P, Lennernäs H, Langguth P. In vivo methods for drug absorption – Comparative physiologies, model selection, correlations with in vitro methods (IVIVC), and applications for formulation/API/excipient characterization including food effects. Eur J Pharm Sci 2014; 57:99-151. [PMID: 24637348 DOI: 10.1016/j.ejps.2014.02.010] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 02/15/2014] [Accepted: 02/17/2014] [Indexed: 01/11/2023]
|
30
|
Mitra A, Kesisoglou F. Impaired Drug Absorption Due to High Stomach pH: A Review of Strategies for Mitigation of Such Effect To Enable Pharmaceutical Product Development. Mol Pharm 2013; 10:3970-9. [PMID: 23844623 DOI: 10.1021/mp400256h] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Amitava Mitra
- Biopharmaceutics, Product Value Enhancement, Pharmaceutical Sciences and Clinical Supply, Merck & Co. Inc., West Point, Pennsylvania 19486, United States
| | - Filippos Kesisoglou
- Biopharmaceutics, Product Value Enhancement, Pharmaceutical Sciences and Clinical Supply, Merck & Co. Inc., West Point, Pennsylvania 19486, United States
| |
Collapse
|
31
|
Marks L, Beard E, Cobey D, Moore N, Motyer V, Valentin JP, Ewart L. An evaluation of the non-invasive faecal pellet assessment method as an early drug discovery screen for gastrointestinal liability. J Pharmacol Toxicol Methods 2013; 68:123-36. [DOI: 10.1016/j.vascn.2013.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/20/2013] [Accepted: 03/21/2013] [Indexed: 12/24/2022]
|
32
|
Christ D. Toxicokinetics and Drug Disposition. Toxicol Pathol 2013. [DOI: 10.1201/b13783-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
Mahar KM, Portelli S, Coatney R, Chen EP. Gastric pH and Gastric Residence Time in Fasted and Fed Conscious Beagle Dogs using the Bravo® pH System. J Pharm Sci 2012; 101:2439-48. [DOI: 10.1002/jps.23159] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 03/14/2012] [Accepted: 03/29/2012] [Indexed: 11/09/2022]
|
34
|
Hsieh DS, Lu HC, Chen CC, Wu CJ, Yeh MK. The preparation and characterization of gold-conjugated polyphenol nanoparticles as a novel delivery system. Int J Nanomedicine 2012; 7:1623-33. [PMID: 22615529 PMCID: PMC3357049 DOI: 10.2147/ijn.s30060] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Nanogold particles are commonly used in nanomedicine. We generated physical nanogold (pNG) conjugated with different ratios of epigallocatechin-3-gallate (EGCG) and evaluated its physicochemical properties, antioxidant activity, and cytotoxicity in vitro as well as anticancer activity in vivo. Results showed that the EGCG-pNG conjugates were successfully prepared at ratios between 23:1 and 23:5, with the percentage of EGCG content increasing with the EGCG:pNG ratio from 23:1 (2.0% ± 0.02%) to 23:5 (28% ± 0.3%). EGCG-pNG particles at ratios of 23:1 and 23:5 demonstrated significantly decreased size from 500 to 20 nm and decreasing zeta potentials of 21 mV to −22 mV, respectively. At a ratio of 23:2.5, the EGCG-pNG particles (27% EGCG, 50 nm in size, zeta potential of −8 mV) showed longer EGCG activity half-life (110 days vs 5 hours), controlled release (2 hours vs 30 minutes), and higher antioxidant activity (four times), as well as inhibition of tumor cell growth, than controls. The present study indicated that EGCG-pNG possesses promising therapeutic potential, based on its strong free-radical scavenging and anticancer activities.
