1
|
Hertig C, Rutten T, Melzer M, Schippers JHM, Thiel J. Dissection of Developmental Programs and Regulatory Modules Directing Endosperm Transfer Cell and Aleurone Identity in the Syncytial Endosperm of Barley. PLANTS (BASEL, SWITZERLAND) 2023; 12:1594. [PMID: 37111818 PMCID: PMC10142620 DOI: 10.3390/plants12081594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/10/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Endosperm development in barley starts with the formation of a multinucleate syncytium, followed by cellularization in the ventral part of the syncytium generating endosperm transfer cells (ETCs) as first differentiating subdomain, whereas aleurone (AL) cells will originate from the periphery of the enclosing syncytium. Positional signaling in the syncytial stage determines cell identity in the cereal endosperm. Here, we performed a morphological analysis and employed laser capture microdissection (LCM)-based RNA-seq of the ETC region and the peripheral syncytium at the onset of cellularization to dissect developmental and regulatory programs directing cell specification in the early endosperm. Transcriptome data revealed domain-specific characteristics and identified two-component signaling (TCS) and hormone activities (auxin, ABA, ethylene) with associated transcription factors (TFs) as the main regulatory links for ETC specification. On the contrary, differential hormone signaling (canonical auxin, gibberellins, cytokinin) and interacting TFs control the duration of the syncytial phase and timing of cellularization of AL initials. Domain-specific expression of candidate genes was validated by in situ hybridization and putative protein-protein interactions were confirmed by split-YFP assays. This is the first transcriptome analysis dissecting syncytial subdomains of cereal seeds and provides an essential framework for initial endosperm differentiation in barley, which is likely also valuable for comparative studies with other cereal crops.
Collapse
Affiliation(s)
- Christian Hertig
- Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), D-06466 Seeland, Germany
| | - Twan Rutten
- Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), D-06466 Seeland, Germany
| | - Michael Melzer
- Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), D-06466 Seeland, Germany
| | - Jos H. M. Schippers
- Department of Molecular Genetics, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), D-06466 Seeland, Germany
| | - Johannes Thiel
- Department of Molecular Genetics, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), D-06466 Seeland, Germany
| |
Collapse
|
2
|
Gao H, Ma K, Ji G, Pan L, Zhou Q. Lipid transfer proteins involved in plant-pathogen interactions and their molecular mechanisms. MOLECULAR PLANT PATHOLOGY 2022; 23:1815-1829. [PMID: 36052490 PMCID: PMC9644281 DOI: 10.1111/mpp.13264] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Nonspecific lipid transfer proteins (LTPs) are small, cysteine-rich proteins that play numerous functional roles in plant growth and development, including cutin wax formation, pollen tube adhesion, cell expansion, seed development, germination, and adaptation to changing environmental conditions. LTPs contain eight conserved cysteine residues and a hydrophobic cavity that provides a wide variety of lipid-binding specificities. As members of the pathogenesis-related protein 14 family (PR14), many LTPs inhibit fungal or bacterial growth, and act as positive regulators in plant disease resistance. Over the past decade, these essential immunity-related roles of LTPs in plant immune processes have been documented in a growing body of literature. In this review, we summarize the roles of LTPs in plant-pathogen interactions, emphasizing the underlying molecular mechanisms in plant immune responses and specific LTP functions.
Collapse
Affiliation(s)
- Hang Gao
- College of Biology and FoodShangqiu Normal UniversityShangqiuHenanChina
| | - Kang Ma
- College of Biology and FoodShangqiu Normal UniversityShangqiuHenanChina
| | - Guojie Ji
- Experimental Teaching Center of Biology and Basic MedicineSanquan College of Xinxiang Medical UniversityXinxiangHenanChina
| | - Liying Pan
- College of Biology and FoodShangqiu Normal UniversityShangqiuHenanChina
| | - Qingfeng Zhou
- College of Biology and FoodShangqiu Normal UniversityShangqiuHenanChina
| |
Collapse
|
3
|
Singh A, Mathan J, Yadav A, K. Goyal A, Chaudhury A. Molecular and Transcriptional Regulation of Seed Development in Cereals: Present Status and Future Prospects. CEREAL GRAINS - VOLUME 1 2021. [DOI: 10.5772/intechopen.99318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
Abstract
Cereals are a rich source of vitamins, minerals, carbohydrates, fats, oils and protein, making them the world’s most important source of nutrition. The influence of rising global population, as well as the emergence and spread of disease, has the major impact on cereal production. To meet the demand, there is a pressing need to increase cereal production. Optimal seed development is a key agronomical trait that contributes to crop yield. The seed development and maturation is a complex process that includes not only embryo and endosperm development, but also accompanied by huge physiological, biochemical, metabolic, molecular and transcriptional changes. This chapter discusses the growth of cereal seed and highlights the novel biological insights, with a focus on transgenic and new molecular breeding, as well as biotechnological intervention strategies that have improved crop yield in two major cereal crops, primarily wheat and rice, over the last 21 years (2000–2021).
Collapse
|
4
|
Basunia MA, Nonhebel HM, Backhouse D, McMillan M. Localised expression of OsIAA29 suggests a key role for auxin in regulating development of the dorsal aleurone of early rice grains. PLANTA 2021; 254:40. [PMID: 34324072 DOI: 10.1007/s00425-021-03688-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Non-canonical AUX/IAA protein, OsIAA29, and ZmMPR-1 homologues, OsMRPLs, are part of an auxin-related signalling cascade operating in the dorsal aleurone during early rice grain development. Endosperm of rice and other cereals accumulates high concentrations of the predominant in planta auxin, indole-3-acetic acid (IAA) during early grain development. However, IAA signalling and function during endosperm development are poorly understood. Here, we report that OsYUC12 (an auxin biosynthesis gene) and OsIAA29 (encoding a non-canonical AUX/IAA) are both expressed exclusively in grains, reaching a maximum 5-6 days after pollination. OsYUC12 expression is localised in the aleurone, sub-aleurone and embryo, whereas OsIAA29 expression is restricted to a narrow strip in the dorsal aleurone, directly under the vascular bundle. Although rice has been reported to lack endosperm transfer cells (ETCs), this region of the aleurone is enriched with sugar transporters and is likely to play a key role in apoplastic nutrient transfer, analogous to ETCs in other cereals. OsIAA29 has orthologues only in grass species; expression of which is also specific to early grain development. OsYUC12 and OsIAA29 are temporally co-expressed with two genes (AL1 and OsPR602) previously linked to the development of dorsal aleurone or ETCs. Also up-regulated at the same time is a cluster of MYB-related genes (designated OsMRPLs) homologous to ZmMRP-1, which regulates maize ETC development. Wheat homologues of ZmMRP-1 are similarly expressed in ETCs. Although previous work has suggested that other cereals do not have orthologues of ZmMRP-1, our work suggests OsIAA29 and OsMRPLs and their homologues in other grasses are part of an auxin-regulated, conserved signalling network involved in the differentiation of cells with ETC-like function in developing cereal grains.
Collapse
Affiliation(s)
- Mafroz A Basunia
- School of Science and Technology, University of New England, Armidale, NSW, 2351, Australia
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Heather M Nonhebel
- School of Science and Technology, University of New England, Armidale, NSW, 2351, Australia.
| | - David Backhouse
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - Mary McMillan
- School of Science and Technology, University of New England, Armidale, NSW, 2351, Australia
| |
Collapse
|
5
|
Zhong X, Lin N, Ding J, Yang Q, Lan J, Tang H, Qi P, Deng M, Ma J, Wang J, Chen G, Lan X, Wei Y, Zheng Y, Jiang Q. Genome-wide transcriptome profiling indicates the putative mechanism underlying enhanced grain size in a wheat mutant. 3 Biotech 2021; 11:54. [PMID: 33489673 DOI: 10.1007/s13205-020-02579-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 12/01/2020] [Indexed: 11/26/2022] Open
Abstract
Grain size is an important trait for crops. The endogenous hormones brassinosteroids (BRs) play key roles in grain size and mass. In this study, we identified an ethyl methylsulfonate (EMS) mutant wheat line, SM482gs, with increased grain size, 1000-grain weight, and protein content, but decreased starch content, compared with the levels in the wild type (WT). Comparative transcriptomic analysis of SM482gs and WT at four developmental stages [9, 15, 20, and 25 days post-anthesis (DPA)] revealed a total of 264, 267, 771, and 1038 differentially expressed genes (DEGs) at these stages. Kyoto Encyclopedia of Genes and Genomes (KEGG) database analysis showed that some DEGs from the comparison at 15 DPA were involved in the pathway of "brassinosteroid biosynthesis," and eight genes involved in BR biosynthesis and signal transduction were significantly upregulated in SM482gs during at least one stage. This indicated that the enhanced BR signaling in SM482gs might have contributed to its increased grain size via network interactions. The expression of seed storage protein (SSP)-encoding genes in SM482gs was upregulated, mostly at 15 and 20 DPA, while most of the starch synthetase genes showed lower expression in SM482gs at all stages, compared with that in WT. The expression patterns of starch synthase genes and seed storage protein-encoding genes paralleled the decreased level of starch and increased storage protein content of SM482gs, which might be related to the increased seed weight and wrinkled phenotype. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-020-02579-6.
