1
|
Lima AF, Amado IR, Pires LR. Poly(d,l-lactide- co-glycolide) (PLGA) Nanoparticles Loaded with Proteolipid Protein (PLP)-Exploring a New Administration Route. Polymers (Basel) 2020; 12:polym12123063. [PMID: 33371329 PMCID: PMC7767393 DOI: 10.3390/polym12123063] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/17/2022] Open
Abstract
The administration of specific antigens is being explored as a mean to re-establish immunological tolerance, namely in the context of multiple sclerosis (MS). PLP139-151 is a peptide of the myelin's most abundant protein, proteolipid protein (PLP), which has been identified as a potent tolerogenic molecule in MS. This work explored the encapsulation of the peptide into poly(lactide-co-glycolide) nanoparticles and its subsequent incorporation into polymeric microneedle patches to achieve efficient delivery of the nanoparticles and the peptide into the skin, a highly immune-active organ. Different poly(d,l-lactide-co-glycolide) (PLGA) formulations were tested and found to be stable and to sustain a freeze-drying process. The presence of trehalose in the nanoparticle suspension limited the increase in nanoparticle size after freeze-drying. It was shown that rhodamine can be loaded in PLGA nanoparticles and these into poly(vinyl alcohol)-poly(vinyl pyrrolidone) microneedles, yielding fluorescently labelled structures. The incorporation of PLP into the PLGA nanoparticles resulted in nanoparticles in a size range of 200 µm and an encapsulation efficiency above 20%. The release of PLP from the nanoparticles occurred in the first hours after incubation in physiological media. When loading the nanoparticles into microneedle patches, structures were obtained with 550 µm height and 180 µm diameter. The release of PLP was detected in PLP-PLGA.H20 nanoparticles when in physiological media. Overall, the results show that this strategy can be explored to integrate a new antigen-specific therapy in the context of multiple sclerosis, providing minimally invasive administration of PLP-loaded nanoparticles into the skin.
Collapse
|
2
|
Di Francesco M, Primavera R, Summa M, Pannuzzo M, Di Francesco V, Di Mascolo D, Bertorelli R, Decuzzi P. Engineering shape-defined PLGA microPlates for the sustained release of anti-inflammatory molecules. J Control Release 2020; 319:201-212. [DOI: 10.1016/j.jconrel.2019.12.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 10/25/2022]
|
3
|
Perumal V, Sivakumar PM, Zarrabi A, Muthupandian S, Vijayaraghavalu S, Sahoo K, Das A, Das S, Payyappilly SS, Das S. Near infra-red polymeric nanoparticle based optical imaging in Cancer diagnosis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 199:111630. [PMID: 31610429 DOI: 10.1016/j.jphotobiol.2019.111630] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/26/2019] [Accepted: 09/11/2019] [Indexed: 01/12/2023]
Abstract
Cancer disease is a foremost health concern and top basis of death in comparison with many diseases including cardiovascular disorders. During initial diagnosis (usually late diagnosis), a majority of cancer patients suffer from metastatic and advanced cancer stages which resulted in limited therapeutic modalities based interventions and effectiveness. Though considerable advancement has been made in combating the disease, continuous and intense efforts are ongoing for early diagnosis and development of therapies. Generally applied treatment options for cancer are surgery, chemotherapy and radiotherapy, which are restricted by failure to early diagnose, insufficient on-targeted drug delivery, systemic toxicity, and lack of real-time monitoring of therapeutic responses in cancer. Noninvasive imaging or minimally invasive imaging methodology is valuable in clinical diagnostic settings. Specifically, noninvasive optical imaging integrated with polymeric nanomaterial have been extensively investigated in the field of cancer diagnostics and therapy. Currently, optical imaging methods go together with polymer-based fluorescent nanoparticles in accomplishing the molecular level detection of tumor boundaries. NIR probe tagged polymeric nanoparticles have potential to provide an advantage in the early cancer detection, therapeutic monitoring and image guided surgery procedures. This article review the recent progress in state-of-the-art NIRF polymeric nanoparticles used for optical imaging particularly on cancer diagnosis.
Collapse
Affiliation(s)
- Venkatesan Perumal
- Rangel College of Pharmacy, Health Science Centre, Texas A&M University, TX, USA; Department of Biotechnology, IIT Kharagpur, west Bengal, India; College of Liberal Arts & Sciences, University of Colorado, Denver, CO 80204, USA.
| | | | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey
| | - Saravanan Muthupandian
- Department of Microbiology and Immunology, Division of Biomedical Sciences, School of Medicine, College of Health Sciences, Mekelle University, Mekelle 1871, Ethiopia
| | - Sivakumar Vijayaraghavalu
- Central Research Facility, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116; Department of Biomedical Engineering, Cancer Nanomedicine Program, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Amlan Das
- Entomology Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunj Circular Road, Kolkata, India
| | - Soumen Das
- Aviana Molecular Technologies, LLC, 3251 Progress Drive, Orlando, FL 32826, USA
| | - Sanal Sebastian Payyappilly
- International and Inter University Center for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Subhasish Das
- Department of Biotechnology, IIT Kharagpur, west Bengal, India
| |
Collapse
|
4
|
Bian Y, Wei Z, Wang Z, Tu Z, Zheng L, Wang W, Leng X, Li Y. Development of biodegradable polyesters based on a hydroxylated coumarin initiator towards fluorescent visible paclitaxel-loaded microspheres. J Mater Chem B 2019; 7:2261-2276. [PMID: 32254675 DOI: 10.1039/c8tb02952k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this work, we developed a facile end-functionalization method using hydroxylated coumarin to initiate the ring-opening polymerization of cyclic esters to synthesize a series of fluorescent biodegradable aliphatic polyesters with tailorable properties. The resulting fluorescent functionalized poly(l-lactide) (PLLA-COU), poly(ε-caprolactone) (PCL-COU) poly(δ-valerolactone) (PVL-COU) and poly(trimethylene carbonate) (PTMC-COU) were investigated to evaluate the dependence of fluorescence on the chemical structure and molecular weight of the materials. The differences in the electron withdrawing ability and the density of ester groups are responsible for the changes in the fluorescence quantum yield. Then, two representative biodegradable materials, namely, PLLA-COU and PCL-COU, were used to prepare fluorescent paclitaxel-loaded microspheres. During in vitro drug release, the release rate of the PCL-COU microspheres is dramatically faster than that of the PLLA-COU microspheres due to the difference in the material nature and their surface morphologies, possibly achieving a tunable degradation and release rate for the drug carriers. Fluorescent functionalized polyester microspheres can retain their fluorescence properties and emit bright blue light for fluorescence tracing during the degradation process. Biological evaluations showed that both fluorescent polyesters are devoid of any significant toxicity and have good biocompatibility. The results demonstrated that the obtained fluorescent polyesters are promising for use in traceable and controlled drug delivery with tunable drug release.
Collapse
Affiliation(s)
- Yufei Bian
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Maturi M, Locatelli E, Monaco I, Comes Franchini M. Current concepts in nanostructured contrast media development for in vivo photoacoustic imaging. Biomater Sci 2019; 7:1746-1775. [DOI: 10.1039/c8bm01444b] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
To overcome the endogenous photoacoustic contrast arising from endogenous species, specific contrast agents need to be developed, allowing PAI to successfully identify targeted contrast in the range of wavelength in which the interference from the biomatrix is minimized.
