1
|
Banella S, Saraswat A, Patel A, Serajuddin ATM, Colombo P, Patel K, Colombo G. In Vitro Assessment of Cisplatin/Hyaluronan Complex for Loco-Regional Chemotherapy. Int J Mol Sci 2023; 24:15725. [PMID: 37958708 PMCID: PMC10647681 DOI: 10.3390/ijms242115725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/27/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Loco-regional chemotherapy is a strategy used to achieve more precise anticancer drug effect directly on tumor mass, while decreasing whole body exposure, which can lead to undesirable side effects. Thus, the loco-regional chemotherapy is conceptually similar to the targeted drug delivery systems for delivering chemotherapeutics to cancer cells in a certain location of the body. Recently, it has been demonstrated that a novel polymeric film containing the complex between cisplatin (cisPt) and hyaluronan (sodium salt of hyaluronic acid; NaHA) enhanced in vivo efficacy and safety of cisplatin (cisPt) by loco-regional delivery in pleural mesothelioma. Biologically, hyaluronic acid (HA) binds with the CD44 receptor, which is a transmembrane glycoprotein overexpressed by other cancer cells. Thus, administering both cisPt and hyaluronan together as a complex loco-regionally to the tumor site could target cancer cells locally and enhance treatment safety. A slight excess of hyaluronan was required to have more than 85% cisPt complexation. In cell monolayers (2D model) the cisPt/NaHA complex in solution demonstrated dose- and time-dependent cytotoxic effect by decreasing the viability of pancreatic, melanoma, and lung cell lines (they all express CD44). At the same concentration in solution, the complex was as effective as cisPt alone. However, when applied as film to melanoma spheroids (3D model), the complex was superior because it prevented the tumor spheroid growth and, more importantly, the formation of new cell colonies. Hence, cisPt/NaHA complex could work in preventing metastases loco-regionally and potentially avoiding systemic relapses.
Collapse
Affiliation(s)
- Sabrina Banella
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (S.B.); (G.C.)
- College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (A.S.); (A.P.); (A.T.M.S.)
| | - Aishwarya Saraswat
- College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (A.S.); (A.P.); (A.T.M.S.)
| | - Akanksha Patel
- College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (A.S.); (A.P.); (A.T.M.S.)
| | - Abu T. M. Serajuddin
- College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (A.S.); (A.P.); (A.T.M.S.)
| | | | - Ketan Patel
- College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (A.S.); (A.P.); (A.T.M.S.)
| | - Gaia Colombo
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (S.B.); (G.C.)
| |
Collapse
|
2
|
Romeo HE, Barreiro Arcos ML. Clinical relevance of stem cells in lung cancer. World J Stem Cells 2023; 15:576-588. [PMID: 37424954 PMCID: PMC10324501 DOI: 10.4252/wjsc.v15.i6.576] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/18/2023] [Accepted: 05/08/2023] [Indexed: 06/26/2023] Open
Abstract
Lung cancer is the major cause of cancer-related deaths worldwide, it has one of the lowest 5-year survival rate, mainly because it is diagnosed in the late stage of the disease. Lung cancer is classified into two groups, small cell lung cancer (SCLC) and non-SCLC (NSCLC). In turn, NSCLC is categorized into three distinct cell subtypes: Adenocarcinoma, squamous cell carcinoma, and large cell carcinoma. NSCLC is the most common lung cancer, accounting for 85% of all lung cancers. Treatment for lung cancer is linked to the cell type and stage of the disease, involving chemotherapy, radiation therapy, and surgery. Despite improvements in therapeutic treatments, lung cancer patients show high rates of recurrence, metastasis, and resistance to chemotherapy. Lung stem cells (SCs) are undifferentiated cells capable of self-renewal and proliferation, are resistant to chemotherapy and radiotherapy and, due to their properties, could be involved in the development and progression of lung cancer. The presence of SCs in the lung tissue could be the reason why lung cancer is difficult to treat. The identification of lung cancer stem cells biomarkers is of interest for precision medicine using new therapeutic agents directed against these cell populations. In this review, we present the current knowledge on lung SCs and discuss their functional role in the initiation and progression of lung cancer, as well as their role in tumor resistance to chemotherapy.
Collapse
Affiliation(s)
- Horacio Eduardo Romeo
- School of Engineering and Agrarian Sciences, Pontifical Catholic University of Argentina, Institute of Biomedical Research (BIOMED-UCA-CONICET), CABA C1107AAZ, Buenos Aires, Argentina
| | - María Laura Barreiro Arcos
- School of Engineering and Agrarian Sciences, Pontifical Catholic University of Argentina, Institute of Biomedical Research (BIOMED-UCA-CONICET), CABA C1107AAZ, Buenos Aires, Argentina
| |
Collapse
|
3
|
Lyophilization for Formulation Optimization of Drug-Loaded Thermoresponsive Polyelectrolyte Complex Nanogels from Functionalized Hyaluronic Acid. Pharmaceutics 2023; 15:pharmaceutics15030929. [PMID: 36986789 PMCID: PMC10053597 DOI: 10.3390/pharmaceutics15030929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/06/2023] [Accepted: 03/12/2023] [Indexed: 03/16/2023] Open
Abstract
The lyophilization of nanogels is practical not only for their long-term conservation but also for adjusting their concentration and dispersant type during reconstitution for different applications. However, lyophilization strategies must be adapted to each kind of nanoformulation in order to minimize aggregation after reconstitution. In this work, the effects of formulation aspects (i.e., charge ratio, polymer concentration, thermoresponsive grafts, polycation type, cryoprotectant type, and concentration) on particle integrity after lyophilization and reconstitution for different types of polyelectrolyte complex nanogels (PEC-NGs) from hyaluronic acid (HA) were investigated. The main objective was to find the best approach for freeze-drying thermoresponsive PEC-NGs from Jeffamine-M-2005-functionalized HA, which has recently been developed as a potential platform for drug delivery. It was found that freeze-drying PEC-NG suspensions prepared at a relatively low polymer concentration of 0.2 g.L−1 with 0.2% (m/v) trehalose as a cryoprotectant allow the homogeneous redispersion of PEC-NGs when concentrated at 1 g.L−1 upon reconstitution in PBS without important aggregation (i.e., average particle size remaining under 350 nm), which could be applied to concentrate curcumin (CUR)-loaded PEC-NGs for optimizing CUR content. The thermoresponsive release of CUR from such concentrated PEC-NGs was also reverified, which showed a minor effect of freeze-drying on the drug release profile.