Collapse
Affiliation(s)
- Xiaojuan Zhong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Na Lin
- College of Sichuan Tea, Yibin University, Yibin, 64400 Sichuan China
| | - Jinjin Ding
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Qiang Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Jingyu Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Huaping Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Mei Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Xiujin Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| |
Collapse
|
6
|
Tiong J, Sharma N, Sampath R, MacKenzie N, Watanabe S, Metot C, Lu Z, Skinner W, Lu Y, Kridl J, Baumann U, Heuer S, Kaiser B, Okamoto M. Improving Nitrogen Use Efficiency Through Overexpression of Alanine Aminotransferase in Rice, Wheat, and Barley. FRONTIERS IN PLANT SCIENCE 2021; 12:628521. [PMID: 33584777 PMCID: PMC7875890 DOI: 10.3389/fpls.2021.628521] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/06/2021] [Indexed: 05/20/2023]
Abstract
Nitrogen is an essential nutrient for plants, but crop plants are inefficient in the acquisition and utilization of applied nitrogen. This often results in producers over applying nitrogen fertilizers, which can negatively impact the environment. The development of crop plants with more efficient nitrogen usage is, therefore, an important research goal in achieving greater agricultural sustainability. We utilized genetically modified rice lines over-expressing a barley alanine aminotransferase (HvAlaAT) to help characterize pathways which lead to more efficient use of nitrogen. Under the control of a stress-inducible promoter OsAnt1, OsAnt1:HvAlaAT lines have increased above-ground biomass with little change to both nitrate and ammonium uptake rates. Based on metabolic profiles, carbon metabolites, particularly those involved in glycolysis and the tricarboxylic acid (TCA) cycle, were significantly altered in roots of OsAnt1:HvAlaAT lines, suggesting higher metabolic turnover. Moreover, transcriptomic data revealed that genes involved in glycolysis and TCA cycle were upregulated. These observations suggest that higher activity of these two processes could result in higher energy production, driving higher nitrogen assimilation, consequently increasing biomass production. Other potential mechanisms contributing to a nitrogen-use efficient phenotype include involvements of phytohormonal responses and an alteration in secondary metabolism. We also conducted basic growth studies to evaluate the effect of the OsAnt1:HvAlaAT transgene in barley and wheat, which the transgenic crop plants increased seed production under controlled environmental conditions. This study provides comprehensive profiling of genetic and metabolic responses to the over-expression of AlaAT and unravels several components and pathways which contribute to its nitrogen-use efficient phenotype.
Collapse
Affiliation(s)
- Jingwen Tiong
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
| | - Niharika Sharma
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
- NSW Department of Primary Industries, Orange, NSW, Australia
| | - Ramya Sampath
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
| | - Nenah MacKenzie
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
| | - Sayuri Watanabe
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
- ARC Industrial Transformation Research Hub for Wheat in a Hot and Dry Climate, Waite Research Institute, University of Adelaide, Glen Osmond, SA, Australia
| | - Claire Metot
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
- ARC Industrial Transformation Research Hub for Wheat in a Hot and Dry Climate, Waite Research Institute, University of Adelaide, Glen Osmond, SA, Australia
| | - Zhongjin Lu
- Arcadia Biosciences, Davis, CA, United States
| | | | - Yingzhi Lu
- Arcadia Biosciences, Davis, CA, United States
| | - Jean Kridl
- Arcadia Biosciences, Davis, CA, United States
| | - Ute Baumann
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
- ARC Industrial Transformation Research Hub for Wheat in a Hot and Dry Climate, Waite Research Institute, University of Adelaide, Glen Osmond, SA, Australia
| | - Sigrid Heuer
- ARC Industrial Transformation Research Hub for Wheat in a Hot and Dry Climate, Waite Research Institute, University of Adelaide, Glen Osmond, SA, Australia
- Rothamsted Research, Harpenden, United Kingdom
| | - Brent Kaiser
- ARC Industrial Transformation Research Hub for Wheat in a Hot and Dry Climate, Waite Research Institute, University of Adelaide, Glen Osmond, SA, Australia
- Centre for Carbon, Water and Food, University of Sydney, Brownlow Hill, NSW, Australia
| | - Mamoru Okamoto
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
- ARC Industrial Transformation Research Hub for Wheat in a Hot and Dry Climate, Waite Research Institute, University of Adelaide, Glen Osmond, SA, Australia
- *Correspondence: Mamoru Okamoto,
| |
Collapse
|
7
|
Regmi KC, Yogendra K, Farias JG, Li L, Kandel R, Yadav UP, Sha S, Trittermann C, Short L, George J, Evers J, Plett D, Ayre BG, Roy SJ, Gaxiola RA. Improved Yield and Photosynthate Partitioning in AVP1 Expressing Wheat ( Triticum aestivum) Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:273. [PMID: 32256508 PMCID: PMC7090233 DOI: 10.3389/fpls.2020.00273] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/21/2020] [Indexed: 05/28/2023]
Abstract
A fundamental factor to improve crop productivity involves the optimization of reduced carbon translocation from source to sink tissues. Here, we present data consistent with the positive effect that the expression of the Arabidopsis thaliana H+-PPase (AVP1) has on reduced carbon partitioning and yield increases in wheat. Immunohistochemical localization of H+-PPases (TaVP) in spring wheat Bobwhite L. revealed the presence of this conserved enzyme in wheat vasculature and sink tissues. Of note, immunogold imaging showed a plasma membrane localization of TaVP in sieve element- companion cell complexes of Bobwhite source leaves. These data together with the distribution patterns of a fluorescent tracer and [U14C]-sucrose are consistent with an apoplasmic phloem-loading model in wheat. Interestingly, 14C-labeling experiments provided evidence for enhanced carbon partitioning between shoots and roots, and between flag leaves and milk stage kernels in AVP1 expressing Bobwhite lines. In keeping, there is a significant yield improvement triggered by the expression of AVP1 in these lines. Green house and field grown transgenic wheat expressing AVP1 also produced higher grain yield and number of seeds per plant, and exhibited an increase in root biomass when compared to null segregants. Another agriculturally desirable phenotype showed by AVP1 Bobwhite plants is a robust establishment of seedlings.
Collapse
Affiliation(s)
- Kamesh C. Regmi
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Kalenahalli Yogendra
- Australian Centre for Plant Functional Genomics, The University of Adelaide, Adelaide, SA, Australia
| | - Júlia Gomes Farias
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Lin Li
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Raju Kandel
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Umesh P. Yadav
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX, United States
| | - Shengbo Sha
- Australian Centre for Plant Functional Genomics, The University of Adelaide, Adelaide, SA, Australia
| | - Christine Trittermann
- Australian Centre for Plant Functional Genomics, The University of Adelaide, Adelaide, SA, Australia
| | - Laura Short
- Australian Centre for Plant Functional Genomics, The University of Adelaide, Adelaide, SA, Australia
| | - Jessey George
- Australian Centre for Plant Functional Genomics, The University of Adelaide, Adelaide, SA, Australia
| | - John Evers
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX, United States
| | - Darren Plett
- Australian Centre for Plant Functional Genomics, The University of Adelaide, Adelaide, SA, Australia
| | - Brian G. Ayre
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX, United States
| | - Stuart John Roy
- Australian Centre for Plant Functional Genomics, The University of Adelaide, Adelaide, SA, Australia
| | | |
Collapse
|
8
|
Smirnova OG, Kochetov AV. Choice of the Promoter for Tissue and Developmental Stage-Specific Gene Expression. Methods Mol Biol 2020; 2124:69-106. [PMID: 32277449 DOI: 10.1007/978-1-0716-0356-7_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Transgenic technologies belong to important tools of reverse genetics and biotechnology in plants. Targeted genetic modifications can reveal functions of genes of interest, change metabolic and regulatory pathways, or result in accumulation of valuable proteins or metabolites. However, to be efficient in targeted genetic modification, the chimeric gene construct should be designed properly. In particular, the promoters used to control transgene expression need to be carefully chosen. Most promoters in widely used vectors belong to strong and constitutively expressed variants. However, in many cases transgene expression has to be restricted to certain tissue, stage of development, or response to some internal or external stimuli. In turn, a large variety of tissue-specific promoters have been studied and information on their characteristics may be recovered from the literature. An appropriate promoter may be selected and used in genetic construct to optimize the transgene transcription pattern. We have previously designed the TGP database (TransGene Promoters, http://wwwmgs.bionet.nsc.ru/mgs/dbases/tgp/home.html ) collecting information from the publications in this field. Here we review the wide range of noncanonical tissue-specific and developmentally regulated promoters that might be used for transgene expression control.
