1
|
Chen S, Gao J, Zhang T. From mesenchymal stem cells to their extracellular vesicles: Progress and prospects for asthma therapy. Asian J Pharm Sci 2024; 19:100942. [PMID: 39253613 PMCID: PMC11382190 DOI: 10.1016/j.ajps.2024.100942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 12/18/2023] [Accepted: 05/20/2024] [Indexed: 09/11/2024] Open
Abstract
Asthma is a widespread public health concern, with an increasing incidence. Despite the implementation of current treatment strategies, asthma control, particularly for severe cases, remains suboptimal. Recent research has revealed the encouraging prospects of extracellular vesicles (EVs) secreted by mesenchymal stem cells (MSCs) as a viable therapeutic option for alleviating asthma symptoms. Therefore, the present review aims to provide an overview of the current progress and the therapeutic mechanisms of using MSC-derived EVs (MSC-EVs) for asthma treatment. Additionally, different administration approaches for EVs and their impacts on biodistribution and the curative outcomes of EVs are summarized. Notably, the potential benefits of nebulized inhalation of MSC-EVs are addressed. Also, the possibilities and challenges of using MSC-EVs for asthma treatment in clinics are highlighted. Overall, this review is intended to give new insight into the utilization of MSC-EVs as a potential biological drug for asthma treatment.
Collapse
Affiliation(s)
- Shihan Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Tianyuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Chweich H, Idrees N, Rideout J, Barnewolt B, Rice L, Hill NS. Randomized Controlled Trial Assessing a Vibrating Mesh Nebulizer Compared to a Jet Nebulizer in Severe Asthma Exacerbations. Respir Care 2024; 69:345-348. [PMID: 37816543 PMCID: PMC10984592 DOI: 10.4187/respcare.10980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Affiliation(s)
- Haval Chweich
- Drs Chweich and Hill are affiliated with Division of Pulmonary, Critical Care and Sleep Medicine, Internal Medicine, Tufts Medical Center, Boston, Massachusetts. Dr Idrees is affiliated with Division of Nephrology, Internal Medicine, Boston Medical Center, Boston, Massachusetts. Drs Rideout, Barnewolt, and Rice are affiliated with Department of Emergency Medicine, Tufts Medical Center, Boston, Massachusetts
| | - Najia Idrees
- Drs Chweich and Hill are affiliated with Division of Pulmonary, Critical Care and Sleep Medicine, Internal Medicine, Tufts Medical Center, Boston, Massachusetts. Dr Idrees is affiliated with Division of Nephrology, Internal Medicine, Boston Medical Center, Boston, Massachusetts. Drs Rideout, Barnewolt, and Rice are affiliated with Department of Emergency Medicine, Tufts Medical Center, Boston, Massachusetts
| | - Jesse Rideout
- Drs Chweich and Hill are affiliated with Division of Pulmonary, Critical Care and Sleep Medicine, Internal Medicine, Tufts Medical Center, Boston, Massachusetts. Dr Idrees is affiliated with Division of Nephrology, Internal Medicine, Boston Medical Center, Boston, Massachusetts. Drs Rideout, Barnewolt, and Rice are affiliated with Department of Emergency Medicine, Tufts Medical Center, Boston, Massachusetts
| | - Brien Barnewolt
- Drs Chweich and Hill are affiliated with Division of Pulmonary, Critical Care and Sleep Medicine, Internal Medicine, Tufts Medical Center, Boston, Massachusetts. Dr Idrees is affiliated with Division of Nephrology, Internal Medicine, Boston Medical Center, Boston, Massachusetts. Drs Rideout, Barnewolt, and Rice are affiliated with Department of Emergency Medicine, Tufts Medical Center, Boston, Massachusetts
| | - Lauren Rice
- Drs Chweich and Hill are affiliated with Division of Pulmonary, Critical Care and Sleep Medicine, Internal Medicine, Tufts Medical Center, Boston, Massachusetts. Dr Idrees is affiliated with Division of Nephrology, Internal Medicine, Boston Medical Center, Boston, Massachusetts. Drs Rideout, Barnewolt, and Rice are affiliated with Department of Emergency Medicine, Tufts Medical Center, Boston, Massachusetts
| | - Nicholas S Hill
- Drs Chweich and Hill are affiliated with Division of Pulmonary, Critical Care and Sleep Medicine, Internal Medicine, Tufts Medical Center, Boston, Massachusetts. Dr Idrees is affiliated with Division of Nephrology, Internal Medicine, Boston Medical Center, Boston, Massachusetts. Drs Rideout, Barnewolt, and Rice are affiliated with Department of Emergency Medicine, Tufts Medical Center, Boston, Massachusetts.
| |
Collapse
|
3
|
Arnott A, Watson M, Sim M. Nebuliser therapy in critical care: The past, present and future. J Intensive Care Soc 2024; 25:78-88. [PMID: 39323591 PMCID: PMC11421288 DOI: 10.1177/17511437231199899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
Nebulisers are devices that reduce a body of liquid into a fine aerosol suitable for inhalation. Utilising the efficiency of pulmonary drug absorption, they offer a safe and powerful modality for local and systemic drug delivery in the treatment of critical illness. In comparison to conventional jet (JN) and ultrasonic nebulisers (USN), the advent of vibrating mesh nebulisers (VMN) has significantly improved the therapeutic potential of modern devices. This review article aims to summarise the history and evolution of nebulisers from first inception through to the modern vibrating mesh technology. It provides an overview on the basic science of nebulisation and pulmonary drug delivery, and the current use of nebulised therapies in critical care.
Collapse
Affiliation(s)
| | | | - Malcolm Sim
- Queen Elizabeth University Hospital, Glasgow, UK
| |
Collapse
|
4
|
Neary MT, Mulder LM, Kowalski PS, MacLoughlin R, Crean AM, Ryan KB. Nebulised delivery of RNA formulations to the lungs: From aerosol to cytosol. J Control Release 2024; 366:812-833. [PMID: 38101753 DOI: 10.1016/j.jconrel.2023.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
In the past decade RNA-based therapies such as small interfering RNA (siRNA) and messenger RNA (mRNA) have emerged as new and ground-breaking therapeutic agents for the treatment and prevention of many conditions from viral infection to cancer. Most clinically approved RNA therapies are parenterally administered which impacts patient compliance and adds to healthcare costs. Pulmonary administration via inhalation is a non-invasive means to deliver RNA and offers an attractive alternative to injection. Nebulisation is a particularly appealing method due to the capacity to deliver large RNA doses during tidal breathing. In this review, we discuss the unique physiological barriers presented by the lung to efficient nebulised RNA delivery and approaches adopted to circumvent this problem. Additionally, the different types of nebulisers are evaluated from the perspective of their suitability for RNA delivery. Furthermore, we discuss recent preclinical studies involving nebulisation of RNA and analysis in in vitro and in vivo settings. Several studies have also demonstrated the importance of an effective delivery vector in RNA nebulisation therefore we assess the variety of lipid, polymeric and hybrid-based delivery systems utilised to date. We also consider the outlook for nebulised RNA medicinal products and the hurdles which must be overcome for successful clinical translation. In summary, nebulised RNA delivery has demonstrated promising potential for the treatment of several lung-related conditions such as asthma, COPD and cystic fibrosis, to which the mode of delivery is of crucial importance for clinical success.
Collapse
Affiliation(s)
- Michael T Neary
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Ireland; School of Pharmacy, University College Cork, Ireland
| | | | - Piotr S Kowalski
- School of Pharmacy, University College Cork, Ireland; APC Microbiome, University College Cork, Cork, Ireland
| | | | - Abina M Crean
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Ireland; School of Pharmacy, University College Cork, Ireland
| | - Katie B Ryan
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Ireland; School of Pharmacy, University College Cork, Ireland.
| |
Collapse
|
5
|
Dushianthan A, Clark HW, Brealey D, Pratt D, Fink JB, Madsen J, Moyses H, Matthews L, Hussell T, Djukanovic R, Feelisch M, Postle AD, Grocott MPW. A randomized controlled trial of nebulized surfactant for the treatment of severe COVID-19 in adults (COVSurf trial). Sci Rep 2023; 13:20946. [PMID: 38017061 PMCID: PMC10684757 DOI: 10.1038/s41598-023-47672-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/16/2023] [Indexed: 11/30/2023] Open
Abstract
SARS-CoV-2 directly targets alveolar epithelial cells and can lead to surfactant deficiency. Early reports suggested surfactant replacement may be effective in improving outcomes. The aim of the study to assess the feasibility and efficacy of nebulized surfactant in mechanically ventilated COVID-19 patients. Patients were randomly assigned to receive open-labelled bovine nebulized surfactant or control (ratio 3-surfactant: 2-control). This was an exploratory dose-response study starting with 1080 mg of surfactant delivered at 3 time points (0, 8 and 24 h). After completion of 10 patients, the dose was reduced to 540 mg, and the frequency of nebulization was increased to 5/6 time points (0, 12, 24, 36, 48, and an optional 72 h) on the advice of the Trial Steering Committee. The co-primary outcomes were improvement in oxygenation (change in PaO2/FiO2 ratio) and ventilation index at 48 h. 20 patients were recruited (12 surfactant and 8 controls). Demographic and clinical characteristics were similar between groups at presentation. Nebulized surfactant administration was feasible. There was no significant improvement in oxygenation at 48 h overall. There were also no differences in secondary outcomes or adverse events. Nebulized surfactant administration is feasible in mechanically ventilated patients with COVID-19 but did not improve measures of oxygenation or ventilation.
Collapse
Affiliation(s)
- Ahilanandan Dushianthan
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton/University of Southampton, Southampton, UK.
- General Intensive Care Unit, University of Southampton, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK.
- Clinical and Experimental Sciences, University of Southampton, Southampton, UK.
| | - Howard W Clark
- University College London Hospital, London, UK
- University College London Hospital Biomedical Research Centre, London, UK
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
| | - David Brealey
- University College London Hospital, London, UK
- University College London Hospital Biomedical Research Centre, London, UK
| | - Danny Pratt
- Southampton NIHR Clinical Research Facility, University Hospital Southampton, Southampton, UK
| | | | - Jens Madsen
- University College London Hospital, London, UK
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
| | - Helen Moyses
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton/University of Southampton, Southampton, UK
- General Intensive Care Unit, University of Southampton, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK
- Clinical and Experimental Sciences, University of Southampton, Southampton, UK
| | - Lewis Matthews
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton/University of Southampton, Southampton, UK
- General Intensive Care Unit, University of Southampton, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK
- Clinical and Experimental Sciences, University of Southampton, Southampton, UK
| | - Tracy Hussell
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Ratko Djukanovic
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton/University of Southampton, Southampton, UK
- Clinical and Experimental Sciences, University of Southampton, Southampton, UK
| | - Martin Feelisch
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton/University of Southampton, Southampton, UK
- Clinical and Experimental Sciences, University of Southampton, Southampton, UK
| | - Anthony D Postle
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton/University of Southampton, Southampton, UK
- Clinical and Experimental Sciences, University of Southampton, Southampton, UK
| | - Michael P W Grocott
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton/University of Southampton, Southampton, UK
- General Intensive Care Unit, University of Southampton, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK
- Clinical and Experimental Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
6
|
McCarthy SD, Tilbury MA, Masterson CH, MacLoughlin R, González HE, Laffey JG, Wall JG, O'Toole D. Aerosol Delivery of a Novel Recombinant Modified Superoxide Dismutase Protein Reduces Oxidant Injury and Attenuates Escherichia coli Induced Lung Injury in Rats. J Aerosol Med Pulm Drug Deliv 2023; 36:246-256. [PMID: 37638822 DOI: 10.1089/jamp.2022.0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
Abstract
Background: Acute respiratory distress syndrome (ARDS) is a life-threatening respiratory failure syndrome with diverse etiologies characterized by increased permeability of alveolar-capillary membranes, pulmonary edema, and acute onset hypoxemia. During the ARDS acute phase, neutrophil infiltration into the alveolar space results in uncontrolled release of reactive oxygen species (ROS) and proteases, overwhelming antioxidant defenses and causing alveolar epithelial and lung endothelial injury. Objectives: To investigate the therapeutic potential of a novel recombinant human Cu-Zn-superoxide dismutase (SOD) fusion protein in protecting against ROS injury and for aerosolized SOD delivery to treat Escherichia coli induced ARDS. Methods: Fusion proteins incorporating human Cu-Zn-SOD (hSOD1), with (pep1-hSOD1-his) and without (hSOD1-his) a fused hyaluronic acid-binding peptide, were expressed in E. coli. Purified proteins were evaluated in in vitro assays with human bronchial epithelial cells and through aerosolized delivery to the lung of an E. coli-induced ARDS rat model. Results: SOD proteins exhibited high SOD activity in vitro and protected bronchial epithelial cells from oxidative damage. hSOD1-his and pep1-hSOD1-his retained SOD activity postnebulization and exhibited no adverse effects in the rat. Pep1-hSOD1-his administered through instillation or nebulization to the lung of an E. coli-induced pneumonia rat improved arterial oxygenation and lactate levels compared to vehicle after 48 hours. Static lung compliance was improved when the pep1-hSOD1-his protein was delivered by instillation. White cell infiltration to the lung was significantly reduced by aerosolized delivery of protein, and reduction of cytokine-induced neutrophil chemoattractant-1, interferon-gamma, and interleukin 6 pro-inflammatory cytokine concentrations in bronchoalveolar lavage was observed. Conclusions: Aerosol delivery of a novel recombinant modified SOD protein reduces oxidant injury and attenuates E. coli induced lung injury in rats. The results provide a strong basis for further investigation of the therapeutic potential of hSOD1 in the treatment of ARDS.
