1
|
Pangua C, Espuelas S, Martínez-Ohárriz MC, Vizmanos JL, Irache JM. Mucus-penetrating and permeation enhancer albumin-based nanoparticles for oral delivery of macromolecules: Application to bevacizumab. Drug Deliv Transl Res 2024; 14:1189-1205. [PMID: 37880504 PMCID: PMC10984897 DOI: 10.1007/s13346-023-01454-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
The oral administration of therapeutic proteins copes with important challenges (mainly degradation and poor absorption) making their potential therapeutic application extremely difficult. The aim of this study was to design and evaluate the potential of the combination between mucus-permeating nanoparticles and permeation enhancers as a carrier for the oral delivery of the monoclonal antibody bevacizumab, used as a model of therapeutic protein. For this purpose, bevacizumab was encapsulated in PEG-coated albumin nanoparticles as a hydrophobic ion-pairing complex with either sodium deoxycholate (DS) or sodium docusate (DOCU). In both cases, complex formation efficiencies close to 90% were found. The incorporation of either DS or DOCU in PEG-coated nanoparticles significantly increased their mean size, particularly when DOCU was used. Moreover, the diffusion in mucus of DOCU-loaded nanoparticles was significantly reduced, compared with DS ones. In a C. elegans model, DS or DOCU (free or nanoencapsulated) disrupted the intestinal epithelial integrity, but the overall survival of the worms was not affected. In rats, the relative oral bioavailability of bevacizumab incorporated in PEG-coated nanoparticles as a complex with DS (B-DS-NP-P) was 3.7%, a 1000-fold increase compared to free bevacizumab encapsulated in nanoparticles (B-NP-P). This important effect of DS may be explained not only by its capability to transiently disrupt tight junctions but also to their ability to increase the fluidity of membranes and to inhibit cytosolic and brush border enzymes. In summary, the current strategy may be useful to allow the therapeutic use of orally administered proteins, including monoclonal antibodies.
Collapse
Affiliation(s)
- Cristina Pangua
- NANO-VAC Research Group, Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
| | - Socorro Espuelas
- NANO-VAC Research Group, Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
| | | | - José Luis Vizmanos
- Department of Biochemistry & Genetics, School of Sciences, University of Navarra, 31008, Pamplona, Spain
| | - Juan M Irache
- NANO-VAC Research Group, Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain.
- Institute for Health Research (IdiSNA), 31008, Pamplona, Spain.
| |
Collapse
|
2
|
Maher S, Geoghegan C, Brayden DJ. Safety of surfactant excipients in oral drug formulations. Adv Drug Deliv Rev 2023; 202:115086. [PMID: 37739041 DOI: 10.1016/j.addr.2023.115086] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Surfactants are a diverse group of compounds that share the capacity to adsorb at the boundary between distinct phases of matter. They are used as pharmaceutical excipients, food additives, emulsifiers in cosmetics, and as household/industrial detergents. This review outlines the interaction of surfactant-type excipients present in oral pharmaceutical dosage forms with the intestinal epithelium of the gastrointestinal (GI) tract. Many surfactants permitted for human consumption in oral products reduce intestinal epithelial cell viability in vitro and alter barrier integrity in epithelial cell monolayers, isolated GI tissue mucosae, and in animal models. This suggests a degree of mis-match for predicting safety issues in humans from such models. Recent controversial preclinical research also infers that some widely used emulsifiers used in oral products may be linked to ulcerative colitis, some metabolic disorders, and cancers. We review a wide range of surfactant excipients in oral dosage forms regarding their interactions with the GI tract. Safety data is reviewed across in vitro, ex vivo, pre-clinical animal, and human studies. The factors that may mitigate against some of the potentially abrasive effects of surfactants on GI epithelia observed in pre-clinical studies are summarised. We conclude with a perspective on the overall safety of surfactants in oral pharmaceutical dosage forms, which has relevance for delivery system development.