Collapse
Affiliation(s)
- Mirko Maturi
- Department of Industrial Chemistry “Toso Montanari”
- University of Bologna
- 40136 Bologna
- Italy
| | - Erica Locatelli
- Department of Industrial Chemistry “Toso Montanari”
- University of Bologna
- 40136 Bologna
- Italy
| | - Ilaria Monaco
- Department of Industrial Chemistry “Toso Montanari”
- University of Bologna
- 40136 Bologna
- Italy
| | - Mauro Comes Franchini
- Department of Industrial Chemistry “Toso Montanari”
- University of Bologna
- 40136 Bologna
- Italy
| |
Collapse
|
6
|
Narmani A, Farhood B, Haghi-Aminjan H, Mortezazadeh T, Aliasgharzadeh A, Mohseni M, Najafi M, Abbasi H. Gadolinium nanoparticles as diagnostic and therapeutic agents: Their delivery systems in magnetic resonance imaging and neutron capture therapy. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.01.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Schlegel I, Renz P, Simon J, Lieberwirth I, Pektor S, Bausbacher N, Miederer M, Mailänder V, Muñoz-Espí R, Crespy D, Landfester K. Highly Loaded Semipermeable Nanocapsules for Magnetic Resonance Imaging. Macromol Biosci 2018; 18:e1700387. [DOI: 10.1002/mabi.201700387] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/30/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Isabel Schlegel
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Patricia Renz
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Johanna Simon
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Ingo Lieberwirth
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Stefanie Pektor
- Department of Nuclear Medicine; University Medical Center Mainz; Langenbeckstraße 1 55131 Mainz Germany
| | - Nicole Bausbacher
- Department of Nuclear Medicine; University Medical Center Mainz; Langenbeckstraße 1 55131 Mainz Germany
| | - Matthias Miederer
- Department of Nuclear Medicine; University Medical Center Mainz; Langenbeckstraße 1 55131 Mainz Germany
| | - Volker Mailänder
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
- Dermatology Clinic; University Medical Center Mainz; Langenbeckstraße 1 55131 Mainz Germany
| | - Rafael Muñoz-Espí
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
- Institute of Materials Science (ICMUV); Universitat de València; C/ Catedràtic José Beltrán 2 46980 Paterna València Spain
| | - Daniel Crespy
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
- Department of Materials Science and Engineering; School of Molecular Science and Engineering; Vidyasirimedhi Institute of Science and Technology (VISTEC); Rayong 21210 Thailand
| | | |
Collapse
|
8
|
Liu Y, Rogel N, Harada K, Jarett L, Maiorana CH, German GK, Mahler GJ, Doiron AL. Nanoparticle size-specific actin rearrangement and barrier dysfunction of endothelial cells. Nanotoxicology 2017; 11:846-856. [PMID: 28885066 DOI: 10.1080/17435390.2017.1371349] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this work, we evaluated the impact of gold nanoparticles on endothelial cell behavior and function beyond the influence on cell viability. Five types of gold nanoparticles were studied: 5 nm and 20 nm bare gold nanoparticles, 5 nm and 20 nm gold nanoparticles with biocompatible polyethylene glycol (PEG) coating and 60 nm bare gold nanoparticles. We found that all tested gold nanoparticles did not affect cell viability significantly and reduced the reactive oxygen species (ROS) level in endothelial cells. Only 20 nm bare gold nanoparticles caused an over 50% increase in endothelial barrier permeability and slow recovery of barrier function was observed after the gold nanoparticles were removed. This impairment in endothelial barrier function was caused by unbalanced forces between intracellular tensions and paracellular forces, actin microfilament rearrangement, which occurred through a Rho/ROCK kinase-dependent pathway and broke the force balance between intracellular tensions and paracellular forces. The size-specific effect of gold nanoparticles on endothelial cells may have important implications regarding the behavior of nanoparticles in the biological system and provide valuable guidance in nanomaterial design and biomedical applications.
Collapse
Affiliation(s)
- Yizhong Liu
- a Department of Biomedical Engineering , Binghamton University , Binghamton , NY, USA
| | - Noga Rogel
- b Department of Neuroscience , Binghamton University , Binghamton , NY, USA
| | - Kei Harada
- a Department of Biomedical Engineering , Binghamton University , Binghamton , NY, USA
| | - Leigha Jarett
- a Department of Biomedical Engineering , Binghamton University , Binghamton , NY, USA
| | | | - Guy K German
- a Department of Biomedical Engineering , Binghamton University , Binghamton , NY, USA
| | - Gretchen J Mahler
- a Department of Biomedical Engineering , Binghamton University , Binghamton , NY, USA
| | - Amber L Doiron
- a Department of Biomedical Engineering , Binghamton University , Binghamton , NY, USA
| |
Collapse
|
9
|
Shang Q, Zhang A, Wu Z, Huang S, Tian R. In vitro evaluation of sustained release of risperidone-loaded microspheres fabricated from different viscosity of PLGA polymers. POLYM ADVAN TECHNOL 2017. [DOI: 10.1002/pat.4125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qing Shang
- Chemical and Pharmaceutical Engineering Institute; Hebei University of Science and Technology; Shijiazhuang Hebei 050000 China
| | - Aixin Zhang
- Chemical and Pharmaceutical Engineering Institute; Hebei University of Science and Technology; Shijiazhuang Hebei 050000 China
| | - Zhaoying Wu
- Chemical and Pharmaceutical Engineering Institute; Hebei University of Science and Technology; Shijiazhuang Hebei 050000 China
| | - Sijin Huang
- Chemical and Pharmaceutical Engineering Institute; Hebei University of Science and Technology; Shijiazhuang Hebei 050000 China
| | - Ruiqiong Tian
- Chemical and Pharmaceutical Engineering Institute; Hebei University of Science and Technology; Shijiazhuang Hebei 050000 China
| |
Collapse
|
10
|
Li R, Liu B, Gao J. The application of nanoparticles in diagnosis and theranostics of gastric cancer. Cancer Lett 2016; 386:123-130. [PMID: 27845158 DOI: 10.1016/j.canlet.2016.10.032] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/12/2016] [Accepted: 10/22/2016] [Indexed: 02/07/2023]
Abstract
Gastric cancer is the fourth most common cancer and the second leading cause of cancer related death worldwide. For the diagnosis of gastric cancer, apart from regular systemic imaging, the locoregional imaging is also of great importance. Moreover, there are still other ways for the detecting of gastric cancer, including the early detection of gastric cancer by endoscopy, the detection of gastric-cancer related biomarkers and the detection of circulating tumor cells (CTCs) of gastric cancer. However, conventional diagnostic methods are usually lack of specificity and sensitivity. Nanoparticles provide many benefits in the diagnosis of gastric cancer. Besides, nanoparticles are capable of integrating the functions of diagnosis and treatment together (theranostics). In this paper, we reviewed the applications of nanoparticles in diagnosis and theranostics of gastric cancer in the above mentioned aspects.