Collapse
Affiliation(s)
- Sean D McCarthy
- SFI Centre for Medical Devices (CÚRAM), University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- Discipline of Anaesthesia, School of Medicine, University of Galway, Galway, Ireland
| | - Maura A Tilbury
- SFI Centre for Medical Devices (CÚRAM), University of Galway, Galway, Ireland
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Claire H Masterson
- SFI Centre for Medical Devices (CÚRAM), University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | | | - Héctor E González
- SFI Centre for Medical Devices (CÚRAM), University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- Discipline of Anaesthesia, School of Medicine, University of Galway, Galway, Ireland
| | - John G Laffey
- SFI Centre for Medical Devices (CÚRAM), University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- Discipline of Anaesthesia, School of Medicine, University of Galway, Galway, Ireland
| | - J Gerard Wall
- SFI Centre for Medical Devices (CÚRAM), University of Galway, Galway, Ireland
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Daniel O'Toole
- SFI Centre for Medical Devices (CÚRAM), University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- Discipline of Anaesthesia, School of Medicine, University of Galway, Galway, Ireland
| |
Collapse
|
7
|
Dushianthan A, Grocott MPW, Murugan GS, Wilkinson TMA, Postle AD. Pulmonary Surfactant in Adult ARDS: Current Perspectives and Future Directions. Diagnostics (Basel) 2023; 13:2964. [PMID: 37761330 PMCID: PMC10528901 DOI: 10.3390/diagnostics13182964] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a major cause of hypoxemic respiratory failure in adults, leading to the requirement for mechanical ventilation and poorer outcomes. Dysregulated surfactant metabolism and function are characteristic of ARDS. A combination of alveolar epithelial damage leading to altered surfactant synthesis, secretion, and breakdown with increased functional inhibition from overt alveolar inflammation contributes to the clinical features of poor alveolar compliance and alveolar collapse. Quantitative and qualitative alterations in the bronchoalveolar lavage and tracheal aspirate surfactant composition contribute to ARDS pathogenesis. Compared to neonatal respiratory distress syndrome (nRDS), replacement studies of exogenous surfactants in adult ARDS suggest no survival benefit. However, these studies are limited by disease heterogeneity, variations in surfactant preparations, doses, and delivery methods. More importantly, the lack of mechanistic understanding of the exact reasons for dysregulated surfactant remains a significant issue. Moreover, studies suggest an extremely short half-life of replaced surfactant, implying increased catabolism. Refining surfactant preparations and delivery methods with additional co-interventions to counteract surfactant inhibition and degradation has the potential to enhance the biophysical characteristics of surfactant in vivo.
Collapse
Affiliation(s)
- Ahilanandan Dushianthan
- National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton National Health System Foundation Trust, Southampton SO16 6YD, UK; (M.P.W.G.); (T.M.A.W.); (A.D.P.)
- Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Michael P. W. Grocott
- National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton National Health System Foundation Trust, Southampton SO16 6YD, UK; (M.P.W.G.); (T.M.A.W.); (A.D.P.)
- Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | | | - Tom M. A. Wilkinson
- National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton National Health System Foundation Trust, Southampton SO16 6YD, UK; (M.P.W.G.); (T.M.A.W.); (A.D.P.)
- Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Anthony D. Postle
- National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton National Health System Foundation Trust, Southampton SO16 6YD, UK; (M.P.W.G.); (T.M.A.W.); (A.D.P.)
- Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
8
|
Green O, Shenberg G, Baruch R, Argaman L, Levin T, Michelson I, Hadary R, Isakovich B, Golos M, Schwartz R, MacLoughlin R, Adi N, Arber N, Shapira S. Inhaled Exosomes Genetically Manipulated to Overexpress CD24 (EXO-CD24) as a Compassionate Use in Severe ARDS Patients. Biomedicines 2023; 11:2523. [PMID: 37760963 PMCID: PMC10525844 DOI: 10.3390/biomedicines11092523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
RATIONALE Acute respiratory distress syndrome (ARDS) is a major global health concern with a significant unmet need. EXO-CD24 is delivered via inhalation-reduced cytokines and chemokine secretion and lung injury in ARDS and improved survival in mice models of ARDS, influenza, and sepsis. OBJECTIVES This clinical paper aims to evaluate the potential of EXO-CD24, a novel immunomodulatory treatment, in the compassionate care of critically ill, intubated patients with post-infection-induced acute respiratory distress syndrome (ARDS). METHODS Eleven critically ill patients diagnosed with post-infection ARDS (10 with COVID-19 and one with an adenovirus-associated infection) were administered EXO-CD24 in four medical centers across Israel. The patients had multiple co-morbidities, including cancer, hypertension, diabetes, and ischemic heart disease, and met the criteria for severe ARDS according to the Berlin classification. EXO-CD24 was administered via inhalation, and adverse events related to its use were carefully monitored. MEASUREMENTS AND MAIN RESULTS The administration of EXO-CD24 did not result in any recorded adverse events. The median hospitalization duration was 11.5 days, and the overall mortality rate was 36%. Notably, patients treated at the Tel Aviv Medical Center (TASMC) showed a lower mortality rate of 12.5%. The WBC and CRP levels decreased in comparison to baseline levels at hospitalization, and rapid responses occurred even in patients with kidney transplants who were off the ventilator within a few days and discharged shortly thereafter. The production of cytokines and chemokines was significantly suppressed in all patients, including those who died. Among the patients at TASMC, four had kidney transplants and were on immunosuppressive drugs, and all of them fully recovered and were discharged from the hospital. CONCLUSIONS EXO-CD24 holds promise as a potential therapeutic agent for all stages of ARDS, even in severe intubated cases. Importantly, EXO-CD24 demonstrated a favorable safety profile without any apparent side effects with promising efficacy. Furthermore, the potential of EXO-CD24 as a platform for addressing hyper-inflammatory states warrants exploration. Further research and larger-scale clinical trials are warranted to validate these preliminary findings.
Collapse
Affiliation(s)
- Orr Green
- Health Promotion Center and Integrated Cancer Prevention Center, Tel-Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel; (O.G.); (G.S.); (L.A.); (I.M.); (N.A.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel; (R.B.); (R.S.); (N.A.)
| | - Gil Shenberg
- Health Promotion Center and Integrated Cancer Prevention Center, Tel-Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel; (O.G.); (G.S.); (L.A.); (I.M.); (N.A.)
| | - Roni Baruch
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel; (R.B.); (R.S.); (N.A.)
- Department of Kidney Transplantation, Tel-Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Lihi Argaman
- Health Promotion Center and Integrated Cancer Prevention Center, Tel-Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel; (O.G.); (G.S.); (L.A.); (I.M.); (N.A.)
| | - Talya Levin
- Health Promotion Center and Integrated Cancer Prevention Center, Tel-Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel; (O.G.); (G.S.); (L.A.); (I.M.); (N.A.)
| | - Ian Michelson
- Health Promotion Center and Integrated Cancer Prevention Center, Tel-Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel; (O.G.); (G.S.); (L.A.); (I.M.); (N.A.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel; (R.B.); (R.S.); (N.A.)
| | - Ruthy Hadary
- Department of Internal Medicine C, Meir Medical Center, Kefar-Saba 4428164, Israel;
| | - Boris Isakovich
- Intensive Care Unit, Hillel Yaffe Medical Center, Hadera 3820302, Israel;
| | - Miri Golos
- Carmel Medical Center, Haifa 3436212, Israel;
| | - Reut Schwartz
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel; (R.B.); (R.S.); (N.A.)
- Anesthesia and Intensive Care Unit, Tel-Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Ronan MacLoughlin
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons, D02 YN77 Dublin, Ireland;
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, D02 PN40 Dublin, Ireland
| | - Nimrod Adi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel; (R.B.); (R.S.); (N.A.)
- Anesthesia and Intensive Care Unit, Tel-Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Nadir Arber
- Health Promotion Center and Integrated Cancer Prevention Center, Tel-Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel; (O.G.); (G.S.); (L.A.); (I.M.); (N.A.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel; (R.B.); (R.S.); (N.A.)
| | - Shiran Shapira
- Health Promotion Center and Integrated Cancer Prevention Center, Tel-Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel; (O.G.); (G.S.); (L.A.); (I.M.); (N.A.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel; (R.B.); (R.S.); (N.A.)
| |
Collapse
|
9
|
Arnott A, Hart R, McQueen S, Watson M, Sim M. Prospective randomised unblinded comparison of sputum viscosity for three methods of saline nebulisation in mechanically ventilated patients: A pilot study protocol. PLoS One 2023; 18:e0290033. [PMID: 37590203 PMCID: PMC10434882 DOI: 10.1371/journal.pone.0290033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
INTRODUCTION Heat and moisture exchanger (HME) filters are commonly used as passive circuit humidifiers during mechanical ventilation, however, are only ~80% efficient. As a result, patients that undergo mechanical ventilation in critical care with HME filter circuits will be exposed to partial airway humidification. This is associated with detrimental effects including increased secretion load which has been shown to be an independent predictor of failed extubation. Nebulised normal saline is commonly utilised to supplement circuit humidification in ventilated patients with high secretion loads, although there are no randomised control trials evaluating its use. Novel vibrating mesh nebulisers generate a fine aerosol resulting in deeper lung penetration, potentially offering a more effective means of nebulisation in comparison to jet nebulisers. The primary aim of this study is to compare the viscosity of respiratory secretions after treatment with nebulised normal saline administered via vibrating mesh nebuliser or jet nebuliser. METHODS AND ANALYSIS This randomised controlled trial is enrolling 60 mechanically ventilated adult critical care patients breathing on HME filter circuits with high secretion loads. Recruited patients will be randomised to receive nebulised saline via 3 modalities: 1) Continuous vibrating mesh nebuliser; 2) Intermittent vibrating mesh nebuliser or 3) Intermittent jet nebuliser. Over the 72-hr study period, the patients' sputum viscosity (measured using a validated qualitative sputum assessment tool) and physiological parameters will be recorded by an unblinded assessor. A median reduction in secretion viscosity of ≥0.5 on the qualitative sputum assessment score will be deemed as a clinically significant improvement between treatment groups at analysis. DISCUSSION At the conclusion of this trial, we will provisionally determine if nebulised normal saline administered via vibrating mesh nebulisation is superior to traditional jet nebulisation in terms of reduced respiratory secretion viscosity in intubated patients. Results from this pilot study will provide information to power a definitive clinical study. TRIAL REGISTRATION ClinicalTrails.Gov Registry (NCT05635903).
Collapse
Affiliation(s)
- Andrew Arnott
- Critical Care Department, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Robert Hart
- Critical Care Department, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Scott McQueen
- Critical Care Department, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Malcolm Watson
- Critical Care Department, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Malcolm Sim
- Critical Care Department, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| |
Collapse
|
10
|
Khoa ND, Li S, Phuong NL, Kuga K, Yabuuchi H, Kan-O K, Matsumoto K, Ito K. Computational fluid-particle dynamics modeling of ultrafine to coarse particles deposition in the human respiratory system, down to the terminal bronchiole. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 237:107589. [PMID: 37167881 DOI: 10.1016/j.cmpb.2023.107589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/27/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND AND OBJECTIVES Suspended respirable airborne particles are associated with human health risks and especially particles within the range of ultrafine (< 0.1 μm) or fine (< 2.5 μm) have a high possibility of penetrating the lung region, which is concerned to be closely related to the bronchial or alveoli tissue dosimetry. Nature complex structure of the respiratory system requires much effort to explore and comprehend the flow and the inhaled particle dynamics for precise health risk assessment. Therefore, this study applied the computational fluid-particle dynamics (CFPD) method to elucidate the deposition characteristics of ultrafine-to-coarse particles in the human respiratory tract from nostrils to the 16th generation of terminal bronchi. METHODS The realistic bronchi up to the 8th generation are precisely and perfectly generated from computed tomography (CT) images, and an artificial model compensates for the 9th-16th bronchioles. Herein, the steady airflow is simulated at constant breathing flow rates of 7.5, 15, and 30 L/min, reproducing human resting-intense activity. Then, trajectories of the particle size ranging from 0.002 - 10 μm are tracked using a discrete phase model. RESULTS Here, we report reliable results of airflow patterns and particle deposition efficiency in the human respiratory system validated against experimental data. The individual-related focal point of ultrafine and fine particles deposition rates was actualized at the 8th generation; whilst the hot-spot of the deposited coarse particles was found in the 6th generation. Lobar deposition characterizes the dominance of coarse particles deposited in the right lower lobe, whereas the left upper-lower and right lower lobes simultaneously occupy high deposition rates for ultrafine particles. Finally, the results indicate a higher deposition in the right lung compared to its counterpart. CONCLUSIONS From the results, the developed realistic human respiratory system down to the terminal bronchiole in this study, in coupling with the CFPD method, delivers the accurate prediction of a wide range of particles in terms of particle dosimetry and visualization of site-specific in the consecutive respiratory system. In addition, the series of CFPD analyses and their results are to offer in-depth information on particle behavior in human bronchioles, which may benefit health risk assessment or drug delivery studies.