Collapse
Affiliation(s)
- Sam Maher
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, St. Stephen's Green, Dublin 2, Ireland.
| | - Caroline Geoghegan
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, St. Stephen's Green, Dublin 2, Ireland
| | - David J Brayden
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
3
|
Wright BL, Masuda MY, Ortiz DR, Dao A, Civello B, Pyon GC, Schulze AR, Yiannas JA, Rank MA, Kita H, Doyle AD. Allergies Come Clean: The Role of Detergents in Epithelial Barrier Dysfunction. Curr Allergy Asthma Rep 2023; 23:443-451. [PMID: 37233851 PMCID: PMC10527525 DOI: 10.1007/s11882-023-01094-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
PURPOSE OF REVIEW The prevalence and incidence of allergic disease have been rising in Westernized countries since the twentieth century. Increasingly, evidence suggests that damage to the epithelium initiates and shapes innate and adaptive immune responses to external antigens. The objective of this review is to examine the role of detergents as a potential risk factor for developing allergic disease. RECENT FINDINGS Herein, we identify key sources of human detergent exposure. We summarize the evidence suggesting a possible role for detergents and related chemicals in initiating epithelial barrier dysfunction and allergic inflammation. We primarily focus on experimental models of atopic dermatitis, asthma, and eosinophilic esophagitis, which show compelling associations between allergic disease and detergent exposure. Mechanistic studies suggest that detergents disrupt epithelial barrier integrity through their effects on tight junction or adhesion molecules and promote inflammation through epithelial alarmin release. Environmental exposures that disrupt or damage the epithelium may account for the increasing rates of allergic disease in genetically susceptible individuals. Detergents and related chemical compounds represent possible modifiable risk factors for the development or exacerbation of atopy.
Collapse
Affiliation(s)
- Benjamin L Wright
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA.
- Section of Allergy and Immunology, Division of Pulmonology, Phoenix Children's Hospital, Phoenix, AZ, USA.
| | - Mia Y Masuda
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
- Department of Immunology, Mayo Clinic, Mayo Clinic Arizona, Rochester, Scottsdale, Minnesota, AZ, USA
| | - Danna R Ortiz
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Adelyn Dao
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Blake Civello
- University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Grace C Pyon
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Aliviya R Schulze
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - James A Yiannas
- Department of Dermatology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Matthew A Rank
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
- Section of Allergy and Immunology, Division of Pulmonology, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Hirohito Kita
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
- Section of Allergy and Immunology, Division of Pulmonology, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Alfred D Doyle
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| |
Collapse
|
4
|
Considerations in the developability of peptides for oral administration when formulated together with transient permeation enhancers. Int J Pharm 2022; 628:122238. [PMID: 36174850 DOI: 10.1016/j.ijpharm.2022.122238] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/10/2022] [Accepted: 09/22/2022] [Indexed: 11/22/2022]
Abstract
This paper reviews many of the properties of a peptide that need to be considered prior to development as an oral dosage form when co-formulated with a permeation enhancer to improve oral bioavailability, including the importance and implications of peptide half-life on variability in pharmacokinetic profiles. Clinical considerations in terms of food and drug-drug interactions are also discussed. The paper further gives a brief overview how permeation enhancers overcome barriers that limit oral absorption of peptides and thereby improve their oral bioavailability, albeit bioavailabilities are still low single digit and variability is high.
Collapse
|
5
|
Protective Effects of Melatonin and Misoprostol against Experimentally Induced Increases in Intestinal Permeability in Rats. Int J Mol Sci 2022; 23:ijms23062912. [PMID: 35328333 PMCID: PMC8950185 DOI: 10.3390/ijms23062912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/01/2022] [Accepted: 03/05/2022] [Indexed: 01/27/2023] Open
Abstract
Intestinal mucosal barrier dysfunction caused by disease and/or chemotherapy lacks an effective treatment, which highlights a strong medical need. Our group has previously demonstrated the potential of melatonin and misoprostol to treat increases in intestinal mucosal permeability induced by 15-min luminal exposure to a surfactant, sodium dodecyl sulfate (SDS). However, it is not known which luminal melatonin and misoprostol concentrations are effective, and whether they are effective for a longer SDS exposure time. The objective of this single-pass intestinal perfusion study in rats was to investigate the concentration-dependent effect of melatonin and misoprostol on an increase in intestinal permeability induced by 60-min luminal SDS exposure. The cytoprotective effect was investigated by evaluating the intestinal clearance of 51Cr-labeled EDTA in response to luminal SDS as well as a histological evaluation of the exposed tissue. Melatonin at both 10 and 100 µM reduced SDS-induced increase in permeability by 50%. Misoprostol at 1 and 10 µM reduced the permeability by 50 and 75%, respectively. Combination of the two drugs at their respective highest concentrations had no additive protective effect. These in vivo results support further investigations of melatonin and misoprostol for oral treatments of a dysfunctional intestinal barrier.
