1
|
Sahu G, Mishra S, Majumder S, Sharma N, Shaw BP. Overexpression of Orysa;KRP4 drastically reduces grain filling in rice. PLANTA 2024; 260:78. [PMID: 39172243 DOI: 10.1007/s00425-024-04512-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
MAIN CONCLUSION Excess of KRP4 in the developing kernels in rice causes poor filling of the grains possibly through inhibition of CDKA;2 and CDKB;1 activity mediated by its interaction with CDKF;3. The potential yield of the rice varieties producing compact and heavy panicles bearing numerous spikelets is compromised because a high percentage of spikelets remain poorly filled, reportedly because of a high expression of KRPs that causes suppression of endosperm cell proliferation. To test the stated negative relationship between KRP expression and grain filling, Orysa;KRP4 was overexpressed under the control of seed-specific glutelin promoter in IR-64 rice variety that shows good grain filling. The transgenic lines showed more than 15-fold increase in expression of KRP4 in the spikelets concomitant with nearly 50% reduction in grain filling compared with the wild type without producing any significant changes on the other yield-related parameters like panicle length and the spikelets numbers that were respectively 30.23 ± 0.89 cm and 229.25 ± 33.72 per panicle in the wild type, suggesting a highly organ-targeted effect of the genetic transformation. Yeast two-hybrid test revealed CDKF;3 as the interacting partner of KRP4, and CDKF;3 was found to interact with CDKA;2, CDKB;1 and CDKD;1. Significant decrease in grain filling in the transgenic lines compared with the wild type due to overexpression of KRP4 could be because of suppression of the activity of CDKB;1 and CDKA;2 by inhibition of their phosphorylation directly by CDKF;3, or mediated through inhibition of phosphorylation of CDKD;1 by CDKF;3. The study thus indicated that suppression of expression of KRP(s) by genetic manipulation of their promoters could be an important way of improving the yield of the rice varieties bearing compact and heavy panicles.
Collapse
Affiliation(s)
- Gyanasri Sahu
- Abiotic Stress and Agri-Biotechnology Lab, Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
| | - Sagarika Mishra
- Abiotic Stress and Agri-Biotechnology Lab, Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
| | - Shuvobrata Majumder
- Abiotic Stress and Agri-Biotechnology Lab, Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
| | - Namisha Sharma
- Abiotic Stress and Agri-Biotechnology Lab, Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
| | - Birendra P Shaw
- Abiotic Stress and Agri-Biotechnology Lab, Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India.
| |
Collapse
|
2
|
Cao Y, Wang K, Lu F, Li Q, Yang Q, Liu B, Muhammad H, Wang Y, Fu F, Li W, Yu H. Comprehensive identification of maize ZmE2F transcription factors and the positive role of ZmE2F6 in response to drought stress. BMC Genomics 2024; 25:465. [PMID: 38741087 PMCID: PMC11092242 DOI: 10.1186/s12864-024-10369-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND The early 2 factor (E2F) family is characterized as a kind of transcription factor that plays an important role in cell division, DNA damage repair, and cell size regulation. However, its stress response has not been well revealed. RESULTS In this study, ZmE2F members were comprehensively identified in the maize genome, and 21 ZmE2F genes were identified, including eight E2F subclade members, seven DEL subfamily genes, and six DP genes. All ZmE2F proteins possessed the DNA-binding domain (DBD) characterized by conserved motif 1 with the RRIYD sequence. The ZmE2F genes were unevenly distributed on eight maize chromosomes, showed diversity in gene structure, expanded by gene duplication, and contained abundant stress-responsive elements in their promoter regions. Subsequently, the ZmE2F6 gene was cloned and functionally verified in drought response. The results showed that the ZmE2F6 protein interacted with ZmPP2C26, localized in the nucleus, and responded to drought treatment. The overexpression of ZmE2F6 enhanced drought tolerance in transgenic Arabidopsis with longer root length, higher survival rate, and biomass by upregulating stress-related gene transcription. CONCLUSIONS This study provides novel insights into a greater understanding and functional study of the E2F family in the stress response.
Collapse
Affiliation(s)
- Yang Cao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kexin Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fengzhong Lu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qi Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qingqing Yang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bingliang Liu
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Hayderbinkhalid Muhammad
- National Research Centre of Intercropping, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Yingge Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fengling Fu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wanchen Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Haoqiang Yu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
3
|
Singh D, Banerjee G, Verma N, Sinha AK. MAP kinases may mediate regulation of the cell cycle in rice by E2F2 phosphorylation. FEBS Lett 2023; 597:2993-3009. [PMID: 37843487 DOI: 10.1002/1873-3468.14753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/10/2023] [Accepted: 09/06/2023] [Indexed: 10/17/2023]
Abstract
E2F is the key transcription factor that determines the proliferative status of cells by regulating the G1/S phase of the cell cycle. In this study, we show that in rice (Oryza sativa), OsE2F2 is a phosphorylation target of MAP kinases. The MAP kinases OsMPK3, OsMPK4, and OsMPK6 interact with and phosphorylate OsE2F2. Next, we determined the serine and threonine residues that could play a role in the phosphorylation of OsE2F2. Subsequently, our study suggests a possible link between MAP kinase-mediated OsE2F2 phosphorylation and its impact on DNA proliferation in the roots of rice seedlings. Finally, we found positive feedback regulation of OsMPK4 by OsE2F2. Therefore, our study hints at the potential impact of MAP kinase signaling on the cell cycle of rice plants.
Collapse
Affiliation(s)
- Dhanraj Singh
- National Institute of Plant Genome Research, Delhi, New Delhi, India
| | - Gopal Banerjee
- National Institute of Plant Genome Research, Delhi, New Delhi, India
| | - Neetu Verma
- National Institute of Plant Genome Research, Delhi, New Delhi, India
| | | |
Collapse
|
4
|
Xu H, Bartley L, Libault M, Sundaresan V, Fu H, Russell S. The roles of a novel CDKB/KRP/FB3 cell cycle core complex in rice gametes and initiation of embryogenesis. PLANT REPRODUCTION 2023; 36:301-320. [PMID: 37491485 DOI: 10.1007/s00497-023-00474-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/29/2023] [Indexed: 07/27/2023]
Abstract
The cell cycle controls division and proliferation of all eukaryotic cells and is tightly regulated at multiple checkpoints by complexes of core cell cycle proteins. Due to the difficulty in accessing female gametes and zygotes of flowering plants, little is known about the molecular mechanisms underlying embryogenesis initiation despite the crucial importance of this process for seed crops. In this study, we reveal three levels of factors involved in rice zygotic cell cycle control and characterize their functions and regulation. Protein-protein interaction studies, including within zygote cells, and in vitro biochemical analyses delineate a model of the zygotic cell cycle core complex for rice. In this model, CDKB1, a major regulator of plant mitosis, is a cyclin (CYCD5)-dependent kinase; its activity is coordinately inhibited by two cell cycle inhibitors, KRP4 and KRP5; and both KRPs are regulated via F-box protein 3 (FB3)-mediated proteolysis. Supporting their critical roles in controlling the rice zygotic cell cycle, mutations in KRP4, KRP5 and FB3 result in the compromised function of sperm cells and abnormal organization of female germ units, embryo and endosperm, thus significantly reducing seed-set rate. This work helps reveal regulatory mechanisms controlling the zygotic cell cycle toward seed formation in angiosperms.
Collapse
Affiliation(s)
- Hengping Xu
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA.
| | - Laura Bartley
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Marc Libault
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68503, USA
| | | | - Hong Fu
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Scott Russell
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| |
Collapse
|
5
|
Zhao Y, Zhang X, Cheng Y, Du X, Teotia S, Miao C, Sun H, Fan G, Tang G, Xue H, Zhao Q, Peng T. The miR167-OsARF12 module regulates rice grain filling and grain size downstream of miR159. PLANT COMMUNICATIONS 2023; 4:100604. [PMID: 37085993 PMCID: PMC10504563 DOI: 10.1016/j.xplc.2023.100604] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/20/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Grain weight and quality are always determined by grain filling. Plant microRNAs have drawn attention as key targets for regulation of grain size and yield. However, the mechanisms that underlie grain size regulation remain largely unclear because of the complex networks that control this trait. Our earlier studies demonstrated that suppressed expression of miR167 (STTM/MIM167) substantially increased grain weight. In a field test, the yield increased up to 12.90%-21.94% because of a significantly enhanced grain filling rate. Here, biochemical and genetic analyses revealed the regulatory effects of miR159 on miR167 expression. Further analysis indicated that OsARF12 is the major mediator by which miR167 regulates rice grain filling. Overexpression of OsARF12 produced grain weight and grain filling phenotypes resembling those of STTM/MIM167 plants. Upon in-depth analysis, we found that OsARF12 activates OsCDKF;2 expression by directly binding to the TGTCGG motif in its promoter region. Flow cytometry analysis of young panicles from OsARF12-overexpressing plants and examination of cell number in cdkf;2 mutants verified that OsARF12 positively regulates grain filling and grain size by targeting OsCDKF;2. Moreover, RNA sequencing results suggested that the miR167-OsARF12 module is involved in the cell development process and hormone pathways. OsARF12-overexpressing plants and cdkf;2 mutants exhibited enhanced and reduced sensitivity to exogenous auxin and brassinosteroid (BR) treatment, confirming that targeting of OsCDKF;2 by OsARF12 mediates auxin and BR signaling. Our results reveal that the miR167-OsARF12 module works downstream of miR159 to regulate rice grain filling and grain size via OsCDKF;2 by controlling cell division and mediating auxin and BR signals.
Collapse
Affiliation(s)
- Yafan Zhao
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Rice Biology in Henan Province, Henan Agricultural University, Zhengzhou 450046, China; Henan Engineering Laboratory of Rice, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaofan Zhang
- Joint Center for Single Cell Biology/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuan Cheng
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Rice Biology in Henan Province, Henan Agricultural University, Zhengzhou 450046, China; Henan Engineering Laboratory of Rice, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiangxiang Du
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Rice Biology in Henan Province, Henan Agricultural University, Zhengzhou 450046, China; Henan Engineering Laboratory of Rice, Henan Agricultural University, Zhengzhou 450002, China
| | - Sachin Teotia
- Department of Biotechnology, Sharda University, Greater Noida 201306, India
| | - Chunbo Miao
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Rice Biology in Henan Province, Henan Agricultural University, Zhengzhou 450046, China; Henan Engineering Laboratory of Rice, Henan Agricultural University, Zhengzhou 450002, China
| | - Huwei Sun
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Rice Biology in Henan Province, Henan Agricultural University, Zhengzhou 450046, China; Henan Engineering Laboratory of Rice, Henan Agricultural University, Zhengzhou 450002, China
| | - Guoqiang Fan
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450046, China
| | - Guiliang Tang
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | - Hongwei Xue
- Joint Center for Single Cell Biology/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Quanzhi Zhao
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Rice Biology in Henan Province, Henan Agricultural University, Zhengzhou 450046, China; Henan Engineering Laboratory of Rice, Henan Agricultural University, Zhengzhou 450002, China; College of Agriculture, Guizhou University, Guiyang 550025, China.
| | - Ting Peng
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Rice Biology in Henan Province, Henan Agricultural University, Zhengzhou 450046, China; Henan Engineering Laboratory of Rice, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
6
|
Singh H, Singh Z, Zhu T, Xu X, Waghmode B, Garg T, Yadav S, Sircar D, De Smet I, Yadav SR. Auxin-Responsive (Phospho)proteome Analysis Reveals Key Biological Processes and Signaling Associated with Shoot-Borne Crown Root Development in Rice. PLANT & CELL PHYSIOLOGY 2023; 63:1968-1979. [PMID: 34679169 DOI: 10.1093/pcp/pcab155] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/13/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
The rice root system is primarily composed of shoot-borne adventitious/crown roots (ARs/CRs) that develop from the coleoptile base, and therefore, it is an excellent model system for studying shoot-to-root trans-differentiation process. We reveal global changes in protein and metabolite abundance and protein phosphorylation in response to an auxin stimulus during CR development. The liquid chromatography-tandem mass spectrometry (LC-MS/MS) and gas chromatography-mass spectrometry (GC-MS) analyses of developing crown root primordia (CRP) and emerged CRs identified 334 proteins and 12 amino acids, respectively, that were differentially regulated upon auxin treatment. Gene ontology enrichment analysis of global proteome data uncovered the biological processes associated with chromatin conformational change, gene expression and cell cycle that were regulated by auxin signaling. Spatial gene expression pattern analysis of differentially abundant proteins disclosed their stage-specific dynamic expression pattern during CRP development. Further, our tempo-spatial gene expression and functional analyses revealed that auxin creates a regulatory module during CRP development and activates ethylene biosynthesis exclusively during CRP initiation. Further, the phosphoproteome analysis identified 8,220 phosphosites, which could be mapped to 1,594 phosphoproteins and of which 66 phosphosites were differentially phosphorylated upon auxin treatment. Importantly, we observed differential phosphorylation of the cyclin-dependent kinase G-2 (OsCDKG;2) and cell wall proteins, in response to auxin signaling, suggesting that auxin-dependent phosphorylation may be required for cell cycle activation and cell wall synthesis during root organogenesis. Thus, our study provides evidence for the translational and post-translational regulation during CR development downstream of the auxin signaling pathway.