Collapse
|
4
|
Xiang L, Gao Y, Chen S, Sun J, Wu J, Meng X. Therapeutic potential of Scutellaria baicalensis Georgi in lung cancer therapy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 95:153727. [PMID: 34535372 DOI: 10.1016/j.phymed.2021.153727] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Globally, lung cancer is the leading cause of cancer associated mortalities. The current conventional chemotherapy remains the preferred treatment option for lung cancer, as surgical resection plays little role in the treatment of over 75% of lung cancer patients. Therefore, there is a need to develop novel potential therapeutic drugs or adjuvants with a high efficiency and safety against lung cancer. Scutellaria baicalensis Georgi, a common Chinese medicinal herb that has been in use for more than 2000 years, has recently been shown to possess significant activities against lung cancer. However, current research progress on pharmacological effects and relevant molecular mechanisms of S. baicalensis in lung cancer therapy have not been systematically summarized. PURPOSE This review aimed at elucidating on the anti-lung cancer mechanisms and antitumor efficacies of S. baicalensis as well as its active ingredients, and providing a valuable reference for further investigation in this field. METHODS We used "Scutellaria baicalensis" or the name of the compound in S. baicalensis, in combination with "lung cancer" as key words to systematically search for relevant literature from the Web of Science and PubMed databases. Publications that investigated molecular mechanisms were the only ones selected for analysis. The PRISMA guidelines were followed. RESULTS Fifty-four publications met the inclusion criteria for this study. Five anti-lung cancer mechanisms of S. baicalensis and its constituent components are discussed. These mechanisms include apoptosis induction, cell-cycle arrest, suppression of proliferation, blockade of invasion and metastasis, and overcoming drug-resistance. These compounds exhibited high antitumor efficacies and safety against lung cancer xenografts. CONCLUSION Studies should aim at elucidating on the anti-cancer mechanisms of S. baicalensis to achieve the ultimate goal of lung cancer therapy.
Collapse
Affiliation(s)
- Li Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yue Gao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shiyu Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiayi Sun
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiasi Wu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Xianli Meng
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
5
|
Della Sala F, Fabozzi A, di Gennaro M, Nuzzo S, Makvandi P, Solimando N, Pagliuca M, Borzacchiello A. Advances in Hyaluronic-Acid-Based (Nano)Devices for Cancer Therapy. Macromol Biosci 2021; 22:e2100304. [PMID: 34657388 DOI: 10.1002/mabi.202100304] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/08/2021] [Indexed: 12/12/2022]
Abstract
Cancer is the main cause of fatality all over the world with a considerable growth rate. Many biologically active nanoplatforms are exploited for tumor treatment. Of nanodevices, hyaluronic acid (HA)-based systems have shown to be promising candidates for cancer therapy due to their high biocompatibility and cell internalization. Herein, surface functionalization of different nanoparticles (NPs), e.g., organic- and inorganic-based NPs, is highlighted. Subsequently, HA-based nanostructures and their applications in cancer therapy are presented.
Collapse
Affiliation(s)
- Francesca Della Sala
- Institute of Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Viale J.F. Kennedy 54, Naples, 80125, Italy
| | - Antonio Fabozzi
- Altergon Italia s.r.l, Zona Industriale ASI, Morra De Sanctis (AV), 83040, Italy
| | - Mario di Gennaro
- Institute of Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Viale J.F. Kennedy 54, Naples, 80125, Italy
| | - Stefano Nuzzo
- Altergon Italia s.r.l, Zona Industriale ASI, Morra De Sanctis (AV), 83040, Italy
| | - Pooyan Makvandi
- Institute of Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Viale J.F. Kennedy 54, Naples, 80125, Italy
| | - Nicola Solimando
- Altergon Italia s.r.l, Zona Industriale ASI, Morra De Sanctis (AV), 83040, Italy
| | - Maurizio Pagliuca
- Altergon Italia s.r.l, Zona Industriale ASI, Morra De Sanctis (AV), 83040, Italy
| | - Assunta Borzacchiello
- Institute of Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Viale J.F. Kennedy 54, Naples, 80125, Italy
| |
Collapse
|
6
|
Wang H, Deng H, Gao M, Zhang W. Self-Assembled Nanogels Based on Ionic Gelation of Natural Polysaccharides for Drug Delivery. Front Bioeng Biotechnol 2021; 9:703559. [PMID: 34336811 PMCID: PMC8322728 DOI: 10.3389/fbioe.2021.703559] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/16/2021] [Indexed: 11/18/2022] Open
Abstract
The polysaccharides (PS) have been widely used as biomaterials in drug delivery, due to their excellent biocompatibility, ease of functionalization, and intrinsic biological activities. Among the various PS-based biomaterials, the self-assembled PS nanogels (NG) featuring facile preparation are attracting evergrowing interests in various biomedical applications. Specifically, NG derived from the self-assembly of natural PS well maintain both the physicochemical and biological properties of PS while avoiding the chemical modification or alteration of PS structure, representing a potent drug delivery system for various therapeutic agents. In this review, the natural PS, such as chitosan, alginate, and hyaluronan, for self-assembled NG construction and their advantages in the applications of drug delivery have been summarized. The residues, such as amine, carboxyl, and hydroxyl groups, on these PS provide multiple sites for both ionic cross-linking and metal coordination, which greatly contribute to the formation of self-assembled NG as well as the drug loading, thus enabling a wide biomedical application of PS NG, especially for drug delivery. Future developments and considerations in the clinical translation of these self-assembled PS NG have also been discussed.
Collapse
Affiliation(s)
- Huimin Wang
- State Key Laboratory of Medical Molecular Biology and Department of Biomedical Engineering, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Hong Deng
- State Key Laboratory of Medical Molecular Biology and Department of Biomedical Engineering, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Menghan Gao
- State Key Laboratory of Medical Molecular Biology and Department of Biomedical Engineering, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Weiqi Zhang
- State Key Laboratory of Medical Molecular Biology and Department of Biomedical Engineering, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Singh MS, Ramishetti S, Landesman-Milo D, Goldsmith M, Chatterjee S, Palakuri R, Peer D. Therapeutic Gene Silencing Using Targeted Lipid Nanoparticles in Metastatic Ovarian Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100287. [PMID: 33825318 DOI: 10.1002/smll.202100287] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Ovarian cancer is an aggressive tumor owing to its ability to metastasize from stage II onward. Herein, lipid nanoparticles (LNPs) that encapsulate combination of small interfering RNAs (siRNAs), polo-like kinase-1 (PLK1), and eukaryotic translation-initiation factor 3c (eIF3c), to target different cellular pathways essential for ovarian cancer progression are generated. The LNPs are further modified with hyaluronan (tNPs) to target cluster of differentiation 44 (CD44) expressing cells. Interestingly, hyaluronan-coated LNPs (tNPs) prolong functional activity and reduce growth kinetics of spheroids in in vitro assay as compared to uncoated LNPs (uNPs) due to ≈1500-fold higher expression of CD44. Treatment of 2D and 3D cultured ovarian cancer cells with LNPs encapsulating both siRNAs result in 85% cell death and robust target gene silencing. In advanced orthotopic ovarian cancer model, intraperitoneal administration of LNPs demonstrates CD44 specific tumor targeting of tNPs compared to uNPs and robust gene silencing in tissues involved in ovarian cancer pathophysiology. At very low siRNA dose, enhanced overall survival of 60% for tNPs treated mice is observed compared to 10% and 20% for single siRNA-, eIF3c-tNP, and PLK1-tNP treatment groups, respectively. Overall, LNPs represent promising platform in the treatment of advanced ovarian cancer by improving median- and overall-survival.