Collapse
Affiliation(s)
- Olga G Smirnova
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia.
| | - Alex V Kochetov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
9
|
Kovalchuk N, Wu W, Bazanova N, Reid N, Singh R, Shirley N, Eini O, Johnson AAT, Langridge P, Hrmova M, Lopato S. Wheat wounding-responsive HD-Zip IV transcription factor GL7 is predominantly expressed in grain and activates genes encoding defensins. PLANT MOLECULAR BIOLOGY 2019; 101:41-61. [PMID: 31183604 DOI: 10.1007/s11103-019-00889-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/31/2019] [Indexed: 06/09/2023]
Abstract
Several classes of transcription factors are involved in the activation of defensins. A new type of the transcription factor responsible for the regulation of wheat grain specific defensins was characterised in this work. HD-Zip class IV transcription factors constitute a family of multidomain proteins. A full-length cDNA of HD-Zip IV, designated TaGL7 was isolated from the developing grain of bread wheat, using a specific DNA sequence as bait in the Y1H screen. 3D models of TaGL7 HD complexed with DNA cis-elements rationalised differences that underlined accommodations of binding and non-binding DNA, while the START-like domain model predicted binding of lipidic molecules inside a concave hydrophobic cavity. The 3'-untranslated region of TaGL7 was used as a probe to isolate the genomic clone of TdGL7 from a BAC library prepared from durum wheat. The spatial and temporal activity of the TdGL7 promoter was tested in transgenic wheat, barley and rice. TdGL7 was expressed mostly in ovary at fertilisation and its promoter was active in a liquid endosperm during cellularisation and later in the endosperm transfer cells, aleurone, and starchy endosperm. The pattern of TdGL7 expression resembled that of genes that encode grain-specific lipid transfer proteins, particularly defensins. In addition, GL7 expression was upregulated by mechanical wounding, similarly to defensin genes. Co-bombardment of cultured wheat cells with TdGL7 driven by constitutive promoter and seven grain or root specific defensin promoters fused to GUS gene, revealed activation of four promoters. The data confirmed the previously proposed role of HD-Zip IV transcription factors in the regulation of genes that encode lipid transfer proteins involved in lipid transport and defence. The TdGL7 promoter could be used to engineer cereal grains with enhanced resistance to insects and fungal infections.
Collapse
Affiliation(s)
- Nataliya Kovalchuk
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Wei Wu
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, 5064, Australia
- Agronomy College, Sichuan Agricultural University, Ya'an, 625014, China
| | - Natalia Bazanova
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, 5064, Australia
- Commonwealth Scientific and Industrial Research Organisation, Glen Osmond, 5064, SA, Australia
| | - Nicolas Reid
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Rohan Singh
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Neil Shirley
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Omid Eini
- Department of Plant Protection, School of Agriculture, University of Zanjan, Zanjan, Iran
| | | | - Peter Langridge
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Maria Hrmova
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, 5064, Australia.
- School of Life Sciences, Huaiyin Normal University, Huai'an, China.
| | - Sergiy Lopato
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, 5064, Australia
| |
Collapse
|
10
|
Beasley JT, Bonneau JP, Sánchez‐Palacios JT, Moreno‐Moyano LT, Callahan DL, Tako E, Glahn RP, Lombi E, Johnson AAT. Metabolic engineering of bread wheat improves grain iron concentration and bioavailability. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1514-1526. [PMID: 30623558 PMCID: PMC6662306 DOI: 10.1111/pbi.13074] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 05/18/2023]
Abstract
Bread wheat (Triticum aestivum L.) is cultivated on more land than any other crop and produces a fifth of the calories consumed by humans. Wheat endosperm is rich in starch yet contains low concentrations of dietary iron (Fe) and zinc (Zn). Biofortification is a micronutrient intervention aimed at increasing the density and bioavailability of essential vitamins and minerals in staple crops; Fe biofortification of wheat has proved challenging. In this study we employed constitutive expression (CE) of the rice (Oryza sativa L.) nicotianamine synthase 2 (OsNAS2) gene in bread wheat to up-regulate biosynthesis of two low molecular weight metal chelators - nicotianamine (NA) and 2'-deoxymugineic acid (DMA) - that play key roles in metal transport and nutrition. The CE-OsNAS2 plants accumulated higher concentrations of grain Fe, Zn, NA and DMA and synchrotron X-ray fluorescence microscopy (XFM) revealed enhanced localization of Fe and Zn in endosperm and crease tissues, respectively. Iron bioavailability was increased in white flour milled from field-grown CE-OsNAS2 grain and positively correlated with NA and DMA concentrations.
Collapse
Affiliation(s)
- Jesse T. Beasley
- School of BioSciencesThe University of MelbourneMelbourneVICAustralia
| | - Julien P. Bonneau
- School of BioSciencesThe University of MelbourneMelbourneVICAustralia
| | - Jose T. Sánchez‐Palacios
- School of BioSciencesThe University of MelbourneMelbourneVICAustralia
- Present address:
Institute for Applied EcologyUniversity of CanberraCanberraACT2617Australia
| | | | - Damien L. Callahan
- School of Life and Environmental SciencesDeakin UniversityBurwoodVICAustralia
| | - Elad Tako
- Robert W. Holley Center for Agriculture and HealthUSDA‐ARSIthacaNYUSA
| | - Raymond P. Glahn
- Robert W. Holley Center for Agriculture and HealthUSDA‐ARSIthacaNYUSA
| | - Enzo Lombi
- Future Industries InstituteUniversity of South AustraliaMawson LakesSAAustralia
| | | |
Collapse
|
11
|
Bi H, Shi J, Kovalchuk N, Luang S, Bazanova N, Chirkova L, Zhang D, Shavrukov Y, Stepanenko A, Tricker P, Langridge P, Hrmova M, Lopato S, Borisjuk N. Overexpression of the TaSHN1 transcription factor in bread wheat leads to leaf surface modifications, improved drought tolerance, and no yield penalty under controlled growth conditions. PLANT, CELL & ENVIRONMENT 2018; 41:2549-2566. [PMID: 29761511 DOI: 10.1111/pce.13339] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 04/23/2018] [Indexed: 05/19/2023]
Abstract
Transcription factors regulate multiple networks, mediating the responses of organisms to stresses, including drought. Here, we investigated the role of the wheat transcription factor TaSHN1 in crop growth and drought tolerance. TaSHN1, isolated from bread wheat, was characterized for molecular interactions and functionality. The overexpression of TaSHN1 in wheat was followed by the evaluation of T2 and T3 transgenic lines for drought tolerance, growth, and yield components. Leaf surface changes were analysed by light microscopy, SEM, TEM, and GC-MS/GC-FID. TaSHN1 behaves as a transcriptional activator in a yeast transactivation assay and binds stress-related DNA cis-elements, determinants of which were revealed using 3D molecular modelling. The overexpression of TaSHN1 in transgenic wheat did not result in a yield penalty under the controlled plant growth conditions of a glasshouse. Transgenic lines had significantly lower stomatal density and leaf water loss and exhibited improved recovery after severe drought, compared with control plants. The comparative analysis of cuticular waxes revealed an increased accumulation of alkanes in leaves of transgenic lines. Our data demonstrate that TaSHN1 may operate as a positive modulator of drought stress tolerance. Positive attributes could be mediated through an enhanced accumulation of alkanes and reduced stomatal density.