Collapse
Affiliation(s)
- Rutian Li
- The Comprehensive Cancer Center of Drum-Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, PR China; Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, PR China
| | - Baorui Liu
- The Comprehensive Cancer Center of Drum-Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, PR China.
| | - Jiahui Gao
- The Comprehensive Cancer Center of Drum-Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, PR China; Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, PR China
| |
Collapse
|
11
|
Iqbal M, Robin S, Humbert P, Viennet C, Agusti G, Fessi H, Elaissari A. Submicron polycaprolactone particles as a carrier for imaging contrast agent for in vitro applications. Colloids Surf B Biointerfaces 2015; 136:488-95. [DOI: 10.1016/j.colsurfb.2015.09.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/09/2015] [Accepted: 09/24/2015] [Indexed: 12/29/2022]
|
12
|
Nottelet B, Darcos V, Coudane J. Aliphatic polyesters for medical imaging and theranostic applications. Eur J Pharm Biopharm 2015; 97:350-70. [DOI: 10.1016/j.ejpb.2015.06.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/12/2015] [Accepted: 06/13/2015] [Indexed: 01/04/2023]
|
13
|
Miki K, Inoue T, Kobayashi Y, Nakano K, Matsuoka H, Yamauchi F, Yano T, Ohe K. Near-Infrared Dye-Conjugated Amphiphilic Hyaluronic Acid Derivatives as a Dual Contrast Agent for In Vivo Optical and Photoacoustic Tumor Imaging. Biomacromolecules 2014; 16:219-27. [DOI: 10.1021/bm501438e] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | | | | | | | | | - Fumio Yamauchi
- Corporate R&D Headquarters, Canon, Inc., 30-2, Shimomaruko 3-chome, Ohta-ku, Tokyo 146-8501, Japan
| | - Tetsuya Yano
- Corporate R&D Headquarters, Canon, Inc., 30-2, Shimomaruko 3-chome, Ohta-ku, Tokyo 146-8501, Japan
| | | |
Collapse
|
14
|
WANG CUIWEI, YANG SHIPING, HU HE, DU JING, LI FENGHUA. Synthesis, characterization and in vitro and in vivo investigation of C3F8-filled poly(lactic-co-glycolic acid) nanoparticles as an ultrasound contrast agent. Mol Med Rep 2014; 11:1885-90. [DOI: 10.3892/mmr.2014.2938] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 09/29/2014] [Indexed: 11/06/2022] Open
|
15
|
Crucho CIC. Stimuli-responsive polymeric nanoparticles for nanomedicine. ChemMedChem 2014; 10:24-38. [PMID: 25319803 DOI: 10.1002/cmdc.201402290] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/17/2014] [Indexed: 12/28/2022]
Abstract
Nature continues to be the ultimate in nanotechnology, where polymeric nanometer-scale architectures play a central role in biological systems. Inspired by the way nature forms functional supramolecular assemblies, researchers are trying to make nanostructures and to incorporate these into macrostructures as nature does. Recent advances and progress in nanoscience have demonstrated the great potential that nanomaterials have for applications in healthcare. In the realm of drug delivery, nanomaterials have been used in vivo to protect the drug entity in the systemic circulation, ensuring reproducible absorption of bioactive molecules that do not naturally penetrate biological barriers, restricting drug access to specific target sites. Several building blocks have been used in the formulation of nanoparticles. Thus, stability, drug release, and targeting can be tailored by surface modification. Herein the state of the art of stimuli-responsive polymeric nanoparticles are reviewed. Such systems are able to control drug release by reacting to naturally occurring or external applied stimuli. Special attention is paid to the design and nanoparticle formulation of these so-called smart drug-delivery systems. Future strategies for further developments of a promising controlled drug delivery responsive system are also outlined.
Collapse
Affiliation(s)
- Carina I C Crucho
- Department of Chemistry REQUIMTE/CQFB, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal).
| |
Collapse
|
16
|
Mariano RN, Alberti D, Cutrin JC, Geninatti Crich S, Aime S. Design of PLGA Based Nanoparticles for Imaging Guided Applications. Mol Pharm 2014; 11:4100-6. [DOI: 10.1021/mp5002747] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Rodolfo Nicolás Mariano
- Department
of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 52, Torino, Italy
| | - Diego Alberti
- Department
of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 52, Torino, Italy
| | - Juan Carlos Cutrin
- Department
of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 52, Torino, Italy
- ININCA-CONICET, Marcelo
T. de Alvear 2270, Buenos Aires, Argentina
| | - Simonetta Geninatti Crich
- Department
of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 52, Torino, Italy
| | - Silvio Aime
- Department
of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 52, Torino, Italy
| |
Collapse
|
17
|
Bennett KM, Jo JI, Cabral H, Bakalova R, Aoki I. MR imaging techniques for nano-pathophysiology and theranostics. Adv Drug Deliv Rev 2014; 74:75-94. [PMID: 24787226 DOI: 10.1016/j.addr.2014.04.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 03/02/2014] [Accepted: 04/20/2014] [Indexed: 11/25/2022]
Abstract
The advent of nanoparticle DDSs (drug delivery systems, nano-DDSs) is opening new pathways to understanding physiology and pathophysiology at the nanometer scale. A nano-DDS can be used to deliver higher local concentrations of drugs to a target region and magnify therapeutic effects. However, interstitial cells or fibrosis in intractable tumors, as occurs in pancreatic or scirrhous stomach cancer, tend to impede nanoparticle delivery. Thus, it is critical to optimize the type and size of nanoparticles to reach the target. High-resolution 3D imaging provides a means of "seeing" the nanoparticle distribution and therapeutic effects. We introduce the concept of "nano-pathophysiological imaging" as a strategy for theranostics. The strategy consists of selecting an appropriate nano-DDS and rapidly evaluating drug effects in vivo to guide the next round of therapy. In this article we classify nano-DDSs by component carrier materials and present an overview of the significance of nano-pathophysiological MRI.