Collapse
Affiliation(s)
- Manu Smriti Singh
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv, 69978, Israel
- School of Molecular Cell Biology & Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
- Department of Materials Sciences & Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Srinivas Ramishetti
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv, 69978, Israel
- School of Molecular Cell Biology & Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
- Department of Materials Sciences & Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Dalit Landesman-Milo
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv, 69978, Israel
- School of Molecular Cell Biology & Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
- Department of Materials Sciences & Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Meir Goldsmith
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv, 69978, Israel
- School of Molecular Cell Biology & Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
- Department of Materials Sciences & Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Sushmita Chatterjee
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv, 69978, Israel
- School of Molecular Cell Biology & Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
- Department of Materials Sciences & Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ramesh Palakuri
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv, 69978, Israel
- School of Molecular Cell Biology & Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
- Department of Materials Sciences & Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Dan Peer
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv, 69978, Israel
- School of Molecular Cell Biology & Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
- Department of Materials Sciences & Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
8
|
Pulmonary administration of a CSF-1R inhibitor alters the balance of tumor-associated macrophages and supports first-line chemotherapy in a lung cancer model. Int J Pharm 2021; 598:120350. [PMID: 33545279 DOI: 10.1016/j.ijpharm.2021.120350] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/28/2021] [Accepted: 01/31/2021] [Indexed: 12/14/2022]
Abstract
Lung cancers remain the leading cause of cancer-related death in both men and women. Infiltrating immune cells in the tumor microenvironment (TME) play a critical role in the formation, progression, and the response of solid tumors to therapy, including in lung cancers. Clinical studies have established that tumor-associated macrophages (TAMs) and their phenotypical composition are critical immune infiltrates in the lung TME, with the abundance of the M2-like phenotype negatively correlating with patient survival. Colony-Stimulating Factor 1 (CSF-1) receptor (CSF-1R) is a type III protein tyrosine kinase receptor that plays an important role in the recruitment and differentiation of monocytes into tumor-promoting M2-like TAMs and their survival. In this work we evaluated the therapeutic potential of PLX 3397 (PLX), a small molecule CSF-1R inhibitor (CSF-1Ri), upon local lung administration in an immune-competent mouse model of lung cancer. The efficacy of local lung delivered PLX as single therapy was investigated first. As assessed by immunofluorescence of sections of lung tumor nodules, a statistically significant reduction in M2-like TAMs and an increase in M1-like TAMs was observed, thus leading to a shift in the (M1/M2) balance. Those changes in abundance of immune infiltrates correlated with a significant decrease in tumor burden when compared to control. When combined with systemically administered cisplatin (CIS) PLX treatment provided further benefits, leading to a significant decrease in tumor burden when compared to either PLX or CIS treatments alone, as measured by bioluminescence intensity (BLI) in vivo (thoracic area) and ex vivo (lung tissue). This combination therapy led to the most pronounced increase in M1/M2 ratio, followed by a significant decrease in M2-like TAMs with the CIS therapy. This work is clinically relevant as it demonstrates the potential of local lung administration of PLX to support standard of care chemotherapy for lung cancer management. This is important as the pulmonary route of administration is a plausible strategy for reducing the total dose of CSF-1Ris as the tissue of interest (lungs) can be locally targeted. Because the major off-target effect of CSF-1Ris is liver toxicity, reducing systemic concentration will support translation of those therapies, especially in combination with standard of care chemotherapy that has significant off-target toxicity and patient attrition itself. This work is scientifically relevant as we demonstrate for the first time that local administration of a CSF-1Ri to the lungs leads to a shift in the balance of TAMs in the TME of a model of lung tumor, adding to the sparse literature of CSF-1Ris related to lung cancers.
Collapse
|
9
|
Okuda T, Okamoto H. Present Situation and Future Progress of Inhaled Lung Cancer Therapy: Necessity of Inhaled Formulations with Drug Delivery Functions. Chem Pharm Bull (Tokyo) 2021; 68:589-602. [PMID: 32611996 DOI: 10.1248/cpb.c20-00086] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Inhaled lung cancer therapy is promising because of direct and noninvasive drug delivery to the lungs with low potential for severe systemic toxicity. Thus chemotherapeutic drugs have been administered clinically by nebulization of solution or suspension formulations, which demonstrated their limited pulmonary absorption and relatively mild systemic toxicity. In all these clinical trials, however, there was no obviously superior anticancer efficacy in lung cancer patients even at the maximum doses of drugs limited by pulmonary toxicity. Therefore methods that deliver both higher anticancer efficacy and lower pulmonary toxicity are strongly desired. In addition to the worldwide availability of pressured metered dose inhalers (pMDIs) and dry powder inhalers (DPIs) to treat local respiratory diseases, recent innovations in medicines and technologies are encouraging next steps toward effective inhaled lung cancer therapy with new therapeutic or drug delivery concepts. These include the discovery of target cells/molecules and drug candidates for novel cancer therapy, the development of high-performance inhalation devices for effective pulmonary drug delivery, and the establishment of manufacturing technologies for functional nanoparticles/microparticles. This review highlights the present situation and future progress of inhaled drugs for lung cancer therapy, including an overview of available inhalation devices, pharmacokinetics, and outcomes in clinical trials so far and some novel formulation strategies based on drug delivery systems to achieve enhanced anticancer efficacy and attenuated pulmonary toxicity.
Collapse
|
10
|
Rouchota M, Adamiano A, Iafisco M, Fragogeorgi E, Pilatis I, Doumont G, Boutry S, Catalucci D, Zacharioudaki A, Kagadis GC. Optimization of In Vivo Studies by Combining Planar Dynamic and Tomographic Imaging: Workflow Evaluation on a Superparamagnetic Nanoparticles System. Mol Imaging 2021; 2021:6677847. [PMID: 33746630 PMCID: PMC7953590 DOI: 10.1155/2021/6677847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/16/2020] [Indexed: 11/18/2022] Open
Abstract
Molecular imaging holds great promise in the noninvasive monitoring of several diseases with nanoparticles (NPs) being considered an efficient imaging tool for cancer, central nervous system, and heart- or bone-related diseases and for disorders of the mononuclear phagocytic system (MPS). In the present study, we used an iron-based nanoformulation, already established as an MRI/SPECT probe, as well as to load different biomolecules, to investigate its potential for nuclear planar and tomographic imaging of several target tissues following its distribution via different administration routes. Iron-doped hydroxyapatite NPs (FeHA) were radiolabeled with the single photon γ-emitting imaging agent [99mTc]TcMDP. Administration of the radioactive NPs was performed via the following four delivery methods: (1) standard intravenous (iv) tail vein, (2) iv retro-orbital injection, (3) intratracheal (it) instillation, and (4) intrarectal installation (pr). Real-time, live, fast dynamic screening studies were performed on a dedicated bench top, mouse-sized, planar SPECT system from t = 0 to 1 hour postinjection (p.i.), and consequently, tomographic SPECT/CT imaging was performed, for up to 24 hours p.i. The administration routes that have been studied provide a wide range of possible target tissues, for various diseases. Studies can be optimized following this workflow, as it is possible to quickly assess more parameters in a small number of animals (injection route, dosage, and fasting conditions). Thus, such an imaging protocol combines the strengths of both dynamic planar and tomographic imaging, and by using iron-based NPs of high biocompatibility along with the appropriate administration route, a potential diagnostic or therapeutic effect could be attained.
