1
|
Xue P, Zhang L, Fan R, Li Y, Han X, Qi T, Zhao L, Yu D, Shen QH. HvMPK4 phosphorylates HvWRKY1 to enhance its suppression of barley immunity to powdery mildew fungus. J Genet Genomics 2024; 51:313-325. [PMID: 37225086 DOI: 10.1016/j.jgg.2023.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades play important roles in disease resistance in model plant species. However, the functions of MAPK signaling pathways in crop disease resistance are largely unknown. Here we report the function of HvMKK1-HvMPK4-HvWRKY1 module in barley immune system. HvMPK4 is identified to play a negative role in barley immune response against Bgh, as virus-induced gene silencing of HvMPK4 results in enhanced disease resistance whilst stably overexpressing HvMPK4 leads to super-susceptibility to Bgh infection. Furthermore, the barley MAPK kinase HvMKK1 is found to specifically interact with HvMPK4, and the activated HvMKK1DD variant specifically phosphorylates HvMPK4 in vitro. Moreover, the transcription factor HvWRKY1 is identified to be a downstream target of HvMPK4 and phosphorylated by HvMPK4 in vitro in the presence of HvMKK1DD. Phosphorylation assay coupled with mutagenesis analyses identifies S122, T284, and S347 in HvWRKY1 as the major residues phosphorylated by HvMPK4. HvWRKY1 is phosphorylated in barley at the early stages of Bgh infection, which enhances its suppression on barley immunity likely due to enhanced DNA-binding and transcriptional repression activity. Our data suggest that the HvMKK1-HvMPK4 kinase pair acts upstream of HvWRKY1 to negatively regulate barley immunity against powdery mildew.
Collapse
Affiliation(s)
- Pengya Xue
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Renchun Fan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanan Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyun Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Ting Qi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lifang Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deshui Yu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian-Hua Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Pernis M, Salaj T, Bellová J, Danchenko M, Baráth P, Klubicová K. Secretome analysis revealed that cell wall remodeling and starch catabolism underlie the early stages of somatic embryogenesis in Pinus nigra. FRONTIERS IN PLANT SCIENCE 2023; 14:1225424. [PMID: 37600183 PMCID: PMC10436561 DOI: 10.3389/fpls.2023.1225424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023]
Abstract
Somatic embryogenesis is an efficient mean for rapid micropropagation and preservation of the germplasm of valuable coniferous trees. Little is known about how the composition of secretome tracks down the level of embryogenic capacity. Unlike embryogenic tissue on solid medium, suspension cell cultures enable the study of extracellular proteins secreted into a liquid cultivation medium, avoiding contamination from destructured cells. Here, we present proteomic data of the secretome of Pinus nigra cell lines with contrasting embryogenic capacity, accounting for variability between genotypes. Our results showed that cell wall-related and carbohydrate-acting proteins were the most differentially accumulated. Peroxidases, extensin, α-amylase, plant basic secretory family protein (BSP), and basic secretory protease (S) were more abundant in the medium from the lines with high embryogenic capacity. In contrast, the medium from the low embryogenic capacity cell lines contained a higher amount of polygalacturonases, hothead protein, and expansin, which are generally associated with cell wall loosening or softening. These results corroborated the microscopic findings in cell lines with low embryogenic capacity-long suspensor cells without proper assembly. Furthermore, proteomic data were subsequently validated by peroxidase and α-amylase activity assays, and hence, we conclude that both tested enzyme activities can be considered potential markers of high embryogenic capacity.
Collapse
Affiliation(s)
- Miroslav Pernis
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Nitra, Slovakia
| | - Terézia Salaj
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Nitra, Slovakia
| | - Jana Bellová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Maksym Danchenko
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Nitra, Slovakia
| | - Peter Baráth
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Katarína Klubicová
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Nitra, Slovakia
| |
Collapse
|
3
|
Pirrello C, Malacarne G, Moretto M, Lenzi L, Perazzolli M, Zeilmaker T, Van den Ackerveken G, Pilati S, Moser C, Giacomelli L. Grapevine DMR6-1 Is a Candidate Gene for Susceptibility to Downy Mildew. Biomolecules 2022; 12:182. [PMID: 35204683 PMCID: PMC8961545 DOI: 10.3390/biom12020182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/16/2022] Open
Abstract
Grapevine (Vitis vinifera) is a valuable crop in Europe for both economical and cultural reasons, but highly susceptible to Downy mildew (DM). The generation of resistant vines is of critical importance for a sustainable viticulture and can be achieved either by introgression of resistance genes in susceptible varieties or by mutation of Susceptibility (S) genes, e.g., by gene editing. This second approach offers several advantages: it maintains the genetic identity of cultivars otherwise disrupted by crossing and generally results in a broad-spectrum and durable resistance, but it is hindered by the poor knowledge about S genes in grapevines. Candidate S genes are Downy mildew Resistance 6 (DMR6) and DMR6-Like Oxygenases (DLOs), whose mutations confer resistance to DM in Arabidopsis. In this work, we show that grapevine VviDMR6-1 complements the Arabidopsis dmr6-1 resistant mutant. We studied the expression of grapevine VviDMR6 and VviDLO genes in different organs and in response to the DM causative agent Plasmopara viticola. Through an automated evaluation of causal relationships among genes, we show that VviDMR6-1, VviDMR6-2, and VviDLO1 group into different co-regulatory networks, suggesting distinct functions, and that mostly VviDMR6-1 is connected with pathogenesis-responsive genes. Therefore, VviDMR6-1 represents a good candidate to produce resistant cultivars with a gene-editing approach.
Collapse
Affiliation(s)
- Carlotta Pirrello
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (C.P.); (G.M.); (M.M.); (L.L.); (M.P.); (S.P.); (C.M.)
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
| | - Giulia Malacarne
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (C.P.); (G.M.); (M.M.); (L.L.); (M.P.); (S.P.); (C.M.)
| | - Marco Moretto
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (C.P.); (G.M.); (M.M.); (L.L.); (M.P.); (S.P.); (C.M.)
| | - Luisa Lenzi
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (C.P.); (G.M.); (M.M.); (L.L.); (M.P.); (S.P.); (C.M.)
| | - Michele Perazzolli
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (C.P.); (G.M.); (M.M.); (L.L.); (M.P.); (S.P.); (C.M.)
- Center Agriculture Food Environment (C3A), University of Trento, Via E. Mach 1, 38098 San Michele all’Adige, Italy
| | - Tieme Zeilmaker
- SciENZA Biotechnologies B.V., Sciencepark 904, 1098 XH Amsterdam, The Netherlands;
| | - Guido Van den Ackerveken
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands;
| | - Stefania Pilati
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (C.P.); (G.M.); (M.M.); (L.L.); (M.P.); (S.P.); (C.M.)
| | - Claudio Moser
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (C.P.); (G.M.); (M.M.); (L.L.); (M.P.); (S.P.); (C.M.)
| | - Lisa Giacomelli
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (C.P.); (G.M.); (M.M.); (L.L.); (M.P.); (S.P.); (C.M.)
| |
Collapse
|
4
|
Zhao L, Yan J, Xiang Y, Sun Y, Zhang A. ZmWRKY104 Transcription Factor Phosphorylated by ZmMPK6 Functioning in ABA-Induced Antioxidant Defense and Enhance Drought Tolerance in Maize. BIOLOGY 2021; 10:biology10090893. [PMID: 34571770 PMCID: PMC8467104 DOI: 10.3390/biology10090893] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 11/30/2022]
Abstract
Simple Summary Current knowledge about the downstream substrate proteins of MAPKs is still limited. Our study screened a new WRKY IIa transcription factor as the substrate protein of ZmMPK6, and its phosphorylation at Thr-59 is critical to the role of ZmWRKY104 in ABA-induced antioxidant defense. Moreover, overexpression ZmWRKY104 in maize enhances the drought tolerance of transgenic plants. These findings define a mechanism for the function of ZmWRKY104 phosphorylated by ZmMPK6 in ABA-induced antioxidant defense and drought tolerance. Abstract Mitogen-activated protein kinase (MAPK) cascades are primary signaling pathways involved in various signaling pathways triggered by abiotic and biotic stresses in plants. The downstream substrate proteins of MAPKs in maize, however, are still limited. Here, we screened a WRKY IIa transcription factor (TF) in maize (Zeamays L.), ZmWRKY104, and found that it is a substrate of ZmMPK6. ZmWRKY104 physically interacts with ZmMPK6 in vitro and in vivo. Liquid chromatography–tandem mass spectrometry (LC-MS/MS) analysis results showed that threonine-59 (Thr-59, T59) was the major phosphorylation site of ZmWRKY104 by ZmMPK6. Subcellular localization analysis suggested that ZmWRKY104 acts in the nucleus and that ZmMPK6 acts in the nucleus and cytoplasmic membrane in the cytosol. Functional analysis revealed that the role of ZmWRKY104 in ABA-induced antioxidant defense depends on ZmMPK6. Moreover, overexpression of ZmWRKY104 in maize can enhance drought tolerance and relieve drought-induced oxidative damage in transgenic lines. The above results help define the mechanism of the function of ZmWRKY104 phosphorylated by ZmMPK6 in ABA-induced antioxidant defense and drought tolerance in maize.
Collapse
Affiliation(s)
- Lili Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (L.Z.); (J.Y.); (Y.X.); (Y.S.)
| | - Jingwei Yan
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (L.Z.); (J.Y.); (Y.X.); (Y.S.)
| | - Yang Xiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (L.Z.); (J.Y.); (Y.X.); (Y.S.)
| | - Yue Sun
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (L.Z.); (J.Y.); (Y.X.); (Y.S.)
| | - Aying Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (L.Z.); (J.Y.); (Y.X.); (Y.S.)
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: ; Tel.: +86-25-8439-9078
| |
Collapse
|
5
|
Kan J, Gao G, He Q, Gao Q, Jiang C, Ahmar S, Liu J, Zhang J, Yang P. Genome-Wide Characterization of WRKY Transcription Factors Revealed Gene Duplication and Diversification in Populations of Wild to Domesticated Barley. Int J Mol Sci 2021; 22:5354. [PMID: 34069581 PMCID: PMC8160967 DOI: 10.3390/ijms22105354] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 12/19/2022] Open
Abstract
The WRKY transcription factors (WRKYs) are known for their crucial roles in biotic and abiotic stress responses, and developmental and physiological processes. In barley, early studies revealed their importance, whereas their diversity at the population scale remains hardly estimated. In this study, 98 HsWRKYs and 103 HvWRKYs have been identified from the reference genome of wild and cultivated barley, respectively. The tandem duplication and segmental duplication events from the cultivated barley were observed. By taking advantage of early released exome-captured sequencing datasets in 90 wild barley accessions and 137 landraces, the diversity analysis uncovered synonymous and non-synonymous variants instead of loss-of-function mutations that had occurred at all WRKYs. For majority of WRKYs, the haplotype and nucleotide diversity both decreased in cultivated barley relative to the wild population. Five WRKYs were detected to have undergone selection, among which haplotypes of WRKY9 were enriched, correlating with the geographic collection sites. Collectively, profiting from the state-of-the-art barley genomic resources, this work represented the characterization and diversity of barley WRKY transcription factors, shedding light on future deciphering of their roles in barley domestication and adaptation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ping Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; (J.K.); (G.G.); (Q.H.); (Q.G.); (C.J.); (S.A.); (J.L.); (J.Z.)
| |
Collapse
|
6
|
Zhu T, Wu L, He H, Song J, Jia M, Liu L, Wang X, Han R, Niu L, Du W, Zhang X, Wang W, Liang X, Li H, Liu J, Xu H, Liu C, Ma P. Bulked Segregant RNA-Seq Reveals Distinct Expression Profiling in Chinese Wheat Cultivar Jimai 23 Responding to Powdery Mildew. Front Genet 2020; 11:474. [PMID: 32536936 PMCID: PMC7268692 DOI: 10.3389/fgene.2020.00474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/16/2020] [Indexed: 11/13/2022] Open
Abstract
Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is one of the most destructive fungal diseases threatening global wheat production. Host resistance is well known to be the most efficient method to control this disease. However, the molecular mechanism of wheat powdery mildew resistance (Pm) is still unclear. To analyze the molecular mechanism of Pm, we used the resistant wheat cultivar Jimai 23 to investigate its potential resistance components and profiled its expression in response to powdery mildew infection using bulked segregant RNA-Seq (BSR-Seq). We showed that the Pm of Jimai 23 was provided by a single dominant gene, tentatively designated PmJM23, and assigned it to the documented Pm2 region of chromosome 5DS. 3,816 consistently different SNPs were called between resistant and susceptible parents and the bulked pools derived from the combinations between the resistant parent Jimai23 and the susceptible parent Tainong18. 58 of the SNPs were assigned to the candidate region of PmJM23. Subsequently, 3,803 differentially expressed genes (DEGs) between parents and bulks were analyzed by GO, COG and KEGG pathway enrichment. The temporal expression patterns of associated genes following Bgt inoculation were further determined by RT-qPCR. Expression of six disease-related genes was investigated during Bgt infection and might serve as valuable genetic resources for the improvement of durable resistance to Bgt.