Collapse
|
18
|
Zhou J, Guo D, Zhang Y, Wu W, Ran H, Wang Z. Construction and evaluation of Fe₃O₄-based PLGA nanoparticles carrying rtPA used in the detection of thrombosis and in targeted thrombolysis. ACS APPLIED MATERIALS & INTERFACES 2014; 6:5566-76. [PMID: 24693875 DOI: 10.1021/am406008k] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Thrombotic disease is extremely harmful to human health, but early detection and treatment can help improve prognoses and reduce mortality. To date, few studies have used MR molecular imaging in the early detection of thrombi and in the dynamic monitoring of the thrombolytic efficiency. In this article, we construct Fe3O4-based poly(lactic-co-glycolic acid) (PLGA) nanoparticles to use in the detection of thrombi and in targeted thrombolysis using MRI monitoring. Cyclic arginine-glycine-aspartic peptide (cRGD) was grafted onto the chitosan (CS) surface to synthesize a CS-cRGD film using carbodiimide-mediated amide bond formation. A double emulsion solvent evaporation method (water in oil in water [W/O/W]) was used to construct Fe3O4-based PLGA nanoparticles carrying recombinant tissue plasminogen activator (rtPA) (Fe3O4-PLGA-rtPA/CS-cRGD). Fe3O4-PLGA, Fe3O4-PLGA-rtPA, and Fe3O4-PLGA-rtPA/CS nanoparticles were constructed using the same W/O/W method. The results showed that the Fe3O4-based nanoparticles were constructed successfully and have a regular shape, a relatively uniform size, a high carrier rate of Fe3O4 and encapsulation efficiency of rtPA, and a relatively high activity of released rtPA. Transmission electron microscope (TEM) images revealed that the iron oxide particles were relatively uniformly distributed in the nano-spherical shell. The Fe3O4-based nanoparticles could be imaged using a clinical MRI scanner, and there were no significant differences in the transverse relaxation rate (R2*) or in the signal-to-noise ratio (SNR) values between the Fe3O4-based nanoparticles and an Fe3O4 solution with the same concentration of Fe3O4. In vitro and in vivo experiments confirmed that the Fe3O4-PLGA-rtPA/CS-cRGD nanoparticles specifically accumulated on the edge of the thrombus and that they had a significant effect on the thrombolysis compared with the Fe3O4-PLGA, Fe3O4-PLGA-rtPA, and Fe3O4-PLGA-rtPA/CS nanoparticles and with free rtPA solution. These results suggest the potential of the Fe3O4-PLGA-rtPA/CS-cRGD nanoparticles as a dual-function tool in the early detection of a thrombus and in the dynamic monitoring of the thrombolytic efficiency using MRI.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Radiology, and ‡Institute of Ultrasound Imaging, Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University , No. 74 Linjiang Rd, Yuzhong District, 400010 Chongqing, China
| | | | | | | | | | | |
Collapse
|
19
|
Srikar R, Upendran A, Kannan R. Polymeric nanoparticles for molecular imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 6:245-67. [PMID: 24616442 DOI: 10.1002/wnan.1259] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/09/2014] [Accepted: 01/13/2014] [Indexed: 01/31/2023]
Abstract
Conventional imaging technologies (X-ray computed tomography, magnetic resonance, and optical) depend on contrast agents to visualize a target site or organ of interest. The imaging agents currently used in clinics for diagnosis suffer from disadvantages including poor target specificity and in vivo instability. Consequently, delivery of low concentrations of contrast agents to region of interest affects image quality. Therefore, it is important to selectively deliver high payload of contrast agent to obtain clinically useful images. Nanoparticles offer multifunctional capabilities to transport high concentrations of imaging probes selectively to diseased site inside the body. Polymeric nanoparticles, incorporated with contrast agents, have shown significant benefits in molecular imaging applications. These materials possess the ability to encapsulate different contrast agents within a single matrix enabling multimodal imaging possibilities. The materials can be surface conjugated to target-specific biomolecules for controlling the navigation under in vivo conditions. The versatility of this class of nanomaterials makes them an attractive platform for developing highly sensitive molecular imaging agents. The research community's progress in the area of synthesis of polymeric nanomaterials and their in vivo imaging applications has been noteworthy, but it is still in the pioneer stage of development. The challenges ahead should focus on the design and fabrication of these materials including burst release of contrasts agents, solubility, and stability issues of polymeric nanomaterials.
Collapse
Affiliation(s)
- R Srikar
- Department of Radiology, University of Missouri, Columbia, MO, USA
| | | | | |
Collapse
|
20
|
Romero G, Echeverría M, Qiu Y, Murray RA, Moya SE. A novel approach to monitor intracellular degradation kinetics of poly(lactide-co-glycolide) nanoparticles by means of flow cytometry. J Mater Chem B 2013; 2:826-833. [PMID: 32261314 DOI: 10.1039/c3tb21330g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The intracellular degradation of poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) is studied by means of flow cytometry (FACS). NPs are prepared with PLGA of two different ratios of the d,l-lactide and glycolide blocks: 85 : 15 and 65 : 35. PLGA molecules are labelled with rhodamine B. Flow cytometry is first used to follow the degradation of PLGA NPs in PBS over time by measuring the decrease in fluorescence per particle. The 85 : 15 PLGA NPs progressively degrade during the first 10 days and remain constant thereafter. The 65 : 35 PLGA NPs remain unaltered, showing no changes in fluorescence intensity. FACS data are confirmed by transmission electron microscopy and dynamic light scattering measurements. Intracellular degradation of 85 : 15 PLGA is measured by the increase in fluorescence intensity in the cell population with time due to the liberation of rhodamine B labelled PLGA molecules from NPs in the cell interior where rhodamine displays an increased quantum yield. The fluorescence intensity from 85 : 15 PLGA NPs increases up to 24 hours, remaining constant thereafter. No change in the fluorescence of 65 : 35 PLGA NPs is observed after 4 days. The intracellular behaviour of the PLGA NPs is also confirmed by confocal Raman microscopy.
Collapse
Affiliation(s)
- Gabriela Romero
- CIC biomaGUNE, Paseo Miramón 182 C, 20009, San Sebastián, Spain.
| | | | | | | | | |
Collapse
|
21
|
Zamora-Mora V, Fernández-Gutiérrez M, San Román J, Goya G, Hernández R, Mijangos C. Magnetic core-shell chitosan nanoparticles: rheological characterization and hyperthermia application. Carbohydr Polym 2013; 102:691-8. [PMID: 24507337 DOI: 10.1016/j.carbpol.2013.10.101] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/17/2013] [Accepted: 10/31/2013] [Indexed: 11/30/2022]
Abstract
Stabilized magnetic nanoparticles are the subject of intense research for targeting applications and this work deals with the design, preparation and application of specific core-shell nanoparticles based on ionic crosslinked chitosan. The nanometric size of the materials was demonstrated by dynamic light scattering (DLS) and field emission scanning electron microscopy (FESEM) that also proved an increase of the size of chitosan nanoparticles (NPs) with the magnetite content. Steady oscillatory rheology measurements revealed a gel-like behavior of aqueous dispersions of chitosan NPs with concentrations ranging from 0.5% to 2.0% (w/v). The cytotoxicity of all the materials synthesized was analyzed in human fibroblasts cultures using the Alamar Blue and lactate dehydrogenase (LDH) assays. The measured specific power absorption under alternating magnetic fields (f = 580 kHz, H = 24 kA/m) indicated that magnetic core-shell chitosan NPs can be useful as remotely driven heaters for magnetic hyperthermia.
Collapse
Affiliation(s)
- Vanessa Zamora-Mora
- Instituto de Ciencia y Tecnología de Polímeros (CSIC), c/Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Mar Fernández-Gutiérrez
- Instituto de Ciencia y Tecnología de Polímeros (CSIC), c/Juan de la Cierva, 3, 28006 Madrid, Spain; CIBER-BBN, Ebro River Campus Building R&D Block 5, Floor 1, Poeta Mariano Esquillor s/n, 50017 Zaragoza, Spain
| | - Julio San Román
- Instituto de Ciencia y Tecnología de Polímeros (CSIC), c/Juan de la Cierva, 3, 28006 Madrid, Spain; CIBER-BBN, Ebro River Campus Building R&D Block 5, Floor 1, Poeta Mariano Esquillor s/n, 50017 Zaragoza, Spain
| | - Gerardo Goya
- Instituto de Nanociencia de Aragón, Universidad de Zaragoza, Mariano Esquillor, 50018 Zaragoza, Spain
| | - Rebeca Hernández
- Instituto de Ciencia y Tecnología de Polímeros (CSIC), c/Juan de la Cierva, 3, 28006 Madrid, Spain.
