1
|
Cheng F, Wang Y, Peng A, Li S, Chen J, Zheng X, Xiong J, Ding G, Zhang B, Zhai W, Song L, Wei W, Chen L. Identification of candidate genes for leaf size by QTL mapping and transcriptome sequencing in Brassica napus L. BMC Genomics 2025; 26:39. [PMID: 39815180 PMCID: PMC11734557 DOI: 10.1186/s12864-025-11205-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/02/2025] [Indexed: 01/18/2025] Open
Abstract
Leaf is the main photosynthetic organ at the seedling stage of rapeseed and leaf size is a crucial agronomic trait affecting rapeseed yield. Understanding the genetic mechanisms underlying leaf size is therefore important for rapeseed breeding. In this study, QTL mapping for three traits related to leaf size, i.e., leaf width (LW), leaf length (LL) and leaf area (LA), was performed using a recombinant inbred line (RIL) population and four QTLs for LW, two QTLs for LL and four QTLs for LA were detected. Transcriptome analysis revealed that differentially expressed genes (DEGs) were enriched in the GO terms related to microtubules, and the expression level of several genes involved in cell division also showed significant differences. Microscopic analysis suggested that the cell number was the main factor regulating leaf size. Combining QTL mapping and RNA sequencing, four promising candidate genes, including BnaA10G0085600ZS, BnaA10G0156900ZS, BnaC03G0441700ZS, and BnaC08G0410600ZS, were proposed to control leaf size by regulating cell division. The results of QTL, transcriptome analysis, and anatomical observation were highly consistent, collectively revealing that genes related to cell division played a crucial role in regulating the leaf size traits in rapeseed. These findings provided further insights into the genetic mechanism of leaf size and built fundamental theory basis for high-density tolerance breeding in rapeseed.
Collapse
Affiliation(s)
- Fengjie Cheng
- College of Agriculture, Yangtze University, Jingzhou, 434000, China
| | - Yuwen Wang
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Aoyi Peng
- College of Agriculture, Yangtze University, Jingzhou, 434000, China
| | - Shuyu Li
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Jun Chen
- East China University of Technology, Fuzhou, 344000, China
| | - Xiaoxiao Zheng
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Jie Xiong
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Ge Ding
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Bingchao Zhang
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Wen Zhai
- East China University of Technology, Fuzhou, 344000, China
| | - Laiqiang Song
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Wenliang Wei
- College of Agriculture, Yangtze University, Jingzhou, 434000, China.
| | - Lunlin Chen
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China.
| |
Collapse
|
2
|
Zhao Y, Wang X, Gao J, Rehman Rashid MA, Wu H, Hu Q, Sun X, Li J, Zhang H, Xu P, Qian Q, Chen C, Li Z, Zhang Z. The MYB61-STRONG2 module regulates culm diameter and lodging resistance in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025. [PMID: 39760479 DOI: 10.1111/jipb.13830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/20/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025]
Abstract
Lodging reduces grain yield and quality in cereal crops. Lodging resistance is affected by the strength of the culm, which is influenced by the culm diameter, culm wall thickness, and cell wall composition. To explore the genetic architecture of culm diameter in rice (Oryza sativa), we conducted a genome-wide association study (GWAS). We identified STRONG CULM 2 (STRONG2), which encodes the mannan synthase CSLA5, and showed that plants that overexpressed this gene had increased culm diameter and improved lodging resistance. STRONG2 appears to increase the levels of cell wall components, such as mannose and cellulose, thereby enhancing sclerenchyma development in stems. SNP14931253 in the STRONG2 promoter contributes to variation in STRONG2 expression in natural germplasms and the transcription factor MYB61 directly activates STRONG2 expression. Furthermore, STRONG2 overexpressing plants produced significantly more grains per panicle and heavier grains than the wild-type plants. These results demonstrate that the MYB61-STRONG2 module positively regulates culm diameter and lodging resistance, information that could guide breeding efforts for improved yield in rice.
Collapse
Affiliation(s)
- Yong Zhao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Hainan Seed Industry Laboratory, Sanya, 572024, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Xianpeng Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jie Gao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
- Yazhouwan National Laboratory, Sanya, 572024, China
| | - Muhammad Abdul Rehman Rashid
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Hui Wu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Qianfeng Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xingming Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jinjie Li
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Hongliang Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Peng Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, The Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303, China
| | - Qian Qian
- Yazhouwan National Laboratory, Sanya, 572024, China
| | - Chao Chen
- State Key Laboratory of Crop Germplasm Innovation and Molecular Breeding, Life Science and Technology Center, China National Seed Group Co., Ltd, Wuhan, 430073, China
| | - Zichao Li
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, 572024, China
| | - Zhanying Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| |
Collapse
|
3
|
Zhang G, Yang Z, Zhou S, Zhu J, Liu X, Luo J. Cellulose synthase-like OsCSLD4: a key regulator of agronomic traits, disease resistance, and metabolic indices in rice. PLANT CELL REPORTS 2024; 43:264. [PMID: 39414689 DOI: 10.1007/s00299-024-03356-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024]
Abstract
KEY MESSAGE Cellulose synthase-like OsCSLD4 plays a pivotal role in regulating diverse agronomic traits, enhancing resistance against bacterial leaf blight, and modulating metabolite indices based on the multi-omics analysis in rice. To delve deeper into this complex network between agronomic traits and metabolites in rice, we have compiled a dataset encompassing genome, phenome, and metabolome, including 524 diverse accessions, 11 agronomic traits, and 841 metabolites, enabling us to pinpoint eight hotspots through GWAS. We later discovered four distinct metabolite categories, encompassing 15 metabolites that are concurrently present on the QTL qC12.1, associated with leaf angle of flag and spikelet length, and finally focused the cellulose synthase-like OsCSLD4, which was pinpointed through a rigorous process encompassing sequence variation, haplotype, ATAC, and differential expression across diverse tissues. Compared to the wild type, csld4 exhibited significant reductions in the plant height, flag leaf length, leaf width, spikelet length, 1000-grain weight, grain width, grain thickness, fertility, yield per plant, and bacterial blight resistance. However, there were significant increase in tiller numbers, degree of leaf rolling, flowering period, growth period, grain length, and empty kernel rate. Furthermore, the content of four polyphenol metabolites, excluding metabolite N-feruloyltyramine (mr1268), notably rose, whereas the levels of the other three polyphenol metabolites, smiglaside C (mr1498), 4-coumaric acid (mr1622), and smiglaside A (mr1925) decreased significantly in mutant csld4. The content of amino acid L-tyramine (mr1446) exhibited a notable increase, whereas the alkaloid trigonelline (mr1188) displayed a substantial decrease among the mutants. This study offered a comprehensive multi-omics perspective to analyze the genetic mechanism of OsCSLD4, and breeders can potentially enhance rice's yield, bacterial leaf blight resistance, and metabolite content, leading to more sustainable and profitable rice production.
Collapse
Affiliation(s)
- Guofang Zhang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
- School of Breeding and Multiplication, Hainan University, Sanya, 572025, China
- Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Zhuang Yang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
- School of Breeding and Multiplication, Hainan University, Sanya, 572025, China
| | - Shen Zhou
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
- School of Breeding and Multiplication, Hainan University, Sanya, 572025, China
| | - Jinjin Zhu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
- School of Breeding and Multiplication, Hainan University, Sanya, 572025, China
| | - Xianqing Liu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
- School of Breeding and Multiplication, Hainan University, Sanya, 572025, China
| | - Jie Luo
- School of Breeding and Multiplication, Hainan University, Sanya, 572025, China.
- Yazhou Bay National Laboratory, Sanya, 572025, China.
| |
Collapse
|
4
|
Tao Z, Miao X, Shi Z. HD-ZIP IV Gene ROC1 Regulates Leaf Rolling and Drought Response Through Formation of Heterodimers with ROC5 and ROC8 in Rice. RICE (NEW YORK, N.Y.) 2024; 17:45. [PMID: 39060652 PMCID: PMC11282044 DOI: 10.1186/s12284-024-00717-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/21/2024] [Indexed: 07/28/2024]
Abstract
Leaf morphology is a crucial agronomic characteristic of rice that influences crop yield directly. One primary cause of rice leaf rolling can be attributed to alterations in bulliform cells. Several HD-ZIP IV genes have been identified to be epidemical characterized and function in leaf rolling in rice. Still others need to be studied to fully understand the overall function of HD-ZIP IV family. Among the nine ROC genes encoding HD-ZIP IV family transcription factors in rice, ROC1 exhibits the highest expression in the leaves. Overexpression of ROC1 decreased the size of bulliform cells, and thus resulted in adaxially rolled leaves. To the contrary, knockout of ROC1 (ROC1KO) through Crispr-cas9 system enlarged bulliform cells, and thus led to abaxially rolled leaves. Moreover, ROC1KO plants were sensitive to drought. ROC1 could form homodimers on its own, and heterodimers with ROC5 and ROC8 respectively. Compared to ROC1KO plants, leaves of the ROC1 and ROC8 double knocked out plants (ROC1/8DKO) were more severely rolled abaxially due to enlarged bulliform cells, and ROC1/8DKO plants were more drought sensitive. However, overexpression of ROC8 could not restore the abaxial leaf phenotype of ROC1KO plants. Therefore, we proved that ROC1, a member of the HD-ZIP IV family, regulated leaf rolling and drought stress response through tight association with ROC5 and ROC8.
Collapse
Affiliation(s)
- Zhihuan Tao
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuexia Miao
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Zhenying Shi
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
5
|
Gong X, Chen J, Chen Y, He Y, Jiang D. Advancements in Rice Leaf Development Research. PLANTS (BASEL, SWITZERLAND) 2024; 13:904. [PMID: 38592944 PMCID: PMC10976080 DOI: 10.3390/plants13060904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
Rice leaf morphology is a pivotal component of the ideal plant architecture, significantly impacting rice yield. The process of leaf development unfolds through three distinct stages: the initiation of leaf primordia, the establishment and maintenance of polarity, and leaf expansion. Genes regulating leaf morphology encompass transcription factors, hormones, and miRNAs. An in-depth synthesis and categorization of genes associated with leaf development, particularly those successfully cloned, hold paramount importance in unraveling the complexity of rice leaf development. Furthermore, it provides valuable insights into the potential for molecular-level manipulation of rice leaf types. This comprehensive review consolidates the stages of rice leaf development, the genes involved, molecular regulatory pathways, and the influence of plant hormones. Its objective is to establish a foundational understanding of the creation of ideal rice leaf forms and their practical application in molecular breeding.
Collapse
Affiliation(s)
| | | | | | | | - Dagang Jiang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (X.G.); (J.C.); (Y.C.); (Y.H.)
| |
Collapse
|
6
|
Hansson M, Youssef HM, Zakhrabekova S, Stuart D, Svensson JT, Dockter C, Stein N, Waugh R, Lundqvist U, Franckowiak J. A guide to barley mutants. Hereditas 2024; 161:11. [PMID: 38454479 PMCID: PMC10921644 DOI: 10.1186/s41065-023-00304-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/24/2023] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Mutants have had a fundamental impact upon scientific and applied genetics. They have paved the way for the molecular and genomic era, and most of today's crop plants are derived from breeding programs involving mutagenic treatments. RESULTS Barley (Hordeum vulgare L.) is one of the most widely grown cereals in the world and has a long history as a crop plant. Barley breeding started more than 100 years ago and large breeding programs have collected and generated a wide range of natural and induced mutants, which often were deposited in genebanks around the world. In recent years, an increased interest in genetic diversity has brought many historic mutants into focus because the collections are regarded as valuable resources for understanding the genetic control of barley biology and barley breeding. The increased interest has been fueled also by recent advances in genomic research, which provided new tools and possibilities to analyze and reveal the genetic diversity of mutant collections. CONCLUSION Since detailed knowledge about phenotypic characters of the mutants is the key to success of genetic and genomic studies, we here provide a comprehensive description of mostly morphological barley mutants. The review is closely linked to the International Database for Barley Genes and Barley Genetic Stocks ( bgs.nordgen.org ) where further details and additional images of each mutant described in this review can be found.