Collapse
Affiliation(s)
- Harshita Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
| | - Zeenu Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
| | - Tingting Zhu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Xiangyu Xu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Bhairavnath Waghmode
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
| | - Tushar Garg
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
| | - Shivani Yadav
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
| | - Debabrata Sircar
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Shri Ram Yadav
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
7
|
Guo B, Chen L, Dong L, Yang C, Zhang J, Geng X, Zhou L, Song L. Characterization of the soybean KRP gene family reveals a key role for GmKRP2a in root development. FRONTIERS IN PLANT SCIENCE 2023; 14:1096467. [PMID: 36778678 PMCID: PMC9911667 DOI: 10.3389/fpls.2023.1096467] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Kip-related proteins (KRPs), as inhibitory proteins of cyclin-dependent kinases, are involved in the growth and development of plants by regulating the activity of the CYC-CDK complex to control cell cycle progression. The KRP gene family has been identified in several plants, and several KRP proteins from Arabidopsis thaliana have been functionally characterized. However, there is little research on KRP genes in soybean, which is an economically important crop. In this study, we identified nine GmKRP genes in the Glycine max genome using HMM modeling and BLASTP searches. Protein subcellular localization and conserved motif analysis showed soybean KRP proteins located in the nucleus, and the C-terminal protein sequence was highly conserved. By investigating the expression patterns in various tissues, we found that all GmKRPs exhibited transcript abundance, while several showed tissue-specific expression patterns. By analyzing the promoter region, we found that light, low temperature, an anaerobic environment, and hormones-related cis-elements were abundant. In addition, we performed a co-expression analysis of the GmKRP gene family, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) set enrichment analysis. The co-expressing genes were mainly involved in RNA synthesis and modification and energy metabolism. Furthermore, the GmKRP2a gene, a member of the soybean KRP family, was cloned for further functional analysis. GmKRP2a is located in the nucleus and participates in root development by regulating cell cycle progression. RNA-seq results indicated that GmKRP2a is involved in cell cycle regulation through ribosome regulation, cell expansion, hormone response, stress response, and plant pathogen response pathways. To our knowledge, this is the first study to identify and characterize the KRP gene family in soybean.
Collapse
Affiliation(s)
- Binhui Guo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institute of Agricultural Science and Technology Development, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Basic Experimental Teaching Center of Life Science, Yangzhou University, Yangzhou, China
| | - Lin Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institute of Agricultural Science and Technology Development, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Lu Dong
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institute of Agricultural Science and Technology Development, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Chunhong Yang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institute of Agricultural Science and Technology Development, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Jianhua Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institute of Agricultural Science and Technology Development, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Xiaoyan Geng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institute of Agricultural Science and Technology Development, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Lijuan Zhou
- College of Forestry, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Li Song
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institute of Agricultural Science and Technology Development, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| |
Collapse
|
8
|
S GB, Gohil DS, Roy Choudhury S. Genome-wide identification, evolutionary and expression analysis of the cyclin-dependent kinase gene family in peanut. BMC PLANT BIOLOGY 2023; 23:43. [PMID: 36658501 PMCID: PMC9850575 DOI: 10.1186/s12870-023-04045-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Cyclin-dependent kinases (CDKs) are a predominant group of serine/threonine protein kinases that have multi-faceted functions in eukaryotes. The plant CDK members have well-known roles in cell cycle progression, transcriptional regulation, DNA repair, abiotic stress and defense responses, making them promising targets for developing stress adaptable high-yielding crops. There is relatively sparse information available on the CDK family genes of cultivated oilseed crop peanut and its diploid progenitors. RESULTS We have identified 52 putative cyclin-dependent kinases (CDKs) and CDK-like (CDKLs) genes in Arachis hypogaea (cultivated peanut) and total 26 genes in each diploid parent of cultivated peanut (Arachis duranensis and Arachis ipaensis). Both CDK and CDKL genes were classified into eight groups based on their cyclin binding motifs and their phylogenetic relationship with Arabidopsis counterparts. Genes in the same subgroup displayed similar exon-intron structure and conserved motifs. Further, gene duplication analysis suggested that segmental duplication events played major roles in the expansion and evolution of CDK and CDKL genes in cultivated peanuts. Identification of diverse cis-acting response elements in CDK and CDKL genes promoter indicated their potential fundamental roles in multiple biological processes. Various gene expression patterns of CDKs and CDKLs in different peanut tissues suggested their involvement during growth and development. In addition, qRT-PCR analysis demonstrated that most representing CDK and CDKL gene family members were significantly down-regulated under ABA, PEG and mannitol treatments. CONCLUSIONS Genome-wide analysis offers a comprehensive understanding of the classification, evolution, gene structure, and gene expression profiles of CDK and CDKL genes in cultivated peanut and their diploid progenitors. Additionally, it also provides cell cycle regulatory gene resources for further functional characterization to enhance growth, development and abiotic stress tolerance.
Collapse
Affiliation(s)
- Gokul Babu S
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517507, India
| | - Deependra Singh Gohil
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517507, India
| | - Swarup Roy Choudhury
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517507, India.
| |
Collapse
|
9
|
Zheng WJ, Li WQ, Peng Y, Shao Y, Tang L, Liu CT, Zhang D, Zhang LJ, Li JH, Luo WZ, Yuan ZC, Zhao BR, Mao BG. E2Fs co-participate in cadmium stress response through activation of MSHs during the cell cycle. FRONTIERS IN PLANT SCIENCE 2022; 13:1068769. [PMID: 36531377 PMCID: PMC9749859 DOI: 10.3389/fpls.2022.1068769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Cadmium is one of the most common heavy metal contaminants found in agricultural fields. MutSα, MutSβ, and MutSγ are three different MutS-associated protein heterodimer complexes consisting of MSH2/MSH6, MSH2/MSH3, and MSH2/MSH7, respectively. These complexes have different mismatch recognition properties and abilities to support MMR. However, changes in mismatch repair genes (OsMSH2, OsMSH3, OsMSH6, and OsMSH7) of the MutS system in rice, one of the most important food crops, under cadmium stress and their association with E2Fs, the key transcription factors affecting cell cycles, are poorly evaluated. In this study, we systematically categorized six rice E2Fs and confirmed that OsMSHs were the downstream target genes of E2F using dual-luciferase reporter assays. In addition, we constructed four msh mutant rice varieties (msh2, msh3, msh6, and msh7) using the CRISPR-Cas9 technology, exposed these mutant rice seedlings to different concentrations of cadmium (0, 2, and 4 mg/L) and observed changes in their phenotype and transcriptomic profiles using RNA-Seq and qRT-PCR. We found that the difference in plant height before and after cadmium stress was more significant in mutant rice seedlings than in wild-type rice seedlings. Transcriptomic profiling and qRT-PCR quantification showed that cadmium stress specifically mobilized cell cycle-related genes ATR, CDKB2;1, MAD2, CycD5;2, CDKA;1, and OsRBR1. Furthermore, we expressed OsE2Fs in yeasts and found that heterologous E2F expression in yeast strains regulated cadmium tolerance by regulating MSHs expression. Further exploration of the underlying mechanisms revealed that cadmium stress may activate the CDKA/CYCD complex, which phosphorylates RBR proteins to release E2F, to regulate downstream MSHs expression and subsequent DNA damage repairment, thereby enhancing the response to cadmium stress.
Collapse
Affiliation(s)
- Wen-Jie Zheng
- Longping Branch, College of Biology, Hunan University, Changsha, China
| | - Wang-Qing Li
- Longping Branch, College of Biology, Hunan University, Changsha, China
| | - Yan Peng
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| | - Ye Shao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| | - Li Tang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| | - Ci-Tao Liu
- College of Agricultural, Hunan Agricultural University, Changsha, China
| | - Dan Zhang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
- College of Agricultural, Hunan Agricultural University, Changsha, China
| | - Lan-Jing Zhang
- College of Agricultural, Hunan Agricultural University, Changsha, China
| | - Ji-Huan Li
- College of Agricultural, Hunan Agricultural University, Changsha, China
| | - Wu-Zhong Luo
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| | - Zhi-Cheng Yuan
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| | - Bing-Ran Zhao
- Longping Branch, College of Biology, Hunan University, Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
- College of Agricultural, Hunan Agricultural University, Changsha, China
| | - Bi-Gang Mao
- Longping Branch, College of Biology, Hunan University, Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| |
Collapse
|
10
|
Miao Y, Xun Q, Taji T, Tanaka K, Yasuno N, Ding C, Kyozuka J. ABERRANT PANICLE ORGANIZATION2 controls multiple steps in panicle formation through common direct-target genes. PLANT PHYSIOLOGY 2022; 189:2210-2226. [PMID: 35556145 PMCID: PMC9342985 DOI: 10.1093/plphys/kiac216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/18/2022] [Indexed: 05/15/2023]
Abstract
At the transition from vegetative to reproductive growth in rice (Oryza sativa), a developmental program change occurs, resulting in panicle (rice inflorescence) formation. The initial event of the transition is the change of the shoot apical meristem to an inflorescence meristem (IM), accompanied by a rapid increase in the meristem size. Suppression of leaf growth also occurs, resulting in the formation of bracts. The IM generates branch meristems (BMs), indeterminate meristems that reiteratively generate next-order meristems. All meristems eventually acquire a determinate spikelet meristem identity and terminate after producing a floret. ABERRANT PANICLE ORGANIZATION2 (APO2) is the rice ortholog of Arabidopsis (Arabidopsis thaliana) LEAFY (LFY), a plant-specific transcription factor (TF). APO2 is a positive regulator of panicle branch formation. Here, we show that APO2 is also required to increase the meristem size of the IM and suppress bract outgrowth. We identified genes directly and indirectly regulated by APO2 and identified APO2-binding sites. These analyses showed that APO2 directly controls known regulators of panicle development, including SQUAMOSA PROMOTER BINDING PROTEIN LIKE14 and NECK LEAF1. Furthermore, we revealed that a set of genes act as downstream regulators of APO2 in controlling meristem cell proliferation during reproductive transition, bract suppression, and panicle branch formation. Our findings indicate that APO2 acts as a master regulator of rice panicle development by regulating multiple steps in the reproductive transition through directly controlling a set of genes.
Collapse
Affiliation(s)
- Yiling Miao
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Qian Xun
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Teruaki Taji
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Naoko Yasuno
- Graduate School of Life Sciences, University of Tokyo, Tokyo 113-8654, Japan
| | | | | |
Collapse
|
11
|
Santoro DF, Sicilia A, Testa G, Cosentino SL, Lo Piero AR. Global leaf and root transcriptome in response to cadmium reveals tolerance mechanisms in Arundo donax L. BMC Genomics 2022; 23:427. [PMID: 35672691 PMCID: PMC9175368 DOI: 10.1186/s12864-022-08605-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/05/2022] [Indexed: 12/04/2022] Open
Abstract
The expected increase of sustainable energy demand has shifted the attention towards bioenergy crops. Due to their know tolerance against abiotic stress and relatively low nutritional requirements, they have been proposed as election crops to be cultivated in marginal lands without disturbing the part of lands employed for agricultural purposes. Arundo donax L. is a promising bioenergy crop whose behaviour under water and salt stress has been recently studied at transcriptomic levels. As the anthropogenic activities produced in the last years a worrying increase of cadmium contamination worldwide, the aim of our work was to decipher the global transcriptomic response of A. donax leaf and root in the perspective of its cultivation in contaminated soil. In our study, RNA-seq libraries yielded a total of 416 million clean reads and 10.4 Gb per sample. De novo assembly of clean reads resulted in 378,521 transcripts and 126,668 unigenes with N50 length of 1812 bp and 1555 bp, respectively. Differential gene expression analysis revealed 5,303 deregulated transcripts (3,206 up- and 2,097 down regulated) specifically observed in the Cd-treated roots compared to Cd-treated leaves. Among them, we identified genes related to “Protein biosynthesis”, “Phytohormone action”, “Nutrient uptake”, “Cell wall organisation”, “Polyamine metabolism”, “Reactive oxygen species metabolism” and “Ion membrane transport”. Globally, our results indicate that ethylene biosynthesis and the downstream signal cascade are strongly induced by cadmium stress. In accordance to ethylene role in the interaction with the ROS generation and scavenging machinery, the transcription of several genes (NADPH oxidase 1, superoxide dismutase, ascorbate peroxidase, different glutathione S-transferases and catalase) devoted to cope the oxidative stress is strongly activated. Several small signal peptides belonging to ROTUNDIFOLIA, CLAVATA3, and C-TERMINALLY ENCODED PEPTIDE 1 (CEP) are also among the up-regulated genes in Cd-treated roots functioning as messenger molecules from root to shoot in order to communicate the stressful status to the upper part of the plants. Finally, the main finding of our work is that genes involved in cell wall remodelling and lignification are decisively up-regulated in giant reed roots. This probably represents a mechanism to avoid cadmium uptake which strongly supports the possibility to cultivate giant cane in contaminated soils in the perspective to reserve agricultural soil for food and feed crops.