| | - Carmen Mijangos
- Instituto de Ciencia y Tecnología de Polímeros (CSIC), c/Juan de la Cierva, 3, 28006 Madrid, Spain
| |
Collapse
|
22
|
Zhang Y, Zhou J, Guo D, Ao M, Zheng Y, Wang Z. Preparation and characterization of gadolinium-loaded PLGA particles surface modified with RGDS for the detection of thrombus. Int J Nanomedicine 2013; 8:3745-56. [PMID: 24124363 PMCID: PMC3794837 DOI: 10.2147/ijn.s49835] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Thrombotic disease is a leading cause of death and disability worldwide. The development of magnetic resonance molecular imaging provides potential promise for early disease diagnosis. In this study, we explore the preparation and characterization of gadolinium (Gd)-loaded poly (lactic-co-glycolic acid) (PLGA) particles surface modified with the Arg-Gly-Asp-Ser (RGDS) peptide for the detection of thrombus. PLGA was employed as the carrier-delivery system, and a double emulsion solvent-evaporation method (water in oil in water) was used to prepare PLGA particles encapsulating the magnetic resonance contrast agent Gd diethylenetriaminepentaacetic acid (DTPA). To synthesize the Gd-PLGA/chitosan (CS)-RGDS particles, carbodiimide-mediated amide bond formation was used to graft the RGDS peptide to CS to form a CS-RGDS film that coated the surface of the PLGA particles. Blank PLGA, Gd-PLGA, and Gd-PLGA/CS particles were fabricated using the same water in oil in water method. Our results indicated that the RGDS peptide successfully coated the surface of the Gd-PLGA/CS-RGDS particles. The particles had a regular shape, smooth surface, relatively uniform size, and did not aggregate. The high electron density of the Gd-loaded particles and a translucent film around the particles coated with the CS and CS-RGDS films could be observed by transmission electron microscopy. In vitro experiments demonstrated that the Gd-PLGA/CS-RGDS particles could target thrombi and could be imaged using a clinical magnetic resonance scanner. Compared with the Gd-DTPA solution, the longitudinal relaxation time of the Gd-loaded particles was slightly longer, and as the Gd-load concentration increased, the longitudinal relaxation time values decreased. These results suggest the potential of the Gd-PLGA/CS-RGDS particles for the sensitive and specific detection of thrombus at the molecular level.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Radiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
23
|
Romero G, Murray RA, Qiu Y, Sanz D, Moya SE. Layer by layer surface engineering of poly (lactide-co-glycolide) nanoparticles: A versatile tool for nanoparticle engineering for targeted drug delivery. Sci China Chem 2013. [DOI: 10.1007/s11426-013-4891-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
24
|
Romero G, Ochoteco O, Sanz DJ, Estrela-Lopis I, Donath E, Moya SE. Poly(Lactide-co
-Glycolide) Nanoparticles, Layer by Layer Engineered for the Sustainable Delivery of AntiTNF-α. Macromol Biosci 2013; 13:903-12. [DOI: 10.1002/mabi.201200478] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 03/09/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Gabriela Romero
- CIC biomaGUNE; Paseo Miramón 182 C; 20009 San Sebastian Gipuzkoa, Spain
| | - Olaia Ochoteco
- CIC biomaGUNE; Paseo Miramón 182 C; 20009 San Sebastian Gipuzkoa, Spain
| | - David J. Sanz
- CIC biomaGUNE; Paseo Miramón 182 C; 20009 San Sebastian Gipuzkoa, Spain
| | - Irina Estrela-Lopis
- Institute of Biophysics and Medical Physics; University of Leipzig; Leipzig Germany
| | - Edwin Donath
- Institute of Biophysics and Medical Physics; University of Leipzig; Leipzig Germany
| | - Sergio E. Moya
- CIC biomaGUNE; Paseo Miramón 182 C; 20009 San Sebastian Gipuzkoa, Spain
| |
Collapse
|
25
|
Bao G, Mitragotri S, Tong S. Multifunctional nanoparticles for drug delivery and molecular imaging. Annu Rev Biomed Eng 2013; 15:253-82. [PMID: 23642243 DOI: 10.1146/annurev-bioeng-071812-152409] [Citation(s) in RCA: 299] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent advances in nanotechnology and growing needs in biomedical applications have driven the development of multifunctional nanoparticles. These nanoparticles, through nanocrystalline synthesis, advanced polymer processing, and coating and functionalization strategies, have the potential to integrate various functionalities, simultaneously providing (a) contrast for different imaging modalities, (b) targeted delivery of drug/gene, and (c) thermal therapies. Although still in its infancy, the field of multifunctional nanoparticles has shown great promise in emerging medical fields such as multimodal imaging, theranostics, and image-guided therapies. In this review, we summarize the techniques used in the synthesis of complex nanostructures, review the major forms of multifunctional nanoparticles that have emerged over the past few years, and provide a perceptual vision of this important field of nanomedicine.
Collapse
Affiliation(s)
- Gang Bao
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
| | | | | |
Collapse
|
26
|
Sah H, Thoma LA, Desu HR, Sah E, Wood GC. Concepts and practices used to develop functional PLGA-based nanoparticulate systems. Int J Nanomedicine 2013; 8:747-65. [PMID: 23459088 PMCID: PMC3582541 DOI: 10.2147/ijn.s40579] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The functionality of bare polylactide-co-glycolide (PLGA) nanoparticles is limited to drug depot or drug solubilization in their hard cores. They have inherent weaknesses as a drug-delivery system. For instance, when administered intravenously, the nanoparticles undergo rapid clearance from systemic circulation before reaching the site of action. Furthermore, plain PLGA nanoparticles cannot distinguish between different cell types. Recent research shows that surface functionalization of nanoparticles and development of new nanoparticulate dosage forms help overcome these delivery challenges and improve in vivo performance. Immense research efforts have propelled the development of diverse functional PLGA-based nanoparticulate delivery systems. Representative examples include PEGylated micelles/nanoparticles (PEG, polyethylene glycol), polyplexes, polymersomes, core-shell-type lipid-PLGA hybrids, cell-PLGA hybrids, receptor-specific ligand-PLGA conjugates, and theranostics. Each PLGA-based nanoparticulate dosage form has specific features that distinguish it from other nanoparticulate systems. This review focuses on fundamental concepts and practices that are used in the development of various functional nanoparticulate dosage forms. We describe how the attributes of these functional nanoparticulate forms might contribute to achievement of desired therapeutic effects that are not attainable using conventional therapies. Functional PLGA-based nanoparticulate systems are expected to deliver chemotherapeutic, diagnostic, and imaging agents in a highly selective and effective manner.