Collapse
Affiliation(s)
- Maritina Rouchota
- 3dmi Research Group, Department of Medical Physics, School of Medicine, University of Patras, Greece
| | - Alessio Adamiano
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Italy
| | - Michele Iafisco
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Italy
| | - Eirini Fragogeorgi
- Institute of Nuclear & Radiological Sciences, Technology, Energy & Safety, NCSR “Demokritos”, Greece
| | - Irineos Pilatis
- Department of Biomedical Engineering, University of West Attica, Greece
| | - Gilles Doumont
- Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles (ULB), Rue Adrienne Bolland 8, B-6041 Charleroi (Gosselies), Belgium
| | - Sébastien Boutry
- Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles (ULB), Rue Adrienne Bolland 8, B-6041 Charleroi (Gosselies), Belgium
| | - Daniele Catalucci
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), UOS Milan, Italy
- Humanitas Clinical and Research Center, IRCCS, Rozzano (Milan), Italy
| | | | - George C. Kagadis
- 3dmi Research Group, Department of Medical Physics, School of Medicine, University of Patras, Greece
| |
Collapse
|
11
|
Bauleth-Ramos T, Sarmento B. In Vitro Assays for Nanoparticle-Cancer Cell Interaction Studies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1295:223-242. [PMID: 33543462 DOI: 10.1007/978-3-030-58174-9_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nanotechnology is a rapid-growing field with an extreme potential to revolutionize cancer treatments. However, despite the rapid advances, the clinical translation is still scarce. One of the main hurdles contributing for this setback is the lack of reliable in vitro models for preclinical testing capable of predicting the outcomes in an in vivo setting. In fact, the use of 2D monolayers, considered the gold-standard in vitro technique, leads to the creation of misleading data that might not be completely observed in in vivo or clinical setting. Thus, there is the need to use more complex models capable of better mimicking the tumor microenvironment. For that purpose, the development and use of multicellular tumor spheroids, three-dimensional (3D) cell cultures which recapitulate numerous aspects of the tumors, represents an advantageous approach to test the developed anticancer therapies. In this chapter, we identify and discuss the advantages of the use of these 3D cellular models compared to the 2D models and how they can be utilized to study nanoparticle-cancer cell interaction in a more reliable way to predict the treatment outcome in vivo.
Collapse
Affiliation(s)
- Tomás Bauleth-Ramos
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal.,ICBAS, Instituto Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal.,Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal. .,INEB - Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal. .,CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde & Instituto Universitário de Ciências da Saúde, Gandra, Portugal.
| |
Collapse
|
12
|
Groer C, Zhang T, Lu R, Cai S, Mull D, Huang A, Forrest M, Berkland C, Aires D, Forrest ML. Intratumoral Cancer Chemotherapy with a Carrier-Based Immunogenic Cell-Death Eliciting Platinum (IV) Agent. Mol Pharm 2020; 17:4334-4345. [PMID: 32975949 DOI: 10.1021/acs.molpharmaceut.0c00781] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A carrier-based, immunogenic cell death (ICD)-eliciting platinum(IV) chemotherapeutic agent was synthesized via complexation between an axially derivatized Pt(IV)-tocopherol and hyaluronan (HA)-tocopherol nanocarrier. The resultant HA-Pt(IV) complex demonstrated antiproliferative activity and induced calreticulin translocation, an indicator of ICD, in murine and human head and neck cancer (HNC) cells. The intratumorally administered HA-Pt(IV) treatments were tolerable and efficacious in both immunocompetent and immunodeficient mice with HNC, partially because of the direct cytotoxicity. Superior efficacy and survival were observed in the immunocompetent group, suggesting a possible Pt(IV)-induced immunological response, which would only manifest in animals with an intact immune system. Subsequent imaging of tumor tissues demonstrated increased macrophage infiltration in the HA-Pt(IV)-treated tumors compared to the nontreated controls and the cisplatin-treated tumors, suggesting favorable inflammatory activation. RNA sequencing of HA-Pt(IV)-treated tumors indicated that carbohydrate and vitamin metabolisms were the most important Kyoto Encyclopedia of Genes and Genomes pathways, and molecular function, biological process, and cellular component were highly enriched gene ontology categories.
Collapse
Affiliation(s)
- Chad Groer
- HylaPharm LLC, 2029 Becker Dr, Lawrence, Kansas 66047, United States
| | - Ti Zhang
- HylaPharm LLC, 2029 Becker Dr, Lawrence, Kansas 66047, United States
| | - Ruolin Lu
- Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Ave, Lawrence, Kansas 66047, United States
| | - Shuang Cai
- HylaPharm LLC, 2029 Becker Dr, Lawrence, Kansas 66047, United States
| | - Derek Mull
- HylaPharm LLC, 2029 Becker Dr, Lawrence, Kansas 66047, United States.,Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Ave, Lawrence, Kansas 66047, United States
| | - Aric Huang
- Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Ave, Lawrence, Kansas 66047, United States
| | - Melanie Forrest
- HylaPharm LLC, 2029 Becker Dr, Lawrence, Kansas 66047, United States
| | - Cory Berkland
- Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Ave, Lawrence, Kansas 66047, United States.,Department of Chemical and Petroleum Engineering, The University of Kansas, 1530 W 15th St, Lawrence, Kansas 66045, United States
| | - Daniel Aires
- HylaPharm LLC, 2029 Becker Dr, Lawrence, Kansas 66047, United States.,Division of Dermatology, Department of Internal Medicine, School of Medicine, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, Kansas 66160, United States
| | - Marcus Laird Forrest
- HylaPharm LLC, 2029 Becker Dr, Lawrence, Kansas 66047, United States.,Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Ave, Lawrence, Kansas 66047, United States
| |
Collapse
|
13
|
Sancey L, Sabido O, He Z, Rossetti F, Guignandon A, Bin V, Coll JL, Cottier M, Lux F, Tillement O, Constant S, Mas C, Boudard D. Multiparametric investigation of non functionalized-AGuIX nanoparticles in 3D human airway epithelium models demonstrates preferential targeting of tumor cells. J Nanobiotechnology 2020; 18:129. [PMID: 32912214 PMCID: PMC7488087 DOI: 10.1186/s12951-020-00683-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/26/2020] [Indexed: 01/06/2023] Open
Abstract
Liquid deposit mimicking surface aerosolization in the airway is a promising strategy for targeting bronchopulmonary tumors with reduced doses of nanoparticle (NPs). In mimicking and studying such delivery approaches, the use of human in vitro 3D culture models can bridge the gap between 2D cell culture and small animal investigations. Here, we exposed airway epithelia to liquid-apical gadolinium-based AGuIX® NPs in order to determine their safety profile. We used a multiparametric methodology to investigate the NP’s distribution over time in both healthy and tumor-bearing 3D models. AGuIX® NPs were able to target tumor cells in the absence of specific surface functionalization, without evidence of toxicity. Finally, we validated the therapeutic potential of this hybrid theranostic AGuIX® NPs upon radiation exposure in this model. In conclusion, 3D cell cultures can efficiently mimic the normal and tumor-bearing airway epitheliums, providing an ethical and accessible model for the investigation of nebulized NPs. ![]()
Collapse
Affiliation(s)
- Lucie Sancey
- Institute for Advanced Biosciences, INSERM U1209, CNRS, UMR 5309, Université Grenoble Alpes, 38000, Grenoble, France.