Collapse
Affiliation(s)
- Huihui Bi
- School of Agriculture, Food, and Wine, University of Adelaide, Glen Osmond, South Australia, 5064, Australia
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, China
| | - Nataliya Kovalchuk
- School of Agriculture, Food, and Wine, University of Adelaide, Glen Osmond, South Australia, 5064, Australia
| | - Sukanya Luang
- School of Agriculture, Food, and Wine, University of Adelaide, Glen Osmond, South Australia, 5064, Australia
| | - Natalia Bazanova
- School of Agriculture, Food, and Wine, University of Adelaide, Glen Osmond, South Australia, 5064, Australia
| | - Larissa Chirkova
- School of Agriculture, Food, and Wine, University of Adelaide, Glen Osmond, South Australia, 5064, Australia
| | - Dabing Zhang
- School of Agriculture, Food, and Wine, University of Adelaide, Glen Osmond, South Australia, 5064, Australia
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, China
| | - Yuri Shavrukov
- School of Agriculture, Food, and Wine, University of Adelaide, Glen Osmond, South Australia, 5064, Australia
| | - Anton Stepanenko
- School of Life Sciences, Huaiyin Normal University, Huaian, 223300, China
| | - Penny Tricker
- School of Agriculture, Food, and Wine, University of Adelaide, Glen Osmond, South Australia, 5064, Australia
| | - Peter Langridge
- School of Agriculture, Food, and Wine, University of Adelaide, Glen Osmond, South Australia, 5064, Australia
| | - Maria Hrmova
- School of Agriculture, Food, and Wine, University of Adelaide, Glen Osmond, South Australia, 5064, Australia
| | - Sergiy Lopato
- School of Agriculture, Food, and Wine, University of Adelaide, Glen Osmond, South Australia, 5064, Australia
| | - Nikolai Borisjuk
- School of Agriculture, Food, and Wine, University of Adelaide, Glen Osmond, South Australia, 5064, Australia
- School of Life Sciences, Huaiyin Normal University, Huaian, 223300, China
| |
Collapse
|
12
|
Ismagul A, Yang N, Maltseva E, Iskakova G, Mazonka I, Skiba Y, Bi H, Eliby S, Jatayev S, Shavrukov Y, Borisjuk N, Langridge P. A biolistic method for high-throughput production of transgenic wheat plants with single gene insertions. BMC PLANT BIOLOGY 2018; 18:135. [PMID: 29940859 PMCID: PMC6020210 DOI: 10.1186/s12870-018-1326-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/24/2018] [Indexed: 05/27/2023]
Abstract
BACKGROUND The relatively low efficiency of biolistic transformation and subsequent integration of multiple copies of the introduced gene/s significantly complicate the genetic modification of wheat (Triticum aestivum) and other plant species. One of the key factors contributing to the reproducibility of this method is the uniformity of the DNA/gold suspension, which is dependent on the coating procedure employed. It was also shown recently that the relative frequency of single copy transgene inserts could be increased through the use of nanogram quantities of the DNA during coating. RESULTS A simplified DNA/gold coating method was developed to produce fertile transgenic plants, via microprojectile bombardment of callus cultures induced from immature embryos. In this method, polyethyleneglycol (PEG) and magnesium salt solutions were utilized in place of the spermidine and calcium chloride of the standard coating method, to precipitate the DNA onto gold microparticles. The prepared microparticles were used to generate transgenics from callus cultures of commercial bread wheat cv. Gladius resulting in an average transformation frequency of 9.9%. To increase the occurrence of low transgene copy number events, nanogram amounts of the minimal expression cassettes containing the gene of interest and the hpt gene were used for co-transformation. A total of 1538 transgenic wheat events were generated from 15,496 embryos across 19 independent experiments. The variation of single copy insert frequencies ranged from 16.1 to 73.5% in the transgenic wheat plants, which compares favourably to published results. CONCLUSIONS The DNA/gold coating procedure presented here allows efficient, large scale transformation of wheat. The use of nanogram amounts of vector DNA improves the frequency of single copy transgene inserts in transgenic wheat plants.
Collapse
Affiliation(s)
- Ainur Ismagul
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA 5064 Australia
| | - Nannan Yang
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA 5064 Australia
- Present address: NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Pine Gully Road, Wagga Wagga, NSW 2650 Australia
| | - Elina Maltseva
- Present address: Aytkhozhin Institute of Molecular Biology and Biochemistry, Almaty, 480012 Kazakhstan
| | - Gulnur Iskakova
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA 5064 Australia
- Present address: Aytkhozhin Institute of Molecular Biology and Biochemistry, Almaty, 480012 Kazakhstan
| | - Inna Mazonka
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA 5064 Australia
| | - Yuri Skiba
- Present address: Aytkhozhin Institute of Molecular Biology and Biochemistry, Almaty, 480012 Kazakhstan
| | - Huihui Bi
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA 5064 Australia
- Present address: National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002 China
| | - Serik Eliby
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA 5064 Australia
| | - Satyvaldy Jatayev
- S.Seifullin Kazakh AgroTechnical University, Astana, 010011 Kazakhstan
| | - Yuri Shavrukov
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA 5064 Australia
- College of Science and Engineering, School of Biological Sciences, Flinders University, Bedford Park, SA 5042 Australia
| | - Nikolai Borisjuk
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA 5064 Australia
- Present address: School of Life Science, Huaiyin Normal University, Huaian, 223300 China
| | - Peter Langridge
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA 5064 Australia
| |
Collapse
|
13
|
Yang Y, Luang S, Harris J, Riboni M, Li Y, Bazanova N, Hrmova M, Haefele S, Kovalchuk N, Lopato S. Overexpression of the class I homeodomain transcription factor TaHDZipI-5 increases drought and frost tolerance in transgenic wheat. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1227-1240. [PMID: 29193733 PMCID: PMC5978581 DOI: 10.1111/pbi.12865] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/29/2017] [Accepted: 11/12/2017] [Indexed: 05/20/2023]
Abstract
Characterization of the function of stress-related genes helps to understand the mechanisms of plant responses to environmental conditions. The findings of this work defined the role of the wheat TaHDZipI-5 gene, encoding a stress-responsive homeodomain-leucine zipper class I (HD-Zip I) transcription factor, during the development of plant tolerance to frost and drought. Strong induction of TaHDZipI-5 expression by low temperatures, and the elevated TaHDZipI-5 levels of expression in flowers and early developing grains in the absence of stress, suggests that TaHDZipI-5 is involved in the regulation of frost tolerance at flowering. The TaHDZipI-5 protein behaved as an activator in a yeast transactivation assay, and the TaHDZipI-5 activation domain was localized to its C-terminus. The TaHDZipI-5 protein homo- and hetero-dimerizes with related TaHDZipI-3, and differences between DNA interactions in both dimers were specified at 3D molecular levels. The constitutive overexpression of TaHDZipI-5 in bread wheat significantly enhanced frost and drought tolerance of transgenic wheat lines with the appearance of undesired phenotypic features, which included a reduced plant size and biomass, delayed flowering and a grain yield decrease. An attempt to improve the phenotype of transgenic wheat by the application of stress-inducible promoters with contrasting properties did not lead to the elimination of undesired phenotype, apparently due to strict spatial requirements for TaHDZipI-5 overexpression.
Collapse
Affiliation(s)
- Yunfei Yang
- School of Agriculture, Food and WineUniversity of AdelaideGlen OsmondSAAustralia
| | - Sukanya Luang
- School of Agriculture, Food and WineUniversity of AdelaideGlen OsmondSAAustralia
- Present address:
Institute of Molecular BiosciencesMahidol UniversityNakhon‐PathomThailand
| | - John Harris
- School of Agriculture, Food and WineUniversity of AdelaideGlen OsmondSAAustralia
- Present address:
South Australian Research and Development InstituteGPO Box 397AdelaideSA5064Australia
| | - Matteo Riboni
- School of Agriculture, Food and WineUniversity of AdelaideGlen OsmondSAAustralia
| | - Yuan Li
- School of Agriculture, Food and WineUniversity of AdelaideGlen OsmondSAAustralia
| | - Natalia Bazanova
- School of Agriculture, Food and WineUniversity of AdelaideGlen OsmondSAAustralia
- Present address:
Commonwealth Scientific and Industrial Research OrganisationGlen OsmondSA5064Australia
| | - Maria Hrmova
- School of Agriculture, Food and WineUniversity of AdelaideGlen OsmondSAAustralia
| | - Stephan Haefele
- School of Agriculture, Food and WineUniversity of AdelaideGlen OsmondSAAustralia
- Present address:
Rothamsted ResearchWest Common HarpendenHertfordshireAl5 2JQUK
| | - Nataliya Kovalchuk
- School of Agriculture, Food and WineUniversity of AdelaideGlen OsmondSAAustralia
| | - Sergiy Lopato
- School of Agriculture, Food and WineUniversity of AdelaideGlen OsmondSAAustralia
| |
Collapse
|
14
|
Salminen TA, Blomqvist K, Edqvist J. Lipid transfer proteins: classification, nomenclature, structure, and function. PLANTA 2016; 244:971-997. [PMID: 27562524 PMCID: PMC5052319 DOI: 10.1007/s00425-016-2585-4] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 08/10/2016] [Indexed: 05/20/2023]
Abstract
The non-specific lipid transfer proteins (LTPs) constitute a large protein family found in all land plants. They are small proteins characterized by a tunnel-like hydrophobic cavity, which makes them suitable for binding and transporting various lipids. The LTPs are abundantly expressed in most tissues. In general, they are synthesized with an N-terminal signal peptide that localizes the protein to spaces exterior to the plasma membrane. The in vivo functions of LTPs are still disputed, although evidence has accumulated for a role in the synthesis of lipid barrier polymers, such as cuticular waxes, suberin, and sporopollenin. There are also reports suggesting that LTPs are involved in signaling during pathogen attacks. LTPs are considered as key proteins for the plant's survival and colonization of land. In this review, we aim to present an overview of the current status of LTP research and also to discuss potential future applications of these proteins. We update the knowledge on 3D structures and lipid binding and review the most recent data from functional investigations, such as from knockout or overexpressing experiments. We also propose and argument for a novel system for the classification and naming of the LTPs.