Collapse
Affiliation(s)
- Tong Zhu
- School of Life Sciences, Yantai University, Yantai, China
| | - Liru Wu
- School of Life Sciences, Yantai University, Yantai, China
| | - Huagang He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Jiancheng Song
- School of Life Sciences, Yantai University, Yantai, China
| | - Mengshu Jia
- School of Life Sciences, Yantai University, Yantai, China
| | - Liancheng Liu
- Beijing Biomics Technology Company Limited, Beijing, China
| | - Xiaolu Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ran Han
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Liping Niu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wenxiao Du
- School of Life Sciences, Yantai University, Yantai, China
| | - Xu Zhang
- School of Life Sciences, Yantai University, Yantai, China
| | - Wenrui Wang
- School of Life Sciences, Yantai University, Yantai, China
| | - Xiao Liang
- School of Life Sciences, Yantai University, Yantai, China
| | - Haosheng Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jianjun Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Hongxing Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Cheng Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Pengtao Ma
- School of Life Sciences, Yantai University, Yantai, China
| |
Collapse
|
7
|
Goyal RK, Tulpan D, Chomistek N, González-Peña Fundora D, West C, Ellis BE, Frick M, Laroche A, Foroud NA. Analysis of MAPK and MAPKK gene families in wheat and related Triticeae species. BMC Genomics 2018; 19:178. [PMID: 29506469 PMCID: PMC5838963 DOI: 10.1186/s12864-018-4545-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 02/13/2018] [Indexed: 12/16/2022] Open
Abstract
Background The mitogen-activated protein kinase (MAPK) family is involved in signal transduction networks that underpin many different biological processes in plants, ranging from development to biotic and abiotic stress responses. To date this class of enzymes has received little attention in Triticeae species, which include important cereal crops (wheat, barley, rye and triticale) that represent over 20% of the total protein food-source worldwide. Results The work presented here focuses on two subfamilies of Triticeae MAPKs, the MAP kinases (MPKs), and the MAPK kinases (MKKs) whose members phosphorylate the MPKs. In silico analysis of multiple Triticeae sequence databases led to the identification of 152 MAPKs belonging to these two sub-families. Some previously identified MAPKs were renamed to reflect the literature consensus on MAPK nomenclature. Two novel MPKs, MPK24 and MPK25, have been identified, including the first example of a plant MPK carrying the TGY activation loop sequence common to mammalian p38 MPKs. An EF-hand calcium-binding domain was found in members of the Triticeae MPK17 clade, a feature that appears to be specific to Triticeae species. New insights into the novel MEY activation loop identified in MPK11s are offered. When the exon-intron patterns for some MPKs and MKKs of wheat, barley and ancestors of wheat were assembled based on transcript data in GenBank, they showed deviations from the same sequence predicted in Ensembl. The functional relevance of MAPKs as derived from patterns of gene expression, MPK activation and MKK-MPK interaction is discussed. Conclusions A comprehensive resource of accurately annotated and curated Triticeae MPK and MKK sequences has been created for wheat, barley, rye, triticale, and two ancestral wheat species, goat grass and red wild einkorn. The work we present here offers a central information resource that will resolve existing confusion in the literature and sustain expansion of MAPK research in the crucial Triticeae grains. Electronic supplementary material The online version of this article (10.1186/s12864-018-4545-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ravinder K Goyal
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 - 1st Avenue South, Lethbridge, Alberta, T1J 4B1, Canada
| | - Dan Tulpan
- Information and Communication Technologies, National Research Council of Canada, 100 des Aboiteaux Street, Moncton, New Brunswick, E1A 7R1, Canada
| | - Nora Chomistek
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 - 1st Avenue South, Lethbridge, Alberta, T1J 4B1, Canada
| | - Dianevys González-Peña Fundora
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 - 1st Avenue South, Lethbridge, Alberta, T1J 4B1, Canada
| | - Connor West
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 - 1st Avenue South, Lethbridge, Alberta, T1J 4B1, Canada
| | - Brian E Ellis
- Michael Smith Laboratories, University of British Columbia, #301 - 2185 East Mall, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Michele Frick
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 - 1st Avenue South, Lethbridge, Alberta, T1J 4B1, Canada
| | - André Laroche
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 - 1st Avenue South, Lethbridge, Alberta, T1J 4B1, Canada
| | - Nora A Foroud
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 - 1st Avenue South, Lethbridge, Alberta, T1J 4B1, Canada.
| |
Collapse
|
8
|
Schnepf V, Vlot AC, Kugler K, Hückelhoven R. Barley susceptibility factor RACB modulates transcript levels of signalling protein genes in compatible interaction with Blumeria graminis f.sp. hordei. MOLECULAR PLANT PATHOLOGY 2018; 19:393-404. [PMID: 28026097 PMCID: PMC6638053 DOI: 10.1111/mpp.12531] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 05/30/2023]
Abstract
RHO (rat sarcoma homologue) GTPases (guanosine triphosphatases) are regulators of downstream transcriptional responses of eukaryotes to intracellular and extracellular stimuli. For plants, little is known about the function of Rho-like GTPases [called RACs (rat sarcoma-related C botulinum substrate) or ROPs (RHO of plants)] in transcriptional reprogramming of cells. However, in plant hormone response and innate immunity, RAC/ROP proteins influence gene expression patterns. The barley RAC/ROP RACB is required for full susceptibility of barley to the powdery mildew fungus Blumeria graminis f.sp. hordei (Bgh). We compared the transcriptomes of barley plants either silenced for RACB or over-expressing constitutively activated RACB with and without inoculation with Bgh. This revealed a large overlap of the barley transcriptome during the early response to Bgh and during the over-expression of constitutively activated RACB. Global pathway analyses and stringent analyses of differentially expressed genes suggested that RACB influences, amongst others, the expression of signalling receptor kinases. Transient induced gene silencing of RACB-regulated signalling genes (a leucine-rich repeat protein, a leucine-rich repeat receptor-like kinase and an S-domain SD1-receptor-like kinase) suggested that they might be involved in RACB-modulated susceptibility to powdery mildew. We discuss the function of RACB in regulating the transcriptional responses of susceptible barley to Bgh.
Collapse
Affiliation(s)
- Vera Schnepf
- Phytopathology, School of Life Sciences WeihenstephanTechnical University of MunichFreisingD‐85354Germany
| | - A. Corina Vlot
- Helmholtz Zentrum Muenchen, Department of Environmental SciencesInstitute of Biochemical Plant PathologyNeuherbergD‐85764Germany
| | - Karl Kugler
- Helmholtz Zentrum MuenchenPlant Genome and Systems BiologyNeuherbergD‐85764Germany
| | - Ralph Hückelhoven
- Phytopathology, School of Life Sciences WeihenstephanTechnical University of MunichFreisingD‐85354Germany
| |
Collapse
|
9
|
Hoorijani MN, Rostami H, Pourhajibagher M, Chiniforush N, Heidari M, Pourakbari B, Kazemian H, Davari K, Amini V, Raoofian R, Bahador A. The effect of antimicrobial photodynamic therapy on the expression of novel methicillin resistance markers determined using cDNA-AFLP approach in Staphylococcus aureus. Photodiagnosis Photodyn Ther 2017. [DOI: 10.1016/j.pdpdt.2017.06.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Hückelhoven R, Seidl A. PAMP-triggered immune responses in barley and susceptibility to powdery mildew. PLANT SIGNALING & BEHAVIOR 2016; 11:e1197465. [PMID: 27348336 PMCID: PMC4991337 DOI: 10.1080/15592324.2016.1197465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Pathogen-associated molecular pattern-triggered immunity (PTI) builds one of the first layers of plant disease resistance. In susceptible plants, PTI is overcome by adapted pathogens. This can be achieved by suppression of PTI with the help of pathogen virulence effectors. However, effectors may also contribute to modification of host metabolism or cell architecture to ensure successful pathogenesis. Barley responds to treatment with the pathogen-associated molecular patterns flg22 or chitin with phosphorylation of mitogen-activated protein kinases and an oxidative burst. RAC/ROP GTPases can act as positive or negative modulators of these plant immune responses. The RAC/ROP GTPase RACB is a powdery mildew susceptibility factor of barley. However, RACB apparently does not negatively control early PTI responses but functions in polar cell development during invasion of the pathogen into living host epidermal cells. Here, we further discuss the incomplete picture of PTI in Triticeae.
Collapse
Affiliation(s)
- Ralph Hückelhoven
- Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- CONTACT Ralph Hückelhoven
| | - Anna Seidl
- Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| |
Collapse
|
11
|
Soresi D, Carrera AD, Echenique V, Garbus I. Identification of genes induced by Fusarium graminearum inoculation in the resistant durum wheat line Langdon(Dic-3A)10 and the susceptible parental line Langdon. Microbiol Res 2015. [PMID: 26211966 DOI: 10.1016/j.micres.2015.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The wheat recombinant chromosome inbred line LDN(Dic-3A)10, obtained through introgression of a Triticum dicoccoides disomic chromosome 3A fragment into Triticum turgidum spp. durum var. Langdon, is resistant to fusarium head blight (FHB) caused by Fusarium graminearum. To identify genes involved in FHB resistance, we used a cDNA-AFLP approach to compare gene expression between LDN(Dic-3A)10 and the susceptible parental line LDN at different time points post-inoculation. In total, 85 out of the ∼ 500 transcript-derived fragments (TDFs) were found to be differentially expressed: 36 and 19% were upregulated in LDN(Dic-3A)10 and LDN, respectively, whereas 45% were induced in both genotypes. Several of the cloned TDFs showed similarity to proteins involved in specific recognition of plant pathogens or associated with early responses to infection. Some TDFs specific to the inoculation response did not show similarity to characterized proteins. The availability of T. aestivum genome sequences allowed the in silico mapping of 28 TDFs and the acquirement of the corresponding gene sequences and, in some cases, their regulatory regions. Analysis of promoter regions revealed the potential existence of shared transcription regulation mechanisms. For instance, three TDF-associated genes contained binding sites for WRKY transcription factors, which have been implicated in the regulation of genes associated with pathogen defense, and three for abscisic acid-responsive element (ABRE). Collectively, our results revealed specific pathogen recognition in the interactions of LDN and LDN(Dic-3A)10 with F. graminearum. Such recognition leads to changes in the expression of several transcripts, attributable to the presence of the wheat QTL Qfhs.ndsu-3AS.