| | - Odile Sabido
- INSERM U1059, Laboratoire SAINBIOSE, équipe DVH/PIB, Faculté de Médecine, Université Jean Monnet, Saint-Etienne, France.,Université de Lyon, Saint-Etienne, France
| | - Zhiguo He
- Université de Lyon, Saint-Etienne, France.,, BiiGC EA2521, Saint-Etienne, France
| | - Fabien Rossetti
- Institut Lumière Matière, CNRS UMR5306, Université Lyon 1, 69100, Villeurbanne, France
| | - Alain Guignandon
- Université de Lyon, Saint-Etienne, France.,SAINBIOSE, Inserm U1059, LBTO Team, Saint-Etienne, France
| | - Valérie Bin
- INSERM U1059, Laboratoire SAINBIOSE, équipe DVH/PIB, Faculté de Médecine, Université Jean Monnet, Saint-Etienne, France.,Université de Lyon, Saint-Etienne, France
| | - Jean-Luc Coll
- Institute for Advanced Biosciences, INSERM U1209, CNRS, UMR 5309, Université Grenoble Alpes, 38000, Grenoble, France
| | - Michèle Cottier
- INSERM U1059, Laboratoire SAINBIOSE, équipe DVH/PIB, Faculté de Médecine, Université Jean Monnet, Saint-Etienne, France.,Université de Lyon, Saint-Etienne, France.,CHU Saint Etienne, Hôpital Nord, UF6725 Cytologie et Histologie Rénale, St-Etienne, France
| | - François Lux
- Institut Lumière Matière, CNRS UMR5306, Université Lyon 1, 69100, Villeurbanne, France.,NH Theraguix, 38240, Meylan, France.,Institut Universitaire de France (IUF), Paris, France
| | - Olivier Tillement
- Institut Lumière Matière, CNRS UMR5306, Université Lyon 1, 69100, Villeurbanne, France.,NH Theraguix, 38240, Meylan, France
| | - Samuel Constant
- Epithelix SARL, Geneva, Switzerland.,OncoTheis SARL, Geneva, Switzerland
| | | | - Delphine Boudard
- INSERM U1059, Laboratoire SAINBIOSE, équipe DVH/PIB, Faculté de Médecine, Université Jean Monnet, Saint-Etienne, France. .,Université de Lyon, Saint-Etienne, France. .,CHU Saint Etienne, Hôpital Nord, UF6725 Cytologie et Histologie Rénale, St-Etienne, France.
| |
Collapse
|
14
|
Ishiguro S, Robben N, Burghart R, Cote P, Greenway S, Thakkar R, Upreti D, Nakashima A, Suzuki K, Comer J, Tamura M. Cell Wall Membrane Fraction of Chlorella sorokiniana Enhances Host Antitumor Immunity and Inhibits Colon Carcinoma Growth in Mice. Integr Cancer Ther 2020; 19:1534735419900555. [PMID: 32009489 PMCID: PMC7288830 DOI: 10.1177/1534735419900555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A colon cancer growth inhibitor partially purified from the isolated cell wall
membrane fraction of Chlorella sorokiniana, here referred to as
Chlorella membrane factor (CMF), was evaluated for its
antitumor and immunomodulatory effects in cell culture and in a colon carcinoma
mouse model. The CMF treatment dose- and time-dependently inhibited colon
carcinoma cell growth in 2-dimensional cultures. Treatment with CMF also
significantly inhibited the growth of colon carcinoma spheroids in 3-dimensional
cell culture in coculture with T lymphocytes. In a mouse CT26 colon carcinoma
peritoneal dissemination model, intraperitoneal injection of CMF (10 or 30 mg
dry weight/kg body weight, every other day) dose-dependently and significantly
attenuated the growth of tumor nodules via induction of tumor cell apoptosis.
Evaluation of immune cell populations in ascites showed that CMF treatment
tended to increase T lymphocytes but lower granulocyte populations. The present
study suggests that the cell wall membrane fraction of Chlorella
sorokiniana contains a bioactive material that inhibits colon
carcinoma growth via direct cell growth inhibition and stimulation of host
antitumor immunity. Hence, it is suggested that the Chlorella
cell wall membrane extract or a bioactive substance in the extract is an
attractive complementary medicine for cancer therapy.
Collapse
Affiliation(s)
| | | | | | - Paige Cote
- Kansas State University, Manhattan, KS, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Liu Q, Guan J, Qin L, Zhang X, Mao S. Physicochemical properties affecting the fate of nanoparticles in pulmonary drug delivery. Drug Discov Today 2020; 25:150-159. [DOI: 10.1016/j.drudis.2019.09.023] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/01/2019] [Accepted: 09/27/2019] [Indexed: 01/27/2023]
|
16
|
Hayes AJ, Melrose J. Glycosaminoglycan and Proteoglycan Biotherapeutics in Articular Cartilage Protection and Repair Strategies: Novel Approaches to Visco‐supplementation in Orthobiologics. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Anthony J. Hayes
- Bioimaging Research HubCardiff School of BiosciencesCardiff University Cardiff CF10 3AX Wales UK
| | - James Melrose
- Graduate School of Biomedical EngineeringUNSW Sydney Sydney NSW 2052 Australia
- Raymond Purves Bone and Joint Research LaboratoriesKolling Institute of Medical ResearchRoyal North Shore Hospital and The Faculty of Medicine and HealthUniversity of Sydney St. Leonards NSW 2065 Australia
- Sydney Medical SchoolNorthernRoyal North Shore HospitalSydney University St. Leonards NSW 2065 Australia
| |
Collapse
|
17
|
Kosmidis C, Sapalidis K, Zarogoulidis P, Sardeli C, Koulouris C, Giannakidis D, Pavlidis E, Katsaounis A, Michalopoulos N, Mantalobas S, Koimtzis G, Alexandrou V, Tsiouda T, Amaniti A, Kesisoglou I. Inhaled Cisplatin for NSCLC: Facts and Results. Int J Mol Sci 2019; 20:ijms20082005. [PMID: 31022839 PMCID: PMC6514814 DOI: 10.3390/ijms20082005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/15/2019] [Accepted: 04/18/2019] [Indexed: 12/20/2022] Open
Abstract
Although we have new diagnostic tools for non-small cell lung cancer, diagnosis is still made in advanced stages of the disease. However, novel treatments are being introduced in the market and new ones are being developed. Targeted therapies and immunotherapy have brought about a bloom in the treatment of non-small cell lung cancer. Still we have to find ways to administer drugs in a more efficient and safe method. In the current review, we will focus on the administration of inhaled cisplatin based on published data.