Collapse
Affiliation(s)
- Tiina A Salminen
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520, Turku, Finland
| | | | - Johan Edqvist
- IFM, Linköping University, 581 83, Linköping, Sweden.
| |
Collapse
|
15
|
Genetic and epigenetic control of transfer cell development in plants. J Genet Genomics 2016; 43:533-539. [PMID: 27618166 DOI: 10.1016/j.jgg.2016.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/26/2016] [Accepted: 08/16/2016] [Indexed: 11/22/2022]
Abstract
The inter-cellular translocation of nutrients in plant is mediated by highly specialized transfer cells (TCs). TCs share similar functional and structural features across a wide range of plant species, including location at plant exchange surfaces, rich in secondary wall ingrowths, facilitation of nutrient flow, and passage of select molecules. The fate of endosperm TCs is determined in the TC fate acquisition stage (TCF), before the structure features are formed in the TC differentiation stage (TCD). At present, the molecular basis of TC development in plants remains largely unknown. In this review, we summarize the important roles of the signaling molecules in different development phases, such as sugars in TCF and phytohormones in TCD, and discuss the genetic and epigenetic factors, including TC-specific genes and endogenous plant peptides, and their crosstalk with these signaling molecules as a complex regulatory network in regulation of TC development in plants.
Collapse
|
16
|
Harris JC, Sornaraj P, Taylor M, Bazanova N, Baumann U, Lovell B, Langridge P, Lopato S, Hrmova M. Molecular interactions of the γ-clade homeodomain-leucine zipper class I transcription factors during the wheat response to water deficit. PLANT MOLECULAR BIOLOGY 2016; 90:435-52. [PMID: 26803501 DOI: 10.1007/s11103-015-0427-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/25/2015] [Indexed: 05/09/2023]
Abstract
The γ-clade of class I homeodomain-leucine zipper (HD-Zip I) transcription factors (TFs) constitute members which play a role in adapting plant growth to conditions of water deficit. Given the importance of wheat (Triticum aestivum L.) as a global food crop and the impact of water deficit upon grain yield, we focused on functional aspects of wheat drought responsive HD-Zip I TFs. While the wheat γ-clade HD-Zip I TFs share significant sequence similarities with homologous genes from other plants, the clade-specific features in transcriptional response to abiotic stress were detected. We demonstrate that wheat TaHDZipI-3, TaHDZipI-4, and TaHDZipI-5 genes respond differentially to a variety of abiotic stresses, and that proteins encoded by these genes exhibit pronounced differences in oligomerisation, strength of DNA binding, and trans-activation of an artificial promoter. Three-dimensional molecular modelling of the protein-DNA interface was conducted to address the ambiguity at the central nucleotide in the pseudo-palindromic cis-element CAATNATTG that is recognised by all three HD-Zip I proteins. The co-expression of these genes in the same plant tissues together with the ability of HD-Zip I TFs of the γ-clade to hetero-dimerise suggests a role in the regulatory mechanisms of HD-Zip I dependent transcription. Our findings highlight the complexity of TF networks involved in plant responses to water deficit. A better understanding of the molecular complexity at the protein level during crop responses to drought will enable adoption of efficient strategies for production of cereal plants with enhanced drought tolerance.
Collapse
Affiliation(s)
- John C Harris
- From the Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
- South Australian Research and Development Institute, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Pradeep Sornaraj
- From the Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Mathew Taylor
- From the Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Natalia Bazanova
- From the Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Ute Baumann
- From the Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Ben Lovell
- From the Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Peter Langridge
- From the Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Sergiy Lopato
- From the Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Maria Hrmova
- From the Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia.
| |
Collapse
|
17
|
Shavrukov Y, Baho M, Lopato S, Langridge P. The TaDREB3 transgene transferred by conventional crossings to different genetic backgrounds of bread wheat improves drought tolerance. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:313-22. [PMID: 25940960 DOI: 10.1111/pbi.12385] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/20/2015] [Accepted: 03/20/2015] [Indexed: 05/03/2023]
Abstract
Drought tolerance of the wheat cultivar Bobwhite was previously enhanced by transformation with a construct containing the wheat DREB3 gene driven by the stress-inducible maize Rab17 promoter. Progeny of a single T2 transgenic line were used as pollinators in crosses with four elite bread wheat cultivars from Western Australia: Bonnie Rock, IGW-2971, Magenta and Wyalkatchem, with the aim of evaluating transgene performance in different genetic backgrounds. The selected pollinator line, BW8-9-10-3, contained multiple transgene copies, had significantly improved drought tolerance compared with wild-type plants and showed no growth and development penalties or abnormalities. A single hybrid plant was selected from each cross-combination for three rounds of backcrossing with the corresponding maternal wheat cultivar. The transgene was detected in all four F1 BC3 combinations, but stress-inducible transgene expression was found in only three of the four combinations. Under well-watered conditions, the phenotypes and grain yield components of the F2 BC3 transgene-expressing lines were similar to those of corresponding recurrent parents and null-segregants. Under severe drought conditions, the backcross lines demonstrated 12-18% higher survival rates than the corresponding control plants. Two from four F3 BC3 transgenic lines showed significantly higher yield (18.9% and 21.5%) than control plants under limited water conditions. There was no induction of transgene expression under cold stress, and therefore, no improvement of frost tolerance observed in the progenies of drought-tolerant F3 BC3 lines.
Collapse
Affiliation(s)
- Yuri Shavrukov
- Australian Centre for Plant Functional Genomics, University of Adelaide, Urrbrae, SA, 5064, Australia
| | - Manahil Baho
- Australian Centre for Plant Functional Genomics, University of Adelaide, Urrbrae, SA, 5064, Australia
| | - Sergiy Lopato
- Australian Centre for Plant Functional Genomics, University of Adelaide, Urrbrae, SA, 5064, Australia
| | - Peter Langridge
- Australian Centre for Plant Functional Genomics, University of Adelaide, Urrbrae, SA, 5064, Australia
| |
Collapse
|
18
|
Yadav D, Shavrukov Y, Bazanova N, Chirkova L, Borisjuk N, Kovalchuk N, Ismagul A, Parent B, Langridge P, Hrmova M, Lopato S. Constitutive overexpression of the TaNF-YB4 gene in transgenic wheat significantly improves grain yield. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6635-6650. [PMID: 26220082 PMCID: PMC4623681 DOI: 10.1093/jxb/erv370] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Heterotrimeric nuclear factors Y (NF-Ys) are involved in regulation of various vital functions in all eukaryotic organisms. Although a number of NF-Y subunits have been characterized in model plants, only a few have been functionally evaluated in crops. In this work, a number of genes encoding NF-YB and NF-YC subunits were isolated from drought-tolerant wheat (Triticum aestivum L. cv. RAC875), and the impact of the overexpression of TaNF-YB4 in the Australian wheat cultivar Gladius was investigated. TaNF-YB4 was isolated as a result of two consecutive yeast two-hybrid (Y2H) screens, where ZmNF-YB2a was used as a starting bait. A new NF-YC subunit, designated TaNF-YC15, was isolated in the first Y2H screen and used as bait in a second screen, which identified two wheat NF-YB subunits, TaNF-YB2 and TaNF-YB4. Three-dimensional modelling of a TaNF-YB2/TaNF-YC15 dimer revealed structural determinants that may underlie interaction selectivity. The TaNF-YB4 gene was placed under the control of the strong constitutive polyubiquitin promoter from maize and introduced into wheat by biolistic bombardment. The growth and yield components of several independent transgenic lines with up-regulated levels of TaNF-YB4 were evaluated under well-watered conditions (T1-T3 generations) and under mild drought (T2 generation). Analysis of T2 plants was performed in large deep containers in conditions close to field trials. Under optimal watering conditions, transgenic wheat plants produced significantly more spikes but other yield components did not change. This resulted in a 20-30% increased grain yield compared with untransformed control plants. Under water-limited conditions transgenic lines maintained parity in yield performance.
Collapse
Affiliation(s)
- Dinesh Yadav
- University of Adelaide, Australian Centre for Plant Functional Genomics, Urrbrae SA 5064, Australia
| | - Yuri Shavrukov
- University of Adelaide, Australian Centre for Plant Functional Genomics, Urrbrae SA 5064, Australia
| | - Natalia Bazanova
- University of Adelaide, Australian Centre for Plant Functional Genomics, Urrbrae SA 5064, Australia
| | - Larissa Chirkova
- University of Adelaide, Australian Centre for Plant Functional Genomics, Urrbrae SA 5064, Australia
| | - Nikolai Borisjuk
- University of Adelaide, Australian Centre for Plant Functional Genomics, Urrbrae SA 5064, Australia
| | - Nataliya Kovalchuk
- University of Adelaide, Australian Centre for Plant Functional Genomics, Urrbrae SA 5064, Australia
| | - Ainur Ismagul
- University of Adelaide, Australian Centre for Plant Functional Genomics, Urrbrae SA 5064, Australia
| | - Boris Parent
- University of Adelaide, Australian Centre for Plant Functional Genomics, Urrbrae SA 5064, Australia
| | - Peter Langridge
- University of Adelaide, Australian Centre for Plant Functional Genomics, Urrbrae SA 5064, Australia
| | - Maria Hrmova
- University of Adelaide, Australian Centre for Plant Functional Genomics, Urrbrae SA 5064, Australia
| | - Sergiy Lopato
- University of Adelaide, Australian Centre for Plant Functional Genomics, Urrbrae SA 5064, Australia
| |
Collapse
|
19
|
Ingram G, Gutierrez-Marcos J. Peptide signalling during angiosperm seed development. JOURNAL OF EXPERIMENTAL BOTANY 2015. [PMID: 26195729 DOI: 10.1093/jxb/erv336] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Cell-cell communication is pivotal for the coordination of various features of plant development. Recent studies in plants have revealed that, as in animals, secreted signal peptides play critical roles during reproduction. However, the precise signalling mechanisms in plants are not well understood. In this review, we discuss the known and putative roles of secreted peptides present in the seeds of angiosperms as key signalling factors involved in coordinating different aspects of seed development.