Collapse
Affiliation(s)
- Dar-Shih Hsieh
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | | | | | | | | |
Collapse
|
35
|
Scientific Opinion on the assessment of allergenicity of GM plants and microorganisms and derived food and feed. EFSA J 2010. [DOI: 10.2903/j.efsa.2010.1700] [Citation(s) in RCA: 243] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
36
|
Sagawa K, Li F, Liese R, Sutton SC. Fed and fasted gastric pH and gastric residence time in conscious beagle dogs. J Pharm Sci 2009; 98:2494-500. [PMID: 19177514 DOI: 10.1002/jps.21602] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The gastric pH values are controversial in the literature. Some suggest the dog gastric pH is higher than human and dog gastric pH after fed with particular diet is uncertain. Gastric pH in 16 male beagle dogs was measured using Bravo pH telemetry system. For the fed study, the dogs received 10 or 200 g of dog dry food (5L18) 15 min before dosing the Bravo pH capsule, followed by a 50 mL of water to aid in swallowing. It was surprising to find a small, but statistically significantly lower pH in the fed compared to the fasted stomach. The average gastric pH in fasted dogs was 2.05 and 1.08 and 1.26 for 10 and 200 g fed dogs. The average gastric emptying time of the capsule was 1.4, 9.4 and 20 h for fasted, 10 g fed and 200 g fed dogs, respectively. The inter-individual variability was higher in fasted dogs than in fed dogs. The results showed the gastric pH in each colony of dogs can be different from reported values in the literature. It emphasizes that the importance of measuring the pH in each colony when dogs are used to evaluate pharmacokinetics of pH sensitive drugs or formulations.
Collapse
Affiliation(s)
- Kazuko Sagawa
- Biopharmaceutics Group, Pfizer Global Research and Development, Connecticut, USA.
| | | | | | | |
Collapse
|
37
|
A novel placement method of the Bravo wireless pH monitoring capsule for measuring intragastric pH. Dig Dis Sci 2009; 54:578-85. [PMID: 18649136 DOI: 10.1007/s10620-008-0399-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 06/18/2008] [Indexed: 12/30/2022]
Abstract
PURPOSE The delivery system of the Bravo capsule was designed for placement on the esophagus. We evaluated the feasibility of our novel placement method of the Bravo capsule using a clip to monitor intragastric pH and to compare the accuracy of the Bravo wireless system to the traditionally used Slimline catheter-Mark III Digitrapper pH monitoring system. METHODS The Bravo capsule was placed by clip or conventional delivery system using suction on the gastric wall in 20 fasted subjects. A separate group of ten healthy volunteers underwent simultaneous intragastric pH monitoring for comparison of the two systems with meals. RESULTS Early dislodgment rate of the capsules was lower when placed using clipping (20%) than using conventional delivery system (70%) within 48 h after placement. We observed prominent movement of one catheter in the stomach during the study. Post-test calibration drifts of the catheters at pH 7.01 were significantly greater than those of the Bravo capsules (P = 0.02). CONCLUSION Our novel clipping method of the Bravo pH capsule placement provided accurate monitoring of intragastric pH with merits of tolerability, acid stability, and fixing position.
Collapse
|
38
|
Rudholm T, Hellström PM, Theodorsson E, Campbell CA, McLean PG, Näslund E. Bravo capsule system optimizes intragastric pH monitoring over prolonged time: Effects of ghrelin on gastric acid and hormone secretion in the rat. World J Gastroenterol 2008; 14:6180-7. [PMID: 18985808 PMCID: PMC2761579 DOI: 10.3748/wjg.14.6180] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate measurements of intragastric pH with the Bravo capsule system over a prolonged time.
METHODS: A Bravo capsule was placed inside the rat gastric body and pH was studied for periods up to five consecutive days. For comparison, a gastric fistula model was used. Effects of ghrelin and esomeprazole, with or without pentagastrin, on gastric pH were studied. In addition, effects of esomeprazole on plasma ghrelin, gastrin and somatostatin were analyzed.
RESULTS: All rats recovered after surgery. The average 24-h pH during free feeding was 2.3 ± 0.1 (n = 20) with a variation of 18% ± 6% over 5 d. Ghrelin, 2400 pmol/kg, t.i.d. increased pH from 1.7 ± 0.1 to 3.1 ± 0.3 (P < 0.01) as recorded with the Bravo system. After esomeprazole (1 mg/kg, 3 mg/kg and 5 mg/kg) there was a dose-dependent pH increase of maximally 3.4 ± 0.1, with day-to-day variation over the entire period of 8% ± 3%. The fistula and pH studies generated similar results. Acid inhibition with esomeprazole increased plasma ghrelin from 10 ± 2 pmol/L to 65 ± 26 pmol/L (P < 0.001), and somatostatin from 10 ± 2 pmol/L to 67 ± 18 pmol/L (P < 0.001).
CONCLUSION: pH measurements with the Bravo capsule are reliable, and comparable to those of the gastric fistula model. The Bravo system optimizes accurate intragastric pH monitoring over prolonged periods and allows both short- and long-term evaluation of effects of drugs and hormones.
Collapse
|