Collapse
Affiliation(s)
- Hongkee Sah
- College of Pharmacy, Ewha Womans University, Sedaemun-gu, Seoul, South Korea.
| | | | | | | | | |
Collapse
|
27
|
Romero G, Qiu Y, Murray RA, Moya SE. Study of intracellular delivery of doxorubicin from poly(lactide-co-glycolide) nanoparticles by means of fluorescence lifetime imaging and confocal Raman microscopy. Macromol Biosci 2013; 13:234-41. [PMID: 23316003 DOI: 10.1002/mabi.201200235] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 09/21/2012] [Indexed: 11/09/2022]
Abstract
The intracellular delivery of Doxorubicin (Dox) from poly(lactide-co-glycolide) (PLGA) nanoparticles stabilised with bovine serum albumin, in HepG2 cells, is studied via flow cytometry, fluorescence lifetime imaging microscopy (FLIM), confocal Raman microscopy (CRM) and cell viability studies. Flow cytometry shows that the initial uptake of PLGA and Dox follow the same kinetics. However, following 8 h of incubation, the fluorescence intensity and cellular uptake of Dox decreases, while in the case of PLGA both parameters remain constant. FLIM shows the presence of a single-lifetime species, with a lifetime of 1.15 ns when measured inside the cells. Cell viability decreases by approximately 20% when incubated for 24 h with PLGA loaded with Dox, with a particle concentration of 100 µg · mL(-1). At the single-cell level, CRM shows changes in the bands from DNA and proteins in the cell nucleus when incubated with PLGA loaded with Dox.
Collapse
|
28
|
Marrache S, Pathak RK, Darley KL, Choi JH, Zaver D, Kolishetti N, Dhar S. Nanocarriers for tracking and treating diseases. Curr Med Chem 2013; 20:3500-14. [PMID: 23834187 PMCID: PMC8085808 DOI: 10.2174/0929867311320280007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/04/2013] [Indexed: 12/11/2022]
Abstract
Site directed drug delivery with high efficacy is the biggest challenge in the area of current pharmaceuticals. Biodegradable polymer-based controlled release nanoparticle platforms could be beneficial for targeted delivery of therapeutics and contrast agents for a myriad of important human diseases. Biodegradable nanoparticles, which can be engineered to load multiple drugs with varied physicochemical properties, contrast agents, and cellular or intracellular component targeting moieties, have emerged as potential alternatives for tracking and treating human diseases. In this review, we will highlight the current advances in the design and execution of such platforms for their potential application in the diagnosis and treatment of variety of diseases ranging from cancer to Alzheimer's and we will provide a critical analysis of the associated challenges for their possible clinical translation.
Collapse
Affiliation(s)
- Sean Marrache
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602
| | - Rakesh Kumar Pathak
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602
| | - Kasey L. Darley
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602
| | - Joshua H. Choi
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602
| | - Dhillon Zaver
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602
| | | | - Shanta Dhar
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
29
|
Guillaume O, Blanquer S, Letouzey V, Cornille A, Huberlant S, Lemaire L, Franconi F, de Tayrac R, Coudane J, Garric X. Permanent Polymer Coating for in vivo MRI Visualization of Tissue Reinforcement Prostheses. Macromol Biosci 2012; 12:1364-74. [DOI: 10.1002/mabi.201200208] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Indexed: 11/12/2022]
|
30
|
Abstract
Nanostructured particulate materials are expected to revolutionize diagnostics and the delivery of therapeutics for healthcare. To date, chemistry-derived solutions have been the major focus in the design of materials to control interactions with biological systems. Only recently has control over a new set of physical parameters, including size, shape, and rigidity, been explored to optimize the biological response and the in vivo performance of nanoengineered delivery vectors. This Review highlights the methods used to manipulate the physical properties of particles and the relevance of these physical properties to cellular and circulatory interactions. Finally, the importance of future work to synergistically tailor both physical and chemical properties of particulate materials is discussed, with the aim of improving control over particle interactions in the biological domain.
Collapse
Affiliation(s)
- James P Best
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | |
Collapse
|
31
|
Pellach M, Margel S. The encapsulation of an amphiphile into polystyrene microspheres of narrow size distribution. Chem Cent J 2011; 5:78. [PMID: 22145683 PMCID: PMC3285059 DOI: 10.1186/1752-153x-5-78] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 12/06/2011] [Indexed: 11/10/2022] Open
Abstract
Encapsulation of compounds into nano- or microsized organic particles of narrow size distribution is of increasing importance in fields of advanced imaging and diagnostic techniques and drug delivery systems. The main technology currently used for encapsulation of molecules within uniform template particles while retaining their size distribution is based on particle swelling methodology, involving penetration of emulsion droplets into the particles. The swelling method, however, is efficient for encapsulation only of hydrophobic compounds within hydrophobic template particles. In order to be encapsulated, the molecules must favor the hydrophobic phase of an organic/aqueous biphasic system, which is not easily achieved for molecules of amphiphilic character. The following work overcomes this difficulty by presenting a new method for encapsulation of amphiphilic molecules within uniform hydrophobic particles. We use hydrogen bonding of acid and base, combined with a pseudo salting out effect, for the entrapment of the amphiphile in the organic phase of a biphasic system. Following the entrapment in the organic phase, we demonstrated, using fluorescein and (antibiotic) tetracycline as model molecules, that the swelling method usually used only for hydrophobes can be expanded and applied to amphiphilic molecules.
Collapse
Affiliation(s)
- Michal Pellach
- Department of Chemistry, Bar-Ilan University, Ramat Gan 52900, Israel.
| | | |
Collapse
|
32
|
Patsenker LD, Tatarets AL, Povrozin YA, Terpetschnig EA. Long-wavelength fluorescence lifetime labels. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s12566-011-0025-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
33
|
Affiliation(s)
- Yutao Liu
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Block E5, 02-06, 4 Engineering Drive 4, Singapore 117576, Singapore
| | - Yu Mi
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Block E5, 02-06, 4 Engineering Drive 4, Singapore 117576, Singapore
| | - Si-Shen Feng
- Department of Chemical & Biomolecular Engineering & NUS Nanoscience and Nanotechnology Initiative (NUSNNI), National University of Singapore, Block E5, 02-06, 4 Engineering Drive 4, Singapore 117576, Singapore
| |
Collapse
|
34
|
Zhang W, Chen Y, Guo DJ, Huang ZW, Cai L, He L. The synthesis of a d-glucosamine contrast agent, Gd-DTPA-DG, and its application in cancer molecular imaging with MRI. Eur J Radiol 2011; 79:369-74. [DOI: 10.1016/j.ejrad.2010.10.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Accepted: 10/20/2010] [Indexed: 10/18/2022]
|
35
|
Noh YW, Jang YS, Ahn KJ, Lim YT, Chung BH. Simultaneous in vivo tracking of dendritic cells and priming of an antigen-specific immune response. Biomaterials 2011; 32:6254-63. [PMID: 21620470 DOI: 10.1016/j.biomaterials.2011.05.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 05/03/2011] [Indexed: 12/18/2022]
Abstract
We report the fabrication of a one-pot antigen system that delivers antigen to dendritic cells (DCs) and tracks their in vivo migration after injection. Multifunctional polymer nanoparticles containing ovalbumin protein, magnetic resonance imaging contrast agents (iron oxide nanoparticles), and near-infrared fluorophores (indocyanine green, ICG), MPN-OVA, were prepared using a double emulsion method. The MPN-OVA was efficiently taken up by the dendritic cells and subsequently localized in the lysosome. Flow cytometry analysis revealed an increase in the uptake of OVA antigen by MPN-OVA at 37 °C, when compared with soluble OVA protein. We found that MPN-OVA had no effect on DC surface expression of MHC class I, costimulatory (CD80, CD86) or adhesion (CD54) molecules or the ability of DCs to mature in response to LPS. Following the uptake of MPN-OVA, exogenous OVA antigen was delivered to the cytoplasm, and OVA peptides were presented on MHC class I molecules, which enhanced OVA antigen-specific cross-presentation to OT-1 T cells and CD8OVA1.3 T cell hybridoma in vitro. The immunization of mice with MPN-OVA-treated DCs induced OVA-specific CTL activity in draining lymph nodes. The presence of MPN allowed us to monitor the migration of DCs via lymphatic drainage using NIR fluorescence imaging, and the homing of DCs into the lymph nodes was imaged using MRI. This system has potential for use as a delivery system to induce T cell priming and to image DC-based immunotherapies.