Collapse
Affiliation(s)
- Gwyneth Ingram
- Laboratoire Reproduction et Développement des Plantes, UMR 5667 CNRS/UMR 0879 INRA, ENS de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | | |
Collapse
|
20
|
Pan Y, Ma X, Liang H, Zhao Q, Zhu D, Yu J. Spatial and temporal activity of the foxtail millet (Setaria italica) seed-specific promoter pF128. PLANTA 2015; 241:57-67. [PMID: 25204632 DOI: 10.1007/s00425-014-2164-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 08/22/2014] [Indexed: 05/10/2023]
Abstract
pF128 drives GUS specifically expressed in transgenic seeds of foxtail millet and Zea mays with higher activity than the constitutive CaMV35S promoter and the maize seed-specific 19Z promoter. Foxtail millet (Setaria italica), a member of the Poaceae family, is an important food and fodder crop in arid regions. Foxtail millet is an excellent C4 crop model owing to its small genome (~490 Mb), self-pollination and availability of a complete genome sequence. F128 was isolated from a cDNA library of foxtail millet immature seeds. Real-time PCR analysis revealed that F128 mRNA was specifically expressed in immature and mature seeds. The highest F128 mRNA level was observed 5 days after pollination and gradually decreased as the seed matured. Sequence analysis suggested that the protein encoded by F128 is likely a protease inhibitor/seed storage protein/lipid-transfer protein. The 1,053 bp 5' flanking sequence of F128 (pF128) was isolated and fused to the GUS reporter gene. The corresponding vector was then transformed into Arabidopsis thaliana, foxtail millet and Zea mays. GUS analysis revealed that pF128 drove GUS expression efficiently and specifically in the seeds of transgenic Arabidopsis, foxtail millet and Zea mays. GUS activity was also detected in Arabidopsis cotyledons. Activity of pF128 was higher than that observed for the constitutive CaMV35S promoter and the maize seed-specific 19 Zein (19Z) promoter. These results indicate that pF128 is a seed-specific promoter. Its application is expected to be of considerable value in plant genetic engineering.
Collapse
Affiliation(s)
- Yanlin Pan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | | | | | | | | | | |
Collapse
|
21
|
Li M, Lopato S, Hrmova M, Pickering M, Shirley N, Koltunow AM, Langridge P. Expression patterns and protein structure of a lipid transfer protein END1 from Arabidopsis. PLANTA 2014; 240:1319-1334. [PMID: 25204629 DOI: 10.1007/s00425-014-2155-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 08/12/2014] [Indexed: 06/03/2023]
Abstract
Arabidopsis END1-LIKE (AtEND1) was identified as a homolog of the barley endosperm-specific gene END1 and provides a model for the study of this class of genes and their products. The END1 is expressed in the endosperm transfer cells (ETC) of grasses. The ETC are responsible for transfer of nutrients from maternal tissues to the developing endosperm. Identification of several ETC-specific genes encoding lipid transfer proteins (LTP), including the END1, provided excellent markers for identification of ETC during seed development. To understand how AtEND1 forms complexes with lipid molecules, a three-dimensional (3D) molecular model was generated and reconciled with AtEND1 function. The spatial and temporal expression patterns of AtEND1 were examined in transgenic Arabidopsis plants transformed with an AtEND1 promoter-GUS fusion construct. The AtEND1 promoter was found to be seed and pollen specific. In contrast to ETC-specific expression of homologous genes in wheat and barley, expression of AtEND1 is less specific. It was observed in ovules and a few gametophytic tissues. A series of AtEND1 promoter deletions fused to coding sequence (CDS) of the uidA were transformed in Arabidopsis and the promoter region responsible for AtEND1 expression was identified. A 163 bp fragment of the promoter was found to be sufficient for both spatial and temporal patterns of expression reflecting that of AtEND1. Our data suggest that AtEND1 could be used as a marker gene for gametophytic tissues and developing endosperm. The role of the gene is unclear but it may be involved in fertilization and/or endosperm cellularization.
Collapse
Affiliation(s)
- Ming Li
- School of Agriculture, Food and Wine, Plant Genomics Centre, Hartley Grove, Urrbrae, The University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia,
| | | | | | | | | | | | | |
Collapse
|
22
|
Lopato S, Borisjuk N, Langridge P, Hrmova M. Endosperm transfer cell-specific genes and proteins: structure, function and applications in biotechnology. FRONTIERS IN PLANT SCIENCE 2014; 5:64. [PMID: 24578704 PMCID: PMC3936200 DOI: 10.3389/fpls.2014.00064] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 02/07/2014] [Indexed: 05/21/2023]
Abstract
Endosperm transfer cells (ETC) are one of four main types of cells in endosperm. A characteristic feature of ETC is the presence of cell wall in-growths that create an enlarged plasma membrane surface area. This specialized cell structure is important for the specific function of ETC, which is to transfer nutrients from maternal vascular tissue to endosperm. ETC-specific genes are of particular interest to plant biotechnologists, who use genetic engineering to improve grain quality and yield characteristics of important field crops. The success of molecular biology-based approaches to manipulating ETC function is dependent on a thorough understanding of the functions of ETC-specific genes and ETC-specific promoters. The aim of this review is to summarize the existing data on structure and function of ETC-specific genes and their products. Potential applications of ETC-specific genes, and in particular their promoters for biotechnology will be discussed.
Collapse
Affiliation(s)
- Sergiy Lopato
- *Correspondence: Sergiy Lopato, Australian Centre for Plant Functional Genomics, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia e-mail:
| | | | | | | |
Collapse
|
23
|
Royo J, Gómez E, Sellam O, Gerentes D, Paul W, Hueros G. Two maize END-1 orthologs, BETL9 and BETL9like, are transcribed in a non-overlapping spatial pattern on the outer surface of the developing endosperm. FRONTIERS IN PLANT SCIENCE 2014; 5:180. [PMID: 24834070 PMCID: PMC4018532 DOI: 10.3389/fpls.2014.00180] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/15/2014] [Indexed: 05/03/2023]
Abstract
In the course of a project aimed to isolate transfer cells-specific genes in maize endosperm we have identified the BETL9 gene. BETL9 encodes for a small protein very similar in sequence to the product of the barley transfer cell-specific gene END-1. Both BETL9 and END-1 proteins are lipid transfer proteins, but their function is currently unknown. In situ hybridization analysis confirms that the BETL9 gene is exclusively transcribed in the basal endosperm transfer cell layer during seed development since 10 days after pollination. However, immunolocalization data indicates that the BETL9 protein accumulates in the maternal placento-chalaza cells located just beside the transfer cell layer. This suggests that the BETL9 protein should be transported to the maternal side to exert its, still unknown, function. In addition, we have identified a second maize gene very similar in sequence to BETL9 and we have named it BETL9like. In situ hybridization shows that BETL9like is also specifically transcribed in the developing maize endosperm within the same time frame that BETL9, but in this case it is exclusively expressed in the aleurone cell layer. Consequently, the BETL9 and BETL9like genes are transcribed in a non-overlapping pattern on the outer surface of the maize endosperm. The BETL9 and BETL9like promoter sequences, fused to the GUS reporter gene, accurately reflected the expression pattern observed for the genes in maize. Finally, we have identified in the Arabidopsis genome a set of four genes orthologous to BETL9 and BETL9like and analyzed the activity of their promoters in Arabidopsis transgenic plants carrying fusions of their promoter sequences to the GUS reporter. As in the case of the maize genes, the Arabidopsis orthologs showed highly complementary expression patterns.