Collapse
|
6
|
Hens B, Gonzalez-Alvarez I, Bermejo M. Exploring the Predictive Power of the In Situ Perfusion Technique towards Drug Absorption: Theory, Practice, and Applications. Mol Pharm 2022; 19:749-762. [DOI: 10.1021/acs.molpharmaceut.1c00861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Bart Hens
- Drug Product Design, Pfizer, Sandwich, Kent, CT13 9NJ, United Kingdom
| | - Isabel Gonzalez-Alvarez
- Department Engineering Pharmacy Section, Miguel Hernandez University, San Juan de Alicante, 03550 Alicante, Spain
| | - Marival Bermejo
- Department Engineering Pharmacy Section, Miguel Hernandez University, San Juan de Alicante, 03550 Alicante, Spain
| |
Collapse
|
7
|
Formulation strategies to improve the efficacy of intestinal permeation enhancers . Adv Drug Deliv Rev 2021; 177:113925. [PMID: 34418495 DOI: 10.1016/j.addr.2021.113925] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/28/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023]
Abstract
The use of chemical permeation enhancers (PEs) is the most widely tested approach to improve oral absorption of low permeability active agents, as represented by peptides. Several hundred PEs increase intestinal permeability in preclinical bioassays, yet few have progressed to clinical testing and, of those, only incremental increases in oral bioavailability (BA) have been observed. Still, average BA values of ~1% were sufficient for two recent FDA approvals of semaglutide and octreotide oral formulations. PEs are typically screened in static in vitro and ex-vivo models where co-presentation of active agent and PE in high concentrations allows the PE to alter barrier integrity with sufficient contact time to promote flux across the intestinal epithelium. The capacity to maintain high concentrations of co-presented agents at the epithelium is not reached by standard oral dosage forms in the upper GI tract in vivo due to dilution, interference from luminal components, fast intestinal transit, and possible absorption of the PE per se. The PE-based formulations that have been assessed in clinical trials in either immediate-release or enteric-coated solid dosage forms produce low and variable oral BA due to these uncontrollable physiological factors. For PEs to appreciably increase intestinal permeability from oral dosage forms in vivo, strategies must facilitate co-presentation of PE and active agent at the epithelium for a sustained period at the required concentrations. Focusing on peptides as examples of a macromolecule class, we review physiological impediments to optimal luminal presentation, discuss the efficacy of current PE-based oral dosage forms, and suggest strategies that might be used to improve them.
Collapse
|
8
|
Revealing the importance of carrier-cargo association in delivery of insulin and lipidated insulin. J Control Release 2021; 338:8-21. [PMID: 34298056 DOI: 10.1016/j.jconrel.2021.07.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 11/20/2022]
Abstract
Delivery of therapeutic peptides upon oral administration is highly desired and investigations report that the cell-penetrating peptide (CPP) penetratin and its analogues shuffle and penetramax show potential as carriers to enhance insulin delivery. Exploring this, the specific aim of the present study was to understand the impact that their complexation with a lipidated or non-lipidated therapeutic cargo would have on the delivery, to evaluate the effect of differences in membrane interactions in vitro and in vivo, as well as to deduce the mode of action leading to enhanced delivery. Fundamental biophysical aspects were studied by a range of orthogonal methods. Transepithelial permeation of therapeutic peptide was evaluated using the Caco-2 cell culture model supplemented with epithelial integrity measurements, real-time assessment of the carrier peptide effects on cell viability and on mode of action. Pharmacokinetic and pharmacodynamic (PK/PD) parameters were evaluated following intestinal administration to rats and tissue effects were investigated by histology. The biophysical studies revealed complexation of insulin with shuffle and penetramax, but not with penetratin. This corresponded to enhanced transepithelial permeation of insulin, but not of lipidated insulin, when in physical mixture with shuffle or penetramax. The addition of shuffle and penetramax was associated with a lowering of Caco-2 cell monolayer integrity and viability, where the lowering of cell viability was immediate, but reversible. Insulin delivery in rats was enhanced by shuffle and penetramax and accompanied by a 10-20-fold decrease in blood glucose with immediate effect on the intestinal mucosa. In conclusion, shuffle and penetramax, but not penetratin, demonstrated to be potential candidates as carriers for transmucosal delivery of insulin upon oral administration, and their effect depended on association with both cargo and cell membrane. Interestingly, the present study provides novel mechanistic insight that peptide carrier-induced cargo permeation points towards enhancement via the paracellular route in the tight epithelium. This is different from the anticipated belief being that it is the cell-penetrating capability that facilitate transepithelial cargo permeation via a transcellular route.