Collapse
Affiliation(s)
- Mats Hansson
- Department of Biology, Lund University, Sölvegatan 35, 22362, Lund, Sweden.
| | - Helmy M Youssef
- Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle, 06120, Germany
| | | | - David Stuart
- Department of Biology, Lund University, Sölvegatan 35, 22362, Lund, Sweden
| | - Jan T Svensson
- Nordic Genetic Resource Center (NordGen), Växthusvägen 12, 23456, Alnarp, Sweden
| | - Christoph Dockter
- Carlsberg Research Laboratory, J. C. Jacobsens Gade 4, 1799, Copenhagen V, Denmark
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Stadt Seeland, E06466, Germany
- Center for Integrated Breeding Research (CiBreed), Georg-August-University, Göttingen, Germany
| | - Robbie Waugh
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- Division of Plant Sciences, University of Dundee, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- School of Agriculture Food and Wine, Waite Campus, The University of Adelaide, Urrbrae, 5064, Australia
| | - Udda Lundqvist
- Nordic Genetic Resource Center (NordGen), Växthusvägen 12, 23456, Alnarp, Sweden
| | - Jerome Franckowiak
- Department of Agronomy and Plant Genetics, University of Minnesota Twin Cities, 411 Borlaug Hall, 1991 Upper Buford Circle, St Paul, MN, 55108, USA
| |
Collapse
|
7
|
Wang Y, Xu W, Liu Y, Yang J, Guo X, Zhang J, Pu J, Chen N, Zhang W. Identification and Transcriptome Analysis of a Novel Allelic Mutant of NAL1 in Rice. Genes (Basel) 2024; 15:325. [PMID: 38540384 PMCID: PMC10970654 DOI: 10.3390/genes15030325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 06/14/2024] Open
Abstract
Leaf morphology is a crucial aspect of plant architecture, yet the molecular mechanisms underlying leaf development remain incompletely understood. In this study, a narrow leaf mutant, m625, was identified in rice (Oryza sativa L.), exhibiting pleiotropic developmental defects. Pigment measurement revealed reduced levels of photochromic pigments in m625. Cytological analysis demonstrated that the m625 gene affected vascular patterns and cell division. Specifically, the narrowing of the leaf was attributed to a decrease in small vein number, shorter vein spacing, and an abnormal V-shaped arrangement of bulliform cells, while the thickening was caused by longer leaf veins, thicker mesophyll cells, and an increased number of parenchyma cell layers. The dwarf stature and thickened internode were primarily due to shortened internodes and an increase in cell layers, respectively. Positional cloning and complementation assays indicated that the m625 gene is a novel allele of NAL1. In the m625 mutant, a nucleotide deletion at position 1103 in the coding sequence of NAL1 led to premature termination of protein translation. Further RNA-Seq and qRT-PCR analyses revealed that the m625 gene significantly impacted regulatory pathways related to IAA and ABA signal transduction, photosynthesis, and lignin biosynthesis. Moreover, the m625 mutant displayed thinner sclerenchyma and cell walls in both the leaf and stem, particularly showing reduced lignified cell walls in the midrib of the leaf. In conclusion, our study suggests that NAL1, in addition to its known roles in IAA transport and leaf photosynthesis, may also participate in ABA signal transduction, as well as regulate secondary cell wall formation and sclerenchyma thickness through lignification.
Collapse
Affiliation(s)
- Yang Wang
- College of Agricultural Science, Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Liangshan 615013, China; (W.X.); (Y.L.); (J.Y.); (X.G.); (J.Z.); (J.P.); (W.Z.)
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Wanxin Xu
- College of Agricultural Science, Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Liangshan 615013, China; (W.X.); (Y.L.); (J.Y.); (X.G.); (J.Z.); (J.P.); (W.Z.)
| | - Yan Liu
- College of Agricultural Science, Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Liangshan 615013, China; (W.X.); (Y.L.); (J.Y.); (X.G.); (J.Z.); (J.P.); (W.Z.)
| | - Jie Yang
- College of Agricultural Science, Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Liangshan 615013, China; (W.X.); (Y.L.); (J.Y.); (X.G.); (J.Z.); (J.P.); (W.Z.)
| | - Xin Guo
- College of Agricultural Science, Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Liangshan 615013, China; (W.X.); (Y.L.); (J.Y.); (X.G.); (J.Z.); (J.P.); (W.Z.)
| | - Jiaruo Zhang
- College of Agricultural Science, Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Liangshan 615013, China; (W.X.); (Y.L.); (J.Y.); (X.G.); (J.Z.); (J.P.); (W.Z.)
| | - Jisong Pu
- College of Agricultural Science, Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Liangshan 615013, China; (W.X.); (Y.L.); (J.Y.); (X.G.); (J.Z.); (J.P.); (W.Z.)
| | - Nenggang Chen
- Institute of Crop Germplasm Resources, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China;
| | - Wenfeng Zhang
- College of Agricultural Science, Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Liangshan 615013, China; (W.X.); (Y.L.); (J.Y.); (X.G.); (J.Z.); (J.P.); (W.Z.)
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
8
|
Qiao L, Wu Q, Yuan L, Huang X, Yang Y, Li Q, Shahzad N, Li H, Li W. SMALL PLANT AND ORGAN 1 ( SPO1) Encoding a Cellulose Synthase-like Protein D4 (OsCSLD4) Is an Important Regulator for Plant Architecture and Organ Size in Rice. Int J Mol Sci 2023; 24:16974. [PMID: 38069299 PMCID: PMC10707047 DOI: 10.3390/ijms242316974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Plant architecture and organ size are considered as important traits in crop breeding and germplasm improvement. Although several factors affecting plant architecture and organ size have been identified in rice, the genetic and regulatory mechanisms remain to be elucidated. Here, we identified and characterized the small plant and organ 1 (spo1) mutant in rice (Oryza sativa), which exhibits narrow and rolled leaf, reductions in plant height, root length, and grain width, and other morphological defects. Map-based cloning revealed that SPO1 is allelic with OsCSLD4, a gene encoding the cellulose synthase-like protein D4, and is highly expressed in the roots at the seedling and tillering stages. Microscopic observation revealed the spo1 mutant had reduced number and width in leaf veins, smaller size of leaf bulliform cells, reduced cell length and cell area in the culm, and decreased width of epidermal cells in the outer glume of the grain. These results indicate the role of SPO1 in modulating cell division and cell expansion, which modulates plant architecture and organ size. It is showed that the contents of endogenous hormones including auxin, abscisic acid, gibberellin, and zeatin tested in the spo1 mutant were significantly altered, compared to the wild type. Furthermore, the transcriptome analysis revealed that the differentially expressed genes (DEGs) are significantly enriched in the pathways associated with plant hormone signal transduction, cell cycle progression, and cell wall formation. These results indicated that the loss of SPO1/OsCSLD4 function disrupted cell wall cellulose synthase and hormones homeostasis and signaling, thus leading to smaller plant and organ size in spo1. Taken together, we suggest the functional role of SPO1/OsCSLD4 in the control of rice plant and organ size by modulating cell division and expansion, likely through the effects of multiple hormonal pathways on cell wall formation.
Collapse
Affiliation(s)
- Lei Qiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China (X.H.); (Y.Y.); (Q.L.); (N.S.)
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Qilong Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China (X.H.); (Y.Y.); (Q.L.); (N.S.)
| | - Liuzhen Yuan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China (X.H.); (Y.Y.); (Q.L.); (N.S.)
| | - Xudong Huang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China (X.H.); (Y.Y.); (Q.L.); (N.S.)
| | - Yutao Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China (X.H.); (Y.Y.); (Q.L.); (N.S.)
| | - Qinying Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China (X.H.); (Y.Y.); (Q.L.); (N.S.)
| | - Nida Shahzad
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China (X.H.); (Y.Y.); (Q.L.); (N.S.)
| | - Haifeng Li
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Wenqiang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China (X.H.); (Y.Y.); (Q.L.); (N.S.)
| |
Collapse
|
9
|
Wen Y, Wu K, Chai B, Fang Y, Hu P, Tan Y, Wang Y, Wu H, Wang J, Zhu L, Zhang G, Gao Z, Ren D, Zeng D, Shen L, Dong G, Zhang Q, Li Q, Qian Q, Hu J. NLG1, encoding a mitochondrial membrane protein, controls leaf and grain development in rice. BMC PLANT BIOLOGY 2023; 23:418. [PMID: 37689677 PMCID: PMC10492415 DOI: 10.1186/s12870-023-04417-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/22/2023] [Indexed: 09/11/2023]
Abstract
BACKGROUND Mitochondrion is the key respiratory organ and participate in multiple anabolism and catabolism pathways in eukaryote. However, the underlying mechanism of how mitochondrial membrane proteins regulate leaf and grain development remains to be further elucidated. RESULTS Here, a mitochondria-defective mutant narrow leaf and slender grain 1 (nlg1) was identified from an EMS-treated mutant population, which exhibits narrow leaves and slender grains. Moreover, nlg1 also presents abnormal mitochondria structure and was sensitive to the inhibitors of mitochondrial electron transport chain. Map-based cloning and transgenic functional confirmation revealed that NLG1 encodes a mitochondrial import inner membrane translocase containing a subunit Tim21. GUS staining assay and RT-qPCR suggested that NLG1 was mainly expressed in leaves and panicles. The expression level of respiratory function and auxin response related genes were significantly down-regulated in nlg1, which may be responsible for the declination of ATP production and auxin content. CONCLUSIONS These results suggested that NLG1 plays an important role in the regulation of leaf and grain size development by maintaining mitochondrial homeostasis. Our finding provides a novel insight into the effects of mitochondria development on leaf and grain morphogenesis in rice.
Collapse
Affiliation(s)
- Yi Wen
- Rice Research Institute of Shenyang Agricultural University/Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province, Shenyang, 110866, China
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Kaixiong Wu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Bingze Chai
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Yunxia Fang
- College of Life and Environmental Sciences, Hangzhou Normal University, 16 Xiasha Road, Hangzhou, 310036, China
| | - Peng Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Yiqing Tan
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Yueying Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Hao Wu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Junge Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Li Zhu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Guangheng Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Deyong Ren
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Dali Zeng
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Lan Shen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Guojun Dong
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Qiang Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Qing Li
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Qian Qian
- Rice Research Institute of Shenyang Agricultural University/Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province, Shenyang, 110866, China.
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, 572024, China.
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China.
| | - Jiang Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China.
| |
Collapse
|
10
|
Han Y, Yang J, Wu H, Liu F, Qin B, Li R. Improving Rice Leaf Shape Using CRISPR/Cas9-Mediated Genome Editing of SRL1 and Characterizing Its Regulatory Network Involved in Leaf Rolling through Transcriptome Analysis. Int J Mol Sci 2023; 24:11087. [PMID: 37446265 DOI: 10.3390/ijms241311087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Leaf rolling is a crucial agronomic trait to consider in rice (Oryza sativa L.) breeding as it keeps the leaves upright, reducing interleaf shading and improving photosynthetic efficiency. The SEMI-ROLLED LEAF 1 (SRL1) gene plays a key role in regulating leaf rolling, as it encodes a glycosylphosphatidylinositol-anchored protein located on the plasma membrane. In this study, we used CRISPR/Cas9 to target the second and third exons of the SRL1 gene in the indica rice line GXU103, which resulted in the generation of 14 T0 transgenic plants with a double-target mutation rate of 21.4%. After screening 120 T1 generation plants, we identified 26 T-DNA-free homozygous double-target mutation plants. We designated the resulting SRL1 homozygous double-target knockout as srl1-103. This line exhibited defects in leaf development, leaf rolling in the mature upright leaves, and a compact nature of the fully grown plants. Compared with the wild type (WT), the T2 generation of srl1-103 varied in two key aspects: the width of flag leaf (12.6% reduction compared with WT) and the leaf rolling index (48.77% increase compared with WT). In order to gain a deeper understanding of the involvement of SRL1 in the regulatory network associated with rice leaf development, we performed a transcriptome analysis for the T2 generation of srl1-103. A comparison of srl1-103 with WT revealed 459 differentially expressed genes (DEGs), including 388 upregulated genes and 71 downregulated genes. In terms of the function of the DEGs, there seemed to be a significant enrichment of genes associated with cell wall synthesis (LOC_Os08g01670, LOC_Os05g46510, LOC_Os04g51450, LOC_Os10g28080, LOC_Os04g39814, LOC_Os01g71474, LOC_Os01g71350, and LOC_Os11g47600) and vacuole-related genes (LOC_Os09g23300), which may partially explain the increased leaf rolling in srl1-103. Furthermore, the significant downregulation of BAHD acyltransferase-like protein gene (LOC_Os08g44840) could be the main reason for the decreased leaf angle and the compact nature of the mutant plants. In summary, this study successfully elucidated the gene regulatory network in which SRL1 participates, providing theoretical support for targeting this gene in rice breeding programs to promote variety improvement.
Collapse
Affiliation(s)
- Yue Han
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Jinlian Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Hu Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Fang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Baoxiang Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Rongbai Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| |
Collapse
|
11
|
Cheng Q, Huang S, Lin L, Zhong Q, Huang T, He H, Bian J. Genetic Analysis for the Flag Leaf Heterosis of a Super-Hybrid Rice WFYT025 Combination Using RNA-Seq. PLANTS (BASEL, SWITZERLAND) 2023; 12:2496. [PMID: 37447057 DOI: 10.3390/plants12132496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/06/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
The photosynthetic capacity of flag leaf plays a key role in grain yield in rice. Nevertheless, there are few studies on the heterosis of the rice flag leaf. Therefore, this study focuses on investigating the genetic basis of heterosis for flag leaf in the indica super hybrid rice combination WFYT025 in China using a high-throughput next-generation RNA-seq strategy. We analyzed the gene expression of flag leaf in different environments and different time periods between WFYT025 and its female parent. After obtaining the gene expression profile of the flag leaf, we further investigated the gene regulatory network. Weighted gene expression network analysis (WGCNA) was used to identify the co-expressed gene sets, and a total of 5000 highly expressed genes were divided into 24 co-expression groups. In CHT025, we found 13 WRKY family transcription factors in SDGhps under the environment of early rice and 16 WRKY family genes in SDGhps of under the environment of middle rice. We found nine identical transcription factors in the two stages. Except for five reported TFs, the other four TFs might play an important role in heterosis for grain number and photosynthesis. Transcription factors such as WRKY3, WRKY68, and WRKY77 were found in both environments. To eliminate the influence of the environment, we examined the metabolic pathway with the same SDGhp (SSDGhp) in two environments. There were 312 SSDGhps in total. These SSDGhps mainly focused on the phosphorus metallic process, phosphorylation, plasma membrane, etc. These results provide resources for studying heterosis during super hybrid rice flag leaf development.