Collapse
Affiliation(s)
- Nguyen Dang Khoa
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1, Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan.
| | - Sixiao Li
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1, Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan
| | - Nguyen Lu Phuong
- Faculty of Environment, University of Natural Resources and Environment, Ho Chi Minh, Viet Nam
| | - Kazuki Kuga
- Faculty of Engineering Sciences, Kyushu University, Fukuoka, Japan
| | - Hidetake Yabuuchi
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keiko Kan-O
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koichiro Matsumoto
- Division of Respirology, Department of Medicine, Fukuoka Dental College, Fukuoka, Japan
| | - Kazuhide Ito
- Faculty of Engineering Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
11
|
Man F, Tang J, Swedrowska M, Forbes B, T M de Rosales R. Imaging drug delivery to the lungs: Methods and applications in oncology. Adv Drug Deliv Rev 2023; 192:114641. [PMID: 36509173 PMCID: PMC10227194 DOI: 10.1016/j.addr.2022.114641] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/14/2022]
Abstract
Direct delivery to the lung via inhalation is arguably one of the most logical approaches to treat lung cancer using drugs. However, despite significant efforts and investment in this area, this strategy has not progressed in clinical trials. Imaging drug delivery is a powerful tool to understand and develop novel drug delivery strategies. In this review we focus on imaging studies of drug delivery by the inhalation route, to provide a broad overview of the field to date and attempt to better understand the complexities of this route of administration and the significant barriers that it faces, as well as its advantages. We start with a discussion of the specific challenges for drug delivery to the lung via inhalation. We focus on the barriers that have prevented progress of this approach in oncology, as well as the most recent developments in this area. This is followed by a comprehensive overview of the different imaging modalities that are relevant to lung drug delivery, including nuclear imaging, X-ray imaging, magnetic resonance imaging, optical imaging and mass spectrometry imaging. For each of these modalities, examples from the literature where these techniques have been explored are provided. Finally the different applications of these technologies in oncology are discussed, focusing separately on small molecules and nanomedicines. We hope that this comprehensive review will be informative to the field and will guide the future preclinical and clinical development of this promising drug delivery strategy to maximise its therapeutic potential.
Collapse
Affiliation(s)
- Francis Man
- School of Cancer & Pharmaceutical Sciences, King's College London, London, SE1 9NH, United Kingdom
| | - Jie Tang
- School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Magda Swedrowska
- School of Cancer & Pharmaceutical Sciences, King's College London, London, SE1 9NH, United Kingdom
| | - Ben Forbes
- School of Cancer & Pharmaceutical Sciences, King's College London, London, SE1 9NH, United Kingdom
| | - Rafael T M de Rosales
- School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH, United Kingdom.
| |
Collapse
|
12
|
Vanover D, Zurla C, Peck HE, Orr‐Burks N, Joo JY, Murray J, Holladay N, Hobbs RA, Jung Y, Chaves LCS, Rotolo L, Lifland AW, Olivier AK, Li D, Saunders KO, Sempowski GD, Crowe JE, Haynes BF, Lafontaine ER, Hogan RJ, Santangelo PJ. Nebulized mRNA-Encoded Antibodies Protect Hamsters from SARS-CoV-2 Infection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202771. [PMID: 36316224 PMCID: PMC9731714 DOI: 10.1002/advs.202202771] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Despite the success of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) vaccines, there remains a clear need for new classes of preventatives for respiratory viral infections due to vaccine hesitancy, lack of sterilizing immunity, and for at-risk patient populations, including the immunocompromised. While many neutralizing antibodies have been identified, and several approved, to treat COVID-19, systemic delivery, large doses, and high costs have the potential to limit their widespread use, especially in low- and middle-income countries. To use these antibodies more efficiently, an inhalable formulation is developed that allows for the expression of mRNA-encoded, membrane-anchored neutralizing antibodies in the lung to mitigate SARS-CoV-2 infections. First, the ability of mRNA-encoded, membrane-anchored, anti-SARS-CoV-2 antibodies to prevent infections in vitro is demonstrated. Next, it is demonstrated that nebulizer-based delivery of these mRNA-expressed neutralizing antibodies potently abrogates disease in the hamster model. Overall, these results support the use of nebulizer-based mRNA expression of neutralizing antibodies as a new paradigm for mitigating respiratory virus infections.
Collapse
Affiliation(s)
- Daryll Vanover
- Wallace H. Coulter Department of Biomedical EngineeringEmory University and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Chiara Zurla
- Wallace H. Coulter Department of Biomedical EngineeringEmory University and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Hannah E. Peck
- Wallace H. Coulter Department of Biomedical EngineeringEmory University and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Nichole Orr‐Burks
- Department of Infectious DiseasesCollege of Veterinary MedicineUniversity of GeorgiaAthensGA30602USA
| | - Jae Yeon Joo
- Wallace H. Coulter Department of Biomedical EngineeringEmory University and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Jackelyn Murray
- Department of Infectious DiseasesCollege of Veterinary MedicineUniversity of GeorgiaAthensGA30602USA
| | - Nathan Holladay
- Department of Infectious DiseasesCollege of Veterinary MedicineUniversity of GeorgiaAthensGA30602USA
| | - Ryan A. Hobbs
- Wallace H. Coulter Department of Biomedical EngineeringEmory University and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Younghun Jung
- Wallace H. Coulter Department of Biomedical EngineeringEmory University and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Lorena C. S. Chaves
- Wallace H. Coulter Department of Biomedical EngineeringEmory University and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Laura Rotolo
- Wallace H. Coulter Department of Biomedical EngineeringEmory University and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Aaron W. Lifland
- Wallace H. Coulter Department of Biomedical EngineeringEmory University and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Alicia K. Olivier
- Department of Pathobiology and Population MedicineCollege of Veterinary MedicineMississippi State UniversityStarkvilleMS39762USA
| | - Dapeng Li
- Duke Human Vaccine Institute and the Departments of Medicine and ImmunologyDuke University School of MedicineDurhamNC27710USA
| | - Kevin O. Saunders
- Duke Human Vaccine InstituteDepartments of SurgeryMolecular Genetics and Microbiologyand ImmunologyDuke University School of MedicineDurhamNC27710USA
| | - Gregory D. Sempowski
- Duke Human Vaccine Institute and the Departments of Medicine and ImmunologyDuke University School of MedicineDurhamNC27710USA
| | - James E. Crowe
- Vanderbilt Vaccine CenterVanderbilt University Medical CenterNashvilleTN37232USA
| | - Barton F. Haynes
- Duke Human Vaccine Institute and the Departments of Medicine and ImmunologyDuke University School of MedicineDurhamNC27710USA
| | - Eric R. Lafontaine
- Department of Infectious DiseasesCollege of Veterinary MedicineUniversity of GeorgiaAthensGA30602USA
| | - Robert J. Hogan
- Department of Infectious DiseasesCollege of Veterinary MedicineUniversity of GeorgiaAthensGA30602USA
- Department of Veterinary Biosciences and Diagnostic ImagingCollege of Veterinary MedicineUniversity of GeorgiaAthensGA30602USA
| | - Philip J. Santangelo
- Wallace H. Coulter Department of Biomedical EngineeringEmory University and Georgia Institute of TechnologyAtlantaGA30322USA
| |
Collapse
|
13
|
Spence BM, Longest W, Dutta R, Momin MAM, Strickler S, Hindle M. In Vitro Evaluation of Nebulized Pharmaceutical Aerosol Delivery to the Lungs Using a New Heated Dryer System (HDS). AAPS PharmSciTech 2022; 24:10. [PMID: 36451052 PMCID: PMC9994751 DOI: 10.1208/s12249-022-02460-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/04/2022] [Indexed: 12/02/2022] Open
Abstract
The objective of this study was to develop a new heated dryer system (HDS) for high efficiency lung delivery of nebulized aerosol and demonstrate performance with realistic in vitro testing for trans-nasal aerosol administration simultaneously with high-flow nasal cannula (HFNC) therapy and separately for direct oral inhalation (OI) of the aerosol. With the HDS-HFNC and HDS-OI platforms, new active synchronization control routines were developed to sense subject inhalation and coordinate drug aerosol delivery. In vitro experiments were conducted to predict regional drug loss and lung delivery efficiency in systems that included the HDS with various patient interfaces, realistic airway models, and simulated breathing waveforms. For the HDS-HFNC platform and a repeating breathing waveform, total system loss was < 10%, extrathoracic deposition was approximately 6%, and best-case lung delivery efficiency was 75-78% of nebulized dose. Inclusion of randomized breathing with the HFNC system decreased lung delivery efficiency by ~ 10% and had no impact on nasal depositional loss. For the HDS-OI platform and best-case mouthpiece, total system loss was < 8%, extrathoracic deposition was < 1%, and lung delivery efficiency was > 90% of nebulized dose. Normal vs. deep randomized oral inhalation had little impact on performance of the HDS-OI platform and environmental aerosol loss was negligible. In conclusion, both platforms demonstrated the potential for high efficiency lung delivery of the aerosol with the HDS-OI platform having the added advantages of nearly eliminating extrathoracic deposition, being insensitive to breathing waveform, and preventing environmental aerosol loss.
Collapse
Affiliation(s)
- Benjamin M Spence
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Worth Longest
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, Virginia, USA.
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia, USA.
| | - Rabijit Dutta
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Mohammad A M Momin
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Sarah Strickler
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Michael Hindle
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
14
|
Chang CY, Yang BH, Ke CC, Hsu JL, Jhou RH, Chang WY, Peng NJ, Liu RS. Performance and Feasibility of Therapeutic Vibrating Mesh Nebulizer for Ventilation Lung Scan. J Med Biol Eng 2022. [DOI: 10.1007/s40846-022-00757-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Bahlool AZ, Fattah S, O’Sullivan A, Cavanagh B, MacLoughlin R, Keane J, O’Sullivan MP, Cryan SA. Development of Inhalable ATRA-Loaded PLGA Nanoparticles as Host-Directed Immunotherapy against Tuberculosis. Pharmaceutics 2022; 14:pharmaceutics14081745. [PMID: 36015371 PMCID: PMC9415714 DOI: 10.3390/pharmaceutics14081745] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/11/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Developing new effective treatment strategies to overcome the rise in multi-drug resistant tuberculosis cases (MDR-TB) represents a global challenge. A host-directed therapy (HDT), acting on the host immune response rather than Mtb directly, could address these resistance issues. We developed an HDT for targeted TB treatment, using All Trans Retinoic Acid (ATRA)-loaded nanoparticles (NPs) that are suitable for nebulization. Efficacy studies conducted on THP-1 differentiated cells infected with the H37Ra avirulent Mycobacterium tuberculosis (Mtb) strain, have shown a dose-dependent reduction in H37Ra growth as determined by the BACT/ALERT® system. Confocal microscopy images showed efficient and extensive cellular delivery of ATRA-PLGA NPs into THP-1-derived macrophages. A commercially available vibrating mesh nebulizer was used to generate nanoparticle-loaded droplets with a mass median aerodynamic diameter of 2.13 μm as measured by cascade impaction, and a volumetric median diameter of 4.09 μm as measured by laser diffraction. In an adult breathing simulation experiment, 65.1% of the ATRA PLGA-NP dose was inhaled. This targeted inhaled HDT could offer a new adjunctive TB treatment option that could enhance current dosage regimens leading to better patient prognosis and a decreasing incidence of MDR-TB.