Collapse
Affiliation(s)
- Danilo Fabrizio Santoro
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 98, 95123, Catania, Italy
| | - Angelo Sicilia
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 98, 95123, Catania, Italy
| | - Giorgio Testa
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 98, 95123, Catania, Italy
| | - Salvatore Luciano Cosentino
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 98, 95123, Catania, Italy
| | - Angela Roberta Lo Piero
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 98, 95123, Catania, Italy.
| |
Collapse
|
12
|
The B-Type Cyclin CYCB1-1 Regulates Embryonic Development and Seed Size in Maize. Int J Mol Sci 2022; 23:ijms23115907. [PMID: 35682593 PMCID: PMC9180882 DOI: 10.3390/ijms23115907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 02/06/2023] Open
Abstract
Progress through the cell cycle is a critical process during plant embryo and seed development and its progression is regulated by cyclins. Despite extensive study of cyclins in other systems, their role in embryo and seed development of maize is unclear. In this study, we demonstrate that ZmCYCB1-1 overexpression significantly accelerated embryo growth and increased seed size. In situ hybridization and toluidine blue staining indicated that ZmCYCB1-1 was highly expressed in the plumule of embryos, and the cells of the plumule were smaller, denser, and more regularly arranged in ZmCYCB1-1 overexpression plants. Overexpression of ZmCYCB1-1 in maize also resulted in an increased ear length and enhanced kernel weight by increasing kernel width. Transcriptome analysis indicated that the overexpression of ZmCYCB1-1 affected several different metabolic pathways, including photosynthesis in embryos and leaves, and lipid metabolism in leaves. Conversely, knocking out ZmCYCB1-1 resulted in plants with slow growth. Our results suggest that ZmCYCB1-1 regulates embryo growth and seed size, making it an ideal target for efforts aimed at maize yield improvement.
Collapse
|
13
|
Zhao P, Zhang C, Song Y, Xu X, Wang J, Wang J, Zheng T, Lin Y, Lai Z. Genome-wide identification, expression and functional analysis of the core cell cycle gene family during the early somatic embryogenesis of Dimocarpus longan Lour. Gene 2022; 821:146286. [PMID: 35176425 DOI: 10.1016/j.gene.2022.146286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/29/2021] [Accepted: 02/03/2022] [Indexed: 11/04/2022]
Abstract
Core cell cycle genes (CCCs) are essential regulators of cell cycle operation. In this study, a total of 69 CCCs family members, including 37 CYCs, 20 CDKs, five E2F/DPs, three KRPs, two RBs, one CKS and one Wee1, were identified from the longan genome. Phylogenetic and motifs analysis showed the evolutionary conservation of CCCs. Transcriptome dataset showed that CCCs had various expression patterns during longan early somatic embryogenesis (SE). Either CKS or CYCD3;2 silencing increased the expression of RB-E2F pathway genes, and the silencing of CYCD3;2 might induce the process of apoptosis in longan embryogenic callus (EC) cells. In addition, The qRT-PCR results showed that the expression levels of CDKG2, CYCD3;2, CYCT1;2, CKS and KRP1 were elevated by ABA, 2,4-D and PEG4000 treatments, while CDKG2 and CYCT1;2 were inhibited by NaCl treatment. In conclusion, our study provided valuable information for understanding the characterization and biological functions of longan CCCs.
Collapse
Affiliation(s)
- Pengcheng Zhao
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chunyu Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuyang Song
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoqiong Xu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinyi Wang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinhao Wang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tianyi Zheng
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
14
|
Genome-Wide Identification and Analysis of Cell Cycle Genes in Birch. FORESTS 2022. [DOI: 10.3390/f13010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Research Highlights: This study identified the cell cycle genes in birch that likely play important roles during the plant’s growth and development. This analysis provides a basis for understanding the regulatory mechanism of various cell cycles in Betula pendula Roth. Background and Objectives: The cell cycle factors not only influence cell cycles progression together, but also regulate accretion, division, and differentiation of cells, and then regulate growth and development of the plant. In this study, we identified the putative cell cycle genes in the B. pendula genome, based on the annotated cell cycle genes in Arabidopsis thaliana (L.) Heynh. It can be used as a basis for further functional research. Materials and Methods: RNA-seq technology was used to determine the transcription abundance of all cell cycle genes in xylem, roots, leaves, and floral tissues. Results: We identified 59 cell cycle gene models in the genome of B. pendula, with 17 highly expression genes among them. These genes were BpCDKA.1, BpCDKB1.1, BpCDKB2.1, BpCKS1.2, BpCYCB1.1, BpCYCB1.2, BpCYCB2.1, BpCYCD3.1, BpCYCD3.5, BpDEL1, BpDpa2, BpE2Fa, BpE2Fb, BpKRP1, BpKRP2, BpRb1, and BpWEE1. Conclusions: By combining phylogenetic analysis and tissue-specific expression data, we identified 17 core cell cycle genes in the Betulapendula genome.
Collapse
|
15
|
Ye R, Wu Y, Gao Z, Chen H, Jia L, Li D, Li X, Qian Q, Qi Y. Primary root and root hair development regulation by OsAUX4 and its participation in the phosphate starvation response. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1555-1567. [PMID: 34110093 DOI: 10.1111/jipb.13142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
Among the five members of AUX1/LAX genes coding for auxin carriers in rice, only OsAUX1 and OsAUX3 have been reported. To understand the function of the other AUX1/LAX genes, two independent alleles of osaux4 mutants, osaux4-1 and osaux4-2, were constructed using the CRISPR/Cas9 editing system. Homozygous osaux4-1 or osaux4-2 exhibited shorter primary root (PR) and longer root hair (RH) compared to the wild-type Dongjin (WT/DJ), and lost response to indoleacetic acid (IAA) treatment. OsAUX4 is intensively expressed in roots and localized on the plasma membrane, suggesting that OsAUX4 might function in the regulation of root development. The decreased meristem cell division activity and the downregulated expression of cell cycle genes in root apices of osaux4 mutants supported the hypothesis that OsAUX4 positively regulates PR elongation. OsAUX4 is expressed in RH, and osaux4 mutants showing longer RH compared to WT/DJ implies that OsAUX4 negatively regulates RH development. Furthermore, osaux4 mutants are insensitive to Pi starvation (-Pi) and OsAUX4 effects on the -Pi response is associated with altered expression levels of Pi starvation-regulated genes, and auxin distribution/contents. This study revealed that OsAUX4 not only regulates PR and RH development but also plays a regulatory role in crosstalk between auxin and -Pi signaling.
Collapse
Affiliation(s)
- Rigui Ye
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China
| | - Yunrong Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Hao Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lixia Jia
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dongming Li
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China
| | - Xugang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong, Agricultural University, Tai'an, 271018, China
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Yanhua Qi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China
| |
Collapse
|
16
|
Lu X, Liu S, Zhi S, Chen J, Ye G. Comparative transcriptome profile analysis of rice varieties with different tolerance to zinc deficiency. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:375-390. [PMID: 33296551 DOI: 10.1111/plb.13227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Zinc (Zn) is an indispensable element for rice growth. Zn deficiency results in brown blotches and streaks 2-3 weeks after transplanting, as well as stunting, reduced tillering, and low productivity of rice plants. These processes are controlled by different families of expressed genes. A comparative transcriptome profile analysis was conducted using the roots of two Zn deficiency tolerant varieties (UCP122 and KALIBORO26) and two sensitive varieties (IR26 and IR64) by merging data from untreated control (CK) and Zn deficiency treated samples. Results revealed a total of 4,688 differentially expressed genes (DEGs) between the normal Zn and deficient conditions, with 2,702 and 1,489 unique DEGs upregulated and downregulated, respectively. Functional enrichment analysis identified transcription factors (TFs), such as WRKY, MYB, ERF, and bHLH which are important in the regulation of the Zn deficiency response. Furthermore, chitinases, jasmonic acid, and phenylpropanoid pathways were found to be important in the Zn deficiency response. The metal tolerance protein (MTP) genes also appeared to play an important role in conferring tolerance to Zn deficiency. A heavy metal-associated domain-containing protein 7 was associated with tolerance to Zn deficiency and negatively regulated downstream genes. Collectively, our findings provide valuable expression patterns and candidate genes for the study of molecular mechanisms underlying the response to Zn deficiency and for improvements in breeding for tolerance to Zn deficiency in rice.
Collapse
Affiliation(s)
- X Lu
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - S Liu
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Group of Crop Genetics and Breeding, Jiangxi Agricultural University, Nanchang, China
| | - S Zhi
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, China
| | - J Chen
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - G Ye
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Group of Crop Genetics and Breeding, Jiangxi Agricultural University, Nanchang, China
- Strategic Innovation Platform, International Rice Research Institute, Metro Manila, Philippines
| |
Collapse
|
17
|
Sahu G, Panda BB, Dash SK, Chandra T, Shaw BP. Cell cycle events and expression of cell cycle regulators are determining factors in differential grain filling in rice spikelets based on their spatial location on compact panicles. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:268-285. [PMID: 33120000 DOI: 10.1071/fp20196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Rice being a staple crop for human, its production is required to be increased significantly, particularly keeping in view the expected world's population of 9.6 billion by the year 2050. In this context, although the rice breeding programs have been successful in increasing the number of spikelets per panicle, the basal spikelets remain poorly filled, undermining the yield potential. The present study also found the grain filling to bear negative correlation with the panicle grain density. The poorly filled basal spikelets of the compact-panicle cultivars showed a lower endosperm cell division rate and ploidy status of the endosperm nuclei coupled with no significant greater expression of CYCB;1 and CYCH;1 compared with the apical spikelets, unlike that observed in the lax-panicle cultivars, which might have prevented them from overcoming apical dominance. Significantly greater expression of CYCB2;2 in the basal spikelets than in the apical spikelets might also have prevented the former to enter into endoreduplication. Furthermore, expression studies of KRPs in the caryopses revealed that a higher expression of KRP;1 and KRP;4 in the basal spikelets than in the apical spikelets of the compact-panicle cultivars could also be detrimental to grain filling in the former, as KRPs form complex primarily with CDKA-CYCD that promotes S-phase activity and G1/S transition, and thus inhibits endosperm cell division. The study indicates that targeted manipulation of expression of CYCB1;1, CYCB2;2, CYCH1;1, KRP;1 and KRP4 in the basal spikelets of the compact-panicle cultivars may significantly improve their yield performance.
Collapse
Affiliation(s)
- Gyanasri Sahu
- Abiotic Stress and Agro-Biotechnology Laboratory, Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
| | - Binay B Panda
- Abiotic Stress and Agro-Biotechnology Laboratory, Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
| | - Sushanta K Dash
- Crop Improvement Division, ICAR-National Rice Research Institute (Formerly Central Rice Research Institute), Cuttack, Odisha, India
| | - Tilak Chandra
- Abiotic Stress and Agro-Biotechnology Laboratory, Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
| | - Birendra P Shaw
- Abiotic Stress and Agro-Biotechnology Laboratory, Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India; and Corresponding author.
| |
Collapse
|
18
|
Banerjee G, Singh D, Sinha AK. Plant cell cycle regulators: Mitogen-activated protein kinase, a new regulating switch? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110660. [PMID: 33218628 DOI: 10.1016/j.plantsci.2020.110660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
Cell cycle is essential for the maintenance of genetic material and continuity of a species. Its regulation involves a complex interplay between multiple proteins with diverse molecular functions such as the kinases, transcription factors, proteases and phosphatases. Every step of this cycle requires a certain combination of these protein regulators which paves the way for the next stage. It is now evident that plants have their own unique features in the context of cell cycle regulation. Cell cycle in plants is not only necessary for maintenance of its physio-morphological parameter but it also regulates traits important for mankind like grain or fruit size. This makes it even more important to understand how plants regulate its cell cycle amidst various a/biotic stresses it is subjected to during its lifetime. The association of MAPK signaling pathways with every major developmental and stress response pathways in plants raises the question of its potential role in cell cycle regulation. There are number of cell cycle regulating proteins with putative sites for MAPK phosphorylation. The MAPK signaling pathway may directly or in a parallel pathway regulate the plant cell cycle. Unraveling the role of MAPK in cell cycle will open up new arenas to explore.
Collapse
Affiliation(s)
- Gopal Banerjee
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Dhanraj Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Alok Krishna Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India.
| |
Collapse
|
19
|
Sánchez-Camargo VA, Suárez-Espinoza C, Romero-Rodríguez S, Garza-Aguilar SM, Stam M, García-Ramírez E, Lara-Núñez A, Vázquez-Ramos JM. Maize E2F transcription factors. Expression, association to promoters of S-phase genes and interaction with the RBR1 protein in chromatin during seed germination. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 296:110491. [PMID: 32540010 DOI: 10.1016/j.plantsci.2020.110491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
For seed germination, it is necessary to restart the cell cycle, a process regulated at multiple levels including transcriptional control, that is executed by the E2F family of transcription factors. We identified 12 genes of the E2F family in maize that are expressed differentially during the first 28 h post imbibition (HAI). E2Fa/b1;1 and E2Fc proteins were characterized as an activator and a putative repressor respectively, both forming heterodimers with DPb2 that bind differentially to consensus E2F response elements in promoters of E2F target genes. Transcripts of target genes for these transcription factors accumulate during germination; in dry seeds E2Fc protein is enriched in the target promoters and is replaced by E2Fa/b1;1 as germination advances. RBR1 is found in the same promoters in non-imbibed and 28 HAI seeds, when DNA replication has concluded, and transcription of the E2F targets should stop. During germination promoters of these target genes seem to be decorated with histone marks related to relaxed chromatin structure. Therefore, E2Fs appear to occupy their target genes in a context of open chromatin, with RBR1 fine tuning the progression between the phases.