Collapse
Affiliation(s)
- Joaquín Royo
- Departamento Biomedicina y Biotecnología (Genética), Universidad de AlcaláMadrid, Spain
- *Correspondence: Joaquín Royo, Departamento Biomedicina y Biotecnología (Genética), Universidad de Alcalá, Campus Universitario, Alcalá de Henares-28870, Madrid, Spain e-mail:
| | - Elisa Gómez
- Departamento Biomedicina y Biotecnología (Genética), Universidad de AlcaláMadrid, Spain
| | - Olivier Sellam
- GM Trait Discovery, Biogemma – Centre de Recherche de ChappesChappes, France
| | - Denise Gerentes
- GM Trait Discovery, Biogemma – Centre de Recherche de ChappesChappes, France
| | - Wyatt Paul
- GM Trait Discovery, Biogemma – Centre de Recherche de ChappesChappes, France
| | - Gregorio Hueros
- Departamento Biomedicina y Biotecnología (Genética), Universidad de AlcaláMadrid, Spain
| |
Collapse
|
24
|
Transgenic barley: a prospective tool for biotechnology and agriculture. Biotechnol Adv 2013; 32:137-57. [PMID: 24084493 DOI: 10.1016/j.biotechadv.2013.09.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 09/20/2013] [Accepted: 09/24/2013] [Indexed: 11/21/2022]
Abstract
Barley (Hordeum vulgare L.) is one of the founder crops of agriculture, and today it is the fourth most important cereal grain worldwide. Barley is used as malt in brewing and distilling industry, as an additive for animal feed, and as a component of various food and bread for human consumption. Progress in stable genetic transformation of barley ensures a potential for improvement of its agronomic performance or use of barley in various biotechnological and industrial applications. Recently, barley grain has been successfully used in molecular farming as a promising bioreactor adapted for production of human therapeutic proteins or animal vaccines. In addition to development of reliable transformation technologies, an extensive amount of various barley genetic resources and tools such as sequence data, microarrays, genetic maps, and databases has been generated. Current status on barley transformation technologies including gene transfer techniques, targets, and progeny stabilization, recent trials for improvement of agricultural traits and performance of barley, especially in relation to increased biotic and abiotic stress tolerance, and potential use of barley grain as a protein production platform have been reviewed in this study. Overall, barley represents a promising tool for both agricultural and biotechnological transgenic approaches, and is considered an ancient but rediscovered crop as a model industrial platform for molecular farming.
Collapse
|
25
|
Kovalchuk N, Jia W, Eini O, Morran S, Pyvovarenko T, Fletcher S, Bazanova N, Harris J, Beck-Oldach K, Shavrukov Y, Langridge P, Lopato S. Optimization of TaDREB3 gene expression in transgenic barley using cold-inducible promoters. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:659-70. [PMID: 23495849 DOI: 10.1111/pbi.12056] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 01/22/2013] [Indexed: 05/25/2023]
Abstract
Constitutive over-expression of the TaDREB3 gene in barley improved frost tolerance of transgenic plants at the vegetative stage of plant development, but leads to stunted phenotypes and 3- to 6-week delays in flowering compared to control plants. In this work, two cold-inducible promoters with contrasting properties, the WRKY71 gene promoter from rice and the Cor39 gene promoter from durum wheat, were applied to optimize expression of TaDREB3. The aim of the work was to increase plant frost tolerance and to decrease or prevent negative developmental phenotypes observed during constitutive expression of TaDREB3. The OsWRKY71 and TdCor39 promoters had low-to-moderate basal activity and were activated by cold treatment in leaves, stems and developing spikes of transgenic barley and rice. Expression of the TaDREB3 gene, driven by either of the tested promoters, led to a significant improvement in frost tolerance. The presence of the functional TaDREB3 protein in transgenic plants was confirmed by the detection of strong up-regulation of cold-responsive target genes. The OsWRKY71 promoter-driven TaDREB3 provides stronger activation of the same target genes than the TdCor39 promoter. Analysis of the development of transgenic plants in the absence of stress revealed small or no differences in plant characteristics and grain yield compared with wild-type plants. The WRKY71-TaDREB3 promoter-transgene combination appears to be a promising tool for the enhancement of cold and frost tolerance in crop plants but field evaluation will be needed to confirm that negative development phenotypes have been controlled.
Collapse
Affiliation(s)
- Nataliya Kovalchuk
- Australian Centre for Plant Functional Genomics, University of Adelaide, Adelaide, SA, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Complex regulation by Apetala2 domain-containing transcription factors revealed through analysis of the stress-responsive TdCor410b promoter from durum wheat. PLoS One 2013; 8:e58713. [PMID: 23527011 PMCID: PMC3602543 DOI: 10.1371/journal.pone.0058713] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 02/05/2013] [Indexed: 12/27/2022] Open
Abstract
Expression of the wheat dehydrin gene Cor410b is induced several fold above its non-stressed levels upon exposure to stresses such as cold, drought and wounding. Deletion analysis of the TdCor410b promoter revealed a single functional C-repeat (CRT) element. Seven transcription factors (TFs) were shown to bind to this CRT element using yeast one-hybrid screens of wheat and barley cDNA libraries, of which only one belonged to the DREB class of TFs. The remaining six encoded ethylene response factors (ERFs) belong to three separate subfamilies. Analysis of binding selectivity of these TFs indicated that all seven could bind to the CRT element (GCCGAC), and that three of the six ERFs could bind both to the CRT element and the ethylene-responsive GCC-box (GCCGCC). The TaERF4 subfamily members specifically bound the CRT element, and did not bind either the GCC-box or DRE element (ACCGAC). Molecular modeling and site-directed mutagenesis identified a single residue Pro42 in the Apetala2 (AP2) domain of TaERF4-like proteins that is conserved in monocotyledonous plants and is responsible for the recognition selectivity of this subfamily. We suggest that both DREB and ERF proteins regulate expression of the Cor410b gene through a single, critical CRT element. Members of the TaERF4 subfamily are specific, positive regulators of Cor410b gene expression.
Collapse
|
27
|
Kovalchuk N, Smith J, Bazanova N, Pyvovarenko T, Singh R, Shirley N, Ismagul A, Johnson A, Milligan AS, Hrmova M, Langridge P, Lopato S. Characterization of the wheat gene encoding a grain-specific lipid transfer protein TdPR61, and promoter activity in wheat, barley and rice. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:2025-40. [PMID: 22213809 DOI: 10.1093/jxb/err409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The TaPR61 gene from bread wheat encodes a lipid transfer protein (LTP) with a hydrophobic signal peptide, predicted to direct the TaPR61 protein to the apoplast. Modelling of TaPR61 revealed the presence of an internal cavity which can accommodate at least two lipid molecules. The full-length gene, including the promoter sequence of a TaPR61 orthologue, was cloned from a BAC library of Triticum durum. Quantitative RT-PCR analysis revealed the presence of TaPR61 and TdPR61 mainly in grain. A transcriptional TdPR61 promoter-GUS fusion was stably transformed into wheat, barley, and rice. The strongest GUS expression in all three plants was found in the endosperm transfer cells, the embryo surrounding region (ESR), and in the embryo. The promoter is strong and has similar but not identical spatial patterns of activity in wheat, barley, and rice. These results suggest that the TdPR61 promoter will be a useful tool for improving grain quality by manipulating the quality and quantity of nutrient/lipid uptake to the endosperm and embryo. Mapping of regions important for the promoter function using transient expression assays in developing embryos resulted in the identification of two segments important for promoter activation in embryos. The putative cis-elements from the distal segment were used as bait in a yeast 1-hybrid (Y1H) screen of a cDNA library prepared from the liquid part of the wheat multinucleate syncytium. A transcription factor isolated in the screen is similar to BES1/BLZ1 from Arabidopsis, which is known to be a key transcriptional regulator of the brassinosteroid signalling pathway.
Collapse
Affiliation(s)
- Nataliya Kovalchuk
- Australian Centre for Plant Functional Genomics, University of Adelaide, South Australia, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kovalchuk N, Wu W, Eini O, Bazanova N, Pallotta M, Shirley N, Singh R, Ismagul A, Eliby S, Johnson A, Langridge P, Lopato S. The scutellar vascular bundle-specific promoter of the wheat HD-Zip IV transcription factor shows similar spatial and temporal activity in transgenic wheat, barley and rice. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:43-53. [PMID: 21689369 DOI: 10.1111/j.1467-7652.2011.00633.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
An HD-Zip IV gene from wheat, TaGL9, was isolated using a Y1H screen of a cDNA library prepared from developing wheat grain. TaGL9 has an amino acid sequence distinct from other reported members of the HD-Zip IV family. The 3' untranslated region of TaGL9 was used as a probe to isolate a genomic clone of the TaGL9 homologue from a BAC library prepared from Triticum durum L. cv. Langdon. The full-length gene containing a 3-kb-long promoter region was designated TdGL9H1. Spatial and temporal activity of TdGL9H1 was examined using promoter-GUS fusion constructs in transgenic wheat, barley and rice plants. Whole-mount and histochemical GUS staining patterns revealed grain-specific expression of TdGL9H1. GUS expression was initially observed between 3 and 8 days after pollination (DAP) in embryos at the globular stage and adjacent to the embryo fraction of the endosperm. Expression was strongest in the outer cell layer of the embryo. In developed wheat and barley embryos, strong activity of the promoter was only detected in the main vascular bundle of the scutellum, which is known to be responsible for the uptake of nutrients from the endosperm during germination and the endosperm-dependent phase of seedling development. Furthermore, this pattern of GUS staining was observed in dry seeds several weeks after harvesting but quickly disappeared during imbibition. The promoter of this gene could be a useful tool for engineering of early seedling vigour and protecting the endosperm to embryo axis pathway from pathogens during grain desiccation and storage.