Collapse
Affiliation(s)
- Ahmad Z. Bahlool
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephens Green, D02 YN77 Dublin, Ireland
- Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephens Green, D02 YN77 Dublin, Ireland
- Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James’s Hospital, Trinity College Dublin, The University of Dublin, D08 9WRT Dublin, Ireland
| | - Sarinj Fattah
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephens Green, D02 YN77 Dublin, Ireland
- Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephens Green, D02 YN77 Dublin, Ireland
| | - Andrew O’Sullivan
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephens Green, D02 YN77 Dublin, Ireland
- Research and Development, Science and Emerging Technologies, Aerogen Ltd., Galway Business Park, Dangan, H91 HE94 Galway, Ireland
| | - Brenton Cavanagh
- Cellular and Molecular Imaging Core, Royal College of Surgeons in Ireland RCSI, D02 YN77 Dublin, Ireland
| | - Ronan MacLoughlin
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephens Green, D02 YN77 Dublin, Ireland
- Research and Development, Science and Emerging Technologies, Aerogen Ltd., Galway Business Park, Dangan, H91 HE94 Galway, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, D02 PN40 Dublin, Ireland
| | - Joseph Keane
- Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James’s Hospital, Trinity College Dublin, The University of Dublin, D08 9WRT Dublin, Ireland
| | - Mary P. O’Sullivan
- Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James’s Hospital, Trinity College Dublin, The University of Dublin, D08 9WRT Dublin, Ireland
| | - Sally-Ann Cryan
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephens Green, D02 YN77 Dublin, Ireland
- Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephens Green, D02 YN77 Dublin, Ireland
- SFI Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI and Trinity College Dublin, D02 PN40 Dublin, Ireland
- SFI Centre for Research in Medical Devices (CÚRAM), NUIG & RCSI, H91 W2TY Galway, Ireland
- Correspondence:
| |
Collapse
|
16
|
Does Valved Holding Chamber Improve Aerosol Lung Deposition with a Jet Nebulizer? A Randomized Crossover Study. Pharmaceutics 2022; 14:pharmaceutics14030566. [PMID: 35335942 PMCID: PMC8956008 DOI: 10.3390/pharmaceutics14030566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 02/26/2022] [Indexed: 02/01/2023] Open
Abstract
Using valved holding chambers (VHC) during aerosol therapy has been reported to improve the inhaled dose with various aerosol devices, including vibrating mesh nebulizers. The aim of this study was to quantify the pulmonary deposition of a jet nebulizer (JN) with and without a VHC, and a mesh nebulizer (MN) with a VHC in a randomized cross-over trial with seven healthy consenting adults. Our hypothesis was that the use of a VHC would improve deposition with the JN. Diethylnitriaminopentacetic acid with technetium (DTPA-Tc99m), with the activity of 1 mC with 0.9% saline solution was nebulized. The radiolabeled aerosol was detected by 2D planar scintigraphy after administration. The pulmonary deposition was greater with a JN with a VHC (4.5%) than a JN alone (3.2%; p = 0.005. However, an MN with a VHC (30.0%) was six-fold greater than a JN or JN with a VHC (p < 0.001). The extrapulmonary deposition was higher in the JN group without a VHC than in the other two modalities (p < 0.001). Deposition in the device was greater with a JN + VHC than an MN+/VHC (p < 0.001). Lower residual drug at the end of the dose was detected with an MN than either JN configuration. The exhaled dose was greater with a JN alone than either an MN or JN with VHC (p < 0.001). In conclusion, the addition of the VHC did not substantially improve the efficiency of aerosol lung deposition over a JN alone.
Collapse
|
17
|
Anderson N, Clarke S, von Ungern-Sternberg BS. Aerosolized drug delivery in awake and anesthetized children to treat bronchospasm. Paediatr Anaesth 2022; 32:156-166. [PMID: 34862993 DOI: 10.1111/pan.14354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 11/25/2022]
Abstract
Bronchospasm is a common respiratory adverse event in pediatric anesthesia. First-line treatment commonly includes inhaled salbutamol. This review focuses on the current best practice to deliver aerosolized medications to awake as well as anesthetized pediatric patients and discusses the advantages and disadvantages of various administration techniques. Additionally, we detail the differences between various airway devices used in anesthesia. We highlight the unmet need for innovation of orally inhaled drug products to deliver aerosolized medications during pediatric respiratory critical events such as bronchospasm. It is therefore important that clinicians remain up to date with the best clinical practice for aerosolized drug delivery in order to prevent and efficiently treat pediatric patients experiencing life-threatening respiratory emergencies.
Collapse
Affiliation(s)
- Natalie Anderson
- Perioperative Medicine, Telethon Kids Institute, Nedlands, WA, Australia.,School of Population Health, Curtin University, Bentley, WA, Australia
| | - Sarah Clarke
- Emergency Department, Perth Children's Hospital, Perth, WA, Australia
| | - Britta S von Ungern-Sternberg
- Perioperative Medicine, Telethon Kids Institute, Nedlands, WA, Australia.,Department of Anaesthesia and Pain Management, Perth Children's Hospital, Perth, WA, Australia.,Division of Emergency Medicine, Anaesthesia and Pain Medicine, Medical School, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
18
|
Effect of MDI Actuation Timing on Inhalation Dosimetry in a Human Respiratory Tract Model. Pharmaceuticals (Basel) 2022; 15:ph15010061. [PMID: 35056118 PMCID: PMC8777964 DOI: 10.3390/ph15010061] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 01/02/2023] Open
Abstract
Accurate knowledge of the delivery of locally acting drug products, such as metered-dose inhaler (MDI) formulations, to large and small airways is essential to develop reliable in vitro/in vivo correlations (IVIVCs). However, challenges exist in modeling MDI delivery, due to the highly transient multiscale spray formation, the large variability in actuation–inhalation coordination, and the complex lung networks. The objective of this study was to develop/validate a computational MDI-releasing-delivery model and to evaluate the device actuation effects on the dose distribution with the newly developed model. An integrated MDI–mouth–lung (G9) geometry was developed. An albuterol MDI with the chlorofluorocarbon propellant was simulated with polydisperse aerosol size distribution measured by laser light scatter and aerosol discharge velocity derived from measurements taken while using a phase Doppler anemometry. The highly transient, multiscale airflow and droplet dynamics were simulated by using large eddy simulation (LES) and Lagrangian tracking with sufficiently fine computation mesh. A high-speed camera imaging of the MDI plume formation was conducted and compared with LES predictions. The aerosol discharge velocity at the MDI orifice was reversely determined to be 40 m/s based on the phase Doppler anemometry (PDA) measurements at two different locations from the mouthpiece. The LES-predicted instantaneous vortex structures and corresponding spray clouds resembled each other. There are three phases of the MDI plume evolution (discharging, dispersion, and dispensing), each with distinct features regardless of the actuation time. Good agreement was achieved between the predicted and measured doses in both the device, mouth–throat, and lung. Concerning the device–patient coordination, delayed MDI actuation increased drug deposition in the mouth and reduced drug delivery to the lung. Firing MDI before inhalation was found to increase drug loss in the device; however, it also reduced mouth–throat loss and increased lung doses in both the central and peripheral regions.
Collapse
|
19
|
Reconciling Oxygen and Aerosol Delivery with a Hood on In Vitro Infant and Paediatric Models. Pharmaceutics 2021; 14:pharmaceutics14010091. [PMID: 35056987 PMCID: PMC8779027 DOI: 10.3390/pharmaceutics14010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022] Open
Abstract
This study aimed to evaluate optimal aerosol and oxygen delivery with a hood on an infant model and a paediatric model. A facemask and a hood with three inlets, with or without a front cover, were used. A small-volume nebuliser with a unit-dose of salbutamol was used for drug delivery and an air entrainment nebuliser was used to deliver oxygen at 35%. Infant and paediatric breathing patterns were mimicked; a bacterial filter was connected to the end of a manikin trachea for aerosol drug collection, and an oxygen analyser was used to measure the oxygen concentration. For the infant model, inhaled drug dose was significantly higher when the nebuliser was placed in the back of the hood and with a front cover. This was verified by complementary computational simulations in a comparable infant-hood model. For the paediatric model, the inhaled dose was greater with a facemask than with a hood. Oxygen delivery with a facemask and a hood with a front cover achieved a set concentration in both models, yet a hood without a front cover delivered oxygen at far lower concentrations than the set concentration.
Collapse
|
20
|
Gallagher L, Joyce M, Murphy B, Mac Giolla Eain M, MacLoughlin R. The Impact of Head Model Choice on the In Vitro Evaluation of Aerosol Drug Delivery. Pharmaceutics 2021; 14:pharmaceutics14010024. [PMID: 35056920 PMCID: PMC8777612 DOI: 10.3390/pharmaceutics14010024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 11/20/2022] Open
Abstract
There are variations in the values reported for aerosol drug delivery across in vitro experiments throughout the published literature, and often with the same devices or similar experimental setups. Factors contributing to this variability include, but are not limited to device type, equipment settings, drug type and quantification methods. This study assessed the impact of head model choice on aerosol drug delivery using six different adults and three different paediatric head models in combination with a facemask, mouthpiece, and high-flow nasal cannula. Under controlled test conditions, the quantity of drug collected varied depending on the choice of head model. Head models vary depending on a combination of structural design differences, facial features (size and structure), internal volume measurements and airway geometries and these variations result in the differences in aerosol delivery. Of the widely available head models used in this study, only three were seen to closely predict in vivo aerosol delivery performance in adults compared with published scintigraphy data. Further, this testing identified the limited utility of some head models under certain test conditions, for example, the range reported across head models was aerosol drug delivery of 2.62 ± 2.86% to 37.79 ± 1.55% when used with a facemask. For the first time, this study highlights the impact of head model choice on reported aerosol drug delivery within a laboratory setting and contributes to explaining the differences in values reported within the literature.
Collapse
Affiliation(s)
- Lauren Gallagher
- Research and Development, Science and Emerging Technologies, Aerogen Limited, Galway Business Park, H91 HE94 Galway, Ireland; (L.G.); (M.J.); (B.M.); (M.M.G.E.)
| | - Mary Joyce
- Research and Development, Science and Emerging Technologies, Aerogen Limited, Galway Business Park, H91 HE94 Galway, Ireland; (L.G.); (M.J.); (B.M.); (M.M.G.E.)
| | - Barry Murphy
- Research and Development, Science and Emerging Technologies, Aerogen Limited, Galway Business Park, H91 HE94 Galway, Ireland; (L.G.); (M.J.); (B.M.); (M.M.G.E.)
| | - Marc Mac Giolla Eain
- Research and Development, Science and Emerging Technologies, Aerogen Limited, Galway Business Park, H91 HE94 Galway, Ireland; (L.G.); (M.J.); (B.M.); (M.M.G.E.)
| | - Ronan MacLoughlin
- Research and Development, Science and Emerging Technologies, Aerogen Limited, Galway Business Park, H91 HE94 Galway, Ireland; (L.G.); (M.J.); (B.M.); (M.M.G.E.)
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, D02 PN40 Dublin, Ireland
- Correspondence:
| |
Collapse
|
21
|
Ari A, Fink JB. Delivered dose with jet and mesh nebulisers during spontaneous breathing, noninvasive ventilation and mechanical ventilation using adult lung models. ERJ Open Res 2021; 7:00027-2021. [PMID: 34262965 PMCID: PMC8273293 DOI: 10.1183/23120541.00027-2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/20/2021] [Indexed: 11/05/2022] Open
Abstract
What is the delivered dose with jet and mesh nebulisers during spontaneous breathing (SB), noninvasive ventilation (NIV), and mechanical ventilation (MV) using an adult lung model with exhaled humidity (EH)? The delivery of salbutamol sulfate (2.5 mg per 3 mL) with jet (Mistymax10) and mesh nebulisers (Aerogen Solo) was compared during SB, NIV, and MV using breathing parameters (tidal volume 450 mL, respiratory rate 20 breaths per min, inspiratory:expiratory ratio 1:3) with three lung models simulating exhaled humidity. A manikin was attached to a sinusoidal pump via a filter at the bronchi to simulate an adult with SB. A ventilator (V60) was attached via a facemask to a manikin with a filter at the bronchi connected to a test lung to simulate an adult receiving NIV. A ventilator-dependent adult was simulated through a ventilator (Servo-i) operated with a heated humidifier (Fisher & Paykel) attached to an endotracheal tube (ETT) with a heated-wire circuit. The ETT was inserted into a filter (Respirgard II). A heated humidifier was placed between the filter and test lung to simulate exhaled humidity (35±2°C, 100% relative humidity). Nebulisers were placed at the Y-piece of the inspiratory limb during MV and positioned between the facemask and the leak-port during NIV. A mouthpiece was used during SB. The delivered dose was collected in an absolute filter that was attached to the bronchi of the mannequin during each aerosol treatment and measured with spectrophotometry. Drug delivery during MV was significantly greater than during NIV and SB with a mesh nebuliser (p=0.0001) but not with a jet nebuliser (p=0.384). Delivery efficiency of the mesh nebuliser was greater than the jet nebuliser during MV (p=0.0001), NIV (p=0.0001), and SB (p=0.0001). Aerosol deposition obtained with a mesh nebuliser was greater and differed between MV, NIV, and SB, while deposition was low with a jet nebuliser and similar between the modes of ventilation tested.