Collapse
Affiliation(s)
- Qin Cheng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shiying Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lan Lin
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qi Zhong
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Tao Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jianmin Bian
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
12
|
Wu SZ, Chaves AM, Li R, Roberts AW, Bezanilla M. Cellulose synthase-like D movement in the plasma membrane requires enzymatic activity. J Cell Biol 2023; 222:e202212117. [PMID: 37071416 PMCID: PMC10120407 DOI: 10.1083/jcb.202212117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/28/2023] [Accepted: 03/17/2023] [Indexed: 04/19/2023] Open
Abstract
Cellulose Synthase-Like D (CSLD) proteins, important for tip growth and cell division, are known to generate β-1,4-glucan. However, whether they are propelled in the membrane as the glucan chains they produce assemble into microfibrils is unknown. To address this, we endogenously tagged all eight CSLDs in Physcomitrium patens and discovered that they all localize to the apex of tip-growing cells and to the cell plate during cytokinesis. Actin is required to target CSLD to cell tips concomitant with cell expansion, but not to cell plates, which depend on actin and CSLD for structural support. Like Cellulose Synthase (CESA), CSLD requires catalytic activity to move in the plasma membrane. We discovered that CSLD moves significantly faster, with shorter duration and less linear trajectories than CESA. In contrast to CESA, CSLD movement was insensitive to the cellulose synthesis inhibitor isoxaben, suggesting that CSLD and CESA function within different complexes possibly producing structurally distinct cellulose microfibrils.
Collapse
Affiliation(s)
- Shu-Zon Wu
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Arielle M. Chaves
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| | - Rongrong Li
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| | - Alison W. Roberts
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| | | |
Collapse
|
13
|
Li F, Wang K, Zhang X, Han P, Liu Y, Zhang J, Peng T, Li J, Zhao Y, Sun H, Du Y. BPB1 regulates rice ( Oryza sative L.) panicle length and panicle branch development by promoting lignin and inhibiting cellulose accumulation. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:41. [PMID: 37312745 PMCID: PMC10248638 DOI: 10.1007/s11032-023-01389-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/24/2023] [Indexed: 06/15/2023]
Abstract
Panicle structure is one of the most important agronomic traits directly related to rice yield. This study identified a rice mutant basal primary branch 1 (bpb1), which exhibited a phenotype of reduced panicle length and arrested basal primary branch development. In addition, lignin content was found to be increased while cellulose content was decreased in bpb1 young panicles. Map-based cloning methods characterized the gene BPB1, which encodes a peptide transporter (PTR) family transporter. Phylogenetic tree analysis showed that the BPB1 family is highly conserved in plants, especially the PTR2 domain. It is worth noting that BPB1 is divided into two categories based on monocotyledonous and dicotyledonous plants. Transcriptome analysis showed that BPB1 mutation can promote lignin synthesis and inhibit cellulose synthesis, starch and sucrose metabolism, cell cycle, expression of various plant hormones, and some star genes, thereby inhibiting rice panicle length, resulting in basal primary branch development stagnant phenotypes. In this study, BPB1 provides new insights into the molecular mechanism of rice panicle structure regulation by BPB1 by regulating lignin and cellulose content and several transcriptional metabolic pathways. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01389-x.
Collapse
Affiliation(s)
- Fei Li
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046 Henan Province China
| | - Ke Wang
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046 Henan Province China
| | - Xiaohua Zhang
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046 Henan Province China
| | - Peijie Han
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046 Henan Province China
| | - Ye Liu
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046 Henan Province China
| | - Jing Zhang
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046 Henan Province China
| | - Ting Peng
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046 Henan Province China
| | - Junzhou Li
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046 Henan Province China
| | - Yafan Zhao
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046 Henan Province China
| | - Hongzheng Sun
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046 Henan Province China
| | - Yanxiu Du
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046 Henan Province China
| |
Collapse
|
14
|
Shen W, Sun J, Xiao Z, Feng P, Zhang T, He G, Sang X. Narrow and Stripe Leaf 2 Regulates Leaf Width by Modulating Cell Cycle Progression in Rice. RICE (NEW YORK, N.Y.) 2023; 16:20. [PMID: 37071312 PMCID: PMC10113404 DOI: 10.1186/s12284-023-00634-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Leaf morphology is an important component of the idea plant architecture that extensively influences photosynthesis, transpiration, and ultimately grain yield in crops. However, the genetic and molecular mechanisms regulating this morphology remain largely unclear. RESULTS In this study, a mutant showing a narrow and stripe leaf phonotype, designated nsl2, was obtained. Histological analysis revealed defects in the vascular system and reduced epidermal cell number in the nsl2, while the cell size remained unchanged. Map-based cloning and genetic complementation experiments revealed that NSL2, which encodes a small subunit of ribonucleotide reductases (RNRs), is a null allelic with ST1 and SDL. The NSL2 was expressed in variety of tissues, with the highest levels detected in leaves, and its protein was localized in the nucleus and cytoplasm. The dNTPs level was altered in the nsl2 mutant, and thereby affecting the dNTPs pool balance. In addition, flow cytometric analysis and the altered transcript level of genes related to cell cycle indicated that NSL2 affects cell cycle progression. CONCLUSIONS Our findings here suggest that NSL2 function in the synthesis of dNTP, the deficient of which leads to DNA synthesis block and in turn affects cell cycle progression, and ultimately decreased cell number and narrow leaf in the nsl2 plant.
Collapse
Affiliation(s)
- Wenqiang Shen
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Engineering Research Center of South Upland Agriculture, Ministry of Education, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| | - Jiajie Sun
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Engineering Research Center of South Upland Agriculture, Ministry of Education, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| | - Zan Xiao
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Engineering Research Center of South Upland Agriculture, Ministry of Education, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| | - Ping Feng
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Engineering Research Center of South Upland Agriculture, Ministry of Education, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| | - Ting Zhang
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Engineering Research Center of South Upland Agriculture, Ministry of Education, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| | - Guanghua He
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Engineering Research Center of South Upland Agriculture, Ministry of Education, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| | - Xianchun Sang
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Engineering Research Center of South Upland Agriculture, Ministry of Education, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| |
Collapse
|
15
|
Bian R, Liu N, Xu Y, Su Z, Chai L, Bernardo A, St Amand P, Fritz A, Zhang G, Rupp J, Akhunov E, Jordan KW, Bai G. Quantitative trait loci for rolled leaf in a wheat EMS mutant from Jagger. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:52. [PMID: 36912970 DOI: 10.1007/s00122-023-04284-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/26/2022] [Indexed: 06/18/2023]
Abstract
Two QTLs with major effects on rolled leaf trait were consistently detected on chromosomes 1A (QRl.hwwg-1AS) and 5A (QRl.hwwg-5AL) in the field experiments. Rolled leaf (RL) is a morphological strategy to protect plants from dehydration under stressed field conditions. Identification of quantitative trait loci (QTLs) underlining RL is essential to breed drought-tolerant wheat cultivars. A mapping population of 154 recombinant inbred lines was developed from the cross between JagMut1095, a mutant of Jagger, and Jagger to identify quantitative trait loci (QTLs) for the RL trait. A linkage map of 3106 cM was constructed with 1003 unique SNPs from 21 wheat chromosomes. Two consistent QTLs were identified for RL on chromosomes 1A (QRl.hwwg-1AS) and 5A (QRl.hwwg-5AL) in all field experiments. QRl.hwwg-1AS explained 24-56% of the phenotypic variation and QRl.hwwg-5AL explained up to 20% of the phenotypic variation. The combined percent phenotypic variation associated with the two QTLs was up to 61%. Analyses of phenotypic and genotypic data of recombinants generated from heterogeneous inbred families of JagMut1095 × Jagger delimited QRl.hwwg-1AS to a 6.04 Mb physical interval. This work lays solid foundation for further fine mapping and map-based cloning of QRl.hwwg-1AS.
Collapse
Affiliation(s)
- Ruolin Bian
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Na Liu
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
- Henan Agricultural University, Zhengzhou, 450002, Henan Province, China
| | - Yuzhou Xu
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Zhenqi Su
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
- China Agricultural University, Beijing, 100083, China
| | - Lingling Chai
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
- China Agricultural University, Beijing, 100083, China
| | - Amy Bernardo
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, 66506, USA
| | - Paul St Amand
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, 66506, USA
| | - Allan Fritz
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Guorong Zhang
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Jessica Rupp
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Eduard Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Katherine W Jordan
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, 66506, USA
| | - Guihua Bai
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA.
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, 66506, USA.
| |
Collapse
|
16
|
Wu Y, Xin Y, Zou J, Huang S, Wang C, Feng H. BrCWM Mutation Disrupted Leaf Flattening in Chinese Cabbage (Brassica rapa L. ssp. pekinensis). Int J Mol Sci 2023; 24:ijms24065225. [PMID: 36982299 PMCID: PMC10049106 DOI: 10.3390/ijms24065225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Leaf flattening plays a vital role in the establishment of plant architecture, which is closely related to plant photosynthesis and, thus, influences the product yield and quality of Chinese cabbage. In this study, we used the doubled haploid line ‘FT’ of Chinese cabbage as the wild type for ethyl methanesulfonate (EMS) mutagenesis and obtained a mutant cwm with stably inherited compact and wrinkled leaves. Genetic analysis revealed that the mutated trait was controlled by a single recessive nuclear gene, Brcwm. Brcwm was preliminarily mapped to chromosome A07 based on bulked segregant RNA sequencing (BSR-seq) and fine-mapped to a 205.66 kb region containing 39 genes between Indel12 and Indel21 using SSR and Indel analysis. According to the whole-genome re-sequencing results, we found that there was only one nonsynonymous single nucleotide polymorphism (SNP) (C to T) within the target interval on exon 4 of BraA07g021970.3C, which resulted in a proline to serine amino acid substitution. The mutated trait co-segregated with the SNP. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) revealed that BraA07g021970.3C expression was dramatically higher in ‘FT’ leaves than that in cwm leaves. BraA07g021970.3C is homologous to AT3G55000 encoding a protein related to cortical microtubule organization. A similar phenotype of dwarfism and wrinkled leaves was observed in the recessive homozygous mutant cwm-f1 of AT3G55000, and its T3 transgenic lines were restored to the Arabidopsis wild-type phenotype through ectopic overexpression of BraA07g021970.3C. These results verified that BraA07g021970.3C was the target gene essential for leaf flattening in Chinese cabbage.
Collapse
Affiliation(s)
| | | | | | | | | | - Hui Feng
- Correspondence: ; Tel.: +86-1389-889-9863
| |
Collapse
|
17
|
Zanella CM, Rotondo M, McCormick‐Barnes C, Mellers G, Corsi B, Berry S, Ciccone G, Day R, Faralli M, Galle A, Gardner KA, Jacobs J, Ober ES, Sánchez del Rio A, Van Rie J, Lawson T, Cockram J. Longer epidermal cells underlie a quantitative source of variation in wheat flag leaf size. THE NEW PHYTOLOGIST 2023; 237:1558-1573. [PMID: 36519272 PMCID: PMC10107444 DOI: 10.1111/nph.18676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
The wheat flag leaf is the main contributor of photosynthetic assimilates to developing grains. Understanding how canopy architecture strategies affect source strength and yield will aid improved crop design. We used an eight-founder population to investigate the genetic architecture of flag leaf area, length, width and angle in European wheat. For the strongest genetic locus identified, we subsequently created a near-isogenic line (NIL) pair for more detailed investigation across seven test environments. Genetic control of traits investigated was highly polygenic, with colocalisation of replicated quantitative trait loci (QTL) for one or more traits identifying 24 loci. For QTL QFll.niab-5A.1 (FLL5A), development of a NIL pair found the FLL5A+ allele commonly conferred a c. 7% increase in flag and second leaf length and a more erect leaf angle, resulting in higher flag and/or second leaf area. Increased FLL5A-mediated flag leaf length was associated with: (1) longer pavement cells and (2) larger stomata at lower density, with a trend for decreased maximum stomatal conductance (Gsmax ) per unit leaf area. For FLL5A, cell size rather than number predominantly determined leaf length. The observed trade-offs between leaf size and stomatal morphology highlight the need for future studies to consider these traits at the whole-leaf level.