Collapse
|
9
|
Brayden DJ, Maher S. Transient Permeation Enhancer® (TPE®) technology for oral delivery of octreotide: a technological evaluation. Expert Opin Drug Deliv 2021; 18:1501-1512. [PMID: 34128734 DOI: 10.1080/17425247.2021.1942838] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The FDA approval of oral semaglutide for type 2 diabetes (2019) and oral octreotide for acromegaly (2020) is evidence that selected niche peptides can be administered orally if formulated with selected intestinal permeation enhancers. AREAS COVERED We evaluated the oral octreotide formulation, MYCAPSSA® (Chiasma Pharmaceuticals, Needham, MA, USA). An outline of the current standard of care in acromegaly and the benefits of oral octreotide versus depot injections is provided. We discuss the Transient Permeation Enhancer (TPE®) technology used and detail the safety and efficacy data from animal models and clinical trials. EXPERT OPINION TPE® is an oily suspension of octreotide that includes a number of excipients that can transiently alter epithelial barrier integrity by opening of intestinal epithelial tight junctions arising from transcellular perturbation. Phase I studies using 20 mg octreotide capsules yielded a relative oral bioavailability of ~0.7% and primary endpoints were achieved in two Phase III studies. The oral octreotide dose required to achieve these endpoints was over 200 times that of the 0.1 mg immediate-release subcutaneous injection, a reminder of the difficulty in achieving oral absorption of macromolecules. Many acromegaly patients will prefer a convenient twice-daily oral formulation of octreotide compared to monthly depot injections.
Collapse
Affiliation(s)
- David J Brayden
- University College Dublin (UCD) School of Veterinary Medicine, UCD, Belfield, Dublin 4, Ireland.,UCD Conway Institute of Biotechnology, UCD, Belfield, Dublin 4, Ireland.,CÚRAM, the SFI Research Centre for Medical Devices, UCD, Belfield, Dublin 4, Ireland
| | - Sam Maher
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, St. Stephen's Green, Dublin 2, Ireland
| |
Collapse
|
10
|
Prevention of Rat Intestinal Injury with a Drug Combination of Melatonin and Misoprostol. Int J Mol Sci 2020; 21:ijms21186771. [PMID: 32942716 PMCID: PMC7555796 DOI: 10.3390/ijms21186771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/02/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
A healthy intestinal barrier prevents uptake of allergens and toxins, whereas intestinal permeability increases following chemotherapy and in many gastrointestinal and systemic diseases and disorders. Currently, there are no approved drugs that target and repair the intestinal epithelial barrier while there is a medical need for such treatment in gastrointestinal and related conditions. The objective of this single-pass intestinal perfusion study in rats was to investigate the preventive cytoprotective effect of three mucosal protective drugs—melatonin, misoprostol, and teduglutide—with different mechanisms of action on an acute jejunal injury induced by exposing the intestine for 15 min to the anionic surfactant, sodium dodecyl sulfate (SDS). The effect was evaluated by monitoring intestinal clearance of 51Cr-labeled ethylenediaminetetraacetate and intestinal histology before, during, and after luminal exposure to SDS. Our results showed that separate pharmacological pretreatments with luminal misoprostol and melatonin reduced acute SDS-induced intestinal injury by 47% and 58%, respectively, while their use in combination abolished this injury. This data supports further development of drug combinations for oral treatments of conditions and disorders related to a dysregulated or compromised mucosal epithelial barrier.