Collapse
Affiliation(s)
- Víctor A Sánchez-Camargo
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Av. Universidad y Copilco, Ciudad de México 04510, Mexico
| | - Cassandra Suárez-Espinoza
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Av. Universidad y Copilco, Ciudad de México 04510, Mexico
| | - Samantha Romero-Rodríguez
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Av. Universidad y Copilco, Ciudad de México 04510, Mexico
| | - Sara M Garza-Aguilar
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Av. Universidad y Copilco, Ciudad de México 04510, Mexico
| | - Maike Stam
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Elpidio García-Ramírez
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Av. Universidad y Copilco, Ciudad de México 04510, Mexico
| | - Aurora Lara-Núñez
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Av. Universidad y Copilco, Ciudad de México 04510, Mexico
| | - Jorge M Vázquez-Ramos
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Av. Universidad y Copilco, Ciudad de México 04510, Mexico.
| |
Collapse
|
20
|
Yan H, Sun H, Jia X, Lv C, Li J, Zhao Q. Phenotypic, Transcriptomic, and Metabolomic Signatures of Root-Specifically Overexpressed OsCKX2 in Rice. FRONTIERS IN PLANT SCIENCE 2020; 11:575304. [PMID: 33329635 PMCID: PMC7719687 DOI: 10.3389/fpls.2020.575304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/30/2020] [Indexed: 05/10/2023]
Abstract
Cytokinins are crucial signaling molecules that regulate plant growth and development. OsCKX2 irreversibly degrades nucleobase cytokinins by encoding cytokinin oxidase/dehydrogenase to control grain production in rice. In this study, OsCKX2 was specifically overexpressed in roots using RCc3 promoter to investigate the effects of root-source cytokinins on the growth of rice. OsCKX2 overexpressed (OE) rice showed retarded growth with lower cytokinin levels and biomass production. Shoot-specific transcriptome analysis between OsCKX2 OE rice and wild type (WT) revealed differentially expressed genes (DEGs) associated with cell division, cell wall structure, phytohormone signaling, and assimilation and catabolism. Metabolome analysis indicated that a majority of differential primary metabolites, such as amino acids and organic acids, increased, while lipids decreased in OsCKX2 OE rice. Integration of transcriptomic and metabolomic data showed that several DEGs and differential metabolites were related to glycolysis and tricarboxylic acid cycle (TCA). To conclude, reduced cytokinin levels via root-specific overexpression of OsCKX2 resulted in developmental defects, which confirmed the importance of root-source cytokinins in plant growth and morphogenesis.
Collapse
|
21
|
Ajadi AA, Tong X, Wang H, Zhao J, Tang L, Li Z, Liu X, Shu Y, Li S, Wang S, Liu W, Tajo SM, Zhang J, Wang Y. Cyclin-Dependent Kinase Inhibitors KRP1 and KRP2 Are Involved in Grain Filling and Seed Germination in Rice ( Oryza sativa L.). Int J Mol Sci 2019; 21:ijms21010245. [PMID: 31905829 PMCID: PMC6981537 DOI: 10.3390/ijms21010245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/26/2019] [Accepted: 12/26/2019] [Indexed: 12/19/2022] Open
Abstract
Cyclin-dependent kinase inhibitors known as KRPs (kip-related proteins) control the progression of plant cell cycles and modulate various plant developmental processes. However, the function of KRPs in rice remains largely unknown. In this study, two rice KRPs members, KRP1 and KRP2, were found to be predominantly expressed in developing seeds and were significantly induced by exogenous abscisic acid (ABA) and Brassinosteroid (BR) applications. Sub-cellular localization experiments showed that KRP1 was mainly localized in the nucleus of rice protoplasts. KRP1 overexpression transgenic lines (OxKRP1), krp2 single mutant (crkrp2), and krp1/krp2 double mutant (crkrp1/krp2) all exhibited significantly smaller seed width, seed length, and reduced grain weight, with impaired seed germination and retarded early seedling growth, suggesting that disturbing the normal steady state of KRP1 or KRP2 blocks seed development partly through inhibiting cell proliferation and enlargement during grain filling and seed germination. Furthermore, two cyclin-dependent protein kinases, CDKC;2 and CDKF;3, could interact with KRP1 in a yeast-two-hybrid system, indicating that KRP1 might regulate the mitosis cell cycle and endoreduplication through the two targets. In a word, this study shed novel insights into the regulatory roles of KRPs in rice seed maturation and germination.
Collapse
Affiliation(s)
- Abolore Adijat Ajadi
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
- Biotechnology Unit, National Cereals Research Institute, Badeggi, Bida 912101, Nigeria
| | - Xiaohong Tong
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
| | - Huimei Wang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
| | - Juan Zhao
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
| | - Liqun Tang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
| | - Zhiyong Li
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
| | - Xixi Liu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
| | - Yazhou Shu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
| | - Shufan Li
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
| | - Shuang Wang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Wanning Liu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
| | - Sani Muhammad Tajo
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
| | - Jian Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
- Correspondence: (J.Z.); (Y.W.); Tel./Fax: +86-571-6337-0277 (J.Z.); +86-571-6337-0206 (Y.W.)
| | - Yifeng Wang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
- Correspondence: (J.Z.); (Y.W.); Tel./Fax: +86-571-6337-0277 (J.Z.); +86-571-6337-0206 (Y.W.)
| |
Collapse
|
22
|
Wang M, Qiao J, Yu C, Chen H, Sun C, Huang L, Li C, Geisler M, Qian Q, Jiang DA, Qi Y. The auxin influx carrier, OsAUX3, regulates rice root development and responses to aluminium stress. PLANT, CELL & ENVIRONMENT 2019; 42:1125-1138. [PMID: 30399648 DOI: 10.1111/pce.13478] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 10/25/2018] [Indexed: 05/06/2023]
Abstract
In rice, there are five members of the auxin carrier AUXIN1/LIKE AUX1 family; however, the biological functions of the other four members besides OsAUX1 remain unknown. Here, by using CRISPR/Cas9, we constructed two independent OsAUX3 knock-down lines, osaux3-1 and osaux3-2, in wild-type rice, Hwayoung (WT/HY) and Dongjin (WT/DJ). osaux3-1 and osaux3-2 have shorter primary roots (PRs), decreased lateral root (LR) density, and longer root hairs (RHs) compared with their WT. OsAUX3 expression in PRs, LRs, and RHs further supports that OsAUX3 plays a critical role in the regulation of root development. OsAUX3 locates at the plasma membrane and functions as an auxin influx carrier affecting acropetal auxin transport. OsAUX3 is up-regulated in the root apex under aluminium (Al) stress, and osaux3-2 is insensitive to Al treatments. Furthermore, 1-naphthylacetic acid accented the sensitivity of WT/DJ and osaux3-2 to respond to Al stress. Auxin concentrations, Al contents, and Al-induced reactive oxygen species-mediated damage in osaux3-2 under Al stress are lower than in WT, indicating that OsAUX3 is involved in Al-induced inhibition of root growth. This study uncovers a novel pathway alleviating Al-induced oxidative damage by inhibition of acropetal auxin transport and provides a new option for engineering Al-tolerant rice species.
Collapse
Affiliation(s)
- Mei Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - JiYue Qiao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - ChenLiang Yu
- Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Hao Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - ChenDong Sun
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - LinZhou Huang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - ChuanYou Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Markus Geisler
- Department of Biology, University of Fribourg, Fribourg, CH-1700, Switzerland
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - De An Jiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - YanHua Qi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
23
|
Magwanga RO, Lu P, Kirungu JN, Cai X, Zhou Z, Wang X, Diouf L, Xu Y, Hou Y, Hu Y, Dong Q, Wang K, Liu F. Whole Genome Analysis of Cyclin Dependent Kinase ( CDK) Gene Family in Cotton and Functional Evaluation of the Role of CDKF4 Gene in Drought and Salt Stress Tolerance in Plants. Int J Mol Sci 2018; 19:ijms19092625. [PMID: 30189594 PMCID: PMC6164816 DOI: 10.3390/ijms19092625] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 08/24/2018] [Accepted: 08/29/2018] [Indexed: 12/12/2022] Open
Abstract
Cotton (Gossypium spp.) is the number one crop cultivated for fiber production and the cornerstone of the textile industry. Drought and salt stress are the major abiotic stresses, which can have a huge economic impact on cotton production; this has been aggravated with continued climate change, and compounded by pollution. Various survival strategies evolved by plants include the induction of various stress responsive genes, such as cyclin dependent kinases (CDKs). In this study, we performed a whole-genome identification and analysis of the CDK gene family in cotton. We identified 31, 12, and 15 CDK genes in G. hirsutum, G. arboreum, and G. raimondii respectively, and they were classified into 6 groups. CDK genes were distributed in 15, 10, and 9 linkage groups of AD, D, and A genomes, respectively. Evolutionary analysis revealed that segmental types of gene duplication were the primary force underlying CDK genes expansion. RNA sequence and RT-qPCR validation revealed that Gh_D12G2017 (CDKF4) was strongly induced by drought and salt stresses. The transient expression of Gh_D12G2017-GFP fusion protein in the protoplast showed that Gh_D12G2017 was localized in the nucleus. The transgenic Arabidopsis lines exhibited higher concentration levels of the antioxidant enzymes measured, including peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) concentrations under drought and salt stress conditions with very low levels of oxidants. Moreover, cell membrane stability (CMS), excised leaf water loss (ELWL), saturated leaf weight (SLW), and chlorophyll content measurements showed that the transgenic Arabidopsis lines were highly tolerant to either of the stress factors compared to their wild types. Moreover, the expression of the stress-related genes was also significantly up-regulated in Gh_D12G2017(CDKF4) transgenic Arabidopsis plants under drought and salt conditions. We infer that CDKF-4s and CDKG-2s might be the primary regulators of salt and drought responses in cotton.
Collapse
Affiliation(s)
- Richard Odongo Magwanga
- Research Base in Anyang Institute of Technology, State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang 455000, China.
- School of Biological and Physical sciences (SBPS), Main campus, Jaramogi Oginga Odinga University of Science and Technology (JOOUST), P.O Box 210-40601, Bondo, Kenya.
| | - Pu Lu
- Research Base in Anyang Institute of Technology, State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang 455000, China.
| | - Joy Nyangasi Kirungu
- Research Base in Anyang Institute of Technology, State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang 455000, China.
| | - Xiaoyan Cai
- Research Base in Anyang Institute of Technology, State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang 455000, China.
| | - Zhongli Zhou
- Research Base in Anyang Institute of Technology, State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang 455000, China.
| | - Xingxing Wang
- Research Base in Anyang Institute of Technology, State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang 455000, China.
| | - Latyr Diouf
- Research Base in Anyang Institute of Technology, State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang 455000, China.
| | - Yanchao Xu
- Research Base in Anyang Institute of Technology, State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang 455000, China.
| | - Yuqing Hou
- Research Base in Anyang Institute of Technology, State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang 455000, China.
| | - Yangguang Hu
- Research Base in Anyang Institute of Technology, State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang 455000, China.
| | - Qi Dong
- Research Base in Anyang Institute of Technology, State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang 455000, China.
| | - Kunbo Wang
- Research Base in Anyang Institute of Technology, State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang 455000, China.
| | - Fang Liu
- Research Base in Anyang Institute of Technology, State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang 455000, China.
| |
Collapse
|
24
|
Ding W, Wu J, Ye J, Zheng W, Wang S, Zhu X, Zhou J, Pan Z, Zhang B, Zhu S. A Pelota-like gene regulates root development and defence responses in rice. ANNALS OF BOTANY 2018; 122:359-371. [PMID: 29771278 PMCID: PMC6110353 DOI: 10.1093/aob/mcy075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/19/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND AND AIMS Pelota (Pelo) are evolutionarily conserved genes reported to be involved in ribosome rescue, cell cycle control and meiotic cell division. However, there is little known about their function in plants. The aim of this study was to elucidate the function of an ethylmethane sulphonate (EMS)-derived mutation of a Pelo-like gene in rice (named Ospelo). METHODS A dysfunctional mutant was used to characterize the function of OsPelo. Analyses of its expression and sub-cellular localization were performed. The whole-genome transcriptomic change in leaves of Ospelo was also investigated by RNA sequencing. KEY RESULTS The Ospelo mutant showed defects in root system development and spotted leaves at early seedling stages. Map-based cloning revealed that the mutation occurred in the putative Pelo gene. OsPelo was found to be expressed in various tissues throughout the plant, and the protein was located in mitochondria. Defence responses were induced in the Ospelo mutant, as shown by enhanced resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae, coupled with upregulation of three pathogenesis-related marker genes. In addition, whole-genome transcriptome analysis showed that OsPelo was significantly associated with a number of biological processes, including translation, metabolism and biotic stress response. Detailed analysis showed that activation of a number of innate immunity-related genes might be responsible for the enhanced disease resistance in the Ospelo mutant. CONCLUSIONS These results demonstrate that OsPelo positively regulates root development while its loss of function enhances pathogen resistance by pre-activation of defence responses in rice.