Collapse
Affiliation(s)
| | - Marilena Rotondo
- NIAB93 Lawrence Weaver RoadCambridgeCB3 0LEUK
- University of MessinaMessina98122Italy
| | | | | | | | | | - Giulia Ciccone
- NIAB93 Lawrence Weaver RoadCambridgeCB3 0LEUK
- University of MessinaMessina98122Italy
| | - Rob Day
- NIAB93 Lawrence Weaver RoadCambridgeCB3 0LEUK
| | - Michele Faralli
- School of Biological SciencesUniversity of EssexColchesterCO4 3SQUK
| | - Alexander Galle
- BASF Belgium Coordination Center (BBCC) – Innovation Center GhentTechnologiepark‐Zwijnaarde 1019052GhentBelgium
| | | | - John Jacobs
- BASF Belgium Coordination Center (BBCC) – Innovation Center GhentTechnologiepark‐Zwijnaarde 1019052GhentBelgium
| | | | | | - Jeroen Van Rie
- BASF Belgium Coordination Center (BBCC) – Innovation Center GhentTechnologiepark‐Zwijnaarde 1019052GhentBelgium
| | - Tracy Lawson
- School of Biological SciencesUniversity of EssexColchesterCO4 3SQUK
| | | |
Collapse
|
18
|
Hossain MF, Dutta AK, Suzuki T, Higashiyama T, Miyamoto C, Ishiguro S, Maruta T, Muto Y, Nishimura K, Ishida H, Aboulela M, Hachiya T, Nakagawa T. Targeted expression of bgl23-D, a dominant-negative allele of ATCSLD5, affects cytokinesis of guard mother cells and exine formation of pollen in Arabidopsis thaliana. PLANTA 2023; 257:64. [PMID: 36811672 DOI: 10.1007/s00425-023-04097-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Targeted expression of bgl23-D, a dominant-negative allele of ATCSLD5, is a useful genetic approach for functional analysis of ATCSLDs in specific cells and tissues in plants. Stomata are key cellular structures for gas and water exchange in plants and their development is influenced by several genes. We found the A. thaliana bagel23-D (bgl23-D) mutant showing abnormal bagel-shaped single guard cells. The bgl23-D was a novel dominant mutation in the A. thaliana cellulose synthase-like D5 (ATCSLD5) gene that was reported to function in the division of guard mother cells. The dominant character of bgl23-D was used to inhibit ATCSLD5 function in specific cells and tissues. Transgenic A. thaliana expressing bgl23-D cDNA with the promoter of stomata lineage genes, SDD1, MUTE, and FAMA, showed bagel-shaped stomata as observed in the bgl23-D mutant. Especially, the FAMA promoter exhibited a higher frequency of bagel-shaped stomata with severe cytokinesis defects. Expression of bgl23-D cDNA in the tapetum with SP11 promoter or in the anther with ATSP146 promoter induced defects in exine pattern and pollen shape, novel phenotypes that were not shown in the bgl23-D mutant. These results indicated that bgl23-D inhibited unknown ATCSLD(s) that exert the function of exine formation in the tapetum. Furthermore, transgenic A. thaliana expressing bgl23-D cDNA with SDD1, MUTE, and FAMA promoters showed enhanced rosette diameter and increased leaf growth. Taken together, these findings suggest that the bgl23-D mutation could be a helpful genetic tool for functional analysis of ATCSLDs and manipulating plant growth.
Collapse
Affiliation(s)
- Md Firose Hossain
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, 690-8504, Japan
- Bioresource and Life Sciences, The United Graduate School of Agricultural Sciences, Tottori University, Tottori, 680-8550, Japan
| | - Amit Kumar Dutta
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, 690-8504, Japan
- Department of Microbiology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai, 487-8501, Japan
| | - Tetsuya Higashiyama
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, 113-0033, Japan
| | - Chiharu Miyamoto
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Sumie Ishiguro
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Takanori Maruta
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, 690-8504, Japan
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, Matsue, 690-8504, Japan
| | - Yuki Muto
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, 690-8504, Japan
| | - Kohji Nishimura
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, 690-8504, Japan
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, Matsue, 690-8504, Japan
| | - Hideki Ishida
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, 690-8504, Japan
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, Matsue, 690-8504, Japan
| | - Mostafa Aboulela
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, 690-8504, Japan
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, Egypt
| | - Takushi Hachiya
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, 690-8504, Japan
- Bioresource and Life Sciences, The United Graduate School of Agricultural Sciences, Tottori University, Tottori, 680-8550, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, 690-8504, Japan
| | - Tsuyoshi Nakagawa
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, 690-8504, Japan.
- Bioresource and Life Sciences, The United Graduate School of Agricultural Sciences, Tottori University, Tottori, 680-8550, Japan.
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, 690-8504, Japan.
| |
Collapse
|
19
|
Xu Y, Yan S, Jiang S, Bai L, Liu Y, Peng S, Chen R, Liu Q, Xiao Y, Kang H. Identification of a Rice Leaf Width Gene Narrow Leaf 22 ( NAL22) through Genome-Wide Association Study and Gene Editing Technology. Int J Mol Sci 2023; 24:4073. [PMID: 36835485 PMCID: PMC9962836 DOI: 10.3390/ijms24044073] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Rice leaf width (RLW) is a crucial determinant of photosynthetic area. Despite the discovery of several genes controlling RLW, the underlying genetic architecture remains unclear. In order to better understand RLW, this study conducted a genome-wide association study (GWAS) on 351 accessions from the rice diversity population II (RDP-II). The results revealed 12 loci associated with leaf width (LALW). In LALW4, we identified one gene, Narrow Leaf 22 (NAL22), whose polymorphisms and expression levels were associated with RLW variation. Knocking out this gene in Zhonghua11, using CRISPR/Cas9 gene editing technology, resulted in a short and narrow leaf phenotype. However, seed width remained unchanged. Additionally, we discovered that the vein width and expression levels of genes associated with cell division were suppressed in nal22 mutants. Gibberellin (GA) was also found to negatively regulate NAL22 expression and impact RLW. In summary, we dissected the genetic architecture of RLW and identified a gene, NAL22, which provides new loci for further RLW studies and a target gene for leaf shape design in modern rice breeding.
Collapse
Affiliation(s)
- Yuchen Xu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuangyong Yan
- Tianjin Key Laboratory of Crop Genetic Breeding, Tianjin Crop Research Institute, Tianjin Academy of Agriculture Sciences, Tianjin 300112, China
| | - Su Jiang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Lu Bai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanchen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shasha Peng
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Rubin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qi Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yinghui Xiao
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Houxiang Kang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
20
|
Chen L, Xu Z, Fan X, Zhou Q, Yu Q, Liu X, Liao S, Jiang C, Lin D, Ma F, Feng B, Wang T. Genetic dissection of quantitative trait loci for flag leaf size in bread wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1047899. [PMID: 36600920 PMCID: PMC9807109 DOI: 10.3389/fpls.2022.1047899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Flag leaf size is a crucial trait influencing plant architecture and yield potential in wheat. A recombinant inbred line (RIL) population derived from the cross of W7268 and Chuanyu 12 was employed to identify quantitative trait loci (QTL) controlling flag leaf length (FLL), flag leaf width (FLW), and flag leaf area (FLA) in six environments and the best linear unbiased estimator (BLUE) datasets. Using a 55 K SNP-based genetic map, six major and stable QTL were detected with 6.33-53.12% of explained phenotypic variation. Except for QFlw.cib-4B.3, the other five major QTL were co-located within two intervals on chromosomes 2B and 2D, namely QFll/Fla.cib-2B and QFll/Flw/Fla.cib-2D, respectively. Their interactions and effects on the corresponding traits and yield-related traits were also assessed based on flanking markers. QFll/Fla.cib-2B showed pleiotropic effects on spikelet number per spike (SNS). QFlw.cib-4B.3 and QFll/Flw/Fla.cib-2D had effects on grain number per spike (GNS) and thousand-grain weight (TGW). Comparison analysis suggested that QFll/Fla.cib-2B was likely a new locus. Two candidate genes, TraesCS2B03G0222800 and TraesCS2B03G0230000, associated with leaf development within the interval of QFll/Fla.cib-2B were identified based on expression-pattern analysis, gene annotation, ortholog analysis, and sequence variation. The major QTL and markers reported here provide valuable information for understanding the genetic mechanism underlying flag leaf size as well as breeding utilization in wheat.
Collapse
Affiliation(s)
- Liangen Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhibin Xu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xiaoli Fan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Qiang Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Qin Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaofeng Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Simin Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Jiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dian Lin
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fang Ma
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bo Feng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Tao Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Hao N, Cao J, Wang C, Zhu Y, Du Y, Wu T. Understanding the molecular mechanism of leaf morphogenesis in vegetable crops conduces to breeding process. FRONTIERS IN PLANT SCIENCE 2022; 13:971453. [PMID: 36570936 PMCID: PMC9773389 DOI: 10.3389/fpls.2022.971453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Leaf morphology can affect the development and yield of plants by regulating plant architecture and photosynthesis. Several factors can determine the final leaf morphology, including the leaf complexity, size, shape, and margin type, which suggests that leaf morphogenesis is a complex regulation network. The formation of diverse leaf morphology is precisely controlled by gene regulation on translation and transcription levels. To further reveal this, more and more genome data has been published for different kinds of vegetable crops and advanced genotyping approaches have also been applied to identify the causal genes for the target traits. Therefore, the studies on the molecular regulation of leaf morphogenesis in vegetable crops have also been largely improved. This review will summarize the progress on identified genes or regulatory mechanisms of leaf morphogenesis and development in vegetable crops. These identified markers can be applied for further molecular-assisted selection (MAS) in vegetable crops. Overall, the review will contribute to understanding the leaf morphology of different crops from the perspective of molecular regulation and shortening the breeding cycle for vegetable crops.
Collapse
Affiliation(s)
- Ning Hao
- College of Horticulture, Hunan Agricultural University, Changsha, China
- College of Horticulture and Landscape, Northeast Agricultural University, Harbin, China
| | - Jiajian Cao
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
| | - Chunhua Wang
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
| | - Yipeng Zhu
- Guiyang Productivity Promotion Center, Guiyang Science and Technology Bureau, Guiyang, China
| | - Yalin Du
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
| | - Tao Wu
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
| |
Collapse
|
22
|
Li S, Zou J, Fan J, Guo D, Tan L. Identification of quantitative trait loci for important agronomic traits using chromosome segment substitution lines from a japonica × indica cross in rice. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:73. [PMID: 37313327 PMCID: PMC10248660 DOI: 10.1007/s11032-022-01343-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/15/2022] [Indexed: 06/15/2023]
Abstract
Asian cultivated rice (Oryza sativa L.) has two subspecies, indica and japonica, which display clear differences in yield-related traits and environmental adaptation. Here, we developed a set of chromosome segment substitution lines (CSSLs) from an advanced backcross between japonica variety C418, as the recipient, and indica variety IR24, as the donor. Through evaluating the genotypes and phenotypes of 181 CSSLs, a total of 85 quantitative trait loci (QTLs) for 14 yield-related traits were detected, with individual QTLs explaining from 6.2 to 42.9% of the phenotypic variation. Moreover, twenty-six of these QTLs could be detected in the two trial sites (Beijing and Hainan). Among these loci, the QTLs for flag leaf width and effective tiller number, qFLW4.2 and qETN4.2, were delimited to an approximately 256-kb interval on chromosome 4. Through a comparison of nucleotide sequences and expression levels in "C418" and the CSSL CR31 containing qFLW4.2 and qETN4.2, we found that the NAL1 (LOC_Os04g52479) gene was the candidate gene for qFLW4.2 and qETN4.2. Our results show that CSSLs are powerful tools for identifying and fine-mapping QTLs, while the novel QTLs identified in this study will also provide new genetic resources for rice improvement. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01343-3.
Collapse
Affiliation(s)
- Shuangzhe Li
- State Key Laboratory of Agrobiotechnology, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193 China
| | - Jun Zou
- State Key Laboratory of Agrobiotechnology, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193 China
| | - Jinjian Fan
- State Key Laboratory of Agrobiotechnology, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193 China
| | - Daokuan Guo
- State Key Laboratory of Agrobiotechnology, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193 China
| | - Lubin Tan
- State Key Laboratory of Agrobiotechnology, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
23
|
Liu X, Yin Z, Wang Y, Cao S, Yao W, Liu J, Lu X, Wang F, Zhang G, Xiao Y, Tang W, Deng H. Rice cellulose synthase-like protein OsCSLD4 coordinates the trade-off between plant growth and defense. FRONTIERS IN PLANT SCIENCE 2022; 13:980424. [PMID: 36226281 PMCID: PMC9548992 DOI: 10.3389/fpls.2022.980424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Plant cell wall is a complex and changeable structure, which is very important for plant growth and development. It is clear that cell wall polysaccharide synthases have critical functions in rice growth and abiotic stress, yet their role in plant response to pathogen invasion is poorly understood. Here, we describe a dwarf and narrowed leaf in Hejiang 19 (dnl19) mutant in rice, which shows multiple growth defects such as reduced plant height, enlarged lamina joint angle, curled leaf morphology, and a decrease in panicle length and seed setting. MutMap analysis, genetic complementation and gene knockout mutant show that cellulose synthase-like D4 (OsCSLD4) is the causal gene for DNL19. Loss function of OsCSLD4 leads to a constitutive activation of defense response in rice. After inoculation with rice blast and bacterial blight, dnl19 displays an enhanced disease resistance. Widely targeted metabolomics analysis reveals that disruption of OsCSLD4 in dnl19 resulted in significant increase of L-valine, L-asparagine, L-histidine, L-alanine, gentisic acid, but significant decrease of L-aspartic acid, malic acid, 6-phosphogluconic acid, glucose 6-phosphate, galactose 1-phosphate, gluconic acid, D-aspartic acid. Collectively, our data reveals the importance of OsCSLD4 in balancing the trade-off between rice growth and defense.