Collapse
|
11
|
Liu C, Xu H, Sun Y, Zhang X, Cheng H, Mao S. Design of Virus-Mimicking Polyelectrolyte Complexes for Enhanced Oral Insulin Delivery. J Pharm Sci 2019; 108:3408-3415. [DOI: 10.1016/j.xphs.2019.05.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/26/2019] [Accepted: 05/31/2019] [Indexed: 12/16/2022]
|
12
|
Dahlgren D, Sjöblom M, Lennernäs H. Intestinal absorption-modifying excipients: A current update on preclinical in vivo evaluations. Eur J Pharm Biopharm 2019; 142:411-420. [DOI: 10.1016/j.ejpb.2019.07.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/27/2019] [Accepted: 07/11/2019] [Indexed: 12/11/2022]
|
13
|
Twarog C, Fattah S, Heade J, Maher S, Fattal E, Brayden DJ. Intestinal Permeation Enhancers for Oral Delivery of Macromolecules: A Comparison between Salcaprozate Sodium (SNAC) and Sodium Caprate (C 10). Pharmaceutics 2019; 11:E78. [PMID: 30781867 PMCID: PMC6410172 DOI: 10.3390/pharmaceutics11020078] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 12/31/2022] Open
Abstract
Salcaprozate sodium (SNAC) and sodium caprate (C10) are two of the most advanced intestinal permeation enhancers (PEs) that have been tested in clinical trials for oral delivery of macromolecules. Their effects on intestinal epithelia were studied for over 30 years, yet there is still debate over their mechanisms of action. C10 acts via openings of epithelial tight junctions and/or membrane perturbation, while for decades SNAC was thought to increase passive transcellular permeation across small intestinal epithelia based on increased lipophilicity arising from non-covalent macromolecule complexation. More recently, an additional mechanism for SNAC associated with a pH-elevating, monomer-inducing, and pepsin-inhibiting effect in the stomach for oral delivery of semaglutide was advocated. Comparing the two surfactants, we found equivocal evidence for discrete mechanisms at the level of epithelial interactions in the small intestine, especially at the high doses used in vivo. Evidence that one agent is more efficacious compared to the other is not convincing, with tablets containing these PEs inducing single-digit highly variable increases in oral bioavailability of payloads in human trials, although this may be adequate for potent macromolecules. Regarding safety, SNAC has generally regarded as safe (GRAS) status and is Food and Drug Administration (FDA)-approved as a medical food (Eligen®-Vitamin B12, Emisphere, Roseland, NJ, USA), whereas C10 has a long history of use in man, and has food additive status. Evidence for co-absorption of microorganisms in the presence of either SNAC or C10 has not emerged from clinical trials to date, and long-term effects from repeat dosing beyond six months have yet to be assessed. Since there are no obvious scientific reasons to prefer SNAC over C10 in orally delivering a poorly permeable macromolecule, then formulation, manufacturing, and commercial considerations are the key drivers in decision-making.
Collapse
Affiliation(s)
- Caroline Twarog
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Sarinj Fattah
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Joanne Heade
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Sam Maher
- School of Pharmacy, Royal College of Surgeons in Ireland, St. Stephen's Green, Dublin 2, Ireland.
| | - Elias Fattal
- School of Pharmacy, Institut Galien, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay, 92290 Châtenay-Malabry, France.
| | - David J Brayden
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
14
|
Effects of surfactant-based permeation enhancers on mannitol permeability, histology, and electrogenic ion transport responses in excised rat colonic mucosae. Int J Pharm 2018; 539:11-22. [DOI: 10.1016/j.ijpharm.2018.01.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/21/2017] [Accepted: 01/02/2018] [Indexed: 12/16/2022]
|
15
|
Lin PY, Chuang EY, Chiu YH, Chen HL, Lin KJ, Juang JH, Chiang CH, Mi FL, Sung HW. Safety and efficacy of self-assembling bubble carriers stabilized with sodium dodecyl sulfate for oral delivery of therapeutic proteins. J Control Release 2017; 259:168-175. [DOI: 10.1016/j.jconrel.2016.12.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 12/16/2016] [Indexed: 01/08/2023]
|
16
|
Suzuki H, Hamao S, Seto Y, Sato H, Wong J, Prud’homme RK, Chan HK, Onoue S. New nano-matrix oral formulation of nanoprecipitated cyclosporine A prepared with multi-inlet vortex mixer. Int J Pharm 2017; 516:116-119. [DOI: 10.1016/j.ijpharm.2016.11.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/27/2016] [Accepted: 11/10/2016] [Indexed: 11/16/2022]
|
17
|
Maher S, Mrsny RJ, Brayden DJ. Intestinal permeation enhancers for oral peptide delivery. Adv Drug Deliv Rev 2016; 106:277-319. [PMID: 27320643 DOI: 10.1016/j.addr.2016.06.005] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 12/15/2022]
Abstract
Intestinal permeation enhancers (PEs) are one of the most widely tested strategies to improve oral delivery of therapeutic peptides. This article assesses the intestinal permeation enhancement action of over 250 PEs that have been tested in intestinal delivery models. In depth analysis of pre-clinical data is presented for PEs as components of proprietary delivery systems that have progressed to clinical trials. Given the importance of co-presentation of sufficiently high concentrations of PE and peptide at the small intestinal epithelium, there is an emphasis on studies where PEs have been formulated with poorly permeable molecules in solid dosage forms and lipoidal dispersions.