Collapse
Affiliation(s)
- Wona Ding
- College of Science & Technology, Ningbo University, Ningbo, PR China
| | - Jing Wu
- School of Marine Sciences, Ningbo University, Ningbo, PR China
| | - Jin Ye
- School of Marine Sciences, Ningbo University, Ningbo, PR China
| | - Wenjuan Zheng
- College of Science & Technology, Ningbo University, Ningbo, PR China
| | - Shanshan Wang
- School of Marine Sciences, Ningbo University, Ningbo, PR China
| | - Xinni Zhu
- School of Marine Sciences, Ningbo University, Ningbo, PR China
| | - Jiaqin Zhou
- College of Science & Technology, Ningbo University, Ningbo, PR China
| | - Zhichong Pan
- College of Science & Technology, Ningbo University, Ningbo, PR China
| | - Botao Zhang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, PR China
- For correspondence. E-mail or
| | - Shihua Zhu
- College of Science & Technology, Ningbo University, Ningbo, PR China
- For correspondence. E-mail or
| |
Collapse
|
25
|
Yasui Y, Ohmori Y, Takebayashi Y, Sakakibara H, Hirano HY. WUSCHEL-RELATED HOMEOBOX4 acts as a key regulator in early leaf development in rice. PLoS Genet 2018; 14:e1007365. [PMID: 29684018 PMCID: PMC5933814 DOI: 10.1371/journal.pgen.1007365] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 05/03/2018] [Accepted: 04/16/2018] [Indexed: 11/18/2022] Open
Abstract
Rice (Oryza sativa) has long and narrow leaves with parallel veins, similar to other grasses. Relative to Arabidopsis thaliana which has oval-shaped leaves, our understanding of the mechanism of leaf development is insufficient in grasses. In this study, we show that OsWOX4, a member of the WUSCHEL-RELATED HOMEOBOX gene family, plays important roles in early leaf development in rice. Inducible downregulation of OsWOX4 resulted in severe defects in leaf development, such as an arrest of vascular differentiation, a partial defect in the early cell proliferation required for midrib formation, and a failure to maintain cellular activity in general parenchyma cells. In situ analysis showed that knockdown of OsWOX4 reduced the expression of two LONELY GUY genes, which function in the synthesis of active cytokinin, in developing vascular bundles. Consistent with this, cytokinin levels were downregulated by OsWOX4 knockdown. Transcriptome analysis further showed that OsWOX4 regulates multiple genes, including those responsible for cell cycle progression and hormone action, consistent with the effects of OsWOX4 downregulation on leaf phenotypes. Collectively, these results suggest that OsWOX4 acts as a key regulator at an early stage of leaf development. Our previous work revealed that OsWOX4 is involved in the maintenance of shoot apical meristem in rice, whereas AtWOX4 is specifically associated with the maintenance of vascular stem cells in Arabidopsis. Thus, the function of the two orthologous genes seems to be diversified between rice and Arabidopsis.
Collapse
Affiliation(s)
- Yukiko Yasui
- Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yoshihiro Ohmori
- Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, Suehiro, Tsurumi, Yokohama, Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Suehiro, Tsurumi, Yokohama, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan
| | - Hiro-Yuki Hirano
- Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
26
|
Lee K, Seo PJ. Dynamic Epigenetic Changes during Plant Regeneration. TRENDS IN PLANT SCIENCE 2018; 23:235-247. [PMID: 29338924 DOI: 10.1016/j.tplants.2017.11.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 05/18/2023]
Abstract
Plants have the remarkable ability to drive cellular dedifferentiation and regeneration. Changes in epigenetic landscapes accompany the cell fate transition. Notably, modifications of chromatin structure occur primarily during callus formation via an in vitro tissue culture process and, thus, pluripotent callus cells have unique epigenetic signatures. Here, we highlight the latest progress in epigenetic regulation of callus formation in plants, which addresses fundamental questions related to cell fate changes and pluripotency establishment. Global and local modifications of chromatin structure underlie callus formation, and the combination and sequence of epigenetic modifications further shape intricate cell fate changes. This review illustrates how a series of chromatin marks change dynamically during callus formation and their biological relevance in plant regeneration.
Collapse
Affiliation(s)
- Kyounghee Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Pil Joon Seo
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
27
|
Sukawa Y, Okamoto T. Cell cycle in egg cell and its progression during zygotic development in rice. PLANT REPRODUCTION 2018; 31:107-116. [PMID: 29270910 DOI: 10.1007/s00497-017-0318-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/04/2017] [Indexed: 05/20/2023]
Abstract
Rice egg is arrested at G1 phase probably by OsKRP2. After fusion with sperm, karyogamy, OsWEE1-mediated parental DNA integrity in zygote nucleus, zygote progresses cell cycle to produce two-celled embryo. In angiosperms, female and male gametes exist in gametophytes after the complementation of meiosis and the progression of nuclear/cell division of the haploid cell. Within the embryo sac, the egg cell is specially differentiated for fertilization and subsequent embryogenesis, and cellular programs for embryonic development, such as restarting the cell cycle and de novo gene expression, are halted. There is only limited knowledge about how the cell cycle in egg cells restarts toward zygotic division, although the conversion of the cell cycle from a quiescent and arrested state to an active state is the most evident transition of cell status from egg cell to zygote. This is partly due to the difficulty in direct access and analysis of egg cells, zygotes and early embryos, which are deeply embedded in ovaries. In this study, precise relative DNA amounts in the nuclei of egg cells, developing zygotes and cells of early embryos were measured, and the cell cycle of a rice egg cell was estimated as the G1 phase with a 1C DNA level. In addition, increases in DNA content in zygote nuclei via karyogamy and DNA replication were also detectable according to progression of the cell cycle. In addition, expression profiles for cell cycle-related genes in egg cells and zygotes were also addressed, and it was suggested that OsKRP2 and OsWEE1 function in the inhibition of cell cycle progression in egg cells and in checkpoint of parental DNA integrity in zygote nucleus, respectively.
Collapse
Affiliation(s)
- Yumiko Sukawa
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji, Tokyo, 192-0397, Japan
| | - Takashi Okamoto
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji, Tokyo, 192-0397, Japan.
| |
Collapse
|
28
|
Zhao Y, Wen H, Teotia S, Du Y, Zhang J, Li J, Sun H, Tang G, Peng T, Zhao Q. Suppression of microRNA159 impacts multiple agronomic traits in rice (Oryza sativa L.). BMC PLANT BIOLOGY 2017; 17:215. [PMID: 29162059 PMCID: PMC5699021 DOI: 10.1186/s12870-017-1171-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 11/10/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND microRNAs (miRNAs) are important regulators in plant growth and development. miR159 is a conserved miRNA among different plant species and has various functions in plants. Studies on miR159 are mostly done on model plant, Arabidopsis thaliana. In rice, studies on miR159 were either based upon genome-wide expression analyses focused upon responses to different nitrogen forms and abiotic stress or upon phenotypic studies of transgenic plants overexpressing its precursor. STTM (Short Tandem Target Mimic) is an effective tool to block the activity of endogenous mature miRNA activity in plant. Therefore, specific roles of miR159 in rice could be explored by down regulating miR159 through STTM. RESULTS In this study, expression of mature miR159 was successfully suppressed by STTM which resulted in the increased expressions of its two targets genes, OsGAMYB and OsGAMYBL1 (GAMYB-LIKE 1). Overall, STTM159 plants exhibited short stature along with smaller organ size and reduction in stem diameter, length of flag leaf, main panicle, spikelet hulls and grain size. Histological analysis of stem, leaf and mature spikelet hull showed the reduced number of small vascular bundles (SVB), less number of small veins (SV) between two big veins (LV) and less cell number in outer parenchyma. Gene Ontology (GO) enrichment analysis of differentially expressed genes between wild type plants and STTM159 transgenic plants showed that genes involved in cell division, auxin, cytokinin (CK) and brassinosteroids (BRs) biosynthesis and signaling are significantly down-regulated in STTM159 plants. CONCLUSION Our data suggests that in rice, miR159 positively regulates organ size, including stem, leaf, and grain size due to the promotion of cell division. Further analysis from the RNA-seq data showed that the decreased cell divisions in STTM159 transgenic plants may result, at least partly from the lower expression of the genes involved in cell cycle and hormone homeostasis, which provides new insights of rice miR159-specific functions.
Collapse
Affiliation(s)
- Yafan Zhao
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002 China
- Key Laboratory of Rice Biology in Henan Province, Henan Agricultural University, Zhengzhou, 450002 China
| | - Huili Wen
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002 China
- Key Laboratory of Rice Biology in Henan Province, Henan Agricultural University, Zhengzhou, 450002 China
| | - Sachin Teotia
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002 China
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931 USA
| | - Yanxiu Du
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002 China
- Key Laboratory of Rice Biology in Henan Province, Henan Agricultural University, Zhengzhou, 450002 China
| | - Jing Zhang
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002 China
- Key Laboratory of Rice Biology in Henan Province, Henan Agricultural University, Zhengzhou, 450002 China
| | - Junzhou Li
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002 China
- Key Laboratory of Rice Biology in Henan Province, Henan Agricultural University, Zhengzhou, 450002 China
| | - Hongzheng Sun
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002 China
- Key Laboratory of Rice Biology in Henan Province, Henan Agricultural University, Zhengzhou, 450002 China
| | - Guiliang Tang
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002 China
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931 USA
| | - Ting Peng
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002 China
- Key Laboratory of Rice Biology in Henan Province, Henan Agricultural University, Zhengzhou, 450002 China
| | - Quanzhi Zhao
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002 China
- Key Laboratory of Rice Biology in Henan Province, Henan Agricultural University, Zhengzhou, 450002 China
| |
Collapse
|
29
|
Identification and functional analysis of the ICK gene family in maize. Sci Rep 2017; 7:43818. [PMID: 28262730 PMCID: PMC5338338 DOI: 10.1038/srep43818] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 01/31/2017] [Indexed: 11/29/2022] Open
Abstract
Inhibitors of cyclin-dependent kinases (ICKs) are key regulators of cyclin-dependent kinase activities and cell division. Herein, we identified eight ICKs in maize, which we named Zeama;ICKs (ZmICKs). Primary sequencing and phylogenetic analyses were used to divide the ZmICK family into two classes: group B and group C. Subcellular localization analysis of ZmICK:enhanced green fluorescent protein (eGFP) fusion constructs in tobacco leaf cells indicated that ZmICKs are principally nuclear. Co-localization analysis of the ZmICKs and maize A-type cyclin-dependent kinase (ZmCDKA) was also performed using enhanced green fluorescent protein (eGFP) and red fluorescent protein (RFP) fusion constructs. The ZmICKs and ZmCDKA co-localized in the nucleus. Semi-quantitative RT-PCR analysis of the ZmICKs showed that they were expressed at different levels in all tissues examined and shared similar expression patterns with cell cycle-related genes. Yeast two-hybrid and bimolecular fluorescence complementation assays showed that ZmICK1, ZmICK2, ZmICK3, and ZmICK4 interact with ZmCDKA1 and ZmCDKA3. Interestingly, ZmICK7 interacts with D-type cyclins. Transformed and expressed ZmCDKA1 and ZmICKs together in fission yeast revealed that ZmICK1, ZmICK3, and ZmICK4 can affect ZmCDKA1 function. Moreover, the C-group of ZmICKs could interact with ZmCDKA1 directly and affect ZmCDKA1 function, suggesting that C-group ZmICKs are important for cell division regulation.
Collapse
|
30
|
Wang M, Lu X, Xu G, Yin X, Cui Y, Huang L, Rocha PSCF, Xia X. OsSGL, a novel pleiotropic stress-related gene enhances grain length and yield in rice. Sci Rep 2016; 6:38157. [PMID: 27917884 PMCID: PMC5137154 DOI: 10.1038/srep38157] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/04/2016] [Indexed: 11/19/2022] Open
Abstract
Abiotic stress seriously affects the yield of rice (Oryza sativa L.). Grain yield in rice is multiplicatively determined by the number of panicles, number of grains per panicle, and grain weight. Here, we describe the molecular and functional characterization of STRESS_tolerance and GRAIN_LENGTH (OsSGL), a rice gene strongly up-regulated by a wide spectrum of abiotic stresses. OsSGL encodes a putative member of the DUF1645 protein family of unknown function. Overexpression of OsSGL significantly altered certain development processes greatly and positively affecting an array of traits in transgenic rice plants, including increased grain length, grain weight and grain number per panicle, resulting in a significant increase in yield. Microscopical analysis showed that the enhanced OsSGL expression promoted cell division and grain filling. Microarray and quantitative real-time PCR (qRT-PCR) analyses revealed that a large number of genes involved in stress-response, cell cycle and cytokinin signaling processes were induced or suppressed in OsSGL-overexpressing plants. Together, our results suggest that OsSGL may regulate stress-tolerance and cell growth by acting via a cytokinin signaling pathway. This study not only contributes to our understanding of the underlying mechanism regulating rice stress-tolerance and grain length, but also provides a strategy for tailor-made crop yield improvement.
Collapse
Affiliation(s)
- Manling Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Xuedan Lu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Guoyun Xu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Xuming Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Yanchun Cui
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Lifang Huang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Pedro S C F Rocha
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Xinjie Xia
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| |
Collapse
|
31
|
Li Q, Shi X, Ye S, Wang S, Chan R, Harkness T, Wang H. A short motif in Arabidopsis CDK inhibitor ICK1 decreases the protein level, probably through a ubiquitin-independent mechanism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:617-628. [PMID: 27233081 DOI: 10.1111/tpj.13223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/12/2016] [Accepted: 05/23/2016] [Indexed: 06/05/2023]
Abstract
The ICK/KRP family of cyclin-dependent kinase (CDK) inhibitors modulates the activity of plant CDKs through protein binding. Previous work has shown that changing the levels of ICK/KRP proteins by overexpression or downregulation affects cell proliferation and plant growth, and also that the ubiquitin proteasome system is involved in degradation of ICK/KRPs. We show in this study that the region encompassing amino acids 21 to 40 is critical for ICK1 levels in both Arabidopsis and yeast. To determine how degradation of ICK1 is controlled, we analyzed the accumulation of hemagglutinin (HA) epitope-tagged ICK1 proteins in yeast mutants defective for two ubiquitin E3 ligases. The highest level of HA-ICK1 protein was observed when both the N-terminal 1-40 sequence was removed and the SCF (SKP1-Cullin1-F-box complex) function disrupted, suggesting the involvement of both SCF-dependent and SCF-independent mechanisms in the degradation of ICK1 in yeast. A short motif consisting of residues 21-30 is sufficient to render green fluorescent protein (GFP) unstable in plants and had a similar effect in plants regardless of whether it was fused to the N-terminus or C-terminus of GFP. Furthermore, results from a yeast ubiquitin receptor mutant rpn10Δ indicate that protein ubiquitination is not critical in the degradation of GFP-ICK1(1-40) in yeast. These results thus identify a protein-destabilizing sequence motif that does not contain a typical ubiquitination residue, suggesting that it probably functions through an SCF-independent mechanism.