Collapse
Affiliation(s)
- Young-Woock Noh
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, P.O. Box 115, Yuseong, Daejeon 305-806, South Korea
| | | | | | | | | |
Collapse
|
36
|
Homan KA, Chen J, Schiano A, Mohamed M, Willets KA, Murugesan S, Stevenson KJ, Emelianov S. Silver-Polymer Composite Stars: Synthesis and Applications. ADVANCED FUNCTIONAL MATERIALS 2011; 21:1673-1680. [PMID: 21660240 PMCID: PMC3109509 DOI: 10.1002/adfm.201001556] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Colloidal "silver stars" were synthesized upon poly(lactic-co-glycolic) acid nanosphere templates via a facile two-step silver reduction method. Myriad dendrimer-like Ag star morphologies were synthesized by varying the amount of poly(vinyl alcohol) and trisodium citrate used during silver reduction. Scanning electron microscopy studies revealed that star-shaped silver-polymer composites possessing nanoscopic, fractal morphologies with diameters ranging from 500 nm to 7 μm were produced. These composites have broad applications from antibacterial agents to catalysis; two such applications were tested here. Surface-enhanced Raman spectroscopy (SERS) studies showed multiple hot spots of SERS activity within a single star. Electrochemical catalysis experiments demonstrated the feasibility of using the silver stars instead of platinum for the oxygen reduction reaction in alkaline fuel cells.
Collapse
Affiliation(s)
- Kimberly A. Homan
- Biomedical Engineering Department, The University of Texas at Austin, 1 University Station, C0800 Austin, Texas 78712, USA
| | - Jeffrey Chen
- Biomedical Engineering Department, The University of Texas at Austin, 1 University Station, C0800 Austin, Texas 78712, USA
| | - Adriane Schiano
- Biomedical Engineering Department, The University of Texas at Austin, 1 University Station, C0800 Austin, Texas 78712, USA
| | - Mona Mohamed
- Environmental Applications Department, National Institute of Laser Enhanced Sciences, Cairo University, Egypt
| | - Katherine A. Willets
- Chemistry and Biochemistry Department, The University of Texas at Austin, 1 University Station, A5300 Austin, Texas 78712, USA
| | - Sankaran Murugesan
- Chemistry and Biochemistry Department, The University of Texas at Austin, 1 University Station, A5300 Austin, Texas 78712, USA
| | - Keith J. Stevenson
- Chemistry and Biochemistry Department, The University of Texas at Austin, 1 University Station, A5300 Austin, Texas 78712, USA
| | - Stanislav Emelianov
- Biomedical Engineering Department, The University of Texas at Austin, 1 University Station, C0800 Austin, Texas 78712, USA,
| |
Collapse
|
37
|
|
38
|
Chen Z, Yu D, Liu C, Yang X, Zhang N, Ma C, Song J, Lu Z. Gadolinium-conjugated PLA-PEG nanoparticles as liver targeted molecular MRI contrast agent. J Drug Target 2010; 19:657-65. [DOI: 10.3109/1061186x.2010.531727] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
39
|
Romero G, Estrela-Lopis I, Zhou J, Rojas E, Franco A, Espinel CS, Fernández AG, Gao C, Donath E, Moya SE. Surface engineered Poly(lactide-co-glycolide) nanoparticles for intracellular delivery: uptake and cytotoxicity--a confocal raman microscopic study. Biomacromolecules 2010; 11:2993-9. [PMID: 20882998 DOI: 10.1021/bm1007822] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Confocal Raman Microscopy (CRM) is used to study the cell internalization of poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) fabricated by emulsion techniques with either poly(ethylene imine) (PEI) or bovine serum albumin (BSA) as surface stabilizers. HepG2 cells were exposed to PEI and BSA stabilized PLGA NPs. Spontaneous Confocal Raman Spectra taken in one and the same spot of exposed cells showed bands arising from the cellular environment as well as bands characteristic for PLGA, proving that the PLGA NPs have been internalized. It was found that PLGA NPs preferentially colocalize with lipid bodies. The results from Raman spectroscopy are compared with flow cytometry and confocal scanning laser microscopy (CLSM) data. The advantages of CRM as a label-free technique over flow cytometry and CLSM are discussed. Additionally, cell viability studies by means of quick cell counting solution and MTT tests in several cell lines show a generally low toxicity for both PEI and BSA stabilized PLGA NPs, with BSA stabilized PLGA NPs having an even lower toxicity than PEI stabilized.
Collapse
Affiliation(s)
- Gabriela Romero
- CIC BiomaGUNE, Paseo Miramón 182 Ed. Emp. C, San Sebastián, Spain, Institute of Biophysics and Medical Physics, University of Leipzig, Leipzig, Germany, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China, and Laboratorio de Inmunología, Edificio Ciencias Experimentales, Campus Lagoas Marcosende, Universidad de Vigo, CP 36310, Vigo, Pontevedra, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Nam T, Park S, Lee SY, Park K, Choi K, Song IC, Han MH, Leary JJ, Yuk SA, Kwon IC, Kim K, Jeong SY. Tumor targeting chitosan nanoparticles for dual-modality optical/MR cancer imaging. Bioconjug Chem 2010; 21:578-82. [PMID: 20201550 DOI: 10.1021/bc900408z] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report tumor targeting nanoparticles for optical/MR dual imaging based on self-assembled glycol chitosan to be a potential multimodal imaging probe. To develop an optical/MR dual imaging probe, biocompatible and water-soluble glycol chitosan (M(w) = 50 kDa) were chemically modified with 5beta-cholanic acid (CA), resulting in amphiphilic glycol chitosan-5beta-cholanic acid conjugates (GC-CA). For optical imaging near-infrared fluorescence (NIRF) dye, Cy5.5, was conjugated to GC-CA resulting in Cy5-labeled GC-CA conjugates (Cy5.5-GC-CA). Moreover, in order to chelate gadolinium (Gd(III)) in the Cy5.5-GC-CA conjugates, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) was directly conjugated in Cy5.5-GC-CA. Finally, the excess GdCl(3) was added to DOTA modified Cy5.5-GC-CA conjugates in distilled water (pH 5.5). The freshly prepared Gd(III) encapsulated Cy5.5-GC-CA conjugates were spontaneously self-assembled into stable Cy5.5 labeled and Gd(III) encapsulated chitosan nanoparticles (Cy5.5-CNP-Gd(III)). The Cy5.5-CNP-Gd(III) was spherical in shape and approximately 350 nm in size. From the cellular experiment, it was demonstrated that Cy5.5-CNP-Gd(III) were efficiently taken up and distributed in cytoplasm (NIRF filter; red). When the Cy5.5-GC-Gd(III) were systemically administrated into the tail vein of tumor-bearing mice, large amounts of nanoparticles were successfully localized within the tumor, which was confirmed by noninvasive near-infrared fluorescence and MR imaging system simultaneously. These results revealed that the dual-modal imaging probe of Cy5.5-CNP-Gd(III) has the potential to be used as an optical/MR dual imaging agent for cancer treatment.