Collapse
Affiliation(s)
- Xiong Liu
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha, China
| | - Zhongliang Yin
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha, China
| | - Yubo Wang
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha, China
| | - Sai Cao
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha, China
| | - Wei Yao
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Jinling Liu
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Xuedan Lu
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha, China
| | - Feng Wang
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha, China
| | - Guilian Zhang
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha, China
| | - Yunhua Xiao
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha, China
| | - Wenbang Tang
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha, China
- Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, China
- State Key Laboratory of Hybrid Rice, Changsha, China
| | - Huabing Deng
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha, China
| |
Collapse
|
24
|
Yuan Z, Pan J, Chen C, Tang Y, Zhang H, Guo J, Yang X, Chen L, Li C, Zhao K, Wang Q, Yang B, Sun C, Deng X, Wang P. DRB2 Modulates Leaf Rolling by Regulating Accumulation of MicroRNAs Related to Leaf Development in Rice. Int J Mol Sci 2022; 23:ijms231911147. [PMID: 36232465 PMCID: PMC9570175 DOI: 10.3390/ijms231911147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/28/2022] Open
Abstract
As an important agronomic trait in rice (Oryza sativa), moderate leaf rolling helps to maintain the erectness of leaves and minimize shadowing between leaves, leading to improved photosynthetic efficiency and grain yield. However, the molecular mechanisms underlying rice leaf rolling still need to be elucidated. Here, we isolated a rice mutant, rl89, showing adaxially rolled leaf phenotype due to decreased number and size of bulliform cells. We confirmed that the rl89 phenotypes were caused by a single nucleotide substitution in OsDRB2 (LOC_Os10g33970) gene encoding DOUBLE-STRANDED RNA-BINDING2. This gene was constitutively expressed, and its encoded protein was localized to both nucleus and cytoplasm. Yeast two-hybrid assay showed that OsDRB2 could interact with DICER-LIKE1 (DCL1) and OsDRB1-2 respectively. qRT-PCR analysis of 29 related genes suggested that defects of the OsDRB2-miR166-OsHBs pathway could play an important role in formation of the rolled leaf phenotype of rl89, in which OsDRB2 mutation reduced miR166 accumulation, resulting in elevated expressions of the class III homeodomain-leucine zipper genes (such as OsHB1, 3 and 5) involved in leaf polarity and/or morphology development. Moreover, OsDRB2 mutation also reduced accumulation of miR160, miR319, miR390, and miR396, which could cause the abnormal leaf development in rl89 by regulating expressions of their target genes related to leaf development.
Collapse
Affiliation(s)
- Zhaodi Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jihong Pan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Congping Chen
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yulin Tang
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongshan Zhang
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jia Guo
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaorong Yang
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Longfei Chen
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Chunyan Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Ke Zhao
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Qian Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Bin Yang
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Changhui Sun
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaojian Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (X.D.); (P.W.)
| | - Pingrong Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (X.D.); (P.W.)
| |
Collapse
|
25
|
Zhu Z, Wang J, Li C, Li L, Mao X, Hu G, Wang J, Chang J, Jing R. A transcription factor TaMYB5 modulates leaf rolling in wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:897623. [PMID: 36082295 PMCID: PMC9445664 DOI: 10.3389/fpls.2022.897623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Leaf rolling is an important agronomic trait in wheat (Triticum aestivum L.). Moderate leaf rolling keeps leaves upright and maintains the relatively normal photosynthesis of plants under drought stress. However, the molecular mechanism of wheat leaf rolling remains unclear. Here, we identified a candidate gene TaMYB5-3A that regulates leaf rolling by using a genome-wide association study (GWAS) in a panel of 323 wheat accessions. Phenotype analysis indicated that the leaves of tamyb5 mutants were flatter than that of the wild type under drought condition. A nucleotide variation in the TaMYB5-3A coding region resulted in a substitution of Thr to Lys, which corresponds to two alleles SNP-3A-1 and SNP-3A-2. The leaf rolling index (LRI) of the SNP-3A-1 genotype was significantly lower than that of the SNP-3A-2 genotype. In addition, TaMYB5-3A alleles were associated with canopy temperature (CT) in multiple environments. The CT of the SNP-3A-1 genotype was lower than that of the SNP-3A-2 genotype. Gene expression analysis showed that TaMYB5-3A was mainly expressed in leaves and down-regulated by PEG and ABA treatment. TaMYB5 induces TaNRL1 gene expression through the direct binding to the AC cis-acting element of the promoter of the target gene, which was validated by EMSA (electrophoretic mobility shift assay). Our results revealed a crucial molecular mechanism in wheat leaf rolling and provided the theoretical basis and a gene resource for crop breeding.
Collapse
Affiliation(s)
- Zhi Zhu
- Shanxi Institute of Organic Dryland Farming, Organic Dry Farming of Shanxi Province Key Laboratory, Shanxi Agricultural University, Jinzhong, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingyi Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chaonan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Long Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinguo Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ge Hu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinping Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agronomy, Shanxi Agricultural University, Jinzhong, China
| | - Jianzhong Chang
- Shanxi Institute of Organic Dryland Farming, Organic Dry Farming of Shanxi Province Key Laboratory, Shanxi Agricultural University, Jinzhong, China
| | - Ruilian Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
26
|
Zhao C, Liu X, Liu H, Kong W, Zhao Z, Zhang S, Wang S, Chen Y, Wu Y, Sun H, Qin R, Cui F. Fine mapping of QFlw-5B, a major QTL for flag leaf width in common wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2531-2541. [PMID: 35680741 DOI: 10.1007/s00122-022-04135-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
A major stable QTL for flag leaf width was narrowed down to 2.5 Mb region containing two predicated putative candidate genes, and its effects on yield-related traits was characterized. Flag leaf width (FLW) is important to production in wheat. In a previous study, a major quantitative trait locus for FLW (QFlw-5B) was detected on chromosome 5B, within an interval of 6.5 cM flanked by the markers of XwPt-9103 and Xbarc142, using a mapping population of recombinant inbred lines derived from a cross between Kenong9204 (KN9204) and Jing411 (J411) (denoted as KJ-RILs). The aim of this study was to fine map QFlw-5B and characterize its genetic effects on yield-related traits. Multiple near-isogenic lines (NILs) were developed using one residual heterozygous line for QFlw-5B. Five recombinants for QFlw-5B were identified, and its location was narrowed to a 2.5 Mb region based on combined phenotypic and genotypic data analysis. This region contained 27 predicted genes, two of which were considered as the most likely candidate genes for QFlw-5B. The FLW of NIL-KN9204 was significantly higher than that of NIL-J411 across all the tested environments. Meanwhile, significant increases in plant height, grain width and 1000-grain weight were observed in NIL-KN9204 compared with that in NIL-J411. These results indicate that QFlw-5B has great potential for marker-assisted selection in wheat breeding programs designed to improve both plant architecture and yield. This study also provides a basis for the map-based cloning of QFlw-5B.
Collapse
Affiliation(s)
- Chunhua Zhao
- College of Agriculture, Ludong University, Yantai, 264025, Shandong, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants, Yantai, 264025, China
| | - Xijian Liu
- College of Agriculture, Ludong University, Yantai, 264025, Shandong, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants, Yantai, 264025, China
| | - Hongwei Liu
- College of Agriculture, Ludong University, Yantai, 264025, Shandong, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants, Yantai, 264025, China
| | - Wenchao Kong
- College of Agriculture, Ludong University, Yantai, 264025, Shandong, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants, Yantai, 264025, China
| | - Zhuochao Zhao
- College of Agriculture, Ludong University, Yantai, 264025, Shandong, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants, Yantai, 264025, China
| | - Shengren Zhang
- College of Agriculture, Ludong University, Yantai, 264025, Shandong, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants, Yantai, 264025, China
| | - Saining Wang
- College of Agriculture, Ludong University, Yantai, 264025, Shandong, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants, Yantai, 264025, China
| | | | - Yongzhen Wu
- College of Agriculture, Ludong University, Yantai, 264025, Shandong, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants, Yantai, 264025, China
| | - Han Sun
- College of Agriculture, Ludong University, Yantai, 264025, Shandong, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants, Yantai, 264025, China
| | - Ran Qin
- College of Agriculture, Ludong University, Yantai, 264025, Shandong, China.
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants, Yantai, 264025, China.
| | - Fa Cui
- College of Agriculture, Ludong University, Yantai, 264025, Shandong, China.
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants, Yantai, 264025, China.
| |
Collapse
|
27
|
Chen Z, Teng S, Liu D, Chang Y, Zhang L, Cui X, Wu J, Ai P, Sun X, Lu T, Zhang Z. RLM1, Encoding an R2R3 MYB Transcription Factor, Regulates the Development of Secondary Cell Wall in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:905111. [PMID: 35712587 PMCID: PMC9194675 DOI: 10.3389/fpls.2022.905111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Leaf morphology is an important component of rice ideal plant type. To date, many regulatory genes influencing leaf morphology in rice have been cloned, and their underlying molecular regulatory mechanism has been preliminarily clarified. However, the fine regulation relationship of leaf morphogenesis and plant type remains largely elusive. In this study, a rolling-leaf mutant, named rlm1-D, was obtained and controlled by a pair of dominant nuclear genes. Cytological observations revealed that the rlm1 was mainly caused by abnormal deposition of secondary cell walls. Molecular evidence showed ectopic expression of a MYB-type transcription factor LOC_Os05g46610 was responsible for the phenotype of rlm1-D. A series of experiments, including the transcription factor-centered technology, DNA-binding assay, and electrophoretic mobility shift assay, verified that RLM1 can bind to the promoter of OsCAD2, a key gene responsible for lignin biosynthesis in rice. An interacting partner of RLM1, OsMAPK10, was identified. Multiple biochemical assays confirmed that OsMAPK10 interacted with RLM1. OsMAPK10 positively regulated the lignin content in the leaves and stems of rice. Moreover, OsMAPK10 contributes to RLM1 activation of downstream target genes. In particular, RLM1 is exclusively expressed in the stems at the mature plant stage. The yield of RLM1 knockdown lines increased by over 11% without other adverse agricultural trait penalties, indicating great practical application value. A MAPK-MYB-OsCAD2 genetic regulatory network controlling SCW was proposed, providing a theoretical significance and practical value for shaping the ideal plant type and improving rice yield.
Collapse
Affiliation(s)
- Zhenhua Chen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shouzhen Teng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Di Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuan Chang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liying Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuean Cui
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinxia Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pengfei Ai
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| | - Xuehui Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tiegang Lu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiguo Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
28
|
Ali Z, Merrium S, Habib-Ur-Rahman M, Hakeem S, Saddique MAB, Sher MA. Wetting mechanism and morphological adaptation; leaf rolling enhancing atmospheric water acquisition in wheat crop-a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30967-30985. [PMID: 35102510 PMCID: PMC9054867 DOI: 10.1007/s11356-022-18846-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/20/2022] [Indexed: 05/10/2023]
Abstract
Several plant species such as grasses are dominant in many habitats including arid and semi-arid areas. These species survive in these regions by developing exclusive structures, which helps in the collection of atmospheric water. Before the collected water evaporates, these structures have unique canopy structure for water transportation that plays an equivalent share in the fog-harvesting mechanism. In this review, the atmospheric gaseous water harvesting mechanisms and their affinity of measurements were discussed. Morphological adaptations and their role in the capturing of atmospheric gaseous water of various species were also discussed. The key factor for the water collection and its conduction in the wheat plant is the information of contact angle hysteresis. In wheat, leaf rolling and its association with wetting property help the plant in water retention. Morphological adaptations, i.e., leaf erectness, grooves, and prickle hairs, also help in the collection and acquisition of water droplets by stem flows in directional guide toward the base of the plant and allow its rapid uptake. Morphological adaptation strengthens the harvesting mechanism by preventing the loss of water through shattering. Thus, wheat canopy architecture can be modified to harvest the atmospheric water and directional movement of water towards the root zone for self-irrigation. Moreover, these morphological adaptations are also linked with drought avoidance and corresponding physiological processes to resist water stress. The combination of these traits together with water use efficiency in wheat contributes to a highly efficient atmospheric water harvesting system that enables the wheat plants to reduce the cost of production. It also increases the yielding potential of the crop in arid and semi-arid environments. Further investigating the ecophysiology and molecular pathways of these morphological adaptations in wheat may have significant applications in varying climatic scenarios.
Collapse
Affiliation(s)
- Zulfiqar Ali
- Institute of Plant Breeding and Biotechnology, MNS-University of Agriculture, Multan, 60000, Pakistan.
| | - Sabah Merrium
- Institute of Plant Breeding and Biotechnology, MNS-University of Agriculture, Multan, 60000, Pakistan
| | - Muhammad Habib-Ur-Rahman
- Institute of Crop Science and Resource Conservation (INRES), Crop Science Group, University of Bonn, Bonn, Germany.
- Department of Agronomy, MNS-University of Agriculture, Multan, 60000, Pakistan.
| | - Sadia Hakeem
- Institute of Plant Breeding and Biotechnology, MNS-University of Agriculture, Multan, 60000, Pakistan
| | | | - Muhammad Ali Sher
- Institute of Plant Breeding and Biotechnology, MNS-University of Agriculture, Multan, 60000, Pakistan
| |
Collapse
|
29
|
Wang F, Tang Z, Wang Y, Fu J, Yang W, Wang S, Wang Y, Bai T, Huang Z, Yin H, Wang Z. Leaf Mutant 7 Encoding Heat Shock Protein OsHSP40 Regulates Leaf Size in Rice. Int J Mol Sci 2022; 23:ijms23084446. [PMID: 35457263 PMCID: PMC9027358 DOI: 10.3390/ijms23084446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
Leaf size is an important agronomic trait directly affecting yield in rice, and thus understanding the genes determining leaf size is important in breeding. In this study, one Leaf Mutant 7 (lm7) with small leaf size was isolated using ethyl methane sulphonate (EMS) mutagenesis from the japonica Zhenggeng 1925. MutMap by whole genome resequencing of phenotypic bulks revealed that LM7 is likely located in the 133 kb region on chromosome 7 using F2 population from a cross between lm7 and wild-type (WT) Zhenggeng 1925. The candidate gene encoding heat shock protein OsHSP40 for LM7 was functionally validated. Disruption of this gene in Oshsp40 mutants significantly reduced the leaf size compared with that of WT in rice. Microscopic examination showed that OsHSP40 modulated leaf size via regulating the veins formation and cell size/cell number. Nucleotide diversity analysis indicated that a single nucleotide polymorphism (SNP) variation of C to T in the coding region of OsHSP40 may cause small leaves among rice accessions. Therefore, the natural variation of OsHSP40 contributing to leaf size might be useful for rice breeding.