Collapse
Affiliation(s)
- Qin Li
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Xianzong Shi
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Shengjian Ye
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Sheng Wang
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Ron Chan
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Troy Harkness
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Hong Wang
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
32
|
Pettkó-Szandtner A, Cserháti M, Barrôco RM, Hariharan S, Dudits D, Beemster GTS. Core cell cycle regulatory genes in rice and their expression profiles across the growth zone of the leaf. JOURNAL OF PLANT RESEARCH 2015; 128:953-74. [PMID: 26459328 DOI: 10.1007/s10265-015-0754-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 07/12/2015] [Indexed: 05/22/2023]
Abstract
Rice (Oryza sativa L.) as a model and crop plant with a sequenced genome offers an outstanding experimental system for discovering and functionally analyzing the major cell cycle control elements in a cereal species. In this study, we identified the core cell cycle genes in the rice genome through a hidden Markov model search and multiple alignments supported with the use of short protein sequence probes. In total we present 55 rice putative cell cycle genes with locus identity, chromosomal location, approximate chromosome position and EST accession number. These cell cycle genes include nine cyclin dependent-kinase (CDK) genes, 27 cyclin genes, one CKS gene, two RBR genes, nine E2F/DP/DEL genes, six KRP genes, and one WEE gene. We also provide characteristic protein sequence signatures encoded by CDK and cyclin gene variants. Promoter analysis by the FootPrinter program discovered several motifs in the regulatory region of the core cell cycle genes. As a first step towards functional characterization we performed transcript analysis by RT-PCR to determine gene specific variation in transcript levels along the rice leaves. The meristematic zone of the leaves where cells are actively dividing was identified based on kinematic analysis and flow cytometry. As expected, expression of the majority of cell cycle genes was exclusively associated with the meristematic region. However genes such as different D-type cyclins, DEL1, KRP1/3, and RBR2 were also expressed in leaf segments representing the transition zone in which cells start differentiation.
Collapse
Affiliation(s)
- A Pettkó-Szandtner
- Biological Research Center, HAS, Temesvári krt 62, Szeged, 6726, Hungary.
- Plant Systems Biology, VIB, Technologiepark 927, 9052, Zwijnaarde, Belgium.
| | - M Cserháti
- Biological Research Center, HAS, Temesvári krt 62, Szeged, 6726, Hungary
- Nebraska Medical Center, Omaha, NE, 68198-5145, USA
- Plant Systems Biology, VIB, Technologiepark 927, 9052, Zwijnaarde, Belgium
| | - R M Barrôco
- Plant Systems Biology, VIB, Technologiepark 927, 9052, Zwijnaarde, Belgium
- CropDesign N.V./BASF, Technologiepark 921C, 9052, Ghent, Zwijnaarde, Belgium
| | - S Hariharan
- Plant Systems Biology, VIB, Technologiepark 927, 9052, Zwijnaarde, Belgium
| | - D Dudits
- Biological Research Center, HAS, Temesvári krt 62, Szeged, 6726, Hungary
| | - G T S Beemster
- Plant Systems Biology, VIB, Technologiepark 927, 9052, Zwijnaarde, Belgium
- Department of Biology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
33
|
Ye J, Zhang Z, Long H, Zhang Z, Hong Y, Zhang X, You C, Liang W, Ma H, Lu P. Proteomic and phosphoproteomic analyses reveal extensive phosphorylation of regulatory proteins in developing rice anthers. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:527-44. [PMID: 26360816 DOI: 10.1111/tpj.13019] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/25/2015] [Accepted: 08/26/2015] [Indexed: 05/18/2023]
Abstract
Anther development, particularly around the time of meiosis, is extremely crucial for plant sexual reproduction. Meanwhile, cell-to-cell communication between somatic (especial tapetum) cells and meiocytes are important for both somatic anther development and meiosis. To investigate possible molecular mechanisms modulating protein activities during anther development, we applied high-resolution mass spectrometry-based proteomic and phosphoproteomic analyses for developing rice (Oryza sativa) anthers around the time of meiosis (RAM). In total, we identified 4984 proteins and 3203 phosphoproteins with 8973 unique phosphorylation sites (p-sites). Among those detected here, 1544 phosphoproteins are currently absent in the Plant Protein Phosphorylation DataBase (P3 DB), substantially enriching plant phosphorylation information. Mapman enrichment analysis showed that 'DNA repair','transcription regulation' and 'signaling' related proteins were overrepresented in the phosphorylated proteins. Ten genetically identified rice meiotic proteins were detected to be phosphorylated at a total of 25 p-sites; moreover more than 400 meiotically expressed proteins were revealed to be phosphorylated and their phosphorylation sites were precisely assigned. 163 putative secretory proteins, possibly functioning in cell-to-cell communication, are also phosphorylated. Furthermore, we showed that DNA synthesis, RNA splicing and RNA-directed DNA methylation pathways are extensively affected by phosphorylation. In addition, our data support 46 kinase-substrate pairs predicted by the rice Kinase-Protein Interaction Map, with SnRK1 substrates highly enriched. Taken together, our data revealed extensive protein phosphorylation during anther development, suggesting an important post-translational modification affecting protein activity.
Collapse
Affiliation(s)
- Juanying Ye
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Zaibao Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Haifei Long
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Zhimin Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Yue Hong
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Xumin Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Chenjiang You
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Wanqi Liang
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Pingli Lu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| |
Collapse
|
34
|
Yu C, Sun C, Shen C, Wang S, Liu F, Liu Y, Chen Y, Li C, Qian Q, Aryal B, Geisler M, Jiang DA, Qi Y. The auxin transporter, OsAUX1, is involved in primary root and root hair elongation and in Cd stress responses in rice (Oryza sativa L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:818-30. [PMID: 26140668 DOI: 10.1111/tpj.12929] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/17/2015] [Accepted: 06/26/2015] [Indexed: 05/22/2023]
Abstract
Auxin and cadmium (Cd) stress play critical roles during root development. There are only a few reports on the mechanisms by which Cd stress influences auxin homeostasis and affects primary root (PR) and lateral root (LR) development, and almost nothing is known about how auxin and Cd interfere with root hair (RH) development. Here, we characterize rice osaux1 mutants that have a longer PR and shorter RHs in hydroponic culture, and that are more sensitive to Cd stress compared to wild-type (Dongjin). OsAUX1 expression in root hair cells is different from that of its paralogous gene, AtAUX1, which is expressed in non-hair cells. However, OsAUX1, like AtAUX1, localizes at the plasma membrane and appears to function as an auxin tranporter. Decreased auxin distribution and contents in the osaux1 mutant result in reduction of OsCyCB1;1 expression and shortened PRs, LRs and RHs under Cd stress, but may be rescued by treatment with the membrane-permeable auxin 1-naphthalene acetic acid. Treatment with the auxin transport inhibitors 1-naphthoxyacetic acid and N-1-naphthylphthalamic acid increased the Cd sensitivity of WT rice. Cd contents in the osaux1 mutant were not altered, but reactive oxygen species-mediated damage was enhanced, further increasing the sensitivity of the osaux1 mutant to Cd stress. Taken together, our results indicate that OsAUX1 plays an important role in root development and in responses to Cd stress.
Collapse
Affiliation(s)
- ChenLiang Yu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - ChenDong Sun
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Suikang Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fang Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yan Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - YunLong Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Bibek Aryal
- Department of Biology - Plant Biology, University of Fribourg, Rue Albert Gockel 3, CH-1700, Fribourg, Switzerland
| | - Markus Geisler
- Department of Biology - Plant Biology, University of Fribourg, Rue Albert Gockel 3, CH-1700, Fribourg, Switzerland
| | - De An Jiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - YanHua Qi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
35
|
Hara T, Katoh H, Ogawa D, Kagaya Y, Sato Y, Kitano H, Nagato Y, Ishikawa R, Ono A, Kinoshita T, Takeda S, Hattori T. Rice SNF2 family helicase ENL1 is essential for syncytial endosperm development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:1-12. [PMID: 25327517 DOI: 10.1111/tpj.12705] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 10/02/2014] [Accepted: 10/06/2014] [Indexed: 06/04/2023]
Abstract
The endosperm of cereal grains represents the most important source of human nutrition. In addition, the endosperm provides many investigatory opportunities for biologists because of the unique processes that occur during its ontogeny, including syncytial development at early stages. Rice endospermless 1 (enl1) develops seeds lacking an endosperm but carrying a functional embryo. The enl1 endosperm produces strikingly enlarged amoeboid nuclei. These abnormal nuclei result from a malfunction in mitotic chromosomal segregation during syncytial endosperm development. The molecular identification of the causal gene revealed that ENL1 encodes an SNF2 helicase family protein that is orthologous to human Plk1-Interacting Checkpoint Helicase (PICH), which has been implicated in the resolution of persistent DNA catenation during anaphase. ENL1-Venus (enhanced yellow fluorescent protein (YFP)) localizes to the cytoplasm during interphase but moves to the chromosome arms during mitosis. ENL1-Venus is also detected on a thread-like structure that connects separating sister chromosomes. These observations indicate the functional conservation between PICH and ENL1 and confirm the proposed role of PICH. Although ENL1 dysfunction also affects karyokinesis in the root meristem, enl1 plants can grow in a field and set seeds, indicating that its indispensability is tissue-dependent. Notably, despite the wide conservation of ENL1/PICH among eukaryotes, the loss of function of the ENL1 ortholog in Arabidopsis (CHR24) has only marginal effects on endosperm nuclei and results in normal plant development. Our results suggest that ENL1 is endowed with an indispensable role to secure the extremely rapid nuclear cycle during syncytial endosperm development in rice.
Collapse
Affiliation(s)
- Tomomi Hara
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, 464-8601, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Identification and expression analysis of the E2F/DP genes under salt stress in Medicago truncatula. Genes Genomics 2014. [DOI: 10.1007/s13258-014-0218-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
37
|
Meguro A, Sato Y. Salicylic acid antagonizes abscisic acid inhibition of shoot growth and cell cycle progression in rice. Sci Rep 2014; 4:4555. [PMID: 24686568 PMCID: PMC3971400 DOI: 10.1038/srep04555] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 03/14/2014] [Indexed: 11/23/2022] Open
Abstract
We analysed effects of abscisic acid (ABA, a negative regulatory hormone), alone and in combination with positive or neutral hormones, including salicylic acid (SA), on rice growth and expression of cell cycle-related genes. ABA significantly inhibited shoot growth and induced expression of OsKRP4, OsKRP5, and OsKRP6. A yeast two-hybrid assay showed that OsKRP4, OsKRP5, and OsKRP6 interacted with OsCDKA;1 and/or OsCDKA;2. When SA was simultaneously supplied with ABA, the antagonistic effect of SA completely blocked ABA inhibition. SA also blocked ABA inhibition of DNA replication and thymidine incorporation in the shoot apical meristem. These results suggest that ABA arrests cell cycle progression by inducing expression of OsKRP4, OsKRP5, and OsKRP6, which inhibit the G1/S transition, and that SA antagonizes ABA by blocking expression of OsKRP genes.