Collapse
Affiliation(s)
- Taehwan Nam
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Krovi SA, Smith D, Nguyen ST. "Clickable" polymer nanoparticles: a modular scaffold for surface functionalization. Chem Commun (Camb) 2010; 46:5277-9. [PMID: 20571697 DOI: 10.1039/c0cc00232a] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The versatility of copper-catalyzed alkyne-azide coupling (CuAAC) in functionalizing drug-loaded polymer nanoparticles is demonstrated via the modification of surfaces of acetylene-functionalized PNPs with folate, biotin, and gold nanoparticles.
Collapse
Affiliation(s)
- Sai Archana Krovi
- Department of Chemistry and The International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | | | | |
Collapse
|
42
|
Affiliation(s)
- Angelique Louie
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA.
| |
Collapse
|
43
|
Homan K, Shah J, Gomez S, Gensler H, Karpiouk A, Brannon-Peppas L, Emelianov S. Silver nanosystems for photoacoustic imaging and image-guided therapy. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:021316. [PMID: 20459238 PMCID: PMC2859084 DOI: 10.1117/1.3365937] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 01/05/2010] [Accepted: 01/06/2010] [Indexed: 05/23/2023]
Abstract
Due to their optical absorption properties, metallic nanoparticles are excellent photoacoustic imaging contrast agents. A silver nanosystem is presented here as a potential contrast agent for photoacoustic imaging and image-guided therapy. Currently, the nanosystem consists of a porous silver layer deposited on the surface of spherical silica cores ranging in diameter from 180 to 520 nm. The porous nature of the silver layer will allow for release of drugs or other therapeutic agents encapsulated in the core in future applications. In their current PEGylated form, the silver nanosystem is shown to be nontoxic in vitro at concentrations of silver up to 2 mgml. Furthermore, the near-infrared absorbance properties of the nanosystem are demonstrated by measuring strong, concentration-dependent photoacoustic signal from the silver nanosystem embedded in an ex vivo tissue sample. Our study suggests that silver nanosystems can be used as multifunctional agents capable of augmenting image-guided therapy techniques.
Collapse
Affiliation(s)
- Kimberly Homan
- The University of Texas at Austin, Biomedical Engineering Department, 1 University Station C0800, Austin, Texas 78712, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Rahimi M, Wadajkar A, Subramanian K, Yousef M, Cui W, Hsieh JT, Nguyen KT. In vitro evaluation of novel polymer-coated magnetic nanoparticles for controlled drug delivery. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2010; 6:672-80. [PMID: 20172050 DOI: 10.1016/j.nano.2010.01.012] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 12/29/2009] [Accepted: 01/25/2010] [Indexed: 10/19/2022]
Abstract
UNLABELLED Previously uncharacterized poly(N-isopropylacrylamide-acrylamide-allylamine)-coated magnetic nanoparticles (MNPs) were synthesized using silane-coated MNPs as a template for radical polymerization of N-isopropylacrylamide, acrylamide, and allylamine. Properties of these nanoparticles such as size, biocompatibility, drug loading efficiency, and drug release kinetics were evaluated in vitro for targeted and controlled drug delivery. Spherical core-shell nanoparticles with a diameter of 100 nm showed significantly lower systemic toxicity than did bare MNPs, as well as doxorubicin encapsulation efficiency of 72%, and significantly higher doxorubicin release at 41°C compared with 37°C, demonstrating their temperature sensitivity. Released drugs were also active in destroying prostate cancer cells (JHU31). Furthermore, the nanoparticle uptake by JHU31 cells was dependent on dose and incubation time, reaching saturation at 500 μg/mL and 4 hours, respectively. In addition, magnetic resonance imaging capabilities of the particles were observed using agarose platforms containing cells incubated with nanoparticles. Future work includes investigation of targeting capability and effectiveness of these nanoparticles in vivo using animal models. FROM THE CLINICAL EDITOR In this paper, previously uncharacterized magnetic nanoparticles were synthesized using silane-coated MNPs as a template for radical polymerization of N-isopropylacrylamide, acrylamide, and allylamine. Various properties of these nanoparticles were evaluated in vitro for targeted drug delivery.
Collapse
Affiliation(s)
- Maham Rahimi
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Marklein RA, Burdick JA. Controlling stem cell fate with material design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2010; 22:175-89. [PMID: 20217683 DOI: 10.1002/adma.200901055] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Advances in our understanding of stem cell interactions with their environment are leading to the development of new materials-based approaches to control stem cell behavior toward cellular culture and tissue regeneration applications. Materials can provide cues based on chemistry, mechanics, structure, and molecule delivery that control stem cell fate decisions and matrix formation. These approaches are helping to advance clinical translation of a range of stem cell types through better expansion techniques and scaffolding for use in tissue engineering approaches for the regeneration of many tissues. With this in mind, this progress report covers basic concepts and recent advances in the use of materials for manipulating stem cells.
Collapse
Affiliation(s)
- Ross A Marklein
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
47
|
Texier I, Goutayer M, Da Silva A, Guyon L, Djaker N, Josserand V, Neumann E, Bibette J, Vinet F. Cyanine-loaded lipid nanoparticles for improved in vivo fluorescence imaging. JOURNAL OF BIOMEDICAL OPTICS 2009; 14:054005. [PMID: 19895107 DOI: 10.1117/1.3213606] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Fluorescence is a very promising radioactive-free technique for functional imaging in small animals and, in the future, in humans. However, most commercial near-infrared dyes display poor optical properties, such as low fluorescence quantum yields and short fluorescence lifetimes. In this paper, we explore whether the encapsulation of infrared cyanine dyes within the core of lipid nanoparticles (LNPs) could improve their optical properties. Lipophilic dialkylcarbocyanines DiD and DiR are loaded very efficiently in 30-35-nm-diam lipid droplets stabilized in water by surfactants. No significant fluorescence autoquenching is observed up to 53 dyes per particle. Encapsulated in LNP, which are stable for more than one year at room temperature in HBS buffer (HEPES 0.02 M, EDTA 0.01 M, pH 5.5), DiD and DiR display far improved fluorescence quantum yields Phi (respectively, 0.38 and 0.25) and longer fluorescence lifetimes tau (respectively, 1.8 and 1.1 ns) in comparison to their hydrophilic counterparts Cy5 (Phi=0.28, tau=1.0 ns) and Cy7 (Phi=0.13, tau=0.57 ns). Moreover, dye-loaded LNPs are able to accumulate passively in various subcutaneous tumors in mice, thanks to the enhanced permeability and retention effect. These new fluorescent nanoparticles therefore appear as very promising labels for in vivo fluorescence imaging.
Collapse
Affiliation(s)
- Isabelle Texier
- Commissariat a l'Energie Atomique, LETI-DTBS, 17 rue des Martyrs, Grenoble Cedex, 38054, France.
| | | | | | | | | | | | | | | | | |
Collapse
|