Collapse
Affiliation(s)
- Fuhua Wang
- Institute of Cereal Crop, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (F.W.); (Y.W.); (J.F.); (W.Y.); (S.W.); (Y.W.); (T.B.)
| | - Zhengbin Tang
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (Z.T.); (Z.H.)
| | - Ya Wang
- Institute of Cereal Crop, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (F.W.); (Y.W.); (J.F.); (W.Y.); (S.W.); (Y.W.); (T.B.)
| | - Jing Fu
- Institute of Cereal Crop, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (F.W.); (Y.W.); (J.F.); (W.Y.); (S.W.); (Y.W.); (T.B.)
| | - Wenbo Yang
- Institute of Cereal Crop, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (F.W.); (Y.W.); (J.F.); (W.Y.); (S.W.); (Y.W.); (T.B.)
| | - Shengxuan Wang
- Institute of Cereal Crop, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (F.W.); (Y.W.); (J.F.); (W.Y.); (S.W.); (Y.W.); (T.B.)
| | - Yuetao Wang
- Institute of Cereal Crop, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (F.W.); (Y.W.); (J.F.); (W.Y.); (S.W.); (Y.W.); (T.B.)
| | - Tao Bai
- Institute of Cereal Crop, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (F.W.); (Y.W.); (J.F.); (W.Y.); (S.W.); (Y.W.); (T.B.)
| | - Zhibo Huang
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (Z.T.); (Z.H.)
| | - Haiqing Yin
- Institute of Cereal Crop, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (F.W.); (Y.W.); (J.F.); (W.Y.); (S.W.); (Y.W.); (T.B.)
- Correspondence: (H.Y.); (Z.W.)
| | - Zhoufei Wang
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (Z.T.); (Z.H.)
- Correspondence: (H.Y.); (Z.W.)
| |
Collapse
|
30
|
Zhao H, Li Z, Wang Y, Wang J, Xiao M, Liu H, Quan R, Zhang H, Huang R, Zhu L, Zhang Z. Cellulose synthase-like protein OsCSLD4 plays an important role in the response of rice to salt stress by mediating abscisic acid biosynthesis to regulate osmotic stress tolerance. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:468-484. [PMID: 34664356 PMCID: PMC8882776 DOI: 10.1111/pbi.13729] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 05/09/2023]
Abstract
Cell wall polysaccharide biosynthesis enzymes play important roles in plant growth, development and stress responses. The functions of cell wall polysaccharide synthesis enzymes in plant growth and development have been well studied. In contrast, their roles in plant responses to environmental stress are poorly understood. Previous studies have demonstrated that the rice cell wall cellulose synthase-like D4 protein (OsCSLD4) is involved in cell wall polysaccharide synthesis and is important for rice growth and development. This study demonstrated that the OsCSLD4 function-disrupted mutant nd1 was sensitive to salt stress, but insensitive to abscisic acid (ABA). The expression of some ABA synthesis and response genes was repressed in nd1 under both normal and salt stress conditions. Exogenous ABA can restore nd1-impaired salt stress tolerance. Moreover, overexpression of OsCSLD4 can enhance rice ABA synthesis gene expression, increase ABA content and improve rice salt tolerance, thus implying that OsCSLD4-regulated rice salt stress tolerance is mediated by ABA synthesis. Additionally, nd1 decreased rice tolerance to osmotic stress, but not ion toxic tolerance. The results from the transcriptome analysis showed that more osmotic stress-responsive genes were impaired in nd1 than salt stress-responsive genes, thus indicating that OsCSLD4 is involved in rice salt stress response through an ABA-induced osmotic response pathway. Intriguingly, the disruption of OsCSLD4 function decreased grain width and weight, while overexpression of OsCSLD4 increased grain width and weight. Taken together, this study demonstrates a novel plant salt stress adaptation mechanism by which crops can coordinate salt stress tolerance and yield.
Collapse
Affiliation(s)
- Hui Zhao
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
- Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
- National Key Facility of Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Zixuan Li
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
- National Key Facility of Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Yayun Wang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
- National Key Facility of Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Jiayi Wang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
- National Key Facility of Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Minggang Xiao
- Biotechnology Research InstituteHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Hai Liu
- Department of BiologyUniversity of VirginiaCharlottesvilleVAUSA
| | - Ruidang Quan
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
- National Key Facility of Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Haiwen Zhang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
- National Key Facility of Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Rongfeng Huang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
- National Key Facility of Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Li Zhu
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
| | - Zhijin Zhang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
- National Key Facility of Crop Gene Resources and Genetic ImprovementBeijingChina
| |
Collapse
|
31
|
Chen DG, Zhou XQ, Chen K, Chen PL, Guo J, Liu CG, Chen YD. Fine-mapping and candidate gene analysis of a major locus controlling leaf thickness in rice ( Oryza sativa L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:6. [PMID: 35103045 PMCID: PMC8792131 DOI: 10.1007/s11032-022-01275-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/13/2022] [Indexed: 05/16/2023]
Abstract
UNLABELLED Leaf thickness is an important trait in rice (Oryza sativa L.). It affects both photosynthesis and sink-resource efficiency. However, compared to leaf length and length width, reports seldom focused on leaf thickness due to the complicated measurement and minor difference. To identify the quantitative trait loci (QTL) and explore the genetic mechanism regulating the natural variation of leaf thickness, we crossed a high leaf thickness variety Aixiuzhan (AXZ) to a thin leaf thickness variety Yangdao No.6 (YD 6) and evaluated 585 F2 individuals. We further use bulked sergeant analysis with whole-genome resequencing (BSA-seq) to identify five genomic regions, including chromosomes 1, 6, 9, 10, and 12. These regions represented significant allele frequency differentiation between thick and thin leaf thickness among the mixed pool offspring. Moreover, we conducted a linkage mapping using 276 individuals derived from the F2 population. We fine-mapped and confirmed that chromosome 9 contributed the primary explanation of phenotypic variance. We fine-mapped the candidate regions and confirmed that the chromosome 9 region contributed to flag leaf thickness in rice. We observed the virtual cellular slices and found that the bundle sheath cells in YD 6 flag leaf veins are fewer than AXZ. We analyzed the potential regions on chromosome 9 and narrowed the QTL candidate intervals in the 928-kb region. Candidate genes of this major QTL were listed as potentially controlled leaf thickness. These results provide promising evidence that cloning leaf thickness is associated with yield production in rice. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11032-022-01275-y.
Collapse
Affiliation(s)
- Da-gang Chen
- Rice Research Institute, Guangdong Rice Engineering Laboratory, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 People’s Republic of China
| | - Xin-qiao Zhou
- Rice Research Institute, Guangdong Rice Engineering Laboratory, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 People’s Republic of China
| | - Ke Chen
- Rice Research Institute, Guangdong Rice Engineering Laboratory, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 People’s Republic of China
| | - Ping-li Chen
- Rice Research Institute, Guangdong Rice Engineering Laboratory, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 People’s Republic of China
| | - Jie Guo
- Rice Research Institute, Guangdong Rice Engineering Laboratory, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 People’s Republic of China
| | - Chuan-guang Liu
- Rice Research Institute, Guangdong Rice Engineering Laboratory, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 People’s Republic of China
| | - You-ding Chen
- Rice Research Institute, Guangdong Rice Engineering Laboratory, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 People’s Republic of China
| |
Collapse
|
32
|
Xu Y, Kong W, Wang F, Wang J, Tao Y, Li W, Chen Z, Fan F, Jiang Y, Zhu Q, Yang J. Heterodimer formed by ROC8 and ROC5 modulates leaf rolling in rice. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2662-2672. [PMID: 34448351 PMCID: PMC8633501 DOI: 10.1111/pbi.13690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Moderately rolled leaf is one of the target traits of the ideal plant architecture in rice breeding. Many genes, including homeodomain leucine zipper IV transcription factors ROC5 and ROC8, regulating rice leaf rolling have been cloned and functionally analysed. However, the molecular mechanism by which these genes modulate leaf-rolling remains largely elusive. In this study, we demonstrated the transcription activation activity of both ROC8 and ROC5. Overexpressing ROC8 caused adaxially rolled leaves due to decreased number and size of bulliform cells, whereas knockout of ROC8 induced abaxially rolled leaves due to increased number and size of bulliform cells. ROC8 and ROC5 each could form homodimer, but ROC8 interacted preferably with ROC5 to forms a heterodimer. Importantly, we showed that the ROC8-ROC5 heterodimer rather than the homodimer of ROC8 or ROC5 was functional as neither overexpressing ROC8 in the ROC5 mutant nor overexpressing ROC5 in the ROC8-knockout line could rescue the mutant phenotype. This was further partially supported by the identification of a large number of common differentially expressed genes in single and double mutants of roc8 and roc5. ROC8 and ROC5 were functionally additive as the phenotype of abaxially rolled leaves was stronger in the roc5roc8 double mutant than in their single mutants. Our results provide evidence for the role of dimerization of ROC members in regulating leaf rolling of rice.
Collapse
Affiliation(s)
- Yang Xu
- Institute of Food CropsJiangsu Academy of Agricultural SciencesNanjingChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
- Provincial Key Laboratory of AgrobiologyJiangsu Academy of Agricultural SciencesNanjingChina
| | - Weiyi Kong
- College of Grassland ScienceNanjing Agricultural UniversityNanjingChina
| | - Fangquan Wang
- Institute of Food CropsJiangsu Academy of Agricultural SciencesNanjingChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
- Provincial Key Laboratory of AgrobiologyJiangsu Academy of Agricultural SciencesNanjingChina
| | - Jun Wang
- Institute of Food CropsJiangsu Academy of Agricultural SciencesNanjingChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
- Provincial Key Laboratory of AgrobiologyJiangsu Academy of Agricultural SciencesNanjingChina
| | - Yajun Tao
- Institute of Food CropsJiangsu Academy of Agricultural SciencesNanjingChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
- Provincial Key Laboratory of AgrobiologyJiangsu Academy of Agricultural SciencesNanjingChina
| | - Wenqi Li
- Institute of Food CropsJiangsu Academy of Agricultural SciencesNanjingChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
- Provincial Key Laboratory of AgrobiologyJiangsu Academy of Agricultural SciencesNanjingChina
| | - Zhihui Chen
- Institute of Food CropsJiangsu Academy of Agricultural SciencesNanjingChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
- Provincial Key Laboratory of AgrobiologyJiangsu Academy of Agricultural SciencesNanjingChina
| | - Fangjun Fan
- Institute of Food CropsJiangsu Academy of Agricultural SciencesNanjingChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
- Provincial Key Laboratory of AgrobiologyJiangsu Academy of Agricultural SciencesNanjingChina
| | - Yanjie Jiang
- Institute of Food CropsJiangsu Academy of Agricultural SciencesNanjingChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
- Provincial Key Laboratory of AgrobiologyJiangsu Academy of Agricultural SciencesNanjingChina
| | | | - Jie Yang
- Institute of Food CropsJiangsu Academy of Agricultural SciencesNanjingChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
- Provincial Key Laboratory of AgrobiologyJiangsu Academy of Agricultural SciencesNanjingChina
| |
Collapse
|
33
|
Liu Z, She H, Xu Z, Zhang H, Li G, Zhang S, Qian W. Quantitative trait loci (QTL) analysis of leaf related traits in spinach (Spinacia oleracea L.). BMC PLANT BIOLOGY 2021; 21:290. [PMID: 34167476 PMCID: PMC8223354 DOI: 10.1186/s12870-021-03092-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Spinach (Spinacia oleracea L.) is an important leafy vegetable crop, and leaf-related traits including leaf length, leaf width, and petiole length, are important commercial traits. However, the underlying genes remain unclear. The objective of the study was to conduct QTL mapping of leaf-related traits in spinach. RESULTS A BC1 population was used to construct the linkage map and for QTL mapping of leaf length, leaf width, petiole length, and the ratio of leaf length to width in 2015 and 2019. Two genetic linkage maps were constructed by specific locus amplified fragment sequencing (SLAF-seq), and kompetitive allele specific PCR (KASP) technology, respectively using BC1 population in 2015. Based on the results of 2015, the specific linkage groups (LG) detected QTLs were generated using BC1 population in 2019. A total of 13 QTLs were detected for leaf-related traits, only five QTLs being repeatedly detected in multiple years or linkage maps. Interestingly, the major QTLs of leaf length, petiole length, and the ratio of leaf length to width were highly associated with the same SNP markers (KM3102838, KM1360385 and KM2191098). A major QTL of leaf width was mapped on chromosome 1 from 41.470-42.045 Mb. And 44 genes were identified within the region. Based on the GO analysis, these genes were significantly enriched on ribonuclease, lyase activity, phosphodiester bond hydrolysis process, and cell wall component, thus it might change cell size to determine leaves shape. CONCLUSIONS Five QTLs for leaf-related traits were repeatedly detected at least two years or linkage maps. The major QTLs of leaf length, petiole length, and the ratio of leaf length to width were mapped on the same loci. And three genes (Spo10792, Spo21018, and Spo21019) were identified as important candidate genes for leaf width.