Collapse
Affiliation(s)
- Nataliya Kovalchuk
- Australian Centre for Plant Functional Genomics, University of Adelaide, Hartley Grove, Urrbrae, South Australia, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kuwano M, Masumura T, Yoshida KT. A novel endosperm transfer cell-containing region-specific gene and its promoter in rice. PLANT MOLECULAR BIOLOGY 2011; 76:47-56. [PMID: 21409497 DOI: 10.1007/s11103-011-9765-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 03/04/2011] [Indexed: 05/08/2023]
Abstract
The endosperm of cereal grains is an important resource for both food and feed. It contains three major types of tissue: starchy endosperm, the aleurone layer, and transfer cells. To improve grain quality and quantity using molecular methods, control of transgene expression directed by distinct temporal and spatial promoter activity is necessary. To identify aleurone layer-specific and/or transfer cell-specific promoters in rice, microarray analyses were performed, comparing the aleurone layer containing transfer cells and the other reproductive and vegetative tissues. After confirmation by RT-PCR analysis, we identified two putative aleurone layer and/or transfer cell-specific genes, AL1 and AL2. The promoter regions of these genes and β-glucuronidase (GUS) fusion constructs were stably transformed into rice. The GUS expression patterns indicated that the AL1 promoter was active exclusively in the dorsal aleurone layer adjacent to the main vascular bundle. In rice, transfer cells are differentiated in this region. Therefore, the promoter of the AL1 gene exhibits transfer cell-containing region-specific activity. The AL1 gene encodes a putative anthranilate N-hydroxycinnamoyl/benzoyltransferase. The promoter of this gene will be useful for enhancing uptake of nutrients from the mother cells and protecting filial seeds from pathogen attack.
Collapse
Affiliation(s)
- Mio Kuwano
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, Japan
| | | | | |
Collapse
|
30
|
Morran S, Eini O, Pyvovarenko T, Parent B, Singh R, Ismagul A, Eliby S, Shirley N, Langridge P, Lopato S. Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:230-49. [PMID: 20642740 DOI: 10.1111/j.1467-7652.2010.00547.x] [Citation(s) in RCA: 232] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Transcription factors have been shown to control the activity of multiple stress response genes in a coordinated manner and therefore represent attractive targets for application in molecular plant breeding. We investigated the possibility of modulating the transcriptional regulation of drought and cold responses in the agriculturally important species, wheat and barley, with a view to increase drought and frost tolerance. Transgenic wheat and barley plants were generated showing constitutive (double 35S) and drought-inducible (maize Rab17) expression of the TaDREB2 and TaDREB3 transcription factors isolated from wheat grain. Transgenic populations with constitutive over-expression showed slower growth, delayed flowering and lower grain yields relative to the nontransgenic controls. However, both the TaDREB2 and TaDREB3 transgenic plants showed improved survival under severe drought conditions relative to nontransgenic controls. There were two components to the drought tolerance: real (activation of drought-stress-inducible genes) and 'seeming' (consumption of less water as a result of smaller size and/or slower growth of transgenics compared to controls). The undesired changes in plant development associated with the 'seeming' component of tolerance could be alleviated by using a drought-inducible promoter. In addition to drought tolerance, both TaDREB2 and TaDREB3 transgenic plants with constitutive over-expression of the transgene showed a significant improvement in frost tolerance. The increased expression of TaDREB2 and TaDREB3 lead to elevated expression in the transgenics of 10 other CBF/DREB genes and a large number of stress responsive LEA/COR/DHN genes known to be responsible for the protection of cell from damage and desiccation under stress.
Collapse
Affiliation(s)
- Sarah Morran
- Australian Centre for Plant Functional Genomics, University of Adelaide, Urrbrae, Adelaide, SA, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hensel G, Himmelbach A, Chen W, Douchkov DK, Kumlehn J. Transgene expression systems in the Triticeae cereals. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:30-44. [PMID: 20739094 DOI: 10.1016/j.jplph.2010.07.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Revised: 07/19/2010] [Accepted: 07/21/2010] [Indexed: 05/29/2023]
Abstract
The control of transgene expression is vital both for the elucidation of gene function and for the engineering of transgenic crops. Given the dominance of the Triticeae cereals in the agricultural economy of the temperate world, the development of well-performing transgene expression systems of known functionality is of primary importance. Transgenes can be expressed either transiently or stably. Transient expression systems based on direct or virus-mediated gene transfer are particularly useful in situations where the need is to rapidly screen large numbers of genes. However, an unequivocal understanding of gene function generally requires that a transgene functions throughout the plant's life and is transmitted through the sexual cycle, since this alone allows its effect to be decoupled from the plant's response to the generally stressful gene transfer event. Temporal, spatial and quantitative control of a transgene's expression depends on its regulatory environment, which includes both its promoter and certain associated untranslated region sequences. While many transgenic approaches aim to manipulate plant phenotype via ectopic gene expression, a transgene sequence can be also configured to down-regulate the expression of its endogenous counterpart, a strategy which exploits the natural gene silencing machinery of plants. In this review, current technical opportunities for controlling transgene expression in the Triticeae species are described. Apart from protocols for transient and stable gene transfer, the choice of promoters and other untranslated regulatory elements, we also consider signal peptides, as they too govern the abundance and particularly the sub-cellular localization of transgene products.
Collapse
Affiliation(s)
- Götz Hensel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, Gatersleben, Germany
| | | | | | | | | |
Collapse
|
32
|
Kaspar S, Weier D, Weschke W, Mock HP, Matros A. Protein analysis of laser capture micro-dissected tissues revealed cell-type specific biological functions in developing barley grains. Anal Bioanal Chem 2010; 398:2883-93. [PMID: 20798931 DOI: 10.1007/s00216-010-4120-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 08/09/2010] [Accepted: 08/10/2010] [Indexed: 02/06/2023]
Abstract
Both the nucellar projection (NP) and endosperm transfer cells (ETC) of the developing barley grain (harvested 8 days after flowering) were isolated by laser capture micro-dissection combined with pressure catapulting. Protein extracts were analyzed by nanoUPLC separation combined with ESI-Q-TOF mass spectrometry. The majority of the ~160 proteins identified were involved in translation, protein synthesis, or protein destination. The NP proteome was enriched for stress defense molecules, while proteins involved in assimilate transport and the mobilization of nutrients were common to both the NP and the ETC. The combined qualitative and quantitative protein profiling allowed for the identification of several proteins showing tissue specificity in their expression, which underlines the distinct biological functions of these two tissues within the developing barley grain.
Collapse
Affiliation(s)
- Stephanie Kaspar
- Applied Biochemistry Group, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | | | | | | | | |
Collapse
|
33
|
Kovalchuk N, Li M, Wittek F, Reid N, Singh R, Shirley N, Ismagul A, Eliby S, Johnson A, Milligan AS, Hrmova M, Langridge P, Lopato S. Defensin promoters as potential tools for engineering disease resistance in cereal grains. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:47-64. [PMID: 19954492 DOI: 10.1111/j.1467-7652.2009.00465.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Engineering of plant protection in cereals requires well characterized tissue-specific and wounding/pathogen-inducible promoters for targeted expression of pathogen responsive and resistance genes. We describe the isolation of seven wheat and rice defensin genes expressed in early developing grain and during grain germination, two developmental stages that are particularly vulnerable to pathogens and insects. Comparison of three-dimensional (3D) models of these rice and wheat PRPI defensins indicated variations in spatial architectures that could reflect their functional diversities. Wheat and rice were stably transformed with promoter-GUS fusion constructs and the spatial and temporal activities of four promoters were studied using whole-mount and histological assays. PRPI promoters were active before and at anthesis in both transgenic wheat and rice with activity mainly in the ovary. In rice, GUS activity was also observed in vascular tissue of the lemma, palea and anthers. After fertilization, GUS was strongly expressed in the outer cell layers of the pericarp and in the main vascular bundle of the grain. During, and a short time after, seed germination, wheat promoters were active in transgenic rice embryos, roots and/or coleoptiles. All wheat and rice promoters were strongly induced by wounding in leaf, stem and grain of transgenic rice plants. These results suggest that PRPI promoters will be useful for specific targeting and accumulation of proteins conferring resistance to pathogens in vulnerable tissues of developing and germinating grain.
Collapse
Affiliation(s)
- Nataliya Kovalchuk
- Australian Centre for Plant Functional Genomics, Hartley Grove, Urrbrae, SA, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|