Collapse
Affiliation(s)
- Christoforos Kosmidis
- 3rd Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, 57001 Thessaloniki, Greece.
| | - Konstantinos Sapalidis
- 3rd Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, 57001 Thessaloniki, Greece.
| | - Paul Zarogoulidis
- 3rd Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, 57001 Thessaloniki, Greece.
- Department of Pharmacology & Clinical Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece.
| | - Chrysanthi Sardeli
- Department of Pharmacology & Clinical Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece.
| | - Charilaos Koulouris
- 3rd Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, 57001 Thessaloniki, Greece.
| | - Dimitrios Giannakidis
- 3rd Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, 57001 Thessaloniki, Greece.
| | - Efstathios Pavlidis
- 3rd Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, 57001 Thessaloniki, Greece.
| | - Athanasios Katsaounis
- 3rd Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, 57001 Thessaloniki, Greece.
| | - Nikolaos Michalopoulos
- 3rd Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, 57001 Thessaloniki, Greece.
| | - Stylianos Mantalobas
- 3rd Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, 57001 Thessaloniki, Greece.
| | - Georgios Koimtzis
- 3rd Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, 57001 Thessaloniki, Greece.
| | - Vyron Alexandrou
- 3rd Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, 57001 Thessaloniki, Greece.
| | - Theodora Tsiouda
- 3rd Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, 57001 Thessaloniki, Greece.
| | - Aikaterini Amaniti
- 3rd Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, 57001 Thessaloniki, Greece.
| | - Issak Kesisoglou
- 3rd Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, 57001 Thessaloniki, Greece.
| |
Collapse
|
18
|
Götte M, Kovalszky I. Extracellular matrix functions in lung cancer. Matrix Biol 2018; 73:105-121. [DOI: 10.1016/j.matbio.2018.02.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/08/2018] [Accepted: 02/22/2018] [Indexed: 02/07/2023]
|
19
|
Injectable Chemotherapy Downstaged Oral Squamous Cell Carcinoma from Nonresectable to Resectable in a Rescue Dog: Diagnosis, Treatment, and Outcome. Case Rep Vet Med 2018; 2018:9078537. [PMID: 30402324 PMCID: PMC6196918 DOI: 10.1155/2018/9078537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/13/2018] [Indexed: 11/17/2022] Open
Abstract
This case report documents the diagnosis, treatment, and outcome of a nonresectable oral squamous cell carcinoma in a dog with initial poor prognosis. An approximately 4-year-old female Staffordshire Bull Terrier presented with a large mass on the front of lower jaw which was diagnosed as oral papillary squamous cell carcinoma by histopathology. CT scans revealed invasion of the cancer to the frenulum of the tongue. The mass was inoperable due to location, expansiveness, and metastatic lymph nodes. The dog received 4 treatments of intralesional hyaluronan-platinum conjugates (HylaPlat™, HylaPharm LLC, Lawrence, Kansas) at 3-week intervals. Clinical chemistry and complete blood count were performed one week after each treatment and results were within normal limits. Complications included bleeding due to tumor tissue sloughing, as well as a single seizure due to unknown causes. Upon completion of chemotherapy, CT showed that the mass had regressed and was no longer invading the lingual frenulum, and multiple lymph nodes were free of metastasis. The mass thus became resectable and the dog successfully underwent rostral bilateral mandibulectomy. Over one year after chemotherapy and surgery, the cancer remains in complete remission.
Collapse
|
20
|
Xu X, Zhang R, Liu F, Ping J, Wen X, Wang H, Wang K, Sun X, Zou H, Shen B, Wu L. 19F MRI in orthotopic cancer model via intratracheal administration of ανβ3-targeted perfluorocarbon nanoparticles. Nanomedicine (Lond) 2018; 13:2551-2562. [PMID: 30338723 DOI: 10.2217/nnm-2018-0051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Aim: To demonstrate the feasibility of intratracheal administration in orthotopic lung cancer model with 19F MRI. Materials & methods: αvβ3-integrin targeting ability of the perfluorocarbon (PFC) nanoparticles was tested. Orthotopic lung cancer model was established in rabbits under computed tomography guidance. αvβ3-targeted PFC nanoparticles were administrated intratracheally or intravenously, and 19F MRI was performed before and up to 24 h after administration. Results: The targeted PFC nanoparticles could bind with αvβ3-integrin. PFC concentrations in the tumors of intratracheal group after administration were significantly higher than intravenous group. Conclusion: Intratracheal administration of PFC nanoparticles was shown to be feasible and efficacious. 19F MRI with αvβ3-targeted PFC nanoparticles provided quantitative assessment of nanoparticles distribution and tumor angiogenesis.
Collapse
Affiliation(s)
- Xiuan Xu
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, PR China
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
- Department of Medical Imaging, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Ruixin Zhang
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Fang Liu
- Department of Medical Imaging, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Jiaqi Ping
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, PR China
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Xiaofei Wen
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, PR China
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Hongbin Wang
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Kai Wang
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, PR China
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Xilin Sun
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, PR China
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Hongyan Zou
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, PR China
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Baozhong Shen
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, PR China
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Lina Wu
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, PR China
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| |
Collapse
|
21
|
Lee WH, Loo CY, Ghadiri M, Leong CR, Young PM, Traini D. The potential to treat lung cancer via inhalation of repurposed drugs. Adv Drug Deliv Rev 2018; 133:107-130. [PMID: 30189271 DOI: 10.1016/j.addr.2018.08.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 08/27/2018] [Accepted: 08/31/2018] [Indexed: 01/10/2023]
Abstract
Lung cancer is a highly invasive and prevalent disease with ineffective first-line treatment and remains the leading cause of cancer death in men and women. Despite the improvements in diagnosis and therapy, the prognosis and outcome of lung cancer patients is still poor. This could be associated with the lack of effective first-line oncology drugs, formation of resistant tumors and non-optimal administration route. Therefore, the repurposing of existing drugs currently used for different indications and the introduction of a different method of drug administration could be investigated as an alternative to improve lung cancer therapy. This review describes the rationale and development of repositioning of drugs for lung cancer treatment with emphasis on inhalation. The review includes the current progress of repurposing non-cancer drugs, as well as current chemotherapeutics for lung malignancies via inhalation. Several potential non-cancer drugs such as statins, itraconazole and clarithromycin, that have demonstrated preclinical anti-cancer activity, are also presented. Furthermore, the potential challenges and limitations that might hamper the clinical translation of repurposed oncology drugs are described.