Collapse
Affiliation(s)
- Zhiyuan Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongbing She
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhaosheng Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Helong Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guoliang Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shifan Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Wei Qian
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
34
|
Uzair M, Long H, Zafar SA, Patil SB, Chun Y, Li L, Fang J, Zhao J, Peng L, Yuan S, Li X. Narrow Leaf21, encoding ribosomal protein RPS3A, controls leaf development in rice. PLANT PHYSIOLOGY 2021; 186:497-518. [PMID: 33591317 PMCID: PMC8154097 DOI: 10.1093/plphys/kiab075] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/26/2021] [Indexed: 05/19/2023]
Abstract
Leaf morphology influences photosynthesis, transpiration, and ultimately crop yield. However, the molecular mechanism of leaf development is still not fully understood. Here, we identified and characterized the narrow leaf21 (nal21) mutant in rice (Oryza sativa), showing a significant reduction in leaf width, leaf length and plant height, and increased tiller number. Microscopic observation revealed defects in the vascular system and reduced epidermal cell size and number in the nal21 leaf blade. Map-based cloning revealed that NAL21 encodes a ribosomal small subunit protein RPS3A. Ribosome-targeting antibiotics resistance assay and ribosome profiling showed a significant reduction in the free 40S ribosome subunit in the nal21 mutant. The nal21 mutant showed aberrant auxin responses in which multiple auxin response factors (ARFs) harboring upstream open-reading frames (uORFs) in their 5'-untranslated region were repressed at the translational level. The WUSCHEL-related homeobox 3A (OsWOX3A) gene, a key transcription factor involved in leaf blade lateral outgrowth, is also under the translational regulation by RPS3A. Transformation with modified OsARF11, OsARF16, and OsWOX3A genomic DNA (gDNA) lacking uORFs rescued the narrow leaf phenotype of nal21 to a better extent than transformation with their native gDNA, implying that RPS3A could regulate translation of ARFs and WOX3A through uORFs. Our results demonstrate that proper translational regulation of key factors involved in leaf development is essential to maintain normal leaf morphology.
Collapse
Affiliation(s)
- Muhammad Uzair
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haixin Long
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Syed Adeel Zafar
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Suyash B Patil
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan Chun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lu Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingjing Fang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinfeng Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lixiang Peng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | - Xueyong Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Author for communication:
| |
Collapse
|
35
|
Sheng C, Song S, Zhou R, Li D, Gao Y, Cui X, Tang X, Zhang Y, Tu J, Zhang X, Wang L. QTL-Seq and Transcriptome Analysis Disclose Major QTL and Candidate Genes Controlling Leaf Size in Sesame ( Sesamum indicum L.). FRONTIERS IN PLANT SCIENCE 2021; 12:580846. [PMID: 33719280 PMCID: PMC7943740 DOI: 10.3389/fpls.2021.580846] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Leaf size is a crucial component of sesame (Sesamum indicum L.) plant architecture and further influences yield potential. Despite that it is well known that leaf size traits are quantitative traits controlled by large numbers of genes, quantitative trait loci (QTL) and candidate genes for sesame leaf size remain poorly understood. In the present study, we combined the QTL-seq approach and SSR marker mapping to identify the candidate genomic regions harboring QTL controlling leaf size traits in an RIL population derived from a cross between sesame varieties Zhongzhi No. 13 (with big leaves) and ZZM2289 (with small leaves). The QTL mapping revealed 56 QTL with phenotypic variation explained (PVE) from 1.87 to 27.50% for the length and width of leaves at the 1/3 and 1/2 positions of plant height. qLS15-1, a major and environmentally stable pleiotropic locus for both leaf length and width explaining 5.81 to 27.50% phenotypic variation, was located on LG15 within a 408-Kb physical genomic region flanked by the markers ZMM6185 and ZMM6206. In this region, a combination of transcriptome analysis with gene annotations revealed three candidate genes SIN_1004875, SIN_1004882, and SIN_1004883 associated with leaf growth and development in sesame. These findings provided insight into the genetic characteristics and variability for sesame leaf and set up the foundation for future genomic studies on sesame leaves and will serve as gene resources for improvement of sesame plant architecture.
Collapse
Affiliation(s)
- Chen Sheng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Shengnan Song
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Rong Zhou
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Donghua Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Yuan Gao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Xianghua Cui
- Zhumadian Academy of Agricultural Sciences, Zhumadian, China
| | - Xuehui Tang
- Xiangyang Academy of Agricultural Sciences, Xiangyang, China
| | - Yanxin Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Xiurong Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Linhai Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| |
Collapse
|
36
|
Jang S, Shim S, Lee YK, Lee D, Koh HJ. Major QTLs, qARO1 and qARO9, Additively Regulate Adaxial Leaf Rolling in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:626523. [PMID: 33708231 PMCID: PMC7940999 DOI: 10.3389/fpls.2021.626523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Moderate leaf rolling is considered optimal for the ideal plant type in rice (Oryza sativa L.), as it improves photosynthetic efficiency and, consequently, grain yield. Determining the genetic basis of leaf rolling via the identification of quantitative trait loci (QTLs) could facilitate the development of high-yielding varieties. In this study, we identified three stable rice QTLs, qARO1, qARO5, and qARO9, which control adaxial leaf rolling in a recombinant inbred line (RIL) population derived from a cross between Tong 88-7 (T887) and Milyang 23 (M23), using high-density SNP markers. These QTLs controlled the rolling phenotype of both the flag leaf (FL) and secondary leaf (SL), and different allelic combinations of these QTLs led to a wide variation in the degree of leaf rolling. Additive gene actions of qARO1 and qARO9 on leaf rolling were observed in a backcross population. In addition, qARO1 (markers: 01id4854718 and 01asp4916781) and qARO9 (markers: 09id19650402 and 09id19740436) were successfully fine-mapped to approximately 60- and 90-kb intervals on chromosomes 1 and 9, respectively. Histological analysis of near-isogenic lines (NILs) revealed that qARO1 influences leaf thickness across the small vein, and qARO9 affects leaf thickness in the entire leaf and bulliform cell area, thus leading to adaxial leaf rolling. The results of this study advance our understanding of the genetic and molecular bases of adaxial leaf rolling, and this information can be used for the development of rice varieties with the ideal plant type.
Collapse
Affiliation(s)
- Su Jang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Sangrea Shim
- Department of Chemistry, Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Yoon Kyung Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Dongryung Lee
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, Saudi Arabia
| | - Hee-Jong Koh
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
37
|
Zhang X, Wang Y, Zhu X, Wang X, Zhu Z, Li Y, Xie J, Xiong Y, Yang Z, He G, Sang X. Curled Flag Leaf 2, Encoding a Cytochrome P450 Protein, Regulated by the Transcription Factor Roc5, Influences Flag Leaf Development in Rice. FRONTIERS IN PLANT SCIENCE 2021; 11:616977. [PMID: 33643332 PMCID: PMC7907467 DOI: 10.3389/fpls.2020.616977] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/28/2020] [Indexed: 05/28/2023]
Abstract
Moderate curling generally causes upright leaf blades, which favors the establishment of ideal plant architecture and increases the photosynthetic efficiency of the population, both of which are desirable traits for super hybrid rice (Oryza sativa L.). In this study, we identified a novel curled-leaf mutant, curled flag leaf 2 (cfl2), which shows specific curling at the base of the flag leaf owing to abnormal epidermal development, caused by enlarged bulliform cells and increased number of papillae with the disordered distribution. Map-based cloning reveals that CFL2 encodes a cytochrome P450 protein and corresponds to the previously reported OsCYP96B4. CFL2 was expressed in all analyzed tissues with differential abundance and was downregulated in the clf1 mutant [a mutant harbors a mutation in the homeodomain leucine zipper IV (HD-ZIP IV) transcription factor Roc5]. Yeast one-hybrid and transient expression assays confirm that Roc5 could directly bind to the cis-element L1 box in the promoter of CFL2 before activating CFL2 expression. RNA sequencing reveals that genes associated with cellulose biosynthesis and cell wall-related processes were significantly upregulated in the cfl2 mutant. The components of cell wall, such as lignin, cellulose, and some kinds of monosaccharide, were altered dramatically in the cfl2 mutant when compared with wild-type "Jinhui10" (WT). Taken together, CFL2, as a target gene of Roc5, plays an important role in the regulation of flag leaf shape by influencing epidermis and cell wall development.
Collapse
|
38
|
Sun J, Cui X, Teng S, Kunnong Z, Wang Y, Chen Z, Sun X, Wu J, Ai P, Quick WP, Lu T, Zhang Z. HD-ZIP IV gene Roc8 regulates the size of bulliform cells and lignin content in rice. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2559-2572. [PMID: 32559019 PMCID: PMC7680540 DOI: 10.1111/pbi.13435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 05/31/2020] [Indexed: 05/27/2023]
Abstract
The morphology of bulliform cells located on the upper epidermis of leaves is one of the most important cell structures affecting leaf shape. Although many mechanisms regulating the development of bulliform cells have been reported, the fine regulatory mechanisms governing this process have rarely been described. To identify novel components regulating rice leaf morphology, a mutant showing a constitutively rolling phenotype from the seedling stage to flowering, known as crm1-D, was selected for further analysis. Anatomical analyses in crm1-D were attributable to the size reduction of bulliform cells. The crm1-D was controlled by a single dominant nuclear gene. Map-based cloning revealed that Roc8, an HD zipper class IV family member, was responsible for the crm1-D phenotype. Notably, the 50-bp sequence in the 3'-untranslated region (3'-UTR) of the Roc8 gene represses Roc8 at the translational level. Moreover, the roc8 knockdown lines notably increased the size of bulliform cells. A series of assays revealed that Roc8 negatively regulates the size of bulliform cells. Unexpectedly, Roc8 was also observed to positively mediate lignin biosynthesis without incurring a production penalty. The above results show that Roc8 may have a practical application in cultivating materials with high photosynthetic efficiency and low lignin content.
Collapse
Affiliation(s)
- Jing Sun
- Joint CAAS/IRRI Laboratory for Photosynthetic EnhancementBiotechnology Research Institute/National Key Facility for Genetic Resources and Gene ImprovementThe Chinese Academy of Agricultural SciencesBeijingChina
| | - Xuean Cui
- Joint CAAS/IRRI Laboratory for Photosynthetic EnhancementBiotechnology Research Institute/National Key Facility for Genetic Resources and Gene ImprovementThe Chinese Academy of Agricultural SciencesBeijingChina
| | - Shouzhen Teng
- Joint CAAS/IRRI Laboratory for Photosynthetic EnhancementBiotechnology Research Institute/National Key Facility for Genetic Resources and Gene ImprovementThe Chinese Academy of Agricultural SciencesBeijingChina
| | - Zhao Kunnong
- Joint CAAS/IRRI Laboratory for Photosynthetic EnhancementBiotechnology Research Institute/National Key Facility for Genetic Resources and Gene ImprovementThe Chinese Academy of Agricultural SciencesBeijingChina
| | - Yanwei Wang
- Joint CAAS/IRRI Laboratory for Photosynthetic EnhancementBiotechnology Research Institute/National Key Facility for Genetic Resources and Gene ImprovementThe Chinese Academy of Agricultural SciencesBeijingChina
| | - Zhenhua Chen
- Joint CAAS/IRRI Laboratory for Photosynthetic EnhancementBiotechnology Research Institute/National Key Facility for Genetic Resources and Gene ImprovementThe Chinese Academy of Agricultural SciencesBeijingChina
| | - Xuehui Sun
- Joint CAAS/IRRI Laboratory for Photosynthetic EnhancementBiotechnology Research Institute/National Key Facility for Genetic Resources and Gene ImprovementThe Chinese Academy of Agricultural SciencesBeijingChina
| | - Jinxia Wu
- Joint CAAS/IRRI Laboratory for Photosynthetic EnhancementBiotechnology Research Institute/National Key Facility for Genetic Resources and Gene ImprovementThe Chinese Academy of Agricultural SciencesBeijingChina
| | - Pengfei Ai
- College of Bioscience and BioengineeringHebei University of Science and TechnologyHebeiChina
| | - William Paul Quick
- Joint CAAS/IRRI Laboratory for Photosynthetic EnhancementBiotechnology Research Institute/National Key Facility for Genetic Resources and Gene ImprovementThe Chinese Academy of Agricultural SciencesBeijingChina
- C4 Rice CenterInternational Rice Research Institute (IRRI)UPLBLos BañosLagunaPhilippines
- Department of Animal and Plant SciencesUniversity of SheffieldWestern BankSheffieldUK
| | - Tiegang Lu
- Joint CAAS/IRRI Laboratory for Photosynthetic EnhancementBiotechnology Research Institute/National Key Facility for Genetic Resources and Gene ImprovementThe Chinese Academy of Agricultural SciencesBeijingChina
| | - Zhiguo Zhang
- Joint CAAS/IRRI Laboratory for Photosynthetic EnhancementBiotechnology Research Institute/National Key Facility for Genetic Resources and Gene ImprovementThe Chinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
39
|
Subudhi PK, Garcia RS, Coronejo S, De Leon TB. A Novel Mutation of the NARROW LEAF 1 Gene Adversely Affects Plant Architecture in Rice ( Oryza sativa L.). Int J Mol Sci 2020; 21:ijms21218106. [PMID: 33143090 PMCID: PMC7672626 DOI: 10.3390/ijms21218106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/25/2020] [Accepted: 10/26/2020] [Indexed: 11/17/2022] Open
Abstract
Plant architecture is critical for enhancing the adaptability and productivity of crop plants. Mutants with an altered plant architecture allow researchers to elucidate the genetic network and the underlying mechanisms. In this study, we characterized a novel nal1 rice mutant with short height, small panicle, and narrow and thick deep green leaves that was identified from a cross between a rice cultivar and a weedy rice accession. Bulked segregant analysis coupled with genome re-sequencing and cosegregation analysis revealed that the overall mutant phenotype was caused by a 1395-bp deletion spanning over the last two exons including the transcriptional end site of the nal1 gene. This deletion resulted in chimeric transcripts involving nal1 and the adjacent gene, which were validated by a reference-guided assembly of transcripts followed by PCR amplification. A comparative transcriptome analysis of the mutant and the wild-type rice revealed 263 differentially expressed genes involved in cell division, cell expansion, photosynthesis, reproduction, and gibberellin (GA) and brassinosteroids (BR) signaling pathways, suggesting the important regulatory role of nal1. Our study indicated that nal1 controls plant architecture through the regulation of genes involved in the photosynthetic apparatus, cell cycle, and GA and BR signaling pathways.