Collapse
Affiliation(s)
- Daniela Soresi
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS) - CONICET, Camino de La Carrindanga Km 7, 8000 Bahía Blanca, Argentina
| | - Alicia D Carrera
- Departamento de Agronomía, Universidad Nacional del Sur, San Andrés 800, 8000 Bahía Blanca, Argentina
| | - Viviana Echenique
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS) - CONICET, Camino de La Carrindanga Km 7, 8000 Bahía Blanca, Argentina; Departamento de Agronomía, Universidad Nacional del Sur, San Andrés 800, 8000 Bahía Blanca, Argentina
| | - Ingrid Garbus
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS) - CONICET, Camino de La Carrindanga Km 7, 8000 Bahía Blanca, Argentina; Departamento de Ciencias de la Salud, Universidad Nacional del Sur, Florida 1450, 8000 Bahía Blanca, Argentina.
| |
Collapse
|
12
|
Bastiaanse H, Muhovski Y, Parisi O, Paris R, Mingeot D, Lateur M. Gene expression profiling by cDNA-AFLP reveals potential candidate genes for partial resistance of 'Président Roulin' against Venturia inaequalis. BMC Genomics 2014; 15:1043. [PMID: 25433532 PMCID: PMC4302150 DOI: 10.1186/1471-2164-15-1043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/19/2014] [Indexed: 12/03/2022] Open
Abstract
Background Scab, caused by the fungus Venturia inaequalis, is one of the most important diseases of cultivated apple. While a few scab resistance genes (R genes) governing qualitative resistance have been isolated and characterized, the biological roles of genes governing quantitative resistance, supposed to be more durable, are still unknown. This study aims to investigate the molecular mechanisms involved in the partial resistance of the old Belgian apple cultivar ‘Président Roulin’ against V. inaequalis. Results A global gene expression analysis was conducted in ‘Président Roulin’ (partially resistant) and in ‘Gala’ (susceptible) challenged by V. inaequalis by using the cDNA-AFLP method (cDNA-Amplified Fragment Length Polymorphism). Transcriptome analysis revealed significant modulation (up- or down-regulation) of 281 out of approximately 20,500 transcript derived fragments (TDFs) in ‘Président Roulin’ 48 hours after inoculation. Sequence annotation revealed similarities to several genes encoding for proteins belonging to the NBS-LRR and LRR-RLK classes of plant R genes and to other defense-related proteins. Differentially expressed genes were sorted into functional categories according to their gene ontology annotation and this expression signature was compared to published apple cDNA libraries by Gene Enrichment Analysis. The first comparison was made with two cDNA libraries from Malus x domestica uninfected leaves, and revealed in both libraries a signature of enhanced expression in ‘Président Roulin’ of genes involved in response to stress and photosynthesis. In the second comparison, the pathogen-responsive TDFs from the partially resistant cultivar were compared to the cDNA library from inoculated leaves of Rvi6 (HcrVf2)-transformed ‘Gala’ lines (complete disease resistance) and revealed both common physiological events, and notably differences in the regulation of defense response, the regulation of hydrolase activity, and response to DNA damage. TDFs were in silico mapped on the ‘Golden Delicious’ apple reference genome and significant co-localizations with major scab R genes, but not with quantitative trait loci (QTLs) for scab resistance nor resistance gene analogues (RGAs) were found. Conclusions This study highlights possible candidate genes that may play a role in the partial scab resistance mechanisms of ‘Président Roulin’ and increase our understanding of the molecular mechanisms involved in the partial resistance against apple scab. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1043) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Héloïse Bastiaanse
- Life Sciences Department, Breeding and Biodiversity Unit, Walloon Agricultural Research Center, Rue de Liroux, 4, 5030 Gembloux, Belgium.
| | | | | | | | | | | |
Collapse
|
13
|
Zhang H, Yang Y, Wang C, Liu M, Li H, Fu Y, Wang Y, Nie Y, Liu X, Ji W. Large-scale transcriptome comparison reveals distinct gene activations in wheat responding to stripe rust and powdery mildew. BMC Genomics 2014; 15:898. [PMID: 25318379 PMCID: PMC4201691 DOI: 10.1186/1471-2164-15-898] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/09/2014] [Indexed: 12/13/2022] Open
Abstract
Background Stripe rust (Puccinia striiformis f. sp. tritici; Pst) and powdery mildew (Blumeria graminis f. sp. tritici; Bgt) are important diseases of wheat (Triticum aestivum) worldwide. Similar mechanisms and gene transcripts are assumed to be involved in the host defense response because both pathogens are biotrophic fungi. The main objective of our study was to identify co-regulated mRNAs that show a change in expression pattern after inoculation with Pst or Bgt, and to identify mRNAs specific to the fungal stress response. Results The transcriptome of the hexaploid wheat line N9134 inoculated with the Chinese Pst race CYR 31 was compared with that of the same line inoculated with Bgt race E09 at 1, 2, and 3 days post-inoculation. Infection by Pst and Bgt affected transcription of 23.8% of all T. aestivum genes. Infection by Bgt triggered a more robust alteration in gene expression in N9134 compared with the response to Pst infection. An array of overlapping gene clusters with distinctive expression patterns provided insight into the regulatory differences in the responses to Bgt and Pst infection. The differentially expressed genes were grouped into seven enriched Kyoto Encyclopedia of Genes and Genomes pathways in Bgt-infected leaves and four pathways in Pst-infected leaves, while only two pathways overlapped. In the plant–pathogen interaction pathway, N9134 activated a higher number of genes and pathways in response to Bgt infection than in response to Pst invasion. Genomic analysis revealed that the wheat genome shared some microbial genetic fragments, which were specifically induced in response to Bgt and Pst infection. Conclusions Taken together, our findings indicate that the responses of wheat N9134 to infection by Bgt and Pst shows differences in the pathways and genes activated. The mass sequence data for wheat–fungus interaction generated in this study provides a powerful platform for future functional and molecular research on wheat–fungus interactions. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-898) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy (Northwest A&F University), Yangling, Shaanxi 712100, China.
| |
Collapse
|
14
|
Liu D, Leib K, Zhao P, Kogel KH, Langen G. Phylogenetic analysis of barley WRKY proteins and characterization of HvWRKY1 and -2 as repressors of the pathogen-inducible gene HvGER4c. Mol Genet Genomics 2014; 289:1331-45. [PMID: 25138194 DOI: 10.1007/s00438-014-0893-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 07/26/2014] [Indexed: 11/25/2022]
Abstract
The WRKY transcription factors belong to an evolutionarily conserved superprotein family predominantly present in the plant kingdom. WRKY proteins of barley are not yet fully annotated and most of them are not functionally characterized. We performed a genome-wide identification of WRKY members based on the recently accessible barley draft genome sequence and full-length cDNA datasets. As a result, 34 novel putative proteins have been identified which extend the existing list for barley WRKYs to 94. Phylogenetic analysis of the WRKY domains allowed ranking into three groups (I, II, III), with an expansion in group III in monocots. Two members of subgroup IIa, the wound and pathogen-inducible HvWRKY1 and HvWRKY2, are known as negative defense regulators. Here, we demonstrate that both transcription factors repress the activity of the powdery mildew-induced promoter of HvGER4c, a germin-like defense-related protein. The repression did not require the negative defense regulator MLO nor was it affected by the presence of the R protein MLA12. Moreover, the expression of the Arabidopsis ortholog AtWRKY40 in barley compromised basal resistance to powdery mildew, providing evidence for functional conservation of sequence-related WRKY proteins across monocots and dicots.
Collapse
Affiliation(s)
- Dilin Liu
- Research Centre for BioSystems, Land Use, and Nutrition (IFZ Giessen), Institute of Phytopathology and Applied Zoology, Justus Liebig University Giessen, 35392, Giessen, Germany
| | | | | | | | | |
Collapse
|
15
|
Li S, Ji R, Dudler R, Yong M, Deng Q, Wang Z, Hu D. Wheat gene TaS3 contributes to powdery mildew susceptibility. PLANT CELL REPORTS 2013; 32:1891-901. [PMID: 24013794 DOI: 10.1007/s00299-013-1501-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/21/2013] [Accepted: 08/26/2013] [Indexed: 05/16/2023]
Abstract
Identification of TaS3 as a potential susceptibility gene encoding a protein homologous to ULP1 protease in wheat, which may regulate SUMO function facilitating powdery mildew attack. Some plant genes that are required for susceptibilities to certain pathogens are known as susceptibility genes or susceptibility factors, whose loss-of-function mutations can confer the plants resistances. To identify potential susceptibility genes to powdery mildew in wheat, differentially expressed genes in compatible and incompatible interactions between wheat and powdery mildew were examined by the cDNA chip assay. The genes exclusively expressed in the susceptible cultivar were interfered using biolistic transient transformation in wheat epidermal cells. The suppression of gene TaS3 (Triticum aestivum susceptibility) decreased the pathogen penetration by 19%, and its over-expression increased the disease susceptibility. The deduced protein from TaS3 belongs to the putative ubiquitin-like protease 1 peptidase domain family. Subcellular localization studies revealed that its protein was accumulated in the nucleus. Quantitative real-time polymerase chain reaction analysis revealed that TaS3 transcript was significantly induced in the compatible host. This suggests that TaS3 is a potential susceptible gene and its function may be related to regulate SUMO functions.
Collapse
Affiliation(s)
- Shaohui Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
16
|
Abass M, Morris PC. The Hordeum vulgare signalling protein MAP kinase 4 is a regulator of biotic and abiotic stress responses. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:1353-9. [PMID: 23702246 DOI: 10.1016/j.jplph.2013.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/22/2013] [Accepted: 04/22/2013] [Indexed: 05/08/2023]
Abstract
Mitogen activated protein kinase (MAP kinase) signal transduction pathways are important eukaryotic mechanisms for regulating cellular responses to stress. The objective of this work was to investigate the role of the barley MAP kinase HvMPK4 (a homologue of the Arabidopsis MAP kinase AtMPK1) in the plant response to biotic and abiotic stress. Transgenic barley plants bearing antisense or overexpression constructs for HvMPK4 were produced, and RNA blot analysis showed that HvMPK4 gene expression was much reduced in the antisense lines and approximately double in the overexpression lines. Three independent lines of each construct were tested for their response to a fungal pathogen and to salt treatment. The antisense lines were more resistant to the hemibiotrophic fungal pathogen Magnaporthe grisea, and showed enhanced levels of salicylic acid (SA) and of hydrogen peroxide following infection; HvMPK4 is thus a negative regulator of SA production post infection. The overexpression lines had constitutively higher levels of jasmonic acid and enhanced levels of ethylene following infection but were not more resistant to the pathogen. However the overexpression lines showed greater tolerance to abiotic stress, as following 2 weeks of salt treatment these lines showed less reduction in fresh and dry weight, accumulated less salt in the leaves and contained enhanced levels of the osmoprotectant amino acid, proline.
Collapse
Affiliation(s)
- Mohammed Abass
- Heriot-Watt University, School of Life Sciences, Riccarton, Edinburgh EH14 4AS, UK
| | | |
Collapse
|
17
|
Wang J, Zheng X, Lin S, Lin J, Guo L, Chen X, Chen Q. Identification of differentially expressed genes involved in laccase production in tropical white-rot fungusPolyporussp. PG15. J Basic Microbiol 2013; 54:142-51. [DOI: 10.1002/jobm.201200310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 09/29/2012] [Indexed: 01/04/2023]
Affiliation(s)
- Jie Wang
- Department of Bioengineering; College of Food Science, South China Agricultural University; Guangzhou China
| | - Xiaobing Zheng
- Department of Bioengineering; College of Food Science, South China Agricultural University; Guangzhou China
| | - Shuoxin Lin
- Chu Kochen Honors College; Zhejiang University; Hangzhou China
| | - Junfang Lin
- Department of Bioengineering; College of Food Science, South China Agricultural University; Guangzhou China
- Institute of Biomass Research; South China Agricultural University; Guangzhou China
| | - Liqiong Guo
- Department of Bioengineering; College of Food Science, South China Agricultural University; Guangzhou China
- Institute of Biomass Research; South China Agricultural University; Guangzhou China
| | - Xiaoyang Chen
- Institute of Biomass Research; South China Agricultural University; Guangzhou China
| | - Qianting Chen
- Department of Bioengineering; College of Food Science, South China Agricultural University; Guangzhou China
| |
Collapse
|
18
|
Delaunois B, Colby T, Belloy N, Conreux A, Harzen A, Baillieul F, Clément C, Schmidt J, Jeandet P, Cordelier S. Large-scale proteomic analysis of the grapevine leaf apoplastic fluid reveals mainly stress-related proteins and cell wall modifying enzymes. BMC PLANT BIOLOGY 2013; 13:24. [PMID: 23391302 PMCID: PMC3640900 DOI: 10.1186/1471-2229-13-24] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 01/31/2013] [Indexed: 05/14/2023]
Abstract
BACKGROUND The extracellular space or apoplast forms a path through the whole plant and acts as an interface with the environment. The apoplast is composed of plant cell wall and space within which apoplastic fluid provides a means of delivering molecules and facilitates intercellular communications. However, the apoplastic fluid extraction from in planta systems remains challenging and this is particularly true for grapevine (Vitis vinifera L.), a worldwide-cultivated fruit plant. Large-scale proteomic analysis reveals the protein content of the grapevine leaf apoplastic fluid and the free interactive proteome map considerably facilitates the study of the grapevine proteome. RESULTS To obtain a snapshot of the grapevine apoplastic fluid proteome, a vacuum-infiltration-centrifugation method was optimized to collect the apoplastic fluid from non-challenged grapevine leaves. Soluble apoplastic protein patterns were then compared to whole leaf soluble protein profiles by 2D-PAGE analyses. Subsequent MALDI-TOF/TOF mass spectrometry of tryptically digested protein spots was used to identify proteins. This large-scale proteomic analysis established a well-defined proteomic map of whole leaf and leaf apoplastic soluble proteins, with 223 and 177 analyzed spots, respectively. All data arising from proteomic, MS and MS/MS analyses were deposited in the public database world-2DPAGE. Prediction tools revealed a high proportion of (i) classical secreted proteins but also of non-classical secreted proteins namely Leaderless Secreted Proteins (LSPs) in the apoplastic protein content and (ii) proteins potentially involved in stress reactions and/or in cell wall metabolism. CONCLUSIONS This approach provides free online interactive reference maps annotating a large number of soluble proteins of the whole leaf and the apoplastic fluid of grapevine leaf. To our knowledge, this is the first detailed proteome study of grapevine apoplastic fluid providing a comprehensive overview of the most abundant proteins present in the apoplast of grapevine leaf that could be further characterized in order to elucidate their physiological function.