Collapse
Affiliation(s)
- Wing-Hin Lee
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur (RCMP UniKL), Ipoh, Perak, Malaysia; Respiratory Technology, Woolcock Institute of Medical Research, and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, NSW 2037, Australia; Centre for Lung Cancer Research, 431 Glebe Point Road, 2037, Australia.
| | - Ching-Yee Loo
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur (RCMP UniKL), Ipoh, Perak, Malaysia; Respiratory Technology, Woolcock Institute of Medical Research, and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, NSW 2037, Australia; Centre for Lung Cancer Research, 431 Glebe Point Road, 2037, Australia
| | - Maliheh Ghadiri
- Respiratory Technology, Woolcock Institute of Medical Research, and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, NSW 2037, Australia; Centre for Lung Cancer Research, 431 Glebe Point Road, 2037, Australia
| | - Chean-Ring Leong
- Section of Bioengineering Technology, Universiti Kuala Lumpur (UniKL) MICET, Alor Gajah, Melaka, Malaysia
| | - Paul M Young
- Respiratory Technology, Woolcock Institute of Medical Research, and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, NSW 2037, Australia; Centre for Lung Cancer Research, 431 Glebe Point Road, 2037, Australia
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research, and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, NSW 2037, Australia; Centre for Lung Cancer Research, 431 Glebe Point Road, 2037, Australia
| |
Collapse
|
22
|
Lu H, Stenzel MH. Multicellular Tumor Spheroids (MCTS) as a 3D In Vitro Evaluation Tool of Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1702858. [PMID: 29450963 DOI: 10.1002/smll.201702858] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 11/13/2017] [Indexed: 05/23/2023]
Abstract
Multicellular tumor spheroid models (MCTS) are often coined as 3D in vitro models that can mimic the microenvironment of tissues. MCTS have gained increasing interest in the nano-biotechnology field as they can provide easily accessible information on the performance of nanoparticles without using animal models. Considering that many countries have put restrictions on animals testing, which will only tighten in the future as seen by the recent developments in the Netherlands, 3D models will become an even more valuable tool. Here, an overview on MCTS is provided, focusing on their use in cancer research as most nanoparticles are tested in MCTS for treatment of primary tumors. Thereafter, various types of nanoparticles-from self-assembled block copolymers to inorganic nanoparticles, are discussed. A range of physicochemical parameters including the size, shape, surface chemistry, ligands attachment, stability, and stiffness are found to influence nanoparticles in MCTS. Some of these studies are complemented by animal studies confirming that lessons from MCTS can in part predict the behaviour in vivo. In summary, MCTS are suitable models to gain additional information on nanoparticles. While not being able to replace in vivo studies, they can bridge the gap between traditional 2D in vitro studies and in vivo models.
Collapse
Affiliation(s)
- Hongxu Lu
- Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Kensington, Sydney, New South Wales, 2052, Australia
| | - Martina H Stenzel
- Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Kensington, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
23
|
Sonvico F, Barbieri S, Colombo P, Mucchino C, Barocelli E, Cantoni AM, Cavazzoni A, Petronini PG, Rusca M, Carbognani P, Ampollini L. Physicochemical and pharmacokinetic properties of polymeric films loaded with cisplatin for the treatment of malignant pleural mesothelioma. J Thorac Dis 2018; 10:S194-S206. [PMID: 29507787 DOI: 10.21037/jtd.2017.10.12] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background Malignant mesothelioma is an invasive neoplasm arising from mesothelial surfaces of the pleural and peritoneal cavities. Mesothelioma treatment is unsatisfactory and recurrence is common. Here an innovative locoregional treatment for malignant pleural mesothelioma is presented. Methods Chitosan- and hyaluronate-based films were loaded with 0.5% and 4% w/w cisplatin and were studied for their physicochemical, mechanical and drug release characteristics. The performance of the drug delivery systems was assessed in vitro on A549 cells and on an orthotopic model of MPM recurrence in rats. Results Polysaccharide films produced were thin, flexible and resistant. Cisplatin was completely released from hyaluronic acid films within 96 hours, while drug release was found to be much more prolonged with chitosan films. The drug released from hyaluronate films was effective against A549 cell line, while for chitosan films the release was too slow to produce cytotoxicity. Similarly, cisplatin-loaded chitosan films in vivo released minimal quantities of cisplatin and induced inflammation and foreign body reaction. Cisplatin-loaded hyaluronate acid films on the contrary were able to prevent tumor recurrence. The cisplatin-loaded hyaluronate films provided higher Cmax and AUC compared to a solution of cisplatin administered intrapleurally, but did not show any sign of treatment related toxicity. Conclusions Hyaluronate-based films appear as an optimal platform for the development of drug delivery systems suitable for the loco-regional post-surgical treatment of lung malignancies.
Collapse
Affiliation(s)
- Fabio Sonvico
- Biopharmanet-TEC, University of Parma, Parma, Italy.,Department of Food and Drug, University of Parma, Parma, Italy
| | - Stefano Barbieri
- Biopharmanet-TEC, University of Parma, Parma, Italy.,Department of Food and Drug, University of Parma, Parma, Italy
| | - Paolo Colombo
- Department of Food and Drug, University of Parma, Parma, Italy.,Plumestars s.r.l., Via Inzani 1, Parma, Italy
| | - Claudio Mucchino
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | | | | | - Andrea Cavazzoni
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Michele Rusca
- Thoracic Surgery, Department of Medicine and Surgery, University Hospital of Parma, Parma, Italy
| | - Paolo Carbognani
- Thoracic Surgery, Department of Medicine and Surgery, University Hospital of Parma, Parma, Italy
| | - Luca Ampollini
- Thoracic Surgery, Department of Medicine and Surgery, University Hospital of Parma, Parma, Italy
| |
Collapse
|
24
|
Ishiguro S, Kawabata A, Zulbaran-Rojas A, Monson K, Uppalapati D, Ohta N, Inui M, Pappas CG, Tzakos AG, Tamura M. Co-treatment with a C1B5 peptide of protein kinase Cγ and a low dose of gemcitabine strongly attenuated pancreatic cancer growth in mice through T cell activation. Biochem Biophys Res Commun 2017; 495:962-968. [PMID: 29155177 DOI: 10.1016/j.bbrc.2017.11.102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 11/16/2017] [Indexed: 12/23/2022]
Abstract
Although gemcitabine is an effective chemotherapeutic for pancreatic cancer, severe side effects often accompany its use. Since we have discovered that locally administered C1B domain peptides effectively control tumor growth without any side effects, the efficacy of co-treatment with this peptide and a low dose of gemcitabine on the growth of pancreatic cancer was examined. Two- and three-dimensional cell culture studies clarified that a co-treatment with C1B5 peptide and gemcitabine significantly attenuated growth of PAN02 mouse and PANC-1 human pancreatic cancer cells in 2D and 3D cultures. Although treatment with the low dose of gemcitabine alone (76%) or the C1B5 peptide alone (39%) inhibited tumor growth moderately, a co-treatment with C1B5 peptide and a low dose of gemcitabine markedly inhibited the growth of PAN02 autografts in the mouse peritoneal cavity (94% inhibition) without any noticeable adverse effect. The number of peritoneal cavity-infiltrating neutrophils and granzyme B+ lymphocytes was significantly higher in the co-treatment group than in the control group. A significant increase of granzyme B mRNA expression was also detected in human T cells by the co-treatment. Taken together, the current study suggests that C1B5 peptide offers a remarkably effective combination treatment strategy to reduce side effects associated with gemcitabine, without losing its tumoricidal effect.