Collapse
Affiliation(s)
- Ayano Meguro
- Crop Breeding Research Division, NARO Hokkaido Agricultural Research Center, Hitsujigaoka 1, Toyohira-ku, Sapporo 062-8555, Japan
| | - Yutaka Sato
- Crop Breeding Research Division, NARO Hokkaido Agricultural Research Center, Hitsujigaoka 1, Toyohira-ku, Sapporo 062-8555, Japan
| |
Collapse
|
38
|
Dante RA, Sabelli PA, Nguyen HN, Leiva-Neto JT, Tao Y, Lowe KS, Hoerster GJ, Gordon-Kamm WJ, Jung R, Larkins BA. Cyclin-dependent kinase complexes in developing maize endosperm: evidence for differential expression and functional specialization. PLANTA 2014; 239:493-509. [PMID: 24240479 PMCID: PMC3902077 DOI: 10.1007/s00425-013-1990-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 10/21/2013] [Indexed: 05/18/2023]
Abstract
Endosperm development in maize (Zea mays L.) and related cereals comprises a cell proliferation stage followed by a period of rapid growth coupled to endoreduplication. Regulation of the cell cycle in developing endosperm is poorly understood. We have characterized various subunits of cyclin-dependent kinase (CDK) complexes, master cell cycle regulators in all eukaryotes. A-, B-, and D-type cyclins as well as A- and B-type cyclin-dependent kinases were characterized with respect to their RNA and protein expression profiles. Two main patterns were identified: one showing expression throughout endosperm development, and another characterized by a sharp down-regulation with the onset of endoreduplication. Cyclin CYCB1;3 and CYCD2;1 proteins were distributed in the cytoplasm and nucleus of cells throughout the endosperm, while cyclin CYCD5 protein was localized in the cytoplasm of peripheral cells. CDKB1;1 expression was strongly associated with cell proliferation. Expression and cyclin-binding patterns suggested that CDKA;1 and CDKA;3 are at least partially redundant. The kinase activity associated with the cyclin CYCA1 was highest during the mitotic stage of development, while that associated with CYCB1;3, CYCD2;1 and CYCD5 peaked at the mitosis-to-endoreduplication transition. A-, B- and D-type cyclins were more resistant to proteasome-dependent degradation in endoreduplicating than in mitotic endosperm extracts. These results indicated that endosperm development is characterized by differential expression and activity of specific cyclins and CDKs, and suggested that endoreduplication is associated with reduced cyclin proteolysis via the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Ricardo A. Dante
- School of Plant Sciences, University of Arizona, 303 Forbes, Tucson, AZ 85721 USA
- Present Address: Embrapa Agricultural Informatics, Av. André Tosello 209, Campinas, SP 13083-886 Brazil
| | - Paolo A. Sabelli
- School of Plant Sciences, University of Arizona, 303 Forbes, Tucson, AZ 85721 USA
| | - Hong N. Nguyen
- School of Plant Sciences, University of Arizona, 303 Forbes, Tucson, AZ 85721 USA
| | - João T. Leiva-Neto
- School of Plant Sciences, University of Arizona, 303 Forbes, Tucson, AZ 85721 USA
| | - Yumin Tao
- Pioneer Hi-Bred International, Inc., Johnston, IO 50131 USA
| | - Keith S. Lowe
- Pioneer Hi-Bred International, Inc., Johnston, IO 50131 USA
| | | | | | - Rudolf Jung
- Pioneer Hi-Bred International, Inc., Johnston, IO 50131 USA
| | - Brian A. Larkins
- School of Plant Sciences, University of Arizona, 303 Forbes, Tucson, AZ 85721 USA
| |
Collapse
|
39
|
Sabelli PA, Dante RA, Nguyen HN, Gordon-Kamm WJ, Larkins BA. Expression, regulation and activity of a B2-type cyclin in mitotic and endoreduplicating maize endosperm. FRONTIERS IN PLANT SCIENCE 2014; 5:561. [PMID: 25368625 PMCID: PMC4201103 DOI: 10.3389/fpls.2014.00561] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 09/29/2014] [Indexed: 05/18/2023]
Abstract
Cyclin-dependent kinases, the master regulators of the eukaryotic cell cycle, are complexes comprised of a catalytic serine/threonine protein kinase and an essential regulatory cyclin. The maize genome encodes over 50 cyclins grouped in different types, but they have been little investigated. We characterized a type B2 cyclin (CYCB2;2) during maize endosperm development, which comprises a cell proliferation phase based on the standard mitotic cell cycle, followed by an endoreduplication phase in which DNA replication is reiterated in the absence of mitosis or cytokinesis. CYCB2;2 RNA was present throughout the period of endosperm development studied, but its level declined as the endosperm transitioned from a mitotic to an endoreduplication cell cycle. However, the level of CYCB2;2 protein remained relatively constant during both stages of endosperm development. CYCB2;2 was recalcitrant to degradation by the 26S proteasome in endoreduplicating endosperm extracts, which could explain its sustained accumulation during endosperm development. In addition, although CYCB2;2 was generally localized to the nucleus of endosperm cells, a lower molecular weight form of the protein accumulated specifically in the cytosol of endoreduplicating endosperm cells. In dividing cells, CYCB2;2 appeared to be localized to the phragmoplast and may be involved in cytokinesis and cell wall formation. Kinase activity was associated with CYCB2;2 in mitotic endosperm, but was absent or greatly reduced in immature ear and endoreduplicating endosperm. CYCB2;2-associated kinase phosphorylated maize E2F1 and the "pocket" domains of RBR1 and RBR3. CYCB2;2 interacted with both maize CDKA;1 and CDKA;3 in insect cells. These results suggest CYCB2;2 functions primarily during the mitotic cell cycle, and they are discussed in the context of the roles of cyclins, CDKs and proteasome activity in the regulation of the cell cycle during endosperm development.
Collapse
Affiliation(s)
- Paolo A. Sabelli
- School of Plant Sciences, University of ArizonaTucson, AZ, USA
- *Correspondence: Paolo A. Sabelli, School of Plant Sciences, University of Arizona, 303 Forbes Building, Tucson, AZ 85721, USA e-mail:
| | | | - Hong N. Nguyen
- School of Plant Sciences, University of ArizonaTucson, AZ, USA
| | | | | |
Collapse
|
40
|
Lin HY, Chen JC, Wei MJ, Lien YC, Li HH, Ko SS, Liu ZH, Fang SC. Genome-wide annotation, expression profiling, and protein interaction studies of the core cell-cycle genes in Phalaenopsis aphrodite. PLANT MOLECULAR BIOLOGY 2014; 84:203-26. [PMID: 24222213 PMCID: PMC3840290 DOI: 10.1007/s11103-013-0128-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 09/03/2013] [Indexed: 05/06/2023]
Abstract
Orchidaceae is one of the most abundant and diverse families in the plant kingdom and its unique developmental patterns have drawn the attention of many evolutionary biologists. Particular areas of interest have included the co-evolution of pollinators and distinct floral structures, and symbiotic relationships with mycorrhizal flora. However, comprehensive studies to decipher the molecular basis of growth and development in orchids remain scarce. Cell proliferation governed by cell-cycle regulation is fundamental to growth and development of the plant body. We took advantage of recently released transcriptome information to systematically isolate and annotate the core cell-cycle regulators in the moth orchid Phalaenopsis aphrodite. Our data verified that Phalaenopsis cyclin-dependent kinase A (CDKA) is an evolutionarily conserved CDK. Expression profiling studies suggested that core cell-cycle genes functioning during the G1/S, S, and G2/M stages were preferentially enriched in the meristematic tissues that have high proliferation activity. In addition, subcellular localization and pairwise interaction analyses of various combinations of CDKs and cyclins, and of E2 promoter-binding factors and dimerization partners confirmed interactions of the functional units. Furthermore, our data showed that expression of the core cell-cycle genes was coordinately regulated during pollination-induced reproductive development. The data obtained establish a fundamental framework for study of the cell-cycle machinery in Phalaenopsis orchids.
Collapse
Affiliation(s)
- Hsiang-Yin Lin
- Biotechnology Center in Southern Taiwan, Academia Sinica, No. 59, Siraya Blvd., Xinshi District, Tainan, 741 Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115 Taiwan
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan, 701 Taiwan
| | - Jhun-Chen Chen
- Biotechnology Center in Southern Taiwan, Academia Sinica, No. 59, Siraya Blvd., Xinshi District, Tainan, 741 Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115 Taiwan
| | - Miao-Ju Wei
- Biotechnology Center in Southern Taiwan, Academia Sinica, No. 59, Siraya Blvd., Xinshi District, Tainan, 741 Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115 Taiwan
| | - Yi-Chen Lien
- Biotechnology Center in Southern Taiwan, Academia Sinica, No. 59, Siraya Blvd., Xinshi District, Tainan, 741 Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115 Taiwan
| | - Huang-Hsien Li
- Biotechnology Center in Southern Taiwan, Academia Sinica, No. 59, Siraya Blvd., Xinshi District, Tainan, 741 Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115 Taiwan
| | - Swee-Suak Ko
- Biotechnology Center in Southern Taiwan, Academia Sinica, No. 59, Siraya Blvd., Xinshi District, Tainan, 741 Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115 Taiwan
| | - Zin-Huang Liu
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan, 701 Taiwan
| | - Su-Chiung Fang
- Biotechnology Center in Southern Taiwan, Academia Sinica, No. 59, Siraya Blvd., Xinshi District, Tainan, 741 Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115 Taiwan
| |
Collapse
|
41
|
Anderson SN, Johnson CS, Jones DS, Conrad LJ, Gou X, Russell SD, Sundaresan V. Transcriptomes of isolated Oryza sativa gametes characterized by deep sequencing: evidence for distinct sex-dependent chromatin and epigenetic states before fertilization. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:729-41. [PMID: 24215296 DOI: 10.1111/tpj.12336] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 09/12/2013] [Accepted: 09/19/2013] [Indexed: 05/19/2023]
Abstract
The formation of a zygote by the fusion of egg and sperm involves the two gametic transcriptomes. In flowering plants, the embryo sac embedded within the ovule contains the egg cell, whereas the pollen grain contains two sperm cells inside a supporting vegetative cell. The difficulties of collecting isolated gametes and consequent low recovery of RNA have restricted in-depth analysis of gametic transcriptomes in flowering plants. We isolated living egg cells, sperm cells and pollen vegetative cells from Oryza sativa (rice), and identified transcripts for approximately 36 000 genes by deep sequencing. The three transcriptomes are highly divergent, with about three-quarters of those genes differentially expressed in the different cell types. Distinctive expression profiles were observed for genes involved in chromatin conformation, including an unexpected expression in the sperm cell of genes associated with active chromatin. Furthermore, both the sperm cell and the pollen vegetative cell were deficient in expression of key RNAi components. Differences in gene expression were also observed for genes for hormonal signaling and cell cycle regulation. The egg cell and sperm cell transcriptomes reveal major differences in gene expression to be resolved in the zygote, including pathways affecting chromatin configuration, hormones and cell cycle. The sex-specific differences in the expression of RNAi components suggest that epigenetic silencing in the zygote might act predominantly through female-dependent pathways. More generally, this study provides a detailed gene expression landscape for flowering plant gametes, enabling the identification of specific gametic functions, and their contributions to zygote and seed development.
Collapse
Affiliation(s)
- Sarah N Anderson
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Gocal GFW, King RW. Early increased expression of a cyclin-dependant protein kinase (LtCDKA1;1) during inflorescence initiation of the long day grass Lolium temulentum. FUNCTIONAL PLANT BIOLOGY : FPB 2013; 40:986-995. [PMID: 32481167 DOI: 10.1071/fp12294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 03/25/2013] [Indexed: 06/11/2023]
Abstract
Knowing where and when different genes express at the shoot apex during the transition to flowering will help in understanding this developmental switch. The CDKA family of serine/threonine kinase genes are appropriate candidates for such developmental switching as they are involved in the regulation of the G1/S and G2/M boundaries of the cell cycle (see review by Dudits et al. 2007) and so could regulate increases of cell division associated with flowering. Furthermore, in rice stems the gibberellin (GA) class of plant growth regulators rapidly upregulate CDKA expression and cell division. Thus, CDKA expression might be linked to the florigenic action of GA as a photoperiodically-generated, signal. For the grass Lolium temulentum L., we have isolated an LtCDKA1;1 gene, which is upregulated in shoot apices collected soon after the start of a single florally inductive long day (LD). In contrast to weak expression of LtCDKA1;1 in the vegetative shoot apex, in situ and PCR-based mRNA assays and immunological studies of its protein show very rapid increases in the apical dome at the time that florigenic signals arrive at the apex (<6h after the end of the LD). By ~54h LtCDKA1;1 mRNA is localised to the floral target cells, the spikelet primordia. Later both LtCDKA1;1 mRNA and protein are most evident in floret meristems. Only ~10% of cells within the apical dome are dividing at any time but the LD increase in LtCDKA1;1 may reflect an early transient increase in the mitotic index (Jacqmard et al. 1993) as well as a later increase when spikelet primordia form. Increased expression of an AP1-like gene (LtMADS2) follows that of LtCDKA1;1. Overall, LtCDKA1;1 is a useful marker of both early florigenic signalling and of later morphological/developmental aspects of the floral transition.
Collapse
Affiliation(s)
- Greg F W Gocal
- Department of Botany and Zoology, The Australian National University, GPO Box 475, Canberra, ACT 2601, Australia
| | - Rod W King
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Division of Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia
| |
Collapse
|
43
|
Zhao FY, Hu F, Zhang SY, Wang K, Zhang CR, Liu T. MAPKs regulate root growth by influencing auxin signaling and cell cycle-related gene expression in cadmium-stressed rice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:5449-60. [PMID: 23430734 DOI: 10.1007/s11356-013-1559-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 02/07/2013] [Indexed: 05/18/2023]
Abstract
This work aims to analyze the relationship between root growth, mitogen-activated protein kinase (MAPK), auxin signaling, and cell cycle-related gene expression in cadmium (Cd)-stressed rice. The role of MAPKs in auxin signal modification and cell cycle-related gene expression during root growth was investigated by disrupting MAPK signaling using the MAPKK inhibitor PD98059 (PD). Treatment with Cd caused a significant accumulation of Cd in the roots. A Cd-specific probe showed that Cd is mainly localized in the meristematic zone and vascular tissues. Perturbation of MAPK signaling using PD significantly suppressed root system growth under Cd stress. The transcription of six MAPK genes was inhibited by Cd compared to the control. Detection using DR5-GUS transgenic rice showed that the intensity and distribution pattern of GUS staining was similar in roots treated with PD or Cd, whereas in Cd plus PD-treated roots, the GUS staining pattern was similar to that of the control, which indicates a close association of MAPK signaling with auxin homeostasis under control and Cd stress conditions. The expression of most key genes of auxin signaling, including OsYUCCA, OsPIN, OsARF, and OsIAA, and of most cell cycle-related genes, was negatively regulated by MAPKs under Cd stress. These results suggest that the MAPK pathway plays specific roles in auxin signal transduction and in the control of the cell cycle in response to Cd stress. Altogether, MAPKs take part in the regulation of root growth via auxin signal variation and the modified expression of cell cycle-related genes in Cd-stressed rice. A working model for the function of MAPKs in rice root systems grown under Cd stress is proposed.