Collapse
Affiliation(s)
- Arzu Ari
- Dept of Respiratory Care, Texas State University, Round Rock, TX, USA
| | - James B Fink
- Dept of Respiratory Care, Texas State University, Round Rock, TX, USA
| |
Collapse
|
22
|
Evaluation of Aerosol Therapy during the Escalation of Care in a Model of Adult Cystic Fibrosis. Antibiotics (Basel) 2021; 10:antibiotics10050472. [PMID: 33919035 PMCID: PMC8142975 DOI: 10.3390/antibiotics10050472] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/18/2022] Open
Abstract
Lung disease is the main cause of morbidity and mortality in cystic fibrosis (CF). CF patients inhale antibiotics regularly as treatment against persistent bacterial infections. The goal of this study was to investigate the effect of clinical intervention on aerosol therapy during the escalation of care using a bench model of adult CF. Droplet size analysis of selected antibiotics was completed in tandem with the delivered aerosol dose (% of total dose) assessments in simulations of various interventions providing oxygen supplementation or ventilatory support. Results highlight the variability of aerosolised dose delivery. In the homecare setting, the vibrating mesh nebuliser (VMN) delivered significantly more than the jet nebuliser (JN) (16.15 ± 0.86% versus 6.51 ± 2.15%). In the hospital setting, using VMN only, significant variability was seen across clinical interventions. In the emergency department, VMN plus mouthpiece (no supplemental oxygen) was seen to deliver (29.02 ± 1.41%) versus low flow nasal therapy (10 L per minute (LPM) oxygen) (1.81 ± 0.47%) and high flow nasal therapy (50 LPM oxygen) (3.36 ± 0.34%). In the ward/intensive care unit, non-invasive ventilation recorded 19.02 ± 0.28%, versus 22.64 ± 1.88% of the dose delivered during invasive mechanical ventilation. These results will have application in the design of intervention-appropriate aerosol therapy strategies and will be of use to researchers developing new therapeutics for application in cystic fibrosis and beyond.
Collapse
|
23
|
Dailey PA, Shockley CM. Review of aerosol delivery in the emergency department. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:591. [PMID: 33987289 DOI: 10.21037/atm-20-4724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Aerosol delivery is a vital therapeutic strategy for both adult and pediatric patients presenting to the emergency department with respiratory distress. Aerosolized bronchodilators are frequently used as rescue medications for patients with diagnoses of asthma, chronic obstructive pulmonary disease (COPD), or pneumonia. Historically, emergency department providers utilized jet nebulizers (JNs) for medication delivery, but were challenged by a need for increasingly higher bronchodilator doses to elicit the desired response. Advancements in technology have led to the development of newer specialized aerosol delivery devices and treatment strategies which provide clinicians with improved options for aerosol delivery but may also cause some uncertainty regarding appropriate device selection. Initial investigations comparing these devices presented valuable evidence of in vitro benefit but were unable to demonstrate corresponding improvement in clinical results. More recently there has been an influx of clinical evidence that suggests improved clinical outcomes associated with more efficient aerosol delivery devices such as vibrating mesh nebulizers (VMN) compared to the standard JN device. VMN will likely become an increasingly important tool in emergency department treatment of patients with respiratory distress. Additional controlled studies are needed both to examine the effects of VMN on patient outcomes, as well as to analyze how performance differences between aerosol devices may affect dosing strategies. Future efforts should also focus on applying new evidence in the form of updated consensus guidelines and standardized treatment strategies.
Collapse
Affiliation(s)
- Patricia A Dailey
- Department of Medical Affairs, Senior Medical Science Liaison, Galway, Ireland
| | - Courtney M Shockley
- Department of Emergency Medicine, Division of Pediatric Emergency Medicine, UT Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
24
|
Paudel KR, Wadhwa R, Tew XN, Lau NJX, Madheswaran T, Panneerselvam J, Zeeshan F, Kumar P, Gupta G, Anand K, Singh SK, Jha NK, MacLoughlin R, Hansbro NG, Liu G, Shukla SD, Mehta M, Hansbro PM, Chellappan DK, Dua K. Rutin loaded liquid crystalline nanoparticles inhibit non-small cell lung cancer proliferation and migration in vitro. Life Sci 2021; 276:119436. [PMID: 33789146 DOI: 10.1016/j.lfs.2021.119436] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/05/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022]
Abstract
Non-small cell lung cancer (NSCLC) is one of the major causes of cancer-related mortality globally. Despite the availability of therapeutic options, the improvement in patient survival is yet to be achieved. Recent advances in natural product (e.g., Rutin) research, therapeutic nanotechnology and especially the combination of both could aid in achieving significant improvements in the treatment or management of NSCLC. In this study, we explore the anti-cancer activity of Rutin-loaded liquid crystalline nanoparticles (LCNs) in an in vitro model where we have employed the A549 human lung epithelial carcinoma cell line. The anti-proliferative activity was determined by MTT and Trypan blue assays, whereas, the anti-migratory activity was evaluated by the scratch wound healing assay and a modified Boyden chamber assay. We also evaluated the anti-apoptotic activity by Annexin V-FITC staining, and the colony formation activity was studied using crystal violet staining. Here, we report that Rutin-LCNs showed promising anti-proliferative and anti-migratory activities. Furthermore, Rutin-LCNs also induced apoptosis in the A549 cells and inhibited colony formation. The findings warrant further detailed and in-depth anti-cancer mechanistic studies of Rutin-LCNs with a focus towards a potential therapeutic option for NSCLC. LCNs may help to enhance the solubility of Rutin used in the treatment of lung cancer and hence enhance the anticancer effect of Rutin.
Collapse
Affiliation(s)
- Keshav Raj Paudel
- School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia; Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia
| | - Ridhima Wadhwa
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Xin Nee Tew
- School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Natalie Jia Xin Lau
- School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Jithendra Panneerselvam
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Farrukh Zeeshan
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, 302017 Jaipur, India
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, Bloemfontein, South Africa
| | - Sachin K Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Plot No. 32-34, Knowledge Park III, Greater Noida 201310, Uttar Pradesh, India
| | - Ronan MacLoughlin
- Aerogen, IDA Business Park, Dangan, H91 HE94 Galway, Ireland; School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; School of Pharmacy and Pharmaceutical Sciences, Trinity College, D02 PN40 Dublin, Ireland
| | - Nicole G Hansbro
- School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia; Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia
| | - Gang Liu
- School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia; Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia
| | - Shakti D Shukla
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Meenu Mehta
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Philip M Hansbro
- School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia; Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia.
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia.
| | - Kamal Dua
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia.
| |
Collapse
|
25
|
Martini V, Hinchcliffe M, Blackshaw E, Joyce M, McNee A, Beverley P, Townsend A, MacLoughlin R, Tchilian E. Distribution of Droplets and Immune Responses After Aerosol and Intra-Nasal Delivery of Influenza Virus to the Respiratory Tract of Pigs. Front Immunol 2020; 11:594470. [PMID: 33193445 PMCID: PMC7653178 DOI: 10.3389/fimmu.2020.594470] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/07/2020] [Indexed: 11/13/2022] Open
Abstract
Recent evidence indicates that local immune responses and tissue resident memory T cells (TRM) are critical for protection against respiratory infections but there is little information on the contributions of upper and lower respiratory tract (URT and LRT) immunity. To provide a rational basis for designing methods for optimal delivery of vaccines to the respiratory tract in a large animal model, we investigated the distribution of droplets generated by a mucosal atomization device (MAD) and two vibrating mesh nebulizers (VMNs) and the immune responses induced by delivery of influenza virus by MAD in pigs. We showed that droplets containing the drug albuterol, a radiolabel (99mTc-DTPA), or a model influenza virus vaccine (S-FLU) have similar aerosol characteristics. 99mTc-DTPA scintigraphy showed that VMNs deliver droplets with uniform distribution throughout the lungs as well as the URT. Surprisingly MAD administration (1ml/nostril) also delivered a high proportion of the dose to the lungs, albeit concentrated in a small area. After MAD administration of influenza virus, antigen specific T cells were found at high frequency in nasal turbinates, trachea, broncho-alveolar lavage, lungs, tracheobronchial nodes, and blood. Anti-influenza antibodies were detected in serum, BAL and nasal swabs. We conclude that the pig is useful for investigating optimal targeting of vaccines to the respiratory tract.
Collapse
Affiliation(s)
- Veronica Martini
- Department of Enhanced Host Responses, The Pirbright Institute, Pirbright, United Kingdom.,Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Elaine Blackshaw
- Radiological Sciences, School of Medicine, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | | | - Adam McNee
- Department of Enhanced Host Responses, The Pirbright Institute, Pirbright, United Kingdom.,School of Veterinary Medicine, Daphne Jackson Road, University of Surrey, Guildford, United Kingdom
| | - Peter Beverley
- National Heart and Lung Institute, St Mary's Campus, Imperial College, London, United Kingdom
| | - Alain Townsend
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Elma Tchilian
- Department of Enhanced Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| |
Collapse
|
26
|
Woods N, MacLoughlin R. Defining a Regulatory Strategy for ATMP/Aerosol Delivery Device Combinations in the Treatment of Respiratory Disease. Pharmaceutics 2020; 12:E922. [PMID: 32993197 PMCID: PMC7601063 DOI: 10.3390/pharmaceutics12100922] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/13/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
Advanced Therapeutic Medicinal Products (ATMP) are a heterogenous group of investigational medicinal products at the forefront of innovative therapies with direct applicability in respiratory diseases. ATMPs include, but are not limited to, stem cells, their secretome, or extracellular vesicles, and each have shown some potential when delivered topically within the lung. This review focuses on that subset of ATMPs. One key mode of delivery that has enabling potential in ATMP validation is aerosol-mediated delivery. The selection of the most appropriate aerosol generator technology is influenced by several key factors, including formulation, patient type, patient intervention, and healthcare economics. The aerosol-mediated delivery of ATMPs has shown promise for the treatment of both chronic and acute respiratory disease in pre-clinical and clinical trials; however, in order for these ATMP device combinations to translate from the bench through to commercialization, they must meet the requirements set out by the various global regulatory bodies. In this review, we detail the potential for ATMP utility in the lungs and propose the nebulization of ATMPs as a viable route of administration in certain circumstances. Further, we provide insight to the current regulatory guidance for nascent ATMP device combination product development within the EU and US.
Collapse
Affiliation(s)
- Niamh Woods
- College of Medicine, Nursing & Health Sciences, National University of Ireland, H91 TK33 Galway, Ireland;
| | - Ronan MacLoughlin
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, D02 PN40 Dublin, Ireland
- Aerogen Ltd., Galway Business Park, H91 HE94 Galway, Ireland
| |
Collapse
|
27
|
Yu IG, O'Brien SE, Ryckman DM. Pharmacokinetic and Pharmacodynamic Comparison of Intravenous and Inhaled Caspofungin. J Aerosol Med Pulm Drug Deliv 2020; 34:197-203. [PMID: 32985935 DOI: 10.1089/jamp.2020.1645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Aspergillosis is a serious fungal lung infection caused by Aspergillus spp. and is often fatal in immunocompromised patients. Current antifungal drug treatment and delivery results in modest efficacy in these patients may be due to low drug distribution to the lung. A comparison of intravenous (IV) caspofungin and lung-targeted inhaled caspofungin was conducted in rats. The goal was to determine the concentrations of drug at the site of infection and systemic distribution that leads to toxicity. This was performed to understand the difference in the in vitro activity of caspofungin and modest in vivo efficacy. Methods: Caspofungin was delivered to rats through IV injection and nose-only inhalation. Each cohort received a single 2 mg/kg dose of drug. Plasma and tissue samples were analyzed by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS-MS) and drug levels were compared. Results: The lung drug level was above the minimum effective concentration for 168 hours in the inhaled group but <24 hours in the IV cohort. The lung Cmax and area under curve (AUC) in the inhaled group was 20 times higher than in the IV group. Lung-targeted delivery doubled lung drug half-life compared with IV delivery. Systemic distribution to the liver and kidney was 45% lower for the inhaled cohort than the IV group of animals. Conclusions: Based on pharmacokinetic and pharmacodynamic indices, lung-targeted inhaled caspofungin is likely to provide an improved therapeutic benefit without any increase in systemic toxicities. Furthermore, inhaled delivery supports a weekly dosing regimen instead of daily IV dosing.