Collapse
Affiliation(s)
- Susumu Ishiguro
- Departments of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, 66506, USA
| | - Atsushi Kawabata
- Departments of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, 66506, USA
| | - Alejandro Zulbaran-Rojas
- Departments of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, 66506, USA
| | - Kelsey Monson
- Departments of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, 66506, USA
| | - Deepthi Uppalapati
- Departments of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, 66506, USA
| | - Naomi Ohta
- Departments of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, 66506, USA
| | - Makoto Inui
- Departments of Pharmacology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Charalampos G Pappas
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, Ioannina 45110, Greece
| | - Andreas G Tzakos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, Ioannina 45110, Greece
| | - Masaaki Tamura
- Departments of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, 66506, USA.
| |
Collapse
|
25
|
Kou L, Yao Q, Sivaprakasam S, Luo Q, Sun Y, Fu Q, He Z, Sun J, Ganapathy V. Dual targeting of l-carnitine-conjugated nanoparticles to OCTN2 and ATB 0,+ to deliver chemotherapeutic agents for colon cancer therapy. Drug Deliv 2017; 24:1338-1349. [PMID: 28911246 PMCID: PMC8241000 DOI: 10.1080/10717544.2017.1377316] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/03/2017] [Accepted: 09/05/2017] [Indexed: 12/21/2022] Open
Abstract
l-Carnitine, obligatory for oxidation of fatty acids, is transported into cells by the Na+-coupled transporter OCTN2 and the Na+/Cl--coupled transporter ATB0,+. Here we investigated the potential of L-carnitine-conjugated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (LC-PLGA NPs) to deliver chemotherapeutic drugs into cancer cells by targeting the nanoparticles to both OCTN2 and ATB0,+. The cellular uptake of LC-PLGA NPs in the breast cancer cell line MCF7 and the colon cancer cell line Caco-2 was increased compared to unmodified nanoparticles, but decreased in the absence of co-transporting ions (Na+ and/or Cl-) or in the presence of competitive substrates for the two transporters. Studies with fluorescently labeled nanoparticles showed their colocalization with both OCTN2 and ATB0,+, confirming the involvement of both transporters in the cellular uptake of LC-PLGA NPs. As the expression levels of OCTN2 and ATB0,+ are higher in colon cancer cells than in normal colon cells, LC-PLGA NPs can be used to deliver chemotherapeutic drugs selectively into cancer cells for colon cancer therapy. With 5-fluorouracil-loaded LC-PLGA NPs, we were able to demonstrate significant increases in the uptake efficiency and cytotoxicity in colon cancer cells that were positive for OCTN2 and ATB0,+. In a 3D spheroid model of tumor growth, LC-PLGA NPs showed increased uptake and enhanced antitumor efficacy. These findings indicate that dual-targeting LC-PLGA NPs to OCTN2 and ATB0,+ has great potential to deliver chemotherapeutic drugs for colon cancer therapy. Dual targeting LC-PLGA NPs to OCTN2 and ATB0,+ can selectively deliver chemotherapeutics to colon cancer cells where both transporters are overexpressed, preventing targeting to normal cells and thus avoiding off-target side effects.
Collapse
Affiliation(s)
- Longfa Kou
- Municipal Key Laboratory of Biopharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Qing Yao
- Municipal Key Laboratory of Biopharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Sathish Sivaprakasam
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Qiuhua Luo
- Municipal Key Laboratory of Biopharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Yinghua Sun
- Municipal Key Laboratory of Biopharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Qiang Fu
- Municipal Key Laboratory of Biopharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Jin Sun
- Municipal Key Laboratory of Biopharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
26
|
Marasini N, Haque S, Kaminskas LM. Polymer-drug conjugates as inhalable drug delivery systems: A review. Curr Opin Colloid Interface Sci 2017. [DOI: 10.1016/j.cocis.2017.06.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Ishiguro S, Uppalapati D, Goldsmith Z, Robertson D, Hodge J, Holt H, Nakashima A, Turner K, Tamura M. Exopolysaccharides extracted from Parachlorella kessleri inhibit colon carcinoma growth in mice via stimulation of host antitumor immune responses. PLoS One 2017; 12:e0175064. [PMID: 28380056 PMCID: PMC5381895 DOI: 10.1371/journal.pone.0175064] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 03/20/2017] [Indexed: 12/23/2022] Open
Abstract
The newly purified extracellular polysaccharides (exopolysaccharides) from Parachlorella kessleri (PCEPS) were evaluated on their antitumor and immunomodulatory effects in cell culture and mouse colon carcinoma peritoneal dissemination model. In two-dimensional cell culture, the PCEPS treatment inhibited cell growth of both murine and human colon carcinoma cells in a dose- and time-dependent manner. In contrast, the growth of mouse splenocytes (SPLs) and bone marrow cells (BMCs) were stimulated by the treatment with PCEPS. The treatment with PCEPS also increased specific subpopulations of the cells in BMCs: antigen presenting cells (CD19+ B cells, 33D1+ dendritic cells and CD68+ macrophage) and CD8+ cytotoxic T cells. In three-dimensional spheroid culture, spheroid growth of CT26 cells co-cultured with HL-60 human neutrophilic promyeloblasts and Jurkat cells (human lymphoblasts), but not THP-1 human monocyte/macrophage was significantly attenuated by PCEPS treatment. In a mouse CT26 colon carcinoma peritoneal dissemination model, intraperitoneal injection of PCEPS (10 mg/kg, twice per week) significantly attenuated the growth of CT26 colon carcinoma in syngeneic mice. The present study suggests that PCEPS inhibits colon carcinoma growth via direct cell growth inhibition and a stimulation of the host antitumor immune responses. Taken together, the current study suggests that exopolysaccharides derived from Parachlorella kessleri contain significant bioactive materials that inhibit colon carcinoma growth.
Collapse
Affiliation(s)
- Susumu Ishiguro
- Departments of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, Kansas, United States of America
| | - Deepthi Uppalapati
- Departments of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, Kansas, United States of America
| | - Zachary Goldsmith
- Departments of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, Kansas, United States of America
| | - Dana Robertson
- Departments of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, Kansas, United States of America
| | - Jacob Hodge
- Departments of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, Kansas, United States of America
| | - Hayley Holt
- Departments of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, Kansas, United States of America
| | - Arashi Nakashima
- Departments of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, Kansas, United States of America
| | - Katie Turner
- Departments of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, Kansas, United States of America
| | - Masaaki Tamura
- Departments of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, Kansas, United States of America
- * E-mail:
| |
Collapse
|