Collapse
Affiliation(s)
- Feng Yun Zhao
- College of Life Sciences, Shandong University of Technology, Zibo, 255049, Shandong Province, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
44
|
Oberstaller J, Joseph SJ, Kissinger JC. Genome-wide upstream motif analysis of Cryptosporidium parvum genes clustered by expression profile. BMC Genomics 2013; 14:516. [PMID: 23895416 PMCID: PMC3734150 DOI: 10.1186/1471-2164-14-516] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 07/09/2013] [Indexed: 11/16/2022] Open
Abstract
Background There are very few molecular genetic tools available to study the apicomplexan parasite Cryptosporidium parvum. The organism is not amenable to continuous in vitro cultivation or transfection, and purification of intracellular developmental stages in sufficient numbers for most downstream molecular applications is difficult and expensive since animal hosts are required. As such, very little is known about gene regulation in C. parvum. Results We have clustered whole-genome gene expression profiles generated from a previous study of seven post-infection time points of 3,281 genes to identify genes that show similar expression patterns throughout the first 72 hours of in vitro epithelial cell culture. We used the algorithms MEME, AlignACE and FIRE to identify conserved, overrepresented DNA motifs in the upstream promoter region of genes with similar expression profiles. The most overrepresented motifs were E2F (5′-TGGCGCCA-3′); G-box (5′-G.GGGG-3′); a well-documented ApiAP2 binding motif (5′-TGCAT-3′), and an unknown motif (5′-[A/C] AACTA-3′). We generated a recombinant C. parvum DNA-binding protein domain from a putative ApiAP2 transcription factor [CryptoDB: cgd8_810] and determined its binding specificity using protein-binding microarrays. We demonstrate that cgd8_810 can putatively bind the overrepresented G-box motif, implicating this ApiAP2 in the regulation of many gene clusters. Conclusion Several DNA motifs were identified in the upstream sequences of gene clusters that might serve as potential cis-regulatory elements. These motifs, in concert with protein DNA binding site data, establish for the first time the beginnings of a global C. parvum gene regulatory map that will contribute to our understanding of the development of this zoonotic parasite.
Collapse
Affiliation(s)
- Jenna Oberstaller
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
45
|
Lu Z, Huang X, Ouyang Y, Yao J. Genome-wide identification, phylogenetic and co-expression analysis of OsSET gene family in rice. PLoS One 2013; 8:e65426. [PMID: 23762371 PMCID: PMC3676427 DOI: 10.1371/journal.pone.0065426] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 04/23/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND SET domain is responsible for the catalytic activity of histone lysine methyltransferases (HKMTs) during developmental process. Histone lysine methylation plays a crucial and diverse regulatory function in chromatin organization and genome function. Although several SET genes have been identified and characterized in plants, the understanding of OsSET gene family in rice is still very limited. METHODOLOGY/PRINCIPAL FINDINGS In this study, a systematic analysis was performed and revealed the presence of at least 43 SET genes in rice genome. Phylogenetic and structural analysis grouped SET proteins into five classes, and supposed that the domains out of SET domain were significant for the specific of histone lysine methylation, as well as the recognition of methylated histone lysine. Based on the global microarray, gene expression profile revealed that the transcripts of OsSET genes were accumulated differentially during vegetative and reproductive developmental stages and preferentially up or down-regulated in different tissues. Cis-elements identification, co-expression analysis and GO analysis of expression correlation of 12 OsSET genes suggested that OsSET genes might be involved in cell cycle regulation and feedback. CONCLUSIONS/SIGNIFICANCE This study will facilitate further studies on OsSET family and provide useful clues for functional validation of OsSETs.
Collapse
Affiliation(s)
- Zhanhua Lu
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, PR China
| | - Xiaolong Huang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, PR China
| | - Jialing Yao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| |
Collapse
|
46
|
Bulankova P, Akimcheva S, Fellner N, Riha K. Identification of Arabidopsis meiotic cyclins reveals functional diversification among plant cyclin genes. PLoS Genet 2013; 9:e1003508. [PMID: 23671425 PMCID: PMC3649987 DOI: 10.1371/journal.pgen.1003508] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 03/26/2013] [Indexed: 11/18/2022] Open
Abstract
Meiosis is a modified cell division in which a single S-phase is followed by two rounds of chromosome segregation resulting in the production of haploid gametes. The meiotic mode of chromosome segregation requires extensive remodeling of the basic cell cycle machinery and employment of unique regulatory mechanisms. Cyclin-dependent kinases (CDKs) and cyclins represent an ancient molecular module that drives and regulates cell cycle progression. The cyclin gene family has undergone a massive expansion in angiosperm plants, but only a few cyclins were thoroughly characterized. In this study we performed a systematic immunolocalization screen to identify Arabidopsis thaliana A- and B-type cyclins expressed in meiosis. Many of these cyclins exhibit cell-type-specific expression in vegetative tissues and distinct subcellular localization. We found six A-type cyclins and a single B-type cyclin (CYCB3;1) to be expressed in male meiosis. Mutant analysis revealed that these cyclins contribute to distinct meiosis-related processes. While A2 cyclins are important for chromosome segregation, CYCB3;1 prevents ectopic cell wall formation. We further show that cyclin SDS does not contain a D-box and is constitutively expressed throughout meiosis. Analysis of plants carrying cyclin SDS with an introduced D-box motif determined that, in addition to its function in recombination, SDS acts together with CYCB3;1 in suppressing unscheduled cell wall synthesis. Our phenotypic and expression data provide extensive evidence that multiplication of cyclins is in plants accompanied by functional diversification. The alteration of haploid and diploid cell generations during the sexual life cycle requires meiosis, a specialized cell division that enables the formation of haploid gametes from diploid cells. Meiosis occurs only once during the life cycle, and the transition from the mitotic to meiotic mode of chromosome partitioning requires extensive remodeling of the cell cycle machinery. The cell cycle progression is driven by cyclin-dependent kinases and associated cyclins that regulate CDK activity and confer substrate specificity. Cyclin gene families have undergone a massive expansion in plants, which has raised the question of whether some of these cyclins evolved specific meiotic functions. We systematically analyzed two cyclin gene families in Arabidopsis to identify plant cyclins that are meiotically expressed. We found in total eight cyclins to be expressed in male meiotic cells, and functional characterization revealed their involvement in diverse meiotic processes. Interestingly, none of the cyclins appear to be essential for meiotic progression, indicating that plant meiosis is governed by unorthodox cell cycle regulators.
Collapse
Affiliation(s)
- Petra Bulankova
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna, Austria
| | | | - Nicole Fellner
- Campus Science Support Facilities, Electron Microscopy Facility, Vienna, Austria
| | - Karel Riha
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna, Austria
- * E-mail:
| |
Collapse
|
47
|
Zhao FY, Han MM, Zhang SY, Wang K, Zhang CR, Liu T, Liu W. Hydrogen peroxide-mediated growth of the root system occurs via auxin signaling modification and variations in the expression of cell-cycle genes in rice seedlings exposed to cadmium stress. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:991-1006. [PMID: 23013333 DOI: 10.1111/j.1744-7909.2012.01170.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The link between root growth, H₂O₂, auxin signaling, and the cell cycle in cadmium (Cd)-stressed rice (Oryza sativa L. cv. Zhonghua No. 11) was analyzed in this study. Exposure to Cd induced a significant accumulation of Cd, but caused a decrease in zinc (Zn) content which resulted from the decreased expression of OsHMA9 and OsZIP. Analysis using a Cd-specific probe showed that Cd was mainly localized in the meristematic zone and vascular tissues. Formation and elongation of the root system were significantly promoted by 3-amino-1,2,4-triazole (AT), but were markedly inhibited by N,N'-dimethylthiourea (DMTU) under Cd stress. The effect of H₂O₂ on Cd-stressed root growth was further confirmed by examining a gain-of-function rice mutant (carrying catalase1 and glutathione-S-transferase) in the presence or absence of diphenylene iodonium. DR5-GUS staining revealed close associations between H₂O₂ and the concentration and distribution of auxin. H₂O₂ affected the expression of key genes, including OsYUCCA, OsPIN, OsARF, and OsIAA, in the auxin signaling pathway in Cd-treated plants. These results suggest that H₂O₂ functions upstream of the auxin signaling pathway. Furthermore, H₂O₂ modified the expression of cell-cycle genes in Cd-treated roots. The effects of H₂O₂ on root system growth are therefore linked to auxin signal modification and to variations in the expression of cell-cycle genes in Cd-stressed rice. A working model for the effects of H₂O₂ on Cd-stressed root system growth is thus proposed and discussed in this paper.
Collapse
Affiliation(s)
- Feng-Yun Zhao
- College of Life Sciences, Shandong University of Technology, Zibo 255049, China.
| | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Nakagawa H, Tanaka A, Tanabata T, Ohtake M, Fujioka S, Nakamura H, Ichikawa H, Mori M. Short grain1 decreases organ elongation and brassinosteroid response in rice. PLANT PHYSIOLOGY 2012; 158:1208-19. [PMID: 22209874 PMCID: PMC3291246 DOI: 10.1104/pp.111.187567] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We identified a short-grain mutant (Short grain1 (Sg1) Dominant) via phenotypic screening of 13,000 rice (Oryza sativa) activation-tagged lines. The causative gene, SG1, encodes a protein with unknown function that is preferentially expressed in roots and developing panicles. Overexpression of SG1 in rice produced a phenotype with short grains and dwarfing reminiscent of brassinosteroid (BR)-deficient mutants, with wide, dark-green, and erect leaves. However, the endogenous BR level in the SG1 overexpressor (SG1:OX) plants was comparable to the wild type. SG1:OX plants were insensitive to brassinolide in the lamina inclination assay. Therefore, SG1 appears to decrease responses to BRs. Despite shorter organs in the SG1:OX plants, their cell size was not decreased in the SG1:OX plants. Therefore, SG1 decreases organ elongation by decreasing cell proliferation. In contrast to the SG1:OX plants, RNA interference knockdown plants that down-regulated SG1 and a related gene, SG1-LIKE PROTEIN1, had longer grains and internodes in rachis branches than in the wild type. Taken together, these results suggest that SG1 decreases responses to BRs and elongation of organs such as seeds and the internodes of rachis branches through decreased cellular proliferation.
Collapse
|
50
|
Yang R, Tang Q, Wang H, Zhang X, Pan G, Wang H, Tu J. Analyses of two rice (Oryza sativa) cyclin-dependent kinase inhibitors and effects of transgenic expression of OsiICK6 on plant growth and development. ANNALS OF BOTANY 2011; 107:1087-101. [PMID: 21558459 PMCID: PMC3091807 DOI: 10.1093/aob/mcr057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 12/17/2010] [Accepted: 02/01/2011] [Indexed: 05/07/2023]
Abstract
BACKGROUND AND AIMS Plants have a family of proteins referred to as ICKs (inhibitors of cyclin-dependent kinase, CDK) or KRPs (Kip-related proteins) that function to regulate the activities of CDK. Knowledge of these plant CDK inhibitors has been gained mostly from studies of selected members in dicotyledonous plants, particularly Arabidopsis. Much remains to be learned regarding the differences among various members of the ICK/KRP family, and regarding the function and regulation of these proteins in monocotyledonous plants. METHODS We analysed ICK-related sequences in the rice (Orysa sativa L. subsp. indica) genome and determined that there are six members with the conserved C-terminal signature region for ICK/KRP proteins. They are referred to as OsiICKs and further analyses were performed. The interactions with CDKs and cyclins were determined by a yeast two-hybrid assay, and cellular localization by fusion with the enhanced green fluorescence protein (EGFP). The expression of OsiICK6 in different tissues and in response to several treatments was analysed by reverse transcriptase-mediated polymerase chain reaction (RT-PCR) and real-time PCR. Furthermore, OsiICK6 was over-expressed in transgenic rice plants and significant phenotypes were observed. KEY RESULTS AND CONCLUSIONS Based on putative protein sequences, the six OsiICKs are grouped into two classes, with OsiICK1 and OsiICK6 in each of the two classes, respectively. Results showed that OsiICK1 and OsiICK6 interacted with OsCYCD, but differed in their interactions with CDKA. Both EGFP:OsiICK1 and EGFP:OsiICK6 were localized in the nucleus. Whereas EGFP:OsiICK6 showed a punctuate subnuclear distribution, OsiICK1 had a homogeneous pattern. Over-expression of OsiICK6 resulted in multiple phenotypic effects on plant growth, morphology, pollen viability and seed setting. In OsiICK6-over-expressing plants, leaves rolled toward the abaxial side, suggesting that cell proliferation is critical in maintaining an even growth along the dorsal-ventral plane of leaf blades.
Collapse
Affiliation(s)
- Ruifang Yang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Kaixuan Road 268, Hangzhou 310029, China
| | - Qicai Tang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Kaixuan Road 268, Hangzhou 310029, China
| | - Huimei Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Kaixuan Road 268, Hangzhou 310029, China
| | - Xiaobo Zhang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Kaixuan Road 268, Hangzhou 310029, China
| | - Gang Pan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Kaixuan Road 268, Hangzhou 310029, China
| | - Hong Wang
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Jumin Tu
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Kaixuan Road 268, Hangzhou 310029, China
| |
Collapse
|