Collapse
Affiliation(s)
- Iching G Yu
- Trilogy Therapeutics, Inc., San Diego, California, USA
| | | | | |
Collapse
|
28
|
Le Guellec S, Allimonnier L, Heuzé-Vourc’h N, Cabrera M, Ossant F, Pourchez J, Vecellio L, Plantier L. Low-Frequency Intrapulmonary Percussive Ventilation Increases Aerosol Penetration in a 2-Compartment Physical Model of Fibrotic Lung Disease. Front Bioeng Biotechnol 2020; 8:1022. [PMID: 32984287 PMCID: PMC7483496 DOI: 10.3389/fbioe.2020.01022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/04/2020] [Indexed: 11/13/2022] Open
Abstract
In patients with fibrotic pulmonary disease such as idiopathic pulmonary fibrosis (IPF), inhaled aerosols deposit mostly in the less affected region of the lungs, resulting in suboptimal pharmacokinetics of airway-delivered treatments. Refinement of aerosol delivery technique requires new models to simulate the major alterations of lung physiology associated with IPF, i.e., heterogeneously reduced lung compliance and increased airway caliber. A novel physical model of the respiratory system was constructed to simulate aerosol drug delivery in spontaneously breathing (negative pressure ventilation) IPF patients. The model comprises upper (Alberta ideal throat) and lower airway (plastic tubing) models and branches into two compartments (Michigan lung models) which differ in compliance and caliber of conducting airway. The model was able to reproduce the heterogeneous, compliance-dependent reduction in ventilation and aerosol penetration (using NaF as a model aerosol) seen in fibrotic lung regions in IPF. Of note, intrapulmonary percussive ventilation induced a 2-3-fold increase in aerosol penetration in the low-compliance/high airway caliber compartment of the model, demonstrating the responsiveness of the model to therapeutic intervention.
Collapse
Affiliation(s)
- Sandrine Le Guellec
- INSERM, Research Center for Respiratory Diseases, U1100, Tours, France
- DTF Aerodrug, Tours, France
- Université de Tours, Tours, France
| | - Laurine Allimonnier
- INSERM, Research Center for Respiratory Diseases, U1100, Tours, France
- Université de Tours, Tours, France
| | - Nathalie Heuzé-Vourc’h
- INSERM, Research Center for Respiratory Diseases, U1100, Tours, France
- Université de Tours, Tours, France
| | - Maria Cabrera
- INSERM, Research Center for Respiratory Diseases, U1100, Tours, France
- Université de Tours, Tours, France
| | | | - Jérémie Pourchez
- Mines Saint-Etienne, Univ. Lyon, Univ. Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, Saint-Etienne, France
| | - Laurent Vecellio
- INSERM, Research Center for Respiratory Diseases, U1100, Tours, France
- Université de Tours, Tours, France
| | - Laurent Plantier
- INSERM, Research Center for Respiratory Diseases, U1100, Tours, France
- Université de Tours, Tours, France
- CHRU de Tours, Service de Pneumologie et Explorations Fonctionnelles Respiratoires, Tours, France
| |
Collapse
|
29
|
Hibbitts AJ, Ramsey JM, Barlow J, MacLoughlin R, Cryan SA. In Vitro and In Vivo Assessment of PEGylated PEI for Anti-IL-8/CxCL-1 siRNA Delivery to the Lungs. NANOMATERIALS 2020; 10:nano10071248. [PMID: 32605011 PMCID: PMC7407419 DOI: 10.3390/nano10071248] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 12/16/2022]
Abstract
Inhalation offers a means of rapid, local delivery of siRNA to treat a range of autoimmune or inflammatory respiratory conditions. This work investigated the potential of a linear 10 kDa Poly(ethylene glycol) (PEG)-modified 25 kDa branched polyethyleneimine (PEI) (PEI-LPEG) to effectively deliver siRNA to airway epithelial cells. Following optimization with anti- glyceraldehyde 3-phosphate dehydrogenase (GAPDH) siRNA, PEI and PEI-LPEG anti-IL8 siRNA nanoparticles were assessed for efficacy using polarised Calu-3 human airway epithelial cells and a twin stage impinger (TSI) in vitro lung model. Studies were then advanced to an in vivo lipopolysaccharide (LPS)-stimulated rodent model of inflammation. In parallel, the suitability of the siRNA-loaded nanoparticles for nebulization using a vibrating mesh nebuliser was assessed. The siRNA nanoparticles were nebulised using an Aerogen® Pro vibrating mesh nebuliser and characterised for aerosol output, droplet size and fine particle fraction. Only PEI anti-IL8 siRNA nanoparticles were capable of significant levels of IL-8 knockdown in vitro in non-nebulised samples. However, on nebulization through a TSI, only PEI-PEG siRNA nanoparticles demonstrated significant decreases in gene and protein expression in polarised Calu-3 cells. In vivo, both anti-CXCL-1 (rat IL-8 homologue) nanoparticles demonstrated a decreased CXCL-1 gene expression in lung tissue, but this was non-significant. However, PEI anti-CXCL-1 siRNA-treated rats were found to have significantly less infiltrating macrophages in their bronchoalveolar lavage (BAL) fluid. Overall, the in vivo gene and protein inhibition findings indicated a result more reminiscent of the in vitro bolus delivery rather than the in vitro nebulization data. This work demonstrates the potential of nebulised PEI-PEG siRNA nanoparticles in modulating pulmonary inflammation and highlights the need to move towards more relevant in vitro and in vivo models for respiratory drug development.
Collapse
Affiliation(s)
- Alan J. Hibbitts
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland; (A.J.H.); (J.M.R.); (R.M.)
- Trinity Centre for Biomedical Engineering, Trinity College, Dublin D02 R590, Ireland
| | - Joanne M. Ramsey
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland; (A.J.H.); (J.M.R.); (R.M.)
| | - James Barlow
- Department of Chemistry, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland;
| | - Ronan MacLoughlin
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland; (A.J.H.); (J.M.R.); (R.M.)
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin D02 PN40, Ireland
- Aerogen Ltd. Galway Business Park, Galway H91 HE94, Ireland
| | - Sally-Ann Cryan
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland; (A.J.H.); (J.M.R.); (R.M.)
- Trinity Centre for Biomedical Engineering, Trinity College, Dublin D02 R590, Ireland
- Correspondence: ; Tel.: +353-14022741
| |
Collapse
|
30
|
De Santi C, Fernández Fernández E, Gaul R, Vencken S, Glasgow A, Oglesby IK, Hurley K, Hawkins F, Mitash N, Mu F, Raoof R, Henshall DC, Cutrona MB, Simpson JC, Harvey BJ, Linnane B, McNally P, Cryan SA, MacLoughlin R, Swiatecka-Urban A, Greene CM. Precise Targeting of miRNA Sites Restores CFTR Activity in CF Bronchial Epithelial Cells. Mol Ther 2020; 28:1190-1199. [PMID: 32059764 DOI: 10.1016/j.ymthe.2020.02.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 03/02/2020] [Indexed: 01/19/2023] Open
Abstract
MicroRNAs that are overexpressed in cystic fibrosis (CF) bronchial epithelial cells (BEC) negatively regulate CFTR and nullify the beneficial effects of CFTR modulators. We hypothesized that it is possible to reverse microRNA-mediated inhibition of CFTR using CFTR-specific target site blockers (TSBs) and to develop a drug-device combination inhalation therapy for CF. Lead microRNA expression was quantified in a series of human CF and non-CF samples and in vitro models. A panel of CFTR 3' untranslated region (UTR)-specific locked nucleic acid antisense oligonucleotide TSBs was assessed for their ability to increase CFTR expression. Their effects on CFTR activity alone or in combination with CFTR modulators were measured in CF BEC models. TSB encapsulation in poly-lactic-co-glycolic acid (PLGA) nanoparticles was assessed as a proof of principle of delivery into CF BECs. TSBs targeting the CFTR 3' UTR 298-305:miR-145-5p or 166-173:miR-223-3p sites increased CFTR expression and anion channel activity and enhanced the effects of ivacaftor/lumacaftor or ivacaftor/tezacaftor in CF BECs. Biocompatible PLGA-TSB nanoparticles promoted CFTR expression in primary BECs and retained desirable biophysical characteristics following nebulization. Alone or in combination with CFTR modulators, aerosolized CFTR-targeting TSBs encapsulated in PLGA nanoparticles could represent a promising drug-device combination therapy for the treatment for CFTR dysfunction in the lung.
Collapse
Affiliation(s)
- Chiara De Santi
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Dublin 9, Ireland.
| | | | - Rachel Gaul
- School of Pharmacy and Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Sebastian Vencken
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Dublin 9, Ireland
| | - Arlene Glasgow
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Dublin 9, Ireland
| | - Irene K Oglesby
- Department of Medicine, Royal College of Surgeons in Ireland, Dublin 9, Ireland
| | - Killian Hurley
- Department of Medicine, Royal College of Surgeons in Ireland, Dublin 9, Ireland
| | - Finn Hawkins
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Nilay Mitash
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Fangping Mu
- Center for Research Computing, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Rana Raoof
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Meritxell B Cutrona
- School of Biology and Environmental Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jeremy C Simpson
- School of Biology and Environmental Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Brian J Harvey
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Dublin 9, Ireland
| | - Barry Linnane
- University Hospital Limerick, Dooradoyle, Limerick, Ireland
| | - Paul McNally
- Department of Pediatrics, Royal College of Surgeons in Ireland, Dublin 2, Ireland; National Children's Research Centre, Children's Health Ireland at Crumlin, Dublin 12, Ireland
| | - Sally Ann Cryan
- School of Pharmacy and Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | | | | | - Catherine M Greene
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Dublin 9, Ireland
| |
Collapse
|
31
|
Li J, Zhao M, Hadeer M, Luo J, Fink JB. Dose Response to Transnasal Pulmonary Administration of Bronchodilator Aerosols via Nasal High-Flow Therapy in Adults with Stable Chronic Obstructive Pulmonary Disease and Asthma. Respiration 2019; 98:401-409. [PMID: 31473748 DOI: 10.1159/000501564] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/17/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND There has been increasing interest in transnasal pulmonary aerosol administration, but the dose-response relationship has not been reported. OBJECTIVES To determine the accumulative bronchodilator dose at which patients with stable mild-to-moderate asthma and chronic obstructive pulmonary disease (COPD) achieve similar spirometry responses before and after bronchodilator tests using albuterol via a metered dose inhaler with a valved holding chamber (MDI + VHC). METHOD Adult patients who met ATS/ERS criteria for bronchodilator responses in pulmonary function laboratory were recruited and consented to participate. After a washout period, patients received escalating doubling dosages (0.5, 1, 2, and 4 mg) of albuterol in a total volume of 2 mL delivered by vibrating mesh nebulizer via a nasal cannula at 37°C with a flow rate of 15-20 L/min using a Venturi air entrainment device. Spirometry was measured at baseline and after each dose. Titration was stopped when an additional forced expiratory volume in 1 second (FEV1) improvement was <5%. RESULTS 42 patients (16 males) with stable mild-to-moderate asthma (n = 29) and COPD (n = 13) were enrolled. FEV1 increment after a cumulative dose of 1.5 mg of albuterol via nasal cannula at 15-20 L/min was similar to 4 actuations of MDI + VHC (0.34 ± 0.18 vs. 0.34 ± 0.12 L, p = 0.878). Using ATS/ERS criteria of the bronchodilator test, 33.3% (14/42) and 69% (29/42) of patients responded to 0.5 and 1.5 mg of albuterol, respectively. CONCLUSIONS With a nasal cannula at 15-20 L/min, transnasal pulmonary delivery of 1.5 mg albuterol resulted in similar bronchodilator response as 4 actuations of MDI + VHC.
Collapse
Affiliation(s)
- Jie Li
- Division of Respiratory Care, Department of Cardiopulmonary Sciences, Rush University Medical Center, Chicago, Illinois, USA,
| | - Minghua Zhao
- Division of Pulmonary Function Test Laboratory, Department of Respiratory Care, People's Hospital of the Xinjiang Autonomous Region, Urumqi, China
| | - Maierbati Hadeer
- Division of Pulmonary Function Test Laboratory, Department of Respiratory Care, People's Hospital of the Xinjiang Autonomous Region, Urumqi, China
| | - Jian Luo
- Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, Chengdu, China
| | - James B Fink
- Division of Respiratory Care, Department of Cardiopulmonary Sciences, Rush University Medical Center, Chicago, Illinois, USA.,Aerogen Pharma Corporation, San Mateo, California, USA
| |
Collapse
|
32
|
Longest W, Spence B, Hindle M. Devices for Improved Delivery of Nebulized Pharmaceutical Aerosols to the Lungs. J Aerosol Med Pulm Drug Deliv 2019; 32:317-339. [PMID: 31287369 DOI: 10.1089/jamp.2018.1508] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Nebulizers have a number of advantages for the delivery of inhaled pharmaceutical aerosols, including the use of aqueous formulations and the ability to deliver process-sensitive proteins, peptides, and biological medications. A frequent disadvantage of nebulized aerosols is poor lung delivery efficiency, which wastes valuable medications, increases delivery times, and may increase side effects of the medication. A focus of previous development efforts and previous nebulizer reviews, has been an improvement of the underlying nebulization technology controlling the breakup of a liquid into droplets. However, for a given nebulization technology, a wide range of secondary devices and strategies can be implemented to significantly improve lung delivery efficiency of the aerosol. This review focuses on secondary devices and technologies that can be implemented to improve the lung delivery efficiency of nebulized aerosols and potentially target the region of drug delivery within the lungs. These secondary devices may (1) modify the aerosol size distribution, (2) synchronize aerosol delivery with inhalation, (3) reduce system depositional losses at connection points, (4) improve the patient interface, or (5) guide patient inhalation. The development of these devices and technologies is also discussed, which often includes the use of computational fluid dynamic simulations, three-dimensional printing and rapid prototype device and airway model construction, realistic in vitro experiments, and in vivo analysis. Of the devices reviewed, the implementation of streamlined components may be the most direct and lowest cost approach to enhance aerosol delivery efficiency within nonambulatory nebulizer systems. For applications involving high-dose medications or precise dose administration, the inclusion of active devices to control aerosol size, guide inhalation, and synchronize delivery with inhalation hold considerable promise.