Collapse
Affiliation(s)
- Bertrand Delaunois
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Unité de Recherche Vigne et Vins de Champagne – EA 4707, Laboratoire d’Œnologie et de Chimie Appliquée, B.P. 1039, Reims, cedex 02, 51687, France
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Unité de Recherche Vigne et Vins de Champagne – EA 4707, Laboratoire de Stress, Défenses et Reproduction des Plantes, B.P. 1039, Reims, cedex 02, 51687, France
| | - Thomas Colby
- Max-Planck-Institute for Plant Breeding Research, Mass Spectrometry Group, Carl-von-Linné-Weg 10, Köln, D-50829, Germany
| | - Nicolas Belloy
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Laboratoire de Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS 6237, Plate-forme de Modélisation Moléculaire, B.P. 1039, Reims, cedex 02, 51687, France
| | - Alexandra Conreux
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Unité de Recherche Vigne et Vins de Champagne – EA 4707, Laboratoire d’Œnologie et de Chimie Appliquée, B.P. 1039, Reims, cedex 02, 51687, France
| | - Anne Harzen
- Max-Planck-Institute for Plant Breeding Research, Mass Spectrometry Group, Carl-von-Linné-Weg 10, Köln, D-50829, Germany
| | - Fabienne Baillieul
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Unité de Recherche Vigne et Vins de Champagne – EA 4707, Laboratoire de Stress, Défenses et Reproduction des Plantes, B.P. 1039, Reims, cedex 02, 51687, France
| | - Christophe Clément
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Unité de Recherche Vigne et Vins de Champagne – EA 4707, Laboratoire de Stress, Défenses et Reproduction des Plantes, B.P. 1039, Reims, cedex 02, 51687, France
| | - Jürgen Schmidt
- Max-Planck-Institute for Plant Breeding Research, Mass Spectrometry Group, Carl-von-Linné-Weg 10, Köln, D-50829, Germany
| | - Philippe Jeandet
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Unité de Recherche Vigne et Vins de Champagne – EA 4707, Laboratoire d’Œnologie et de Chimie Appliquée, B.P. 1039, Reims, cedex 02, 51687, France
| | - Sylvain Cordelier
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Unité de Recherche Vigne et Vins de Champagne – EA 4707, Laboratoire de Stress, Défenses et Reproduction des Plantes, B.P. 1039, Reims, cedex 02, 51687, France
| |
Collapse
|
19
|
Meng Y, Wise RP. HvWRKY10, HvWRKY19, and HvWRKY28 regulate Mla-triggered immunity and basal defense to barley powdery mildew. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1492-505. [PMID: 22809275 DOI: 10.1094/mpmi-04-12-0082-r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
WRKY proteins represent a large family of transcription factors (TF), involved in plant development and defense. In all, 60 unique barley TF have been annotated that contain the WRKY domain; 26 of these are represented on the Barley1 GeneChip. Time-course expression profiles of these 26 HvWRKY TF were analyzed to investigate their role in mildew locus a (Mla)-mediated immunity to Blumeria graminis f. sp. hordei, causal agent of powdery mildew disease. Inoculation-responsive, Mla-specified interactions with B. graminis f. sp. hordei revealed that 12 HvWRKY were differentially expressed: 10 highly upregulated and two significantly downregulated. Barley stripe mosaic virus-induced gene silencing of HvWRKY10, HvWRKY19, and HvWRKY28 compromised resistance-gene-mediated defense to powdery mildew in genotypes harboring both Rar1-dependent and Rar1-independent Mla alleles, indicating that these WRKY TF play key roles in effector-triggered immunity. Comprehensive yeast two-hybrid analyses, however, did not reveal a direct interaction between these three nuclear-localized WRKY TF and MLA. Transient overexpression of all three WRKY TF in single cells expressing Mlo, which encodes a negative regulator of penetration resistance, significantly decreased susceptibility. Taken together, these loss- and gain-of-function studies demonstrate that HvWRKY10, HvWRKY19, and HvWRKY28 positively regulate the barley transcriptome in response to invasion by B. graminis f. sp. hordei.
Collapse
Affiliation(s)
- Yan Meng
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA
| | | |
Collapse
|
20
|
Wei K, Chen J, Chen Y, Wu L, Xie D. Multiple-strategy analyses of ZmWRKY subgroups and functional exploration of ZmWRKY genes in pathogen responses. MOLECULAR BIOSYSTEMS 2012; 8:1940-9. [PMID: 22569521 DOI: 10.1039/c2mb05483c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The WRKY transcription factor family plays crucial roles in biotic responses, such as fungi, bacteria, viruses and nematode infections and insect attacks. In this article, multiple-strategy analyses of the three subgroups were performed in order to gain structural and evolutionary proofs of the overall WRKY family and unravel the functions possessed by each group or subgroup. Thus we analyzed the similarity of WRKY factors between maize and Arabidopsis based on homology modelling. The gene structure and motif analyses of Group II demonstrated that specific motifs existing in the given subgroups may contribute to the functional diversification of WRKY proteins and the two types of conserved intron splice sites suggest their evolutionary conservation. The evolutionary divergence time estimation of Group III proteins indicated that the divergence of Group III occurred during the Neogene period. Further, we focused on the roles of maize WRKYs in pathogen responses based on publicly available microarray experiments. The result suggested that some ZmWRKYs are expressed specifically under the infection of certain fungus, among which some are up-regulated and some are down-regulated, indicating their positive or negative roles in pathogen response. Also, some genes remain unchanged upon fungal infection. Pearson correlation coefficient (PCC) analysis was performed using 62 fungal infection experiments to calculate the correlation between each pair of genes. A PCC value higher than 0.6 was regarded as strong correlation - in these circumstances, ninety pairs of genes showed a strong positive correlation, while fifteen pairs of genes displayed a strong negative correlation. These correlated genes form a co-regulatory network and help us investigate the existence of interactions between WRKY proteins.
Collapse
Affiliation(s)
- Kaifa Wei
- Department of Biological Sciences and Biotechnology, Zhangzhou Normal University, 36 Xian Qian Zhi Street, Zhangzhou 363000, Fujian, China.
| | | | | | | | | |
Collapse
|
21
|
Li J, Ezquer I, Bahaji A, Montero M, Ovecka M, Baroja-Fernández E, Muñoz FJ, Mérida A, Almagro G, Hidalgo M, Sesma MT, Pozueta-Romero J. Microbial volatile-induced accumulation of exceptionally high levels of starch in Arabidopsis leaves is a process involving NTRC and starch synthase classes III and IV. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1165-78. [PMID: 21649509 DOI: 10.1094/mpmi-05-11-0112] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Microbial volatiles promote the accumulation of exceptionally high levels of starch in leaves. Time-course analyses of starch accumulation in Arabidopsis leaves exposed to fungal volatiles (FV) emitted by Alternaria alternata revealed that a microbial volatile-induced starch accumulation process (MIVOISAP) is due to stimulation of starch biosynthesis during illumination. The increase of starch content in illuminated leaves of FV-treated hy1/cry1, hy1/cry2, and hy1/cry1/cry2 Arabidopsis mutants was many-fold lower than that of wild-type (WT) leaves, indicating that MIVOISAP is subjected to photoreceptor-mediated control. This phenomenon was inhibited by cordycepin and accompanied by drastic changes in the Arabidopsis transcriptome. MIVOISAP was also accompanied by enhancement of the total 3-phosphoglycerate/Pi ratio, and a two- to threefold increase of the levels of the reduced form of ADP-glucose pyrophosphorylase. Using different Arabidopsis knockout mutants, we investigated the impact in MIVOISAP of downregulation of genes directly or indirectly related to starch metabolism. These analyses revealed that the magnitude of the FV-induced starch accumulation was low in mutants impaired in starch synthase (SS) classes III and IV and plastidial NADP-thioredoxin reductase C (NTRC). Thus, the overall data showed that Arabidopsis MIVOISAP involves a photocontrolled, transcriptionally and post-translationally regulated network wherein photoreceptor-, SSIII-, SSIV-, and NTRC-mediated changes in redox status of plastidial enzymes play important roles.
Collapse
Affiliation(s)
- Jun Li
- Instituto de Agrobiotecnología, Nafarroa, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bischof M, Eichmann R, Hückelhoven R. Pathogenesis-associated transcriptional patterns in Triticeae. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:9-19. [PMID: 20674077 DOI: 10.1016/j.jplph.2010.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 06/17/2010] [Accepted: 06/18/2010] [Indexed: 05/08/2023]
Abstract
The Triticeae tribe of the plant Poaceae family contains some of the most important cereal crop plants for nutrition of humans and livestock such as wheat and barley. Despite the agronomical relevance of plant immunity, knowledge on mechanisms of disease or resistance in Triticeae is limited. It is hardly understood what actually stops a microbial invader when restricted by the plant and in how far a susceptible host plant contributes to pathogenesis. Transcriptional reprogramming of the host plant may be involved in both immunity and disease. This paper gives an overview about recent analyses of global pathogenesis-related transcriptional patterns in response of Triticeae to biotrophic or non-biotrophic fungal pathogens and their toxins. It highlights enriched biological functions in association with successful plant defence or disease as well as experiments that successfully translated gene expression data into analysis of gene functions.
Collapse
Affiliation(s)
- Melanie Bischof
- Lehrstuhl für Phytopathologie, Technische Universität München, Emil-Ramann-Straße 2, Freising-Weihenstephan, Germany
| | | | | |
Collapse
|
23
|
Douchkov D, Johrde A, Nowara D, Himmelbach A, Lueck S, Niks R, Schweizer P. Convergent evidence for a role of WIR1 proteins during the interaction of barley with the powdery mildew fungus Blumeria graminis. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:20-29. [PMID: 20709427 DOI: 10.1016/j.jplph.2010.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 06/17/2010] [Accepted: 07/15/2010] [Indexed: 05/29/2023]
Abstract
Pathogen attack triggers a multifaceted defence response in plants that includes the accumulation of pathogenesis-related proteins and their corresponding transcripts. One of these transcripts encodes for WIR1, a small glycine- and proline-rich protein of unknown function that appears to be specific to grass species. Here we describe members of the HvWIR1 multigene family of barley with respect to phylogenetic relationship, transcript regulation, co-localization with quantitative trait loci for resistance to the barley powdery mildew fungus Blumeria graminis (DC.) E.O. Speer f.sp. hordei, the association of single nucleotide polymorphisms or gene haplotypes with resistance, as well as phenotypic effects of gene silencing by RNAi. HvWIR1 is encoded by a multigene family of moderate complexity that splits up into two major clades, one of those being also represented by previously described cDNA sequences from wheat. All analysed WIR1 transcripts accumulated in response to powdery mildew attack in leaves and all mapped WIR1 genes were associated with quantitative trait loci for resistance to B. graminis. Moreover, single nucleotide polymorphisms or haplotypes of WIR1 members were associated with quantitative resistance of barley to B. graminis, and transient WIR1 gene silencing affected the interaction of epidermal cells with the pathogen. The presented data provide convergent evidence for a role of the HvWIR1a gene and possibly other family members, during the interaction of barley with B. graminis.