Collapse
|
18
|
McCartney F, Gleeson JP, Brayden DJ. Safety concerns over the use of intestinal permeation enhancers: A mini-review. Tissue Barriers 2016; 4:e1176822. [PMID: 27358756 DOI: 10.1080/21688370.2016.1176822] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 03/18/2016] [Accepted: 03/22/2016] [Indexed: 12/22/2022] Open
Abstract
Intestinal permeation enhancers (PEs) are key components in ∼12 oral peptide formulations in clinical trials for a range of molecules, primarily insulin and glucagon-like-peptide 1 (GLP-1) analogs. The main PEs comprise medium chain fatty acid-based systems (sodium caprate, sodium caprylate, and N-[8-(2-hydroxybenzoyl) amino] caprylate (SNAC)), bile salts, acyl carnitines, and EDTA. Their mechanism of action is complex with subtle differences between the different molecules. With the exception of SNAC and EDTA, most PEs fluidize the plasma membrane causing plasma membrane perturbation, as well as enzymatic and intracellular mediator changes that lead to alteration of intestinal epithelial tight junction protein expression. The question arises as to whether PEs can cause irreversible epithelial damage and tight junction openings sufficient to permit co-absorption of payloads with bystander pathogens, lipopolysaccharides and its fragment, or exo- and endotoxins that may be associated with sepsis, inflammation and autoimmune conditions. Most PEs seem to cause membrane perturbation to varying extents that is rapidly reversible, and overall evidence of pathogen co-absorption is generally lacking. It is unknown however, whether the intestinal epithelial damage-repair cycle is sustained during repeat-dosing regimens for chronic therapy.
Collapse
Affiliation(s)
- Fiona McCartney
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin , Belfield, Dublin 4, Ireland
| | - John P Gleeson
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin , Belfield, Dublin 4, Ireland
| | - David J Brayden
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin , Belfield, Dublin 4, Ireland
| |
Collapse
|
19
|
Brayden DJ, Maher S, Bahar B, Walsh E. Sodium caprate-induced increases in intestinal permeability and epithelial damage are prevented by misoprostol. Eur J Pharm Biopharm 2015; 94:194-206. [PMID: 26026287 DOI: 10.1016/j.ejpb.2015.05.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 01/28/2023]
Abstract
Epithelial damage caused by intestinal permeation enhancers is a source of debate concerning safety. The medium chain fatty acid, sodium caprate (C10), causes reversible membrane perturbation at high dose levels required for efficacy in vivo, so the aim was to model it in vitro. Exposure of Caco-2 monolayers to 8.5mM C10 for 60min followed by incubation in fresh buffer led to (i) recovery in epithelial permeability (i.e. transepithelial electrical resistance (TEER) and apparent permeability coefficient (Papp) of [(14)C]-mannitol), (ii) recovery of cell viability parameters (monolayer morphology, plasma membrane potential, mitochondrial membrane potential, and intracellular calcium) and (iii) reduction in mRNA expression associated with inflammation (IL-8). Pre-incubation of monolayers with a mucosal prostaglandin cytoprotectant was attempted in order to further decipher the mechanism of C10. Misoprostol (100nM), inhibited C10-induced changes in monolayer parameters, an effect that was partially attenuated by the EP1 receptor antagonist, SC51322. In rat isolated intestinal tissue mucosae and in situ loop instillations, C10-induced respective increases in the [(14)C]-mannitol Papp and the AUC of FITC-dextran 4000 (FD-4) were similarly inhibited by misoprostol, with accompanying morphological damage spared. These data support a temporary membrane perturbation effect of C10, which is linked to its capacity to mainly increase paracellular flux, but which can be prevented by pre-exposure to misoprostol.
Collapse
Affiliation(s)
- David J Brayden
- School of Veterinary Medicine and Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Sam Maher
- School of Veterinary Medicine and Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Bojlul Bahar
- School of Veterinary Medicine and Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Edwin Walsh
- School of Veterinary Medicine and Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
20
|
Brayden DJ, Cryan SA, Dawson KA, O'Brien PJ, Simpson JC. High-content analysis for drug delivery and nanoparticle applications. Drug Discov Today 2015; 20:942-57. [PMID: 25908578 DOI: 10.1016/j.drudis.2015.04.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/09/2015] [Accepted: 04/13/2015] [Indexed: 12/16/2022]
Abstract
High-content analysis (HCA) provides quantitative multiparametric cellular fluorescence data. From its origins in discovery toxicology, it is now addressing fundamental questions in drug delivery. Nanoparticles (NPs), polymers, and intestinal permeation enhancers are being harnessed in drug delivery systems to modulate plasma membrane properties and the intracellular environment. Identifying comparative mechanistic cytotoxicity on sublethal events is crucial to expedite the development of such systems. NP uptake and intracellular routing pathways are also being dissected using chemical and genetic perturbations, with the potential to assess the intracellular fate of targeted and untargeted particles in vitro. As we discuss here, HCA is set to make a major impact in preclinical delivery research by elucidating the intracellular pathways of NPs and the in vitro mechanistic-based toxicology of formulation constituents.