Collapse
Affiliation(s)
- Worth Longest
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, Virginia.,Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia
| | - Benjamin Spence
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Michael Hindle
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
33
|
Vibrating Mesh Nebulisation of Pro-Antimicrobial Peptides for Use in Cystic Fibrosis. Pharmaceutics 2019; 11:pharmaceutics11050239. [PMID: 31108949 PMCID: PMC6571777 DOI: 10.3390/pharmaceutics11050239] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/12/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022] Open
Abstract
Background: There has been considerable interest in the use of antimicrobial peptides (AMPs) as antimicrobial therapeutics in many conditions including cystic fibrosis (CF). The aim of this study is to determine if the prodrugs of AMPs (pro-AMPs) can be delivered to the lung by a vibrating mesh nebuliser (VMN) and whether the pro-AMP modification has any effect on delivery. Methods: Physical characteristics of the peptides (AMP and pro-AMP) and antimicrobial activity were compared before and after nebulisation. Droplet size distribution was determined by laser diffraction and cascade impaction. Delivery to a model lung was determined in models of spontaneously-breathing and mechanically-ventilated patients. Results: The physical characteristics and antimicrobial activities were unchanged after nebulisation. Mean droplet size diameters were below 5 μm in both determinations, with the fine particle fraction approximately 67% for both peptides. Approximately 25% of the nominal dose was delivered in the spontaneously-breathing model for both peptides, with higher deliveries observed in the mechanically-ventilated model. Delivery times were approximately 170 s per mL for both peptides and the residual volume in the nebuliser was below 10% in nearly all cases. Conclusions: These results demonstrate that the delivery of (pro-)AMPs to the lung using a VMN is feasible and that the prodrug modification is not detrimental. They support the further development of pro-AMPs as therapeutics in CF.
Collapse
|
34
|
Sweeney L, McCloskey AP, Higgins G, Ramsey JM, Cryan SA, MacLoughlin R. Effective nebulization of interferon-γ using a novel vibrating mesh. Respir Res 2019; 20:66. [PMID: 30943978 PMCID: PMC6448243 DOI: 10.1186/s12931-019-1030-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/21/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Interferon gamma (IFN-γ) is a clinically relevant immunomodulatory cytokine that has demonstrated significant potential in the treatment and management of respiratory diseases such as tuberculosis and pulmonary fibrosis. As with all large biomolecules, clinical translation is dependent on effective delivery to the disease site and delivery of IFN-γ as an aerosol offers a logical means of drug targeting. Effective localization is often hampered by instability and a lack of safe and efficient delivery systems. The present study sought to determine how effectively IFN-γ can be nebulized using two types of vibrating mesh nebulizer, each with differing mesh architectures, and to investigate the comparative efficiency of delivery of therapeutically active IFN-γ to the lungs. METHODS Nebulization of IFN-γ was carried out using two different Aerogen vibrating mesh technologies with differing mesh architectures. These technologies represent both a standard commercially available mesh type (Aerogen Solo®) and a new iteration mesh (Photo-defined aperture plate (PDAP®). Extensive aerosol studies (aerosol output and droplet analysis, non-invasive and invasive aerosol therapy) were conducted in line with regulatory requirements and characterization of the stability and bioactivity of the IFN-γ post-nebulization was confirmed using SDS-PAGE and stimulation of Human C-X-C motif chemokine 10 (CXCL 10) also known as IFN-γ-induced protein 10KDa (IP 10) expression from THP-1 derived macrophages (THP-1 cells). RESULTS Aerosol characterization studies indicated that a significant and reproducible dose of aerosolized IFN-γ can be delivered using both vibrating mesh technologies. Nebulization using both devices resulted in an emitted dose of at least 93% (100% dose minus residual volume) for IFN-γ. Characterization of aerosolized IFN-γ indicated that the PDAP was capable of generating droplets with a significantly lower mass median aerodynamic diameter (MMAD) with values of 2.79 ± 0.29 μm and 4.39 ± 0.25 μm for the PDAP and Solo respectively. The volume median diameters (VMD) of aerosolized IFN-γ corroborated this with VMDs of 2.33 ± 0.02 μm for the PDAP and 4.30 ± 0.02 μm for the Solo. SDS-PAGE gels indicated that IFN-γ remains stable after nebulization by both devices and this was confirmed by bioactivity studies using a THP-1 cell model in which an alveolar macrophage response to IFN-γ was determined. IFN-γ nebulized by the PDAP and Solo devices had no significant effect on the key inflammatory biomarker cytokine IP-10 release from this model in comparison to non-nebulized controls. Here we demonstrate that it is possible to combine IFN-γ with vibrating mesh nebulizer devices and facilitate effective aerosolisation with minimal impact on IFN-γ structure or bioactivity. CONCLUSIONS It is possible to nebulize IFN-γ effectively with vibrating mesh nebulizer devices without compromising its stability. The PDAP allows for generation of IFN-γ aerosols with improved aerodynamic properties thereby increasing its potential efficiency for lower respiratory tract deposition over current technology, whilst maintaining the integrity and bioactivity of IFN-γ. This delivery modality therefore offers a rational means of facilitating the clinical translation of inhaled IFN-γ.
Collapse
Affiliation(s)
- Louise Sweeney
- Aerogen, IDA Business Park, Dangan, Galway, Ireland
- School of Pharmacy, RCSI, Dublin, Ireland
| | - Alice P. McCloskey
- School of Pharmacy, RCSI, Dublin, Ireland
- Tissue Engineering Research Group (TERG), RCSI, Dublin, Ireland
- Centre for Research in Medical Devices (CÚRAM) NUIG & RCSI, Dublin, Ireland
| | - Gerard Higgins
- School of Pharmacy, RCSI, Dublin, Ireland
- Tissue Engineering Research Group (TERG), RCSI, Dublin, Ireland
- Centre for Research in Medical Devices (CÚRAM) NUIG & RCSI, Dublin, Ireland
| | - Joanne M. Ramsey
- School of Pharmacy, RCSI, Dublin, Ireland
- Tissue Engineering Research Group (TERG), RCSI, Dublin, Ireland
| | - Sally-Ann Cryan
- School of Pharmacy, RCSI, Dublin, Ireland
- Tissue Engineering Research Group (TERG), RCSI, Dublin, Ireland
- Trinity Centre for Bioengineering (TCBE), TCD, Dublin, Ireland
- Centre for Research in Medical Devices (CÚRAM) NUIG & RCSI, Dublin, Ireland
| | - Ronan MacLoughlin
- Aerogen, IDA Business Park, Dangan, Galway, Ireland
- School of Pharmacy, RCSI, Dublin, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, Ireland
- Centre for Research in Medical Devices (CÚRAM) NUIG & RCSI, Dublin, Ireland
| |
Collapse
|
35
|
Reychler G, Michotte JB. Development challenges and opportunities in aerosol drug delivery systems in non-invasive ventilation in adults. Expert Opin Drug Deliv 2019; 16:153-162. [DOI: 10.1080/17425247.2019.1572111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Gregory Reychler
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL & Dermatologie, Université Catholique de Louvain, Bruxelles, Belgium
- Service de Pneumologie, Cliniques universitaires Saint-Luc, Bruxelles, Belgium
| | - Jean-Bernard Michotte
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL & Dermatologie, Université Catholique de Louvain, Bruxelles, Belgium
- Filière Physiothérapie, School of Health Sciences (HESAV), HES-SO University of Applied Sciences and Arts Western Switzerland, Lausanne, Switzerland
| |
Collapse
|
36
|
Lizal F, Jedelsky J, Morgan K, Bauer K, Llop J, Cossio U, Kassinos S, Verbanck S, Ruiz-Cabello J, Santos A, Koch E, Schnabel C. Experimental methods for flow and aerosol measurements in human airways and their replicas. Eur J Pharm Sci 2018; 113:95-131. [DOI: 10.1016/j.ejps.2017.08.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/14/2017] [Accepted: 08/17/2017] [Indexed: 12/29/2022]
|
37
|
Fernández Fernández E, Santos-Carballal B, de Santi C, Ramsey JM, MacLoughlin R, Cryan SA, Greene CM. Biopolymer-Based Nanoparticles for Cystic Fibrosis Lung Gene Therapy Studies. MATERIALS 2018; 11:ma11010122. [PMID: 29342838 PMCID: PMC5793620 DOI: 10.3390/ma11010122] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/04/2018] [Accepted: 01/08/2018] [Indexed: 12/14/2022]
Abstract
Lung gene therapy for cystic fibrosis disease has not been successful due to several challenges such as the absence of an appropriate vector. Therefore, optimal delivery of emerging therapeutics to airway epithelial cells demands suitable non-viral systems. In this work, we describe the formulation and the physicochemical investigation of biocompatible and biodegradable polymeric nanoparticles (NPs), including PLGA and chitosan (animal and non-animal), as novel methods for the safe and efficient delivery of CFTR-specific locked nucleic acids (LNAs).
Collapse
Affiliation(s)
- Elena Fernández Fernández
- Lung Biology Group, Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland.
| | | | - Chiara de Santi
- Lung Biology Group, Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland.
| | - Joanne M Ramsey
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| | - Ronan MacLoughlin
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin 2, Ireland.
- Aerogen Ltd., Galway Business Park, Dangan, Galway H91 HE94, Ireland.
| | - Sally-Ann Cryan
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| | - Catherine M Greene
- Lung Biology Group, Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland.
| |
Collapse
|
38
|
Ehrmann S. Vibrating Mesh Nebulisers – Can Greater Drug Delivery to the Airways and Lungs Improve Respiratory Outcomes? ACTA ACUST UNITED AC 2018. [DOI: 10.17925/erpd.2018.4.1.33] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Aerosols are an increasingly important mode of delivery of drugs, particularly bronchodilators, for the treatment of respiratory diseases, notably asthma and chronic obstructive pulmonary disease. The most common type of nebuliser is the jet nebuliser (JN); they have been in use for more than a century but these devices can be cumbersome to use and may sometimes deliver insufficient amounts of drug. A more recent development in aerosol therapy is the vibrating mesh nebuliser (VMN) which is very user friendly and is more efficient than the JNs due to an extremely low residual volume. Scintigraphy images from studies of volunteer subjects using radio-labelled aerosol treatment show that VMN-generated aerosols deliver more drug to patients in a shorter period of time than JN-generated aerosols. Various bench, animal model and small clinical studies have shown that VMNs are more efficient than JNs in drug delivery, potentially improving clinical outcomes. These studies have included various breathing circuits used in mechanical ventilation (MV), non-invasive ventilation, high-flow nasal cannula systems and devices for spontaneously breathing patients. The efficiency of drug delivery was affected by factors including the position of the nebuliser in the circuit and humidity. Some studies have shown potential substantial savings by hospitals in the cost of MV treatments after switching from metered dose inhalers to VMNs. VMNs have also been shown to be effective for the administration of inhaled antibiotics, corticosteroids and other drugs. Larger studies of the effects of VMNs on patient outcomes are needed but they are likely to be an increasingly important means of administering therapies to a burgeoning population with respiratory disease.