Collapse
Affiliation(s)
- Dimitar Douchkov
- Leibniz-Institute of Plant Genetics and Crop Plant Research, Corrensstrasse 3, Gatersleben, Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
Ezquer I, Li J, Ovecka M, Baroja-Fernández E, Muñoz FJ, Montero M, Díaz de Cerio J, Hidalgo M, Sesma MT, Bahaji A, Etxeberria E, Pozueta-Romero J. Microbial volatile emissions promote accumulation of exceptionally high levels of starch in leaves in mono- and dicotyledonous plants. PLANT & CELL PHYSIOLOGY 2010; 51:1674-93. [PMID: 20739303 DOI: 10.1093/pcp/pcq126] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Microbes emit volatile compounds that affect plant growth and development. However, little or nothing is known about how microbial emissions may affect primary carbohydrate metabolism in plants. In this work we explored the effect on leaf starch metabolism of volatiles released from different microbial species ranging from Gram-negative and Gram-positive bacteria to fungi. Surprisingly, we found that all microbial species tested (including plant pathogens and species not normally interacting with plants) emitted volatiles that strongly promoted starch accumulation in leaves of both mono- and dicotyledonous plants. Starch content in leaves of plants treated for 2 d with microbial volatiles was comparable with or even higher than that of reserve organs such as potato tubers. Transcriptome and enzyme activity analyses of potato leaves exposed to volatiles emitted by Alternaria alternata revealed that starch overaccumulation was accompanied by up-regulation of sucrose synthase, invertase inhibitors, starch synthase class III and IV, starch branching enzyme and glucose-6-phosphate transporter. This phenomenon, designated as MIVOISAP (microbial volatiles-induced starch accumulation process), was also accompanied by down-regulation of acid invertase, plastidial thioredoxins, starch breakdown enzymes, proteins involved in internal amino acid provision and less well defined mechanisms involving a bacterial- type stringent response. Treatment of potato leaves with fungal volatiles also resulted in enhanced levels of sucrose, ADPglucose, UDPglucose and 3-phosphoglycerate. MIVOISAP is independent of the presence of sucrose in the culture medium and is strongly repressed by cysteine supplementation. The discovery that microbial volatiles trigger starch accumulation enhancement in leaves constitutes an unreported mechanism for the elicidation of plant carbohydrate metabolism by microbes.
Collapse
Affiliation(s)
- Ignacio Ezquer
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Mutiloako etorbidea z/g, 31192 Mutiloabeti, Nafarroa, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Eichmann R, Bischof M, Weis C, Shaw J, Lacomme C, Schweizer P, Duchkov D, Hensel G, Kumlehn J, Hückelhoven R. BAX INHIBITOR-1 is required for full susceptibility of barley to powdery mildew. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1217-27. [PMID: 20687811 DOI: 10.1094/mpmi-23-9-1217] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BAX INHIBITOR-1 (BI-1) is one of the few proteins known to have cross-kingdom conserved functions in negative control of programmed cell death. Additionally, barley BI-1 (HvBI-1) suppresses defense responses and basal resistance to the powdery mildew fungus Blumeria graminis f. sp. hordei and enhances resistance to cell death-provoking fungi when overexpressed in barley. Downregulation of HvBI-1 by transient-induced gene silencing or virus-induced gene silencing limited susceptibility to B. graminis f. sp. hordei, suggesting that HvBI-1 is a susceptibility factor toward powdery mildew. Transient silencing of BI-1 did not limit supersusceptibility induced by overexpression of MLO. Transgenic barley plants harboring an HvBI-1 RNA interference (RNAi) construct displayed lower levels of HvBI-1 transcripts and were less susceptible to powdery mildew than wild-type plants. At the cellular level, HvBI-1 RNAi plants had enhanced resistance to penetration by B. graminis f. sp. hordei. These data support a function of BI-1 in modulating cell-wall-associated defense and in establishing full compatibility of B. graminis f. sp. hordei with barley.
Collapse
Affiliation(s)
- Ruth Eichmann
- Lehrstuhl für Phytopathologie, Technische Universität München, Emil-Ramann-Strasse 2, D-85350 Freising-Weihenstephan, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Zellerhoff N, Himmelbach A, Dong W, Bieri S, Schaffrath U, Schweizer P. Nonhost resistance of barley to different fungal pathogens is associated with largely distinct, quantitative transcriptional responses. PLANT PHYSIOLOGY 2010; 152:2053-66. [PMID: 20172964 PMCID: PMC2850024 DOI: 10.1104/pp.109.151829] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 02/11/2010] [Indexed: 05/19/2023]
Abstract
Nonhost resistance protects plants against attack by the vast majority of potential pathogens, including phytopathogenic fungi. Despite its high biological importance, the molecular architecture of nonhost resistance has remained largely unexplored. Here, we describe the transcriptional responses of one particular genotype of barley (Hordeum vulgare subsp. vulgare 'Ingrid') to three different pairs of adapted (host) and nonadapted (nonhost) isolates of fungal pathogens, which belong to the genera Blumeria (powdery mildew), Puccinia (rust), and Magnaporthe (blast). Nonhost resistance against each of these pathogens was associated with changes in transcript abundance of distinct sets of nonhost-specific genes, although general (not nonhost-associated) transcriptional responses to the different pathogens overlapped considerably. The powdery mildew- and blast-induced differences in transcript abundance between host and nonhost interactions were significantly correlated with differences between a near-isogenic pair of barley lines that carry either the Mlo wild-type allele or the mutated mlo5 allele, which mediates basal resistance to powdery mildew. Moreover, during the interactions of barley with the different host or nonhost pathogens, similar patterns of overrepresented and underrepresented functional categories of genes were found. The results suggest that nonhost resistance and basal host defense of barley are functionally related and that nonhost resistance to different fungal pathogens is associated with more robust regulation of complex but largely nonoverlapping sets of pathogen-responsive genes involved in similar metabolic or signaling pathways.
Collapse
|
27
|
Shi C, Chaudhary S, Yu K, Park SJ, Navabi A, McClean PE. Identification of candidate genes associated with CBB resistance in common bean HR45 (Phaseolus vulgaris L.) using cDNA-AFLP. Mol Biol Rep 2010; 38:75-81. [PMID: 20300860 DOI: 10.1007/s11033-010-0079-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 03/05/2010] [Indexed: 12/22/2022]
Abstract
Common bacterial blight (CBB), incited by Xanthomonas axonopodis pv. phaseoli (Xap), is a serious seed-borne disease of common bean (Phaseolus vulgaris L.) in both temperate and tropical production zones. The line HR45 is highly resistant to Xap infection on leaves and pods in both field and greenhouse. To understand the molecular mechanisms underlying CBB resistance in HR45, cDNA-amplified fragment length polymorphism (AFLP) technique was used to identify the genes that are differentially expressed in the leaves of HR45 at different time-periods after inoculation. Selective amplifications with 34 primer combinations allowed the visualization of 2,448 transcript-derived fragments (TDFs) in infected leaves, and 259 (10.6%) of them were differentially expressed TDFs (DE-TDFs). Seventy-seven of the DE-TDFs were cloned and sequenced. Thirty-nine of the 77 (50.6%) DE-TDFs representing bean transcripts were not previously reported in any EST database. The expression patterns of 10 representative DE-TDFs were further confirmed by real-time RT-PCR. BLAST analysis suggested that 40% (31 of 77) of the DE-TDFs were homologous to the genes related to metabolism, photosynthesis, and cellular transport, whereas 28% (22 of 77) of the DE-TDFs showed homology to the genes involved in defence response, response to stimulus, enzyme regulation, and transcription regulation. Thus, the 22 pathogenesis-related DE-TDFs were selected as potential functional candidate genes (FCGs) in association with CBB resistance. Meanwhile, six of the DE-TDFs (1FCG and five other DE-TDFs) were in silico mapped to the distal region of the bean linkage group B6 (the genomic location containing the major CBB resistance QTL in HR45) and, therefore, were considered as positional candidate genes (PCGs). This study represents a first step towards the discovery of bean genes expressed upon Xap infection. This information will be useful for elucidating the molecular basis of the resistance response process and identifying the genes that underlie the CBB-resistance.
Collapse
Affiliation(s)
- Chun Shi
- Greenhouse and Processing Crops Research Centre, Agriculture and Agri-Food Canada, Harrow, ON, N0R 1G0, Canada
| | | | | | | | | | | |
Collapse
|
28
|
Himmelbach A, Liu L, Zierold U, Altschmied L, Maucher H, Beier F, Müller D, Hensel G, Heise A, Schützendübel A, Kumlehn J, Schweizer P. Promoters of the barley germin-like GER4 gene cluster enable strong transgene expression in response to pathogen attack. THE PLANT CELL 2010; 22:937-52. [PMID: 20305123 PMCID: PMC2861458 DOI: 10.1105/tpc.109.067934] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Immunity of plants triggered by pathogen-associated molecular patterns (PAMPs) is based on the execution of an evolutionarily conserved defense response that includes the accumulation of pathogenesis-related (PR) proteins as well as multiple other defenses. The most abundant PR transcript of barley (Hordeum vulgare) leaf epidermis attacked by the powdery mildew fungus Blumeria graminis f. sp hordei encodes the germin-like protein GER4, which has superoxide dismutase activity and functions in PAMP-triggered immunity. Here, we show that barley GER4 is encoded by a dense cluster of tandemly duplicated genes (GER4a-h) that underwent several cycles of duplication. The genomic organization of the GER4 locus also provides evidence for repeated gene birth and death cycles. The GER4 promoters contain multiple WRKY factor binding sites (W-boxes) preferentially located in promoter fragments that were exchanged between subfamily members by gene conversion. Mutational analysis of TATA-box proximal W-boxes used GER4c promoter-beta-glucuronidase fusions to reveal their enhancing effects and functional redundancy on pathogen-induced promoter activity. The data suggest enhanced transcript dosage as an evolutionary driving force for the local expansion and functional redundancy of the GER4 locus. In addition, the GER4c promoter provides a tool to study signal transduction of PAMP-triggered immunity and to engineer strictly localized and pathogen-regulated disease resistance in transgenic cereal crops.
Collapse
Affiliation(s)
- Axel Himmelbach
- Leibniz-Institute of Plant Genetics and Crop Plant Research, 06466-Gatersleben, Germany
| | - Luo Liu
- Leibniz-Institute of Plant Genetics and Crop Plant Research, 06466-Gatersleben, Germany
| | - Uwe Zierold
- Leibniz-Institute of Plant Genetics and Crop Plant Research, 06466-Gatersleben, Germany
| | - Lothar Altschmied
- Leibniz-Institute of Plant Genetics and Crop Plant Research, 06466-Gatersleben, Germany
| | - Helmut Maucher
- Leibniz-Institute of Plant Genetics and Crop Plant Research, 06466-Gatersleben, Germany
| | - Franziska Beier
- Leibniz-Institute of Plant Genetics and Crop Plant Research, 06466-Gatersleben, Germany
| | - Doreen Müller
- Leibniz-Institute of Plant Genetics and Crop Plant Research, 06466-Gatersleben, Germany
| | - Götz Hensel
- Leibniz-Institute of Plant Genetics and Crop Plant Research, 06466-Gatersleben, Germany
| | - Andreas Heise
- BASF Plant Science Company, D-67117 Limburgerhof, Germany
| | - Andres Schützendübel
- Division of Plant Pathology and Crop Protection, Department of Crop Sciences, University of Göttingen, D-37077 Göttingen, Germany
| | - Jochen Kumlehn
- Leibniz-Institute of Plant Genetics and Crop Plant Research, 06466-Gatersleben, Germany
| | - Patrick Schweizer
- Leibniz-Institute of Plant Genetics and Crop Plant Research, 06466-Gatersleben, Germany
- Address correspondence to
| |
Collapse
|
29
|
Aghnoum R, Marcel TC, Johrde A, Pecchioni N, Schweizer P, Niks RE. Basal host resistance of barley to powdery mildew: connecting quantitative trait Loci and candidate genes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:91-102. [PMID: 19958142 DOI: 10.1094/mpmi-23-1-0091] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The basal resistance of barley to powdery mildew (Blumeria graminis f. sp. hordei) is a quantitatively inherited trait that is based on nonhypersensitive mechanisms of defense. A functional genomic approach indicates that many plant candidate genes are involved in the defense against formation of fungal haustoria. It is not known which of these candidate genes have allelic variation that contributes to the natural variation in powdery mildew resistance, because many of them may be highly conserved within the barley species and may act downstream of the basal resistance reaction. Twenty-two expressed sequence tag or cDNA clone sequences that are likely to play a role in the barley-Blumeria interaction based on transcriptional profiling, gene silencing, or overexpression data, as well as mlo, Ror1, and Ror2, were mapped and considered candidate genes for contribution to basal resistance. We mapped the quantitative trait loci (QTL) for powdery mildew resistance in six mapping populations of barley at seedling and adult plant stages and developed an improved high-density integrated genetic map containing 6,990 markers for comparing QTL and candidate gene positions over mapping populations. We mapped 12 QTL at seedling stage and 13 QTL at adult plant stage, of which four were in common between the two developmental stages. Six of the candidate genes showed coincidence in their map positions with the QTL identified for basal resistance to powdery mildew. This co-localization justifies giving priority to those six candidate genes to validate them as being responsible for the phenotypic effects of the QTL for basal resistance.