Collapse
Affiliation(s)
- David J Brayden
- University College Dublin (UCD) School of Veterinary Medicine, Dublin 2, Ireland; UCD Conway Institute, Dublin 2, Ireland.
| | - Sally-Ann Cryan
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland; Trinity Centre for Bioengineering, Trinity College Dublin, Dublin 2, Ireland
| | - Kenneth A Dawson
- UCD Centre for Bionano Interactions, School of Chemistry and Chemical Biology, Belfield, Dublin 4, Ireland
| | - Peter J O'Brien
- University College Dublin (UCD) School of Veterinary Medicine, Dublin 2, Ireland
| | - Jeremy C Simpson
- UCD School of Biology and Environmental Sciences, Belfield, Dublin 4, Ireland; UCD Conway Institute, Dublin 2, Ireland
| |
Collapse
|
21
|
Interactions between active pharmaceutical ingredients and excipients affecting bioavailability: Impact on bioequivalence. Eur J Pharm Sci 2014; 65:89-97. [DOI: 10.1016/j.ejps.2014.09.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/04/2014] [Accepted: 09/04/2014] [Indexed: 01/29/2023]
|
22
|
Wang L, Sun Y, Shi C, Li L, Guan J, Zhang X, Ni R, Duan X, Li Y, Mao S. Uptake, transport and peroral absorption of fatty glyceride grafted chitosan copolymer-enoxaparin nanocomplexes: influence of glyceride chain length. Acta Biomater 2014; 10:3675-85. [PMID: 24814881 DOI: 10.1016/j.actbio.2014.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/14/2014] [Accepted: 05/01/2014] [Indexed: 01/08/2023]
Abstract
The objective of this paper is to elucidate the influence of fatty glyceride chain length in chitosan copolymers on the peroral absorption of enoxaparin. First of all, a series of chitosan copolymers with glyceryl monocaprylate (GM8), glyceryl monolaurate (GM12) and glyceryl monostearate (GM18) as the hydrophobic part were synthesized. The structure of the copolymers was characterized using proton nuclear magnetic resonance. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay demonstrated that all the copolymers were non-toxic. Enoxaparin nanocomplexes were prepared by self-assembly. Mucoadhesion of the nanocomplexes was characterized using the mucin particle method. Nanocomplex uptake and transport were quantified in Caco-2 cells and cellular localization was visualized by confocal laser scanning microscopy. Enoxaparin uptake was enhanced by nanocomplex formation, and was dependent on incubation time, concentration, temperature and glyceride chain length. The GM8 grafted chitosan-enoxaparin nanocomplex exhibited the strongest bioadhesion and the best uptake and transport in both cell culture and in vivo absorption in rats. The uptake mechanism was assumed to be adsorptive endocytosis via clathrin- and caveolae-mediated processes. In conclusion, oral absorption of enoxaparin can be further enhanced by using GM8 grafted chitosan copolymer as the carrier to form nanocomplexes.
Collapse
|
23
|
Sato H, Ogawa K, Kojo Y, Kawabata Y, Mizumoto T, Yamada S, Onoue S. Development of cyclosporine A-loaded dry-emulsion formulation using highly purified glycerol monooleate for safe inhalation therapy. Int J Pharm 2013; 448:282-9. [PMID: 23528280 DOI: 10.1016/j.ijpharm.2013.03.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 03/13/2013] [Accepted: 03/14/2013] [Indexed: 12/28/2022]
Abstract
The main objective of this study was to improve the safety and oxidative stability of glycerol monooleate (GMO)-based dry-emulsion (DE) formulation containing cyclosporine A (CsA) for inhalation therapy. GMO or highly purified GMO (hpGMO) was used as surfactant for the DE formulations (GMO/DE or hpGMO/DE), the toxicological and physicochemical properties of which were characterized with a focus on oxidative stability, in vitro/in vivo toxicity, and dissolution property. Incubation of GMO at oxidation accelerating conditions for 10 days at 60°C resulted in the formation of lipid peroxides as evidenced by increased malondialdehyde (111 μmol/mg); however, hpGMO samples exhibited increase of only 20.7 μmol/mg in malondialdehyde level. No significant acute cytotoxicity was observed in rat alveolar L2 cells exposed to hpGMO (0.28mM), and intratracheal administration of hpGMO powder in rats did not cause an increase of the plasma LDH level. The hpGMO/DE exhibited marked improvement in dissolution behavior of CsA, and stable fine micelles with a mean diameter of 320 nm were formed when suspended in water. A respirable powder formulation of hpGMO/DE (hpGMO/DE-RP) was newly prepared, and its in vitro inhalation property and in vivo efficacy were also evaluated. The hpGMO/DE-RP exhibited high dispersibility in laser diffraction analysis and significantly improved potency to attenuate recruitment of inflammatory cells into airway and thickening of airway wall in an animal model. Thus, the strategic use of hpGMO would improve oxidative stability and local toxicity compared with a GMO-based DE formulation, and its application to RP formulation could be a promising approach for effective inhalation therapy.