Collapse
|
39
|
Lin HL, Fang TP, Cho HS, Wan GH, Hsieh MJ, Fink JB. Aerosol delivery during spontaneous breathing with different types of nebulizers- in vitro/ex vivo models evaluation. Pulm Pharmacol Ther 2017; 48:225-231. [PMID: 29277689 DOI: 10.1016/j.pupt.2017.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/15/2017] [Accepted: 12/16/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Nebulizers for spontaneous breathing have been evaluated through different study designs. There are limitations in simulated bench models related to patient and nebulizer factors. The aim of this study was to determine the correlation of inhaled drug mass between in vitro and ex vivo studies by testing aerosol deposition of various types of nebulizers. METHODS Ten healthy subjects were recruited to receive aerosol therapy with five nebulizers in random order: 1) a jet nebulizer (JN); 2) a breath-enhanced nebulizer (BEN); 3) a manually triggered nebulizer (MTN), 4) a breath-actuated nebulizer (BAN), and 5) a vibrating mesh nebulizer (VMN) with valved-adapter. A unit dose of salbutamol containing 5 mg in 2.5 mL was placed into the nebulizer and administered for 10 min. For the ex vivo study, minute ventilation of healthy subjects was recorded for 1 min. For the in vitro study a breathing simulator was utilized with adult breathing patterns. Aerosolized drug from the nebulizers and the accessory tubes was captured using inspiratory and expiratory collecting filters. Captured drug was eluted, measured and expressed as inhaled and exhaled mass using spectrophotometry at a wavelength of 276 nm. RESULTS 10 healthy subjects were recruited, aged 20.8 ± 0.7 years old, with a mean height of 166.2 ± 9.2 cm and weight of 64.7 ± 12.4 kg. There was no significant difference in the inhaled drug dose between the JN and BEN (15.0 ± 1.94% and 17.74 ± 2.65%, respectively, p = .763), yet the inhaled doses were lower than the other three nebulizers (p < .001). The VMN delivered greater inhaled dose than the other four nebulizers (p < .01). The respiratory rate of the cohorts was significantly correlated with the inhaled drug dose. For the in vitro model, the JN delivered a lower inhaled dose (11.6 ± 1.6, p < .001) than the other nebulizers, whereas the MTN and BAN deposited significantly lower exhaled doses (1.7 ± 0.4 and 2.7 ± 0.2, respectively, p < .001). The VMN demonstrated a greater drug dose with the in vitro study than the ex vivo model (44.0 ± 0.9% and 35.5 ± 6.3% respectively, p = .003), whereas the JN in the ex vivo model resulted in a greater inhaled drug dose (15.0 ± 1.9% for ex vivo vs 11.6 ± 1.6% for in vitro, p = .008). CONCLUSIONS These in vitro/ex vivo model comparisons of nebulizers performance indicated that breath-related nebulizers can be estimated using an in vitro model; however, the JN and VMN delivered inhaled drug mass differed between models. There was a significant correlation between respiratory rate and inhaled mass, and the inhaled drug dose generated by VMN correlated with minute ventilation. This study demonstrated that the VMN produced greater inhaled drug dose and lowest residual dose, whereas the BEN, BAN, and MTN produced lower exhaled drug dose in both in vitro and ex vivo models.
Collapse
Affiliation(s)
- Hui-Ling Lin
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Respiratory Therapy, Chang Gung Memorial Hospital, Chiayi, Taiwan; Department of Respiratory Therapy, Chang Gung University of Science and Technology, Chiayi, Taiwan.
| | - Tien-Pei Fang
- Department of Respiratory Therapy, Chang Gung Memorial Hospital, Chiayi, Taiwan; Department of Respiratory Therapy, Chang Gung University of Science and Technology, Chiayi, Taiwan
| | - Hui-Sun Cho
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Respiratory Therapy, Yuan's General Hospital, Kaohsiung, Taiwan
| | - Gwo-Hwa Wan
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Respiratory Therapy, Chang Gung University of Science and Technology, Chiayi, Taiwan; Department of Neurosurgery, Chang Gung Memorial Hospital-Linko, Taoyuan, Taiwan
| | - Meng-Jer Hsieh
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Medicine, Chang Gung Memorial Hospital, ChiYi, Taiwan
| | | |
Collapse
|
40
|
Dunne RB, Shortt S. Comparison of bronchodilator administration with vibrating mesh nebulizer and standard jet nebulizer in the emergency department. Am J Emerg Med 2017; 36:641-646. [PMID: 29167030 DOI: 10.1016/j.ajem.2017.10.067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/30/2017] [Accepted: 10/30/2017] [Indexed: 10/18/2022] Open
Abstract
INTRODUCTION Projects comparing bronchodilator response by aerosol devices in the ED are limited. Evidence suggests that the vibrating mesh nebulizer (VMN) provides 5-fold greater aerosol delivery to the lung as compared to a jet nebulizer (JN). The aim of this project was to evaluate a new nebulizer deployed in an Emergency Department. METHODS A quality improvement evaluation using a prospectively identified data set from the electronic medical record comparing all ED patients receiving aerosolized bronchodilators with the JN during September 2015 to those receiving aerosolized bronchodilators with the VMN during October 2015. RESULTS 1594 records were extracted, 879 patients received bronchodilators via JN and 715 patients via the VMN. Admission rates in the VMN group were 28.1% and in the JN group at 41.4%. The total albuterol dose administered was significantly lower in the VMN group compared to the JN (p<0.001). No patient in the VMN group required >5mg albuterol to control symptoms (85% of the VMN group received only 2.5mg) whereas dosing in the JN group was higher in some patients (with 47% receiving only 2.5mg). The use of VMN was also associated with a 13% (37min) reduction in median length of stay in the ED. CONCLUSIONS The VMN was associated with fewer admissions to the hospital, shorter length of stay in the ED and a reduction in albuterol dose. The device type was a predictor of discharge, disposition and amount of drug used. Randomized controlled studies are needed to corroborate these findings.
Collapse
Affiliation(s)
- Robert B Dunne
- Department of Emergency Medicine, St. John Hospital and Medical Center, United States; Wayne State University, School of Medicine, Detroit, MI 48236, United States.
| | - Sandra Shortt
- Respiratory Care, St. John Hospital and Medical Center, Detroit, MI 48236, United States
| |
Collapse
|
41
|
Dugernier J, Ehrmann S, Sottiaux T, Roeseler J, Wittebole X, Dugernier T, Jamar F, Laterre PF, Reychler G. Aerosol delivery during invasive mechanical ventilation: a systematic review. Crit Care 2017; 21:264. [PMID: 29058607 PMCID: PMC5651640 DOI: 10.1186/s13054-017-1844-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/15/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This systematic review aimed to assess inhaled drug delivery in mechanically ventilated patients or in animal models. Whole lung and regional deposition and the impact of the ventilator circuit, the artificial airways and the administration technique for aerosol delivery were analyzed. METHODS In vivo studies assessing lung deposition during invasive mechanical ventilation were selected based on a systematic search among four databases. Two investigators independently assessed the eligibility and the risk of bias. RESULTS Twenty-six clinical and ten experimental studies were included. Between 30% and 43% of nominal drug dose was lost to the circuit in ventilated patients. Whole lung deposition of up to 16% and 38% of nominal dose (proportion of drug charged in the device) were reported with nebulizers and metered-dose inhalers, respectively. A penetration index inferior to 1 observed in scintigraphic studies indicated major proximal deposition. However, substantial concentrations of antibiotics were measured in the epithelial lining fluid (887 (406-12,819) μg/mL of amikacin) of infected patients and in sub-pleural specimens (e.g., 197 μg/g of amikacin) dissected from infected piglets, suggesting a significant distal deposition. The administration technique varied among studies and may explain a degree of the variability of deposition that was observed. CONCLUSIONS Lung deposition was lower than 20% of nominal dose delivered with nebulizers and mostly occurred in proximal airways. Further studies are needed to link substantial concentrations of antibiotics in infected pulmonary fluids to pulmonary deposition. The administration technique with nebulizers should be improved in ventilated patients in order to ensure an efficient but safe, feasible and reproducible technique.
Collapse
Affiliation(s)
- Jonathan Dugernier
- Institut de Recherche Expérimentale et Clinique (IREC), Pneumologie, ORL & Dermatologie, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium. .,Soins Intensifs, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium. .,Médecine Physique, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium.
| | - Stephan Ehrmann
- Université François Rabelais, UMR 1100, F-37032, Tours, France.,INSERM, Centre d'étude des Pathologies Respiratoires, UMR 1100, F-37032, Tours, France.,CHRU de Tours, Réanimation polyvalente, F-37044, Tours, France
| | - Thierry Sottiaux
- Soins Intensifs, Clinique Notre-Dame de Grace, Chaussée de Nivelles 212, 6041, Charleroi, Belgium
| | - Jean Roeseler
- Soins Intensifs, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
| | - Xavier Wittebole
- Soins Intensifs, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
| | - Thierry Dugernier
- Soins Intensifs, Clinique Saint-Pierre, Avenue Reine Fabiola 9, 1340, Ottignies, Belgium
| | - François Jamar
- Médecine Nucléaire, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
| | - Pierre-François Laterre
- Soins Intensifs, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
| | - Gregory Reychler
- Institut de Recherche Expérimentale et Clinique (IREC), Pneumologie, ORL & Dermatologie, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium.,Médecine Physique, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium.,Pneumologie, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
| |
Collapse
|
42
|
Dugernier J, Hesse M, Jumetz T, Bialais E, Roeseler J, Depoortere V, Michotte JB, Wittebole X, Ehrmann S, Laterre PF, Jamar F, Reychler G. Aerosol Delivery with Two Nebulizers Through High-Flow Nasal Cannula: A Randomized Cross-Over Single-Photon Emission Computed Tomography-Computed Tomography Study. J Aerosol Med Pulm Drug Deliv 2017; 30:349-358. [PMID: 28463044 DOI: 10.1089/jamp.2017.1366] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND High-flow nasal cannula use is developing in ICUs. The aim of this study was to compare aerosol efficiency by using two nebulizers through a high-flow nasal cannula: the most commonly used jet nebulizer (JN) and a more efficient vibrating-mesh nebulizer (VN). METHODS Aerosol delivery of diethylenetriaminepentaacetic acid labeled with technetium-99m (4 mCi/4 mL) to the lungs by using a VN (Aerogen Solo®; Aerogen Ltd., Galway, Ireland) and a constant-output JN (Opti-Mist Plus Nebulizer®; ConvaTec, Bridgewater, NJ) through a high-flow nasal cannula (Optiflow®; Fisher & Paykel, New Zealand) was compared in six healthy subjects. Flow rate was set at 30 L/min through the heated humidified circuit. Pulmonary and extrapulmonary deposition was measured by single-photon emission computed tomography combined with a low-dose computed tomographic scan and by planar scintigraphy. RESULTS Lung deposition was only 3.6 (2.1-4.4) and 1 (0.7-2)% of the nominal dose with the VN and the JN, respectively (p < 0.05). The JN showed higher retained doses than the VN. However, both nebulizers were associated with substantial deposition in the single limb circuit, the humidification chamber, and the nasal cannula [58.2 (51.6-61.6)% of the nominal dose with the VN versus 19.2 (15.8-22.9)% of the nominal dose with the JN, p < 0.05] and in the upper respiratory tract [17.6 (13.4-27.9)% of the nominal dose with the VN and 8.6 (6.0-11.0)% of the nominal dose with the JN, p < 0.05], especially in the nasal cavity. CONCLUSIONS In the specific conditions of the study, pulmonary drug delivery through the high-flow nasal cannula is about 1%-4% of the initial amount of drugs placed in the nebulizer, despite the higher efficiency of the VN as compared with the JN.
Collapse
Affiliation(s)
- Jonathan Dugernier
- 1 Institut de Recherche Expérimentale et Clinique (IREC), Pneumologie, ORL and Dermatologie, Cliniques Universitaires Saint-Luc , Brussels, Belgium .,2 Soins Intensifs, Cliniques Universitaires Saint-Luc , Brussels, Belgium .,3 Médecine Physique, Cliniques Universitaires Saint-Luc , Brussels, Belgium
| | - Michel Hesse
- 4 Médecine Nucléaire, Cliniques Universitaires Saint-Luc , Brussels, Belgium
| | | | - Emilie Bialais
- 1 Institut de Recherche Expérimentale et Clinique (IREC), Pneumologie, ORL and Dermatologie, Cliniques Universitaires Saint-Luc , Brussels, Belgium .,2 Soins Intensifs, Cliniques Universitaires Saint-Luc , Brussels, Belgium .,3 Médecine Physique, Cliniques Universitaires Saint-Luc , Brussels, Belgium
| | - Jean Roeseler
- 2 Soins Intensifs, Cliniques Universitaires Saint-Luc , Brussels, Belgium
| | - Virginie Depoortere
- 4 Médecine Nucléaire, Cliniques Universitaires Saint-Luc , Brussels, Belgium
| | - Jean-Bernard Michotte
- 5 Haute Ecole de Santé Vaud, Filière Physiothérapie, University of Applied Sciences and Arts Western Switzerland , Lausanne, Switzerland
| | - Xavier Wittebole
- 2 Soins Intensifs, Cliniques Universitaires Saint-Luc , Brussels, Belgium
| | - Stephan Ehrmann
- 6 Université François Rabelais , Tours, France .,7 INSERM, Centre d'étude des Pathologies Respiratoires , Tours, France .,8 CHRU de Tours, Réanimation Polyvalente , Tours, France
| | | | - François Jamar
- 4 Médecine Nucléaire, Cliniques Universitaires Saint-Luc , Brussels, Belgium
| | - Gregory Reychler
- 1 Institut de Recherche Expérimentale et Clinique (IREC), Pneumologie, ORL and Dermatologie, Cliniques Universitaires Saint-Luc , Brussels, Belgium .,3 Médecine Physique, Cliniques Universitaires Saint-Luc , Brussels, Belgium .,9 Pneumologie, Cliniques Universitaires Saint-Luc , Brussels, Belgium
| |
Collapse
|