Collapse
Affiliation(s)
- Reza Aghnoum
- Laboratory of Plant Breeding, Graduate School for Experimental Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
30
|
Swiecicka M, Filipecki M, Lont D, Van Vliet J, Qin L, Goverse A, Bakker J, Helder J. Dynamics in the tomato root transcriptome on infection with the potato cyst nematode Globodera rostochiensis. MOLECULAR PLANT PATHOLOGY 2009; 10:487-500. [PMID: 19523102 PMCID: PMC6640267 DOI: 10.1111/j.1364-3703.2009.00550.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plant parasitic nematodes infect roots and trigger the formation of specialized feeding sites by substantial reprogramming of the developmental process of root cells. In this article, we describe the dynamic changes in the tomato root transcriptome during early interactions with the potato cyst nematode Globodera rostochiensis. Using amplified fragment length polymorphism-based mRNA fingerprinting (cDNA-AFLP), we monitored 17 600 transcript-derived fragments (TDFs) in infected and uninfected tomato roots, 1-14 days after inoculation with nematode larvae. Six hundred and twenty-four TDFs (3.5%) showed significant differential expression on nematode infection. We employed GenEST, a computer program which links gene expression profiles generated by cDNA-AFLP and databases of cDNA sequences, to identify 135 tomato sequences. These sequences were grouped into eight functional categories based on the presence of genes involved in hormone regulation, plant pathogen defence response, cell cycle and cytoskeleton regulation, cell wall modification, cellular signalling, transcriptional regulation, primary metabolism and allocation. The presence of unclassified genes was also taken into consideration. This article describes the responsiveness of numerous tomato genes hitherto uncharacterized during infection with endoparasitic cyst nematodes. The analysis of transcriptome profiles allowed the sequential order of expression to be dissected for many groups of genes and the genes to be connected with the biological processes involved in compatible interactions between the plant and nematode.
Collapse
Affiliation(s)
- Magdalena Swiecicka
- Department of Plant Genetics Breeding and Biotechnology, Warsaw University of Life Sciences, Poland
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Wang X, Tang C, Zhang G, Li Y, Wang C, Liu B, Qu Z, Zhao J, Han Q, Huang L, Chen X, Kang Z. cDNA-AFLP analysis reveals differential gene expression in compatible interaction of wheat challenged with Puccinia striiformis f. sp. tritici. BMC Genomics 2009; 10:289. [PMID: 19566949 PMCID: PMC2717123 DOI: 10.1186/1471-2164-10-289] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 06/30/2009] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Puccinia striiformis f. sp. tritici is a fungal pathogen causing stripe rust, one of the most important wheat diseases worldwide. The fungus is strictly biotrophic and thus, completely dependent on living host cells for its reproduction, which makes it difficult to study genes of the pathogen. In spite of its economic importance, little is known about the molecular basis of compatible interaction between the pathogen and wheat host. In this study, we identified wheat and P. striiformis genes associated with the infection process by conducting a large-scale transcriptomic analysis using cDNA-AFLP. RESULTS Of the total 54,912 transcript derived fragments (TDFs) obtained using cDNA-AFLP with 64 primer pairs, 2,306 (4.2%) displayed altered expression patterns after inoculation, of which 966 showed up-regulated and 1,340 down-regulated. 186 TDFs produced reliable sequences after sequencing of 208 TDFs selected, of which 74 (40%) had known functions through BLAST searching the GenBank database. Majority of the latter group had predicted gene products involved in energy (13%), signal transduction (5.4%), disease/defence (5.9%) and metabolism (5% of the sequenced TDFs). BLAST searching of the wheat stem rust fungus genome database identified 18 TDFs possibly from the stripe rust pathogen, of which 9 were validated of the pathogen origin using PCR-based assays followed by sequencing confirmation. Of the 186 reliable TDFs, 29 homologous to genes known to play a role in disease/defense, signal transduction or uncharacterized genes were further selected for validation of cDNA-AFLP expression patterns using qRT-PCR analyses. Results confirmed the altered expression patterns of 28 (96.5%) genes revealed by the cDNA-AFLP technique. CONCLUSION The results show that cDNA-AFLP is a reliable technique for studying expression patterns of genes involved in the wheat-stripe rust interactions. Genes involved in compatible interactions between wheat and the stripe rust pathogen were identified and their expression patterns were determined. The present study should be helpful in elucidating the molecular basis of the infection process, and identifying genes that can be targeted for inhibiting the growth and reproduction of the pathogen. Moreover, this study can also be used to elucidate the defence responses of the genes that were of plant origin.
Collapse
Affiliation(s)
- Xiaojie Wang
- College of Plant Protection and Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Chunlei Tang
- College of Plant Protection and Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Gang Zhang
- College of Plant Protection and Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yingchun Li
- College of Plant Protection and Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Chenfang Wang
- College of Plant Protection and Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Bo Liu
- College of Plant Protection and Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Zhipeng Qu
- College of Plant Protection and Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jie Zhao
- College of Plant Protection and Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Qingmei Han
- College of Plant Protection and Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Lili Huang
- College of Plant Protection and Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Xianming Chen
- USDA-ARS and Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
| | - Zhensheng Kang
- College of Plant Protection and Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| |
Collapse
|
32
|
Yang B, Jiang Y, Rahman MH, Deyholos MK, Kav NNV. Identification and expression analysis of WRKY transcription factor genes in canola (Brassica napus L.) in response to fungal pathogens and hormone treatments. BMC PLANT BIOLOGY 2009; 9:68. [PMID: 19493335 PMCID: PMC2698848 DOI: 10.1186/1471-2229-9-68] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 06/03/2009] [Indexed: 05/18/2023]
Abstract
BACKGROUND Members of plant WRKY transcription factor families are widely implicated in defense responses and various other physiological processes. For canola (Brassica napus L.), no WRKY genes have been described in detail. Because of the economic importance of this crop, and its evolutionary relationship to Arabidopsis thaliana, we sought to characterize a subset of canola WRKY genes in the context of pathogen and hormone responses. RESULTS In this study, we identified 46 WRKY genes from canola by mining the expressed sequence tag (EST) database and cloned cDNA sequences of 38 BnWRKYs. A phylogenetic tree was constructed using the conserved WRKY domain amino acid sequences, which demonstrated that BnWRKYs can be divided into three major groups. We further compared BnWRKYs to the 72 WRKY genes from Arabidopsis and 91 WRKY from rice, and we identified 46 presumptive orthologs of AtWRKY genes. We examined the subcellular localization of four BnWRKY proteins using green fluorescent protein (GFP) and we observed the fluorescent green signals in the nucleus only.The responses of 16 selected BnWRKY genes to two fungal pathogens, Sclerotinia sclerotiorum and Alternaria brassicae, were analyzed by quantitative real time-PCR (qRT-PCR). Transcript abundance of 13 BnWRKY genes changed significantly following pathogen challenge: transcripts of 10 WRKYs increased in abundance, two WRKY transcripts decreased after infection, and one decreased at 12 h post-infection but increased later on (72 h). We also observed that transcript abundance of 13/16 BnWRKY genes was responsive to one or more hormones, including abscisic acid (ABA), and cytokinin (6-benzylaminopurine, BAP) and the defense signaling molecules jasmonic acid (JA), salicylic acid (SA), and ethylene (ET). We compared these transcript expression patterns to those previously described for presumptive orthologs of these genes in Arabidopsis and rice, and observed both similarities and differences in expression patterns. CONCLUSION We identified a set of 13 BnWRKY genes from among 16 BnWRKY genes assayed, that are responsive to both fungal pathogens and hormone treatments, suggesting shared signaling mechanisms for these responses. This study suggests that a large number of BnWRKY proteins are involved in the transcriptional regulation of defense-related genes in response to fungal pathogens and hormone stimuli.
Collapse
Affiliation(s)
- Bo Yang
- Department of Agricultural, Food and Nutritional Science, Edmonton, Alberta T6G 2P5, Canada
| | - Yuanqing Jiang
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Muhammad H Rahman
- Department of Agricultural, Food and Nutritional Science, Edmonton, Alberta T6G 2P5, Canada
| | - Michael K Deyholos
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Nat NV Kav
- Department of Agricultural, Food and Nutritional Science, Edmonton, Alberta T6G 2P5, Canada
| |
Collapse
|
33
|
Chapman NH, Burt C, Nicholson P. The identification of candidate genes associated with Pch2 eyespot resistance in wheat using cDNA-AFLP. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 118:1045-57. [PMID: 19183860 DOI: 10.1007/s00122-009-0961-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2008] [Accepted: 01/06/2009] [Indexed: 05/11/2023]
Abstract
Eyespot is a fungal disease of the stem base of cereal crops and causes lodging and the premature ripening of grain. Wheat cultivar Cappelle Desprez contains a highly durable eyespot resistance gene, Pch2 on the long arm of chromosome 7A. A cDNA-amplified fragment length polymorphism (AFLP) platform was used to identify genes differentially expressed between the eyespot susceptible variety Chinese Spring (CS) and the CS chromosome substitution line Cappelle Desprez 7A (CS/CD7A) which contains Pch2. Induced and constitutive gene expression was examined to compare differences between non-infected and plants infected with Oculimacula acuformis. Only 34 of approximately 4,700 cDNA-AFLP fragments were differentially expressed between CS and CS/CD7A. Clones were obtained for 29 fragments, of which four had homology to proteins involved with plant defence responses. Fourteen clones mapped to chromosome 7A and three of these mapped in the region of Pch2 making them putative candidates for involvement in eyespot resistance. Of particular importance are two fragments; 4CD7A8 and 19CD7A4, which have homology to an Oryza sativa putative callose synthase protein and a putative cereal cyst nematode NBS-LRR disease resistance protein (RCCN) respectively. Differential expression associated with Pch2 was examined by semi-quantitative RT-PCR. Of those genes tested, only four were differentially expressed at 14 days post inoculation. We therefore suggest that a majority of the differences in the cDNA-AFLP profiles are due to allelic polymorphisms between CS and CD alleles rather than differences in expression.
Collapse
Affiliation(s)
- Natalie H Chapman
- John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UH, UK.
| | | | | |
Collapse
|
34
|
Steiner B, Kurz H, Lemmens M, Buerstmayr H. Differential gene expression of related wheat lines with contrasting levels of head blight resistance after Fusarium graminearum inoculation. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 118:753-64. [PMID: 19082576 PMCID: PMC3194064 DOI: 10.1007/s00122-008-0935-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 11/13/2008] [Indexed: 05/18/2023]
Abstract
Fusarium head blight (FHB) is a devastating disease of wheat. Molecular mapping led to the identification of two major FHB resistance QTL, Fhb1 and Qfhs.ifa-5A. The actual function of these resistance genes is still unknown. The resistant line CM82036, the susceptible line Remus and two sister lines from the cross CM82036/Remus were analysed for gene expression. The sister lines show contrasting levels of FHB resistance due to the presence or absence of resistance alleles at Fhb1 and Qfhs.ifa-5A. At anthesis plants were challenged by Fusarium graminearum or water under controlled conditions. At six-time points after inoculation (0-72 h) gene expression of specific wheat floral tissue was analysed by cDNA-AFLPs in two biological replications. Altered expression patterns after F. graminearum inoculation were observed for 164 transcript-derived fragments (TDFs), corresponding to 3.4% of the analysed fragments. Fourteen TDFs, 0.28% of the total analysed fragments, displayed differential expression after fungal attack depending on the genotype; five of these TDFs were differentially expressed between the sister lines and are possibly associated with the possession of Fhb1 and Qfhs-ifa-5A and the FHB resistance level of the genotypes. Sequencing and annotation of these gene tags revealed homologies to a UDP-glucosyltransferase, phenylalanine ammonia-lyase, Dna-J like protein, pathogenesis-related family protein and to one gene with unknown function providing initial clues for guiding further functional studies on the resistance reaction of wheat against FHB. This work is the first report on differential gene expression between related, resistant and susceptible, wheat lines after F. graminearum attack.