Collapse
Affiliation(s)
- Hideyuki Sato
- Department of Pharmacokinetics and Pharmacodynamics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Restoration of rat colonic epithelium after in situ intestinal instillation of the absorption promoter, sodium caprate. Ther Deliv 2010; 1:75-82. [DOI: 10.4155/tde.10.5] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Background: Sodium caprate (C10) is an oral absorption promoter that is currently in clinical trials as a component of solid dosage forms for poorly permeable small molecules and peptides. Clinical data with zoledronic acid tablets suggest that significant delivery along with acceptable safety can be achieved from a once-a-week dosing regime. C10 has surfactant-like properties at the high doses used in vivo and therefore we examined its effects on rat intestinal epithelium following intestinal instillation. Results: Addition of 100 mM concentrations of C10 with the paracellular flux marker, fluorescein isothiocyanate-dextran 4 kDa, permitted a bioavailability of 33% to be achieved. When C10 was added 10, 30 and 60 min in advance of fluorescein isothiocyanate-dextran 4 kDa, enhancement still occurred, but was progressively reduced. Histology revealed that the permeability increase was likely related in part to superficial epithelial damage caused in the first few minutes of exposure, which was rapidly repaired within 30–60 min. Conclusions: Design of optimized dosage forms containing C10 should corelease the payload and promoter close to the epithelium in high concentrations. While C10 induces some epithelial damage, its remarkable capacity for epithelial repair may render this effect insignificant in vivo.
Collapse
|
25
|
Maher S, Leonard TW, Jacobsen J, Brayden DJ. Safety and efficacy of sodium caprate in promoting oral drug absorption: from in vitro to the clinic. Adv Drug Deliv Rev 2009; 61:1427-49. [PMID: 19800376 DOI: 10.1016/j.addr.2009.09.006] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 09/21/2009] [Accepted: 09/24/2009] [Indexed: 12/12/2022]
Abstract
A major challenge in oral drug delivery is the development of novel dosage forms to promote absorption of poorly permeable drugs across the intestinal epithelium. To date, no absorption promoter has been approved in a formulation specifically designed for oral delivery of Class III molecules. Promoters that are designated safe for human consumption have been licensed for use in a recently approved buccal insulin spray delivery system and also for many years as part of an ampicillin rectal suppository. Unlike buccal and rectal delivery, oral formulations containing absorption promoters have the additional technical hurdle whereby the promoter and payload must be co-released in high concentrations at the small intestinal epithelium in order to generate significant but rapidly reversible increases in permeability. An advanced promoter in the clinic is the medium chain fatty acid (MCFA), sodium caprate (C(10)), a compound already approved as a food additive. We discuss how it has evolved to a matrix tablet format suitable for administration to humans under the headings of mechanism of action at the cellular and tissue level as well as in vitro and in vivo efficacy and safety studies. In specific clinical examples, we review how C(10)-based formulations are being tested for oral delivery of bisphosphonates using Gastro Intestinal Permeation Enhancement Technology, GIPET (Merrion Pharmaceuticals, Ireland) and in a related solid dose format for antisense oligonucleotides (ISIS Pharmaceuticals, USA).
Collapse
Affiliation(s)
- Sam Maher
- UCD School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | |
Collapse
|
26
|
Maher S, Wang X, Bzik V, McClean S, Brayden DJ. Evaluation of intestinal absorption and mucosal toxicity using two promoters. II. Rat instillation and perfusion studies. Eur J Pharm Sci 2009; 38:301-11. [DOI: 10.1016/j.ejps.2009.07.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2009] [Revised: 06/09/2009] [Accepted: 07/26/2009] [Indexed: 10/20/2022]
|