Collapse
Affiliation(s)
- Barbara Steiner
- University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | | | | | | |
Collapse
|
35
|
Levée V, Major I, Levasseur C, Tremblay L, MacKay J, Séguin A. Expression profiling and functional analysis of Populus WRKY23 reveals a regulatory role in defense. THE NEW PHYTOLOGIST 2009; 184:48-70. [PMID: 19674332 DOI: 10.1111/j.1469-8137.2009.02955.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
WRKY transcription factors are key regulators that activate and fine-tune stress responses, including defense responses against pathogens. We isolated a poplar (Populus tremulaxPopulus alba) cDNA sequence, PtWRKY23, that encodes the ortholog of Arabidopsis WRKY23 and present the functional analysis of WRKY23, with emphasis on its potential role in resistance to rust infection. To investigate the function of PtWRKY23, we examined PtWRKY23 expression after stress treatments by qRT-PCR and generated PtWRKY23-misexpressing plants. Transgenic plants were assessed for resistance to Melampsora rust and were analyzed using the poplar Affymetrix GeneChip and histological techniques to study the consequences of PtWRKY23 misexpression. PtWRKY23 is rapidly induced by Melampsora infection and elicitor treatments and poplars overexpressing and underexpressing PtWRKY23 were both more susceptible to Melampsora infection than wild type. Transcriptome analysis of PtWRKY23 overexpressors revealed a significant overlap with the Melampsora-infection response. Transcriptome analysis also suggests that PtWRKY23 affects redox homeostasis and cell wall-related metabolism, which was confirmed by analyses that showed that PtWRKY23-misexpressing plants have altered peroxidase activity, apparent H(2)O(2) accumulation and lignin deposition. Our results show that PtWRKY23 affects resistance to Melampsora infection and that this may be caused by deregulation of genes that disrupt redox homeostasis and cell wall metabolism.
Collapse
Affiliation(s)
- Valérie Levée
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., PO Box 10380, Stn Sainte-Foy, Québec, Quebec, Canada G1V 4C7
| | - Ian Major
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., PO Box 10380, Stn Sainte-Foy, Québec, Quebec, Canada G1V 4C7
| | - Caroline Levasseur
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., PO Box 10380, Stn Sainte-Foy, Québec, Quebec, Canada G1V 4C7
| | - Laurence Tremblay
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., PO Box 10380, Stn Sainte-Foy, Québec, Quebec, Canada G1V 4C7
| | - John MacKay
- Faculté de foresterie et de géomatique, Université Laval, Pavillon Charles-Eugène-Marchand, Québec, Quebec, Canada G1K 7P4
| | - Armand Séguin
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., PO Box 10380, Stn Sainte-Foy, Québec, Quebec, Canada G1V 4C7
| |
Collapse
|
36
|
Encinas-Villarejo S, Maldonado AM, Amil-Ruiz F, de los Santos B, Romero F, Pliego-Alfaro F, Muñoz-Blanco J, Caballero JL. Evidence for a positive regulatory role of strawberry (Fragaria x ananassa) Fa WRKY1 and Arabidopsis At WRKY75 proteins in resistance. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:3043-65. [PMID: 19470657 DOI: 10.1093/jxb/erp152] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Knowledge of the molecular basis of plant resistance to pathogens in species other than Arabidopsis is limited. The function of Fa WRKY1, the first WRKY gene isolated from strawberry (Fragaria x ananassa), an important agronomical fruit crop, has been investigated here. Fa WRKY1 encodes a IIc WRKY transcription factor and is up-regulated in strawberry following Colletotrichum acutatum infection, treatments with elicitors, and wounding. Its Arabidopsis sequence homologue, At WRKY75, has been described as playing a role in regulating phosphate starvation responses. However, using T-DNA insertion mutants, a role for the At WRKY75 and Fa WRKY1 in the activation of basal and R-mediated resistance in Arabidopsis is demonstrated. At wrky75 mutants are more susceptible to virulent and avirulent isolates of Pseudomonas syringae. Overexpression of Fa WRKY1 in At wrky75 mutant and wild type reverts the enhanced susceptible phenotype of the mutant, and even increases resistance to avirulent strains of P. syringae. The resistance phenotype is uncoupled to PATHOGENESIS-RELATED (PR) gene expression, but it is associated with a strong oxidative burst and glutathione-S-transferase (GST) induction. Taken together, these results indicate that At WRKY75 and Fa WRKY1 act as positive regulators of defence during compatible and incompatible interactions in Arabidopsis and, very likely, Fa WRKY1 is an important element mediating defence responses to C. acutatum in strawberry. Moreover, these results provide evidence that Arabidopsis can be a useful model for functional studies in Rosacea species like strawberry.
Collapse
Affiliation(s)
- Sonia Encinas-Villarejo
- Departamento de Bioquímica y Biología Molecular e Instituto Andaluz de Biotecnología, Campus de Rabanales, Edificio Severo Ochoa (C-6), Universidad de Córdoba, E-14071 Córdoba, Spain
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Gaupels F, Buhtz A, Knauer T, Deshmukh S, Waller F, van Bel AJE, Kogel KH, Kehr J. Adaptation of aphid stylectomy for analyses of proteins and mRNAs in barley phloem sap. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:3297-306. [PMID: 18632729 PMCID: PMC2529238 DOI: 10.1093/jxb/ern181] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 06/03/2008] [Accepted: 06/16/2008] [Indexed: 05/18/2023]
Abstract
Sieve tubes are transport conduits not only for photoassimilates but also for macromolecules and other compounds that are involved in sieve tube maintenance and systemic signalling. In order to gain sufficient amounts of pure phloem exudates from barley plants for analyses of the protein and mRNA composition, a previously described stylectomy set-up was optimized. Aphids were placed in sealed cages, which, immediately after microcauterization of the stylets, were flooded with water-saturated silicon oil. The exuding phloem sap was collected with a capillary connected to a pump. Using up to 30 plants and 600 aphids (Rhopalosiphum padi) in parallel, an average of 10 mul of phloem sap could be obtained within 6 h of sampling. In first analyses of the macromolecular content, eight so far unknown phloem mRNAs were identified by cDNA-amplified fragment length polymorphism. Transcripts in barley phloem exudates are related to metabolism, signalling, and pathogen defence, for example coding for a protein kinase and a pathogen- and insect-responsive WIR1A (wheat-induced resistance 1A)-like protein. Further, one-dimensional gel electrophoresis and subsequent partial sequencing by mass spectrometry led to the identification of seven major proteins with putative functions in stress responses and transport of mRNAs, proteins, and sugars. Two of the discovered proteins probably represent isoforms of a new phloem-mobile sucrose transporter. Notably, two-dimensional electrophoresis confirmed that there are >250 phloem proteins awaiting identification in future studies.
Collapse
Affiliation(s)
- Frank Gaupels
- Institute of Phytopathology and Applied Zoology, IFZ, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Xing DH, Lai ZB, Zheng ZY, Vinod KM, Fan BF, Chen ZX. Stress- and pathogen-induced Arabidopsis WRKY48 is a transcriptional activator that represses plant basal defense. MOLECULAR PLANT 2008; 1:459-70. [PMID: 19825553 DOI: 10.1093/mp/ssn020] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plant WRKY transcription factors can function as either positive or negative regulators of plant basal disease resistance. Arabidopsis WRKY48 is induced by mechanical and/or osmotic stress due to infiltration and pathogen infection and, therefore, may play a role in plant defense responses. WRKY48 is localized to the nucleus, recognizes the TTGACC W-box sequence with a high affinity in vitro and functions in plant cells as a strong transcriptional activator. To determine the biological functions directly, we have isolated loss-of-function T-DNA insertion mutants and generated gain-of-function transgenic overexpression plants for WRKY48 in Arabidopsis. Growth of a virulent strain of the bacterial pathogen Pseudomonas syringae was decreased in the wrky48 T-DNA insertion mutants. The enhanced resistance of the loss-of-function mutants was associated with increased induction of salicylic acid-regulated PR1 by the bacterial pathogen. By contrast, transgenic WRKY48-overexpressing plants support enhanced growth of P. syringae and the enhanced susceptibility was associated with reduced expression of defense-related PR genes. These results suggest that WRKY48 is a negative regulator of PR gene expression and basal resistance to the bacterial pathogen P. syringae.
Collapse
Affiliation(s)
- Deng-Hui Xing
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907-2054, USA
| | | | | | | | | | | |
Collapse
|
39
|
cDNA-AFLP analysis of plant and pathogen genes expressed in grapevine infected with Plasmopara viticola. BMC Genomics 2008; 9:142. [PMID: 18366764 PMCID: PMC2292706 DOI: 10.1186/1471-2164-9-142] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Accepted: 03/26/2008] [Indexed: 01/15/2023] Open
Abstract
Background The oomycete Plasmopara viticola (Berk. and Curt.) Berl. and de Toni causes downy mildew in grapevine (Vitis vinifera L.). This pathogen is strictly biotrophic, thus completely dependent on living host cells for its survival. The molecular basis of compatibility and disease development in this system is poorly understood. We have carried out a large-scale cDNA-AFLP analysis to identify grapevine and P. viticola genes associated with the infection process. Results We carried out cDNA-AFLP analysis on artificially infected leaves of the susceptible cultivar Riesling at the oil spot stage, on water-treated leaves and on a sample of pure sporangia as controls. Selective amplifications with 128 primer combinations allowed the visualization of about 7000 transcript-derived fragments (TDFs) in infected leaves, 1196 of which (17%) were differentially expressed. We sequenced 984 fragments, 804 of which were identified as grapevine transcripts after homology searching, while 96 were homologous to sequences in Phytophthora spp. databases and were attributed to P. viticola. There were 82 orphan TDFs. Many grapevine genes spanning almost all functional categories were downregulated during infection, especially genes involved in photosynthesis. Grapevine genes homologous to known resistance genes also tended to be repressed, as were several resistance gene analogs and carbonic anhydrase (recently implicated in pathogen resistance). In contrast, genes encoding cytoskeletal components, enzymes of the phenylpropanoid and beta-oxidation pathways, and pathogenesis related proteins were primarily upregulated during infection. The majority of P. viticola transcripts expressed in planta showed homology to genes of unknown function or to genomic Phytophthora sequences, but genes related to metabolism, energy production, transport and signal transduction were also identified. Conclusion This study provides the first global catalogue of grapevine and P. viticola genes expressed during infection, together with their functional annotations. This will help to elucidate the molecular basis of the infection process and identify genes and chemicals that could help to inhibit the pathogen.
Collapse
|
40
|
Mallard S, Nègre S, Pouya S, Gaudet D, Lu ZX, Dedryver F. Adult plant resistance-related gene expression in 'Camp Remy' wheat inoculated with Puccinia striiformis. MOLECULAR PLANT PATHOLOGY 2008; 9:213-25. [PMID: 18705853 PMCID: PMC6640271 DOI: 10.1111/j.1364-3703.2007.00459.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The French wheat variety 'Camp Remy' (CR) possesses a durable, adult plant resistance to yellow rust (YR), caused by the pathogen Puccinia striiformis. Using cDNA-AFLP on different sets of heterogeneous inbred families (HIFs) derived from the cross CR x Récital, we compared gene expression profiles during one seedling and two adult developmental stages following inoculation with P. striiformis. Transcripts differentially expressed in response to YR infection were isolated and cloned. Sequence analysis of the resultant clones revealed several classes of putative genes, including those related to resistance/defence responses, transcription and signal transduction, and primary metabolism. The expression profiles of seven selected genes were obtained using real-time PCR in CR leaves at the same three stages of development. The results confirmed the stage-specific expression of the genes at one or two specific stages in response to P. striiformis infection and demonstrated that CR modifies the expression of some resistance/defence-related genes during its transition from the seedling to adult growth stages. These results provided the first clue to understand the molecular basis of quantitative trait loci for adult plant resistance to YR and connect it with durability.
Collapse
Affiliation(s)
- Stéphanie Mallard
- INRA, Agrocampus Rennes, UMR118, Amélioration des Plantes et Biotechnologies Végétales, 35650 Le Rheu, France
| | | | | | | | | | | |
Collapse
|
41
|
Hensel G, Valkov V, Middlefell-Williams J, Kumlehn J. Efficient generation of transgenic barley: the way forward to modulate plant-microbe interactions. JOURNAL OF PLANT PHYSIOLOGY 2008; 165:71-82. [PMID: 17905476 DOI: 10.1016/j.jplph.2007.06.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 06/06/2007] [Accepted: 06/10/2007] [Indexed: 05/03/2023]
Abstract
Stable genetic transformation represents the gold standard approach to the detailed elucidation of plant gene functions. This is particularly relevant in barley, an important experimental model widely employed in applied molecular, genetic and cell biological research, and biotechnology. Presented are details of the establishment of a protocol for Agrobacterium-mediated gene transfer to immature embryos, which enables the highly efficient generation of transgenic barley. Advancements were achieved through comparative experiments on the influence of various explant treatments and co-cultivation conditions. The analysis of representative numbers of transgenic lines revealed that the obtained T-DNA copy numbers are typically low, the generative transmission of the recombinant DNA is in accordance with the Mendelian rules and the vast majority of the primary transgenics produce progeny that expresses the respective transgene product. Moreover, the newly established protocol turned out to be useful to transform not only the highly amenable cultivar (cv.) 'Golden Promise' but also other spring and winter barley genotypes, albeit with substantially lower efficiency. As a major result of this study, a very useful tool is now available for future functional gene analyses as well as genetic engineering approaches. With the aim to modify the expression of barley genes putatively involved in plant-fungus interactions, numerous transgenic plants have been generated using diverse expression cassettes. These plants represent an example of how transformation technology may contribute to further our understanding of important biological processes.
Collapse
Affiliation(s)
- Goetz Hensel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Plant Reproductive Biology, Corrensstr. 3, 06466 Gatersleben, Germany.
| | | | | | | |
Collapse
|
42
|
Micali C, Göllner K, Humphry M, Consonni C, Panstruga R. The Powdery Mildew Disease of Arabidopsis: A Paradigm for the Interaction between Plants and Biotrophic Fungi. THE ARABIDOPSIS BOOK 2008; 6:e0115. [PMID: 22303240 PMCID: PMC3243333 DOI: 10.1199/tab.0115] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The powdery mildew diseases, caused by fungal species of the Erysiphales, have an important economic impact on a variety of plant species and have driven basic and applied research efforts in the field of phytopathology for many years. Although the first taxonomic reports on the Erysiphales date back to the 1850's, advances into the molecular biology of these fungal species have been hampered by their obligate biotrophic nature and difficulties associated with their cultivation and genetic manipulation in the laboratory. The discovery in the 1990's of a few species of powdery mildew fungi that cause disease on Arabidopsis has opened a new chapter in this research field. The great advantages of working with a model plant species have translated into remarkable progress in our understanding of these complex pathogens and their interaction with the plant host. Herein we summarize advances in the study of Arabidopsis-powdery mildew interactions and discuss their implications for the general field of plant pathology. We provide an overview of the life cycle of the pathogens on Arabidopsis and describe the structural and functional changes that occur during infection in the host and fungus in compatible and incompatible interactions, with special emphasis on defense signaling, resistance pathways, and compatibility factors. Finally, we discuss the future of powdery mildew research in anticipation of the sequencing of multiple powdery mildew genomes. The cumulative body of knowledge on powdery mildews of Arabidopsis provides a valuable tool for the study and understanding of disease associated with many other obligate biotrophic pathogen species.
Collapse
Affiliation(s)
- Cristina Micali
- Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | - Katharina Göllner
- Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | - Matt Humphry
- Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | - Chiara Consonni
- Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | - Ralph Panstruga
- Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Carl-von-Linné-Weg 10, 50829 Köln, Germany
- Address correspondence to
| |
Collapse
|
43
|
Eichmann R, Hückelhoven R. Accommodation of powdery mildew fungi in intact plant cells. JOURNAL OF PLANT PHYSIOLOGY 2008; 165:5-18. [PMID: 17602788 DOI: 10.1016/j.jplph.2007.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 05/08/2007] [Accepted: 05/09/2007] [Indexed: 05/10/2023]
Abstract
Parasitic powdery mildew fungi have to overcome basic resistance and manipulate host cells to establish a haustorium as a functional feeding organ in a host epidermal cell. Currently, it is of central interest how plant factors negatively regulate basal defense or whether they even support fungal development in compatible interactions. Additionally, creation of a metabolic sink in infected cells may involve host activity. Here, we review the current progress in understanding potential fungal targets for host reprogramming and nutrient acquisition.
Collapse
Affiliation(s)
- Ruth Eichmann
- Technical University of Munich, Chair of Phytopathology, Am Hochanger 2, D-85350 Freising, Germany.
| | | |
Collapse
|
44
|
Bhadauria V, Popescu L, Zhao WS, Peng YL. Fungal transcriptomics. Microbiol Res 2007; 162:285-98. [PMID: 17707620 DOI: 10.1016/j.micres.2007.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 06/20/2007] [Accepted: 06/21/2007] [Indexed: 10/22/2022]
Abstract
We have now entered in the post-genomic era, where we have knowledge of plethora of fungal genomes and cutting edge technology is available to study global mRNA, protein and metabolite profiles. These so-called 'omic' technologies (transcriptomics, proteomics and metabolomics) provide the possibility to characterize plant-pathogen interactions and pathogenesis at molecular level. This article provides an overview of transcriptomics and its applications in fungal plant pathology.
Collapse
Affiliation(s)
- Vijai Bhadauria
- The MOA Key Laboratory of Molecular Plant Pathology, Department of Plant Pathology, China Agricultural University, Beijing 100094, China
| | | | | | | |
Collapse
|
45
|
Vuylsteke M, Peleman JD, van Eijk MJT. AFLP-based transcript profiling (cDNA-AFLP) for genome-wide expression analysis. Nat Protoc 2007; 2:1399-413. [PMID: 17545977 DOI: 10.1038/nprot.2007.174] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Although DNA microarrays are currently the standard tool for genome-wide expression analysis, their application is limited to organisms for which the complete genome sequence or large collections of known transcript sequences are available. Here, we describe a protocol for cDNA-AFLP, an AFLP-based transcript profiling method that allows genome-wide expression analysis in any species without the need for prior sequence knowledge. In essence, the cDNA-AFLP method involves reverse transcription of mRNA into double-stranded cDNA, followed by restriction digestion, ligation of specific adapters and fractionation of this mixture of cDNA fragments into smaller subsets by selective PCR amplification. The resulting cDNA-AFLP fragments are separated on high-resolution gels, and visualization of cDNA-AFLP fingerprints is described using either a conventional autoradiography platform or an automated LI-COR system. Observed differences in band intensities between samples provide a good measure of the relative differences in the gene expression levels. Identification of differentially expressed genes can be accomplished by purifying cDNA-AFLP fragments from sequence gels and subsequent sequencing. This method has found widespread use as an attractive technology for gene discovery on the basis of fragment detection and for temporal quantitative gene expression analysis. The protocol can be completed in 3-4 d.
Collapse
Affiliation(s)
- Marnik Vuylsteke
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Ghent, Belgium.
| | | | | |
Collapse
|
46
|
Eulgem T, Somssich IE. Networks of WRKY transcription factors in defense signaling. CURRENT OPINION IN PLANT BIOLOGY 2007; 10:366-71. [PMID: 17644023 DOI: 10.1016/j.pbi.2007.04.020] [Citation(s) in RCA: 796] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 04/17/2007] [Accepted: 04/20/2007] [Indexed: 05/16/2023]
Abstract
Members of the complex family of WRKY transcription factors have been implicated in the regulation of transcriptional reprogramming associated with plant immune responses. Recently genetic evidence directly proving their significance as positive and negative regulators of disease resistance has accumulated. WRKY genes were shown to be functionally connected forming a transcriptional network composed of positive and negative feedback loops and feed-forward modules. Within a web of partially redundant elements some WRKY factors hold central positions mediating fast and efficient activation of defense programs. A key mechanism triggering strong immune responses appears to be based on the inactivation of defense-suppressing WRKY proteins.
Collapse
Affiliation(s)
- Thomas Eulgem
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California at Riverside, CA 92521, USA
| | | |
Collapse
|
47
|
Shen QH, Saijo Y, Mauch S, Biskup C, Bieri S, Keller B, Seki H, Ulker B, Somssich IE, Schulze-Lefert P. Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses. Science 2006; 315:1098-103. [PMID: 17185563 DOI: 10.1126/science.1136372] [Citation(s) in RCA: 487] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Plant immune responses are triggered by pattern recognition receptors that detect conserved pathogen-associated molecular patterns (PAMPs) or by resistance (R) proteins recognizing isolate-specific pathogen effectors. We show that in barley, intracellular mildew A (MLA) R proteins function in the nucleus to confer resistance against the powdery mildew fungus. Recognition of the fungal avirulence A10 effector by MLA10 induces nuclear associations between receptor and WRKY transcription factors. The identified WRKY proteins act as repressors of PAMP-triggered basal defense. MLA appears to interfere with the WRKY repressor function, thereby de-repressing PAMP-triggered basal defense. Our findings reveal a mechanism by which these polymorphic immune receptors integrate distinct pathogen signals.
Collapse
Affiliation(s)
- Qian-Hua Shen
- Department of Plant Microbe Interactions, Max-Planck-Institut für Züchtungsforschung, Carl-von-Linné-Weg 10, D-50829 Köln, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Gong ZY, He ZS, Zhu JB, Yu GQ, Zou HS. Sinorhizobium meliloti nifA mutant induces different gene expression profile from wild type in Alfalfa nodules. Cell Res 2006; 16:818-29. [PMID: 17001343 DOI: 10.1038/sj.cr.7310096] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Several studies have demonstrated that the Rhizobium nifA gene is an activator of nitrogen fixation acting in nodule bacteria. To understand the effects of the Sinorhizobium meliloti nifA gene on Alfalfa, the cDNA-AFLP technique was employed to study the changes in gene expression in nifA mutant nodules. Among the approximately 3,000 transcript-derived fragments, 37 had differential expression levels. These expression levels were subsequently confirmed by reverse Northern blot and RT-polymerase chain reaction. Sequence analyses revealed that 21 cDNA fragments corresponded to genes involved in signal communication, protein degradation, nutrient metabolism, cell growth and development.
Collapse
Affiliation(s)
- Zi Ying Gong
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | |
Collapse
|
49
|
Identification of genes induced during Medicago sativa nodule development by using the cDNA-AFLP technique. ACTA ACUST UNITED AC 2006. [DOI: 10.1007/s11434-006-2093-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
50
|
Eichmann R, Biemelt S, Schäfer P, Scholz U, Jansen C, Felk A, Schäfer W, Langen G, Sonnewald U, Kogel KH, Hückelhoven R. Macroarray expression analysis of barley susceptibility and nonhost resistance to Blumeria graminis. JOURNAL OF PLANT PHYSIOLOGY 2006; 163:657-70. [PMID: 16545999 DOI: 10.1016/j.jplph.2005.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Accepted: 06/23/2005] [Indexed: 05/07/2023]
Abstract
Different formae speciales of the grass powdery mildew fungus Blumeria graminis undergo basic-compatible or basic-incompatible (nonhost) interactions with barley. Background resistance in compatible interactions and nonhost resistance require common genetic and mechanistic elements of plant defense. To build resources for differential screening for genes that potentially distinguish a compatible from an incompatible interaction on the level of differential gene expression of the plant, we constructed eight dedicated cDNA libraries, established 13.000 expressed sequence tag (EST) sequences and designed DNA macroarrays. Using macroarrays based on cDNAs derived from epidermal peels of plants pretreated with the chemical resistance activating compound acibenzolar-S-methyl, we compared the expression of barley gene transcripts in the early host interaction with B. graminis f.sp. hordei or the nonhost pathogen B. graminis f.sp. tritici, respectively. We identified 102 spots corresponding to 94 genes on the macroarray that gave significant B. graminis-responsive signals at 12 and/or 24 h after inoculation. In independent expression analyses, we confirmed the macroarray results for 11 selected genes. Although the majority of genes showed a similar expression profile in compatible versus incompatible interactions, about 30 of the 94 genes were expressed on slightly different levels in compatible versus incompatible interactions.
Collapse
Affiliation(s)
- Ruth Eichmann
- Institute of Phytopathology and Applied Zoology, University of Giessen, Heinrich-Buff Ring 26-32, D-35392 Giessen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|