Collapse
Affiliation(s)
- Prasanta K. Subudhi
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (R.S.G.); (S.C.)
- Correspondence: ; Tel.: +1-225-578-1303
| | - Richard S. Garcia
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (R.S.G.); (S.C.)
| | - Sapphire Coronejo
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (R.S.G.); (S.C.)
| | - Teresa B. De Leon
- California Cooperative Rice Research Foundation, Inc., Biggs, CA 95917, USA;
| |
Collapse
|
40
|
QTL detection and putative candidate gene prediction for leaf rolling under moisture stress condition in wheat. Sci Rep 2020; 10:18696. [PMID: 33122772 PMCID: PMC7596552 DOI: 10.1038/s41598-020-75703-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/15/2020] [Indexed: 12/20/2022] Open
Abstract
Leaf rolling is an important mechanism to mitigate the effects of moisture stress in several plant species. In the present study, a set of 92 wheat recombinant inbred lines derived from the cross between NI5439 × HD2012 were used to identify QTLs associated with leaf rolling under moisture stress condition. Linkage map was constructed using Axiom 35 K Breeder’s SNP Array and microsatellite (SSR) markers. A linkage map with 3661 markers comprising 3589 SNP and 72 SSR markers spanning 22,275.01 cM in length across 21 wheat chromosomes was constructed. QTL analysis for leaf rolling trait under moisture stress condition revealed 12 QTLs on chromosomes 1B, 2A, 2B, 2D, 3A, 4A, 4B, 5D, and 6B. A stable QTL Qlr.nhv-5D.2 was identified on 5D chromosome flanked by SNP marker interval AX-94892575–AX-95124447 (5D:338665301–5D:410952987). Genetic and physical map integration in the confidence intervals of Qlr.nhv-5D.2 revealed 14 putative candidate genes for drought tolerance which was narrowed down to six genes based on in-silico analysis. Comparative study of leaf rolling genes in rice viz., NRL1, OsZHD1, Roc5, and OsHB3 on wheat genome revealed five genes on chromosome 5D. Out of the identified genes, TraesCS5D02G253100 falls exactly in the QTL Qlr.nhv-5D.2 interval and showed 96.9% identity with OsZHD1. Two genes similar to OsHB3 viz. TraesCS5D02G052300 and TraesCS5D02G385300 exhibiting 85.6% and 91.8% identity; one gene TraesCS5D02G320600 having 83.9% identity with Roc5 gene; and one gene TraesCS5D02G102600 showing 100% identity with NRL1 gene were also identified, however, these genes are located outside Qlr.nhv-5D.2 interval. Hence, TraesCS5D02G253100 could be the best potential candidate gene for leaf rolling and can be utilized for improving drought tolerance in wheat.
Collapse
|
41
|
Matsumoto H, Yasui Y, Ohmori Y, Tanaka W, Ishikawa T, Numa H, Shirasawa K, Taniguchi Y, Tanaka J, Suzuki Y, Hirano H. CURLED LATER1 encoding the largest subunit of the Elongator complex has a unique role in leaf development and meristem function in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:351-364. [PMID: 32652697 PMCID: PMC7689840 DOI: 10.1111/tpj.14925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/24/2020] [Accepted: 07/01/2020] [Indexed: 05/12/2023]
Abstract
The Elongator complex, which is conserved in eukaryotes, has multiple roles in diverse organisms. In Arabidopsis thaliana, Elongator is shown to be involved in development, hormone action and environmental responses. However, except for Arabidopsis, our knowledge of its function is poor in plants. In this study, we initially carried out a genetic analysis to characterize a rice mutant with narrow and curled leaves, termed curled later1 (cur1). The cur1 mutant displayed a heteroblastic change, whereby the mutant leaf phenotype appeared specifically at a later adult phase of vegetative development. The shoot apical meristem (SAM) was small and the leaf initiation rate was low, suggesting that the activity of the SAM seemed to be partially reduced in cur1. We then revealed that CUR1 encodes a yeast ELP1-like protein, the largest subunit of Elongator. Furthermore, disruption of OsELP3 encoding the catalytic subunit of Elongator resulted in phenotypes similar to those of cur1, including the timing of the appearance of mutant phenotypes. Thus, Elongator activity seems to be specifically required for leaf development at the late vegetative phase. Transcriptome analysis showed that genes involved in protein quality control were highly upregulated in the cur1 shoot apex at the later vegetative phase, suggesting the restoration of impaired proteins probably produced by partial defects in translational control due to the loss of function of Elongator. The differences in the mutant phenotype and gene expression profile between CUR1 and its Arabidopsis ortholog suggest that Elongator has evolved to play a unique role in rice development.
Collapse
Affiliation(s)
- Hikari Matsumoto
- School of ScienceThe University of TokyoHongo, Bunkyo‐kuTokyo113‐8654Japan
| | - Yukiko Yasui
- School of ScienceThe University of TokyoHongo, Bunkyo‐kuTokyo113‐8654Japan
- Present address:
Graduate School of BiostudiesKyoto UniversitySakyo‐ku, Kyoto606‐8502Japan
| | - Yoshihiro Ohmori
- Graduate School of Agricultural and Life SciencesThe University of TokyoYayoi, Bunkyo‐kuTokyo113‐8657Japan
| | - Wakana Tanaka
- School of ScienceThe University of TokyoHongo, Bunkyo‐kuTokyo113‐8654Japan
- Present address:
Graduate School of Integrated Sciences for LifeHiroshima UniversityKagamiyama, Higashi‐Hiroshima739‐8528Japan
| | | | | | - Kenta Shirasawa
- NAROKannondai 2‐1‐2Tsukuba305‐8518Japan
- Present address:
Kazusa DNA Research InstituteKazusa‐KamatariKisarazu, Chiba292‐0818Japan
| | | | | | | | - Hiro‐Yuki Hirano
- School of ScienceThe University of TokyoHongo, Bunkyo‐kuTokyo113‐8654Japan
| |
Collapse
|
42
|
Identification and characterization of the stunted sterile (ss) mutant in rice. Genes Genomics 2020; 42:869-882. [PMID: 32506267 DOI: 10.1007/s13258-020-00954-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/19/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Proper organ development is pivotal for normal rice growth and production. Many genes are involved in this process, and these genes provide a basis for rice breeding. OBJECTIVE To identify a novel mutation causing developmental defects in rice. METHODS The phenotype of a rice mutant, stunted sterile (ss), identified from the japonica rice cultivar Samkwang treated with N-methyl-N-nitrosourea, was characterized, including anatomical and pollen activity analyses. A genetic analysis and fine mapping were performed to identify a candidate locus, followed by a sequence analysis to determine the causal mutation for the phenotype. RESULTS Compared with wild-type plants, the mutant exhibited a 34% reduction in height, 46% reduction in flag leaf width, and complete panicle sterility. Cell proliferation in the leaf and pollen viability were significantly inhibited in the mutant. The mutant phenotypes were controlled by a single recessive gene that was fine-mapped to an 84 kb region between two SNP markers on the short arm of chromosome 5. A candidate gene analysis determined that the mutant carries an 11 bp insertion in the coding region of LOC_Os05g03550, which encodes a protein containing two SANT domains, resulting in a premature termination codon before the conserved domain. CONCLUSIONS We identified a novel rice gene, Stunted sterile, involved in the regulation of various developmental processes. Our findings improve our understanding of the role of chromatin remodeling in organ development and have implications for breeding owing to the broad effects of the gene on plant growth.
Collapse
|
43
|
Characterization of a Novel Rice Dynamic Narrow-Rolled Leaf Mutant with Deficiencies in Aromatic Amino Acids. Int J Mol Sci 2020; 21:ijms21041521. [PMID: 32102218 PMCID: PMC7073152 DOI: 10.3390/ijms21041521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 11/26/2022] Open
Abstract
The leaf blade is the main photosynthetic organ and its morphology is related to light energy capture and conversion efficiency. We isolated a novel rice Dynamic Narrow-Rolled Leaf 1 (dnrl1) mutant showing reduced width of leaf blades, rolled leaves and lower chlorophyll content. The narrow-rolled leaf phenotype resulted from the reduced number of small longitudinal veins per leaf, smaller size and irregular arrangement of bulliform cells compared with the wild-type. DNRL1 was mapped to chromosome 7 and encoded a putative 3-deoxy-7-phosphoheptulonate synthase (DAHPS) which catalyzes the conversion of phosphoenolpyruvate and D-erythrose 4-phosphate to DAHP and phosphate. Sequence analysis revealed that a single base substitution (T–A) was detected in dnrl1, leading to a single amino acid change (L376H) in the coding protein. The mutation led to a lower expression level of DNRL1 as well as the lower activity of DAHPS in the mutant compared with the wild type. Genetic complementation and over-expression of DNRL1 could rescue the narrow-rolled phenotype. DNRL1 was constitutively expressed in all tested organs and exhibited different expression patterns from other narrow-rolled leaf genes. DNRL1-GFP located to chloroplasts. The lower level of chlorophyll in dnrl1 was associated with the downregulation of the genes responsible for chlorophyll biosynthesis and photosynthesis. Furthermore, dnrl1 showed significantly reduced levels of aromatic amino acids including Trp, Phe and Tyr. We conclude that OsDAHPS, encoded by DNRL1, plays a critical role in leaf morphogenesis by mediating the biosynthesis of amino acids in rice.
Collapse
|
44
|
Wen Y, Fang Y, Hu P, Tan Y, Wang Y, Hou L, Deng X, Wu H, Zhu L, Zhu L, Chen G, Zeng D, Guo L, Zhang G, Gao Z, Dong G, Ren D, Shen L, Zhang Q, Xue D, Qian Q, Hu J. Construction of a High-Density Genetic Map Based on SLAF Markers and QTL Analysis of Leaf Size in Rice. FRONTIERS IN PLANT SCIENCE 2020; 11:1143. [PMID: 32849702 PMCID: PMC7411225 DOI: 10.3389/fpls.2020.01143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/14/2020] [Indexed: 05/02/2023]
Abstract
Leaf shape is an important agronomic trait for constructing an ideal plant type in rice, and high-density genetic map is facilitative in improving accuracy and efficiency for quantitative trait loci (QTL) analysis of leaf trait. In this study, a high-density genetic map contained 10,760 specific length amplified fragment sequencing (SLAF) markers was established based on 149 recombinant inbred lines (RILs) derived from the cross between Rekuangeng (RKG) and Taizhong1 (TN1), which exhibited 1,613.59 cM map distance with an average interval of 0.17 cM. A total of 24 QTLs were detected and explained the phenotypic variance ranged from 9% to 33.8% related to the leaf morphology across two areas. Among them, one uncloned major QTL qTLLW1 (qTLL1 and qTLLW1) involved in regulating leaf length and leaf width with max 33.8% and 22.5% phenotypic variance respectively was located on chromosome 1, and another major locus qTLW4 affecting leaf width accounted for max 25.3% phenotypic variance was mapped on chromosome 4. Fine mapping and qRT-PCR expression analysis indicated that qTLW4 may be allelic to NAL1 (Narrow leaf 1) gene.
Collapse
Affiliation(s)
- Yi Wen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Rice Research Institute of Shenyang Agricultural University/Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province, Shenyang, China
| | - Yunxia Fang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Peng Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yiqing Tan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yueying Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Linlin Hou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xuemei Deng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Hao Wu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Lixin Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Li Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Guang Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Dali Zeng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Guangheng Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Guojun Dong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Deyong Ren
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Lan Shen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Qiang Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Dawei Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Rice Research Institute of Shenyang Agricultural University/Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province, Shenyang, China
- *Correspondence: Qian Qian, ; Jiang Hu,
| | - Jiang Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- *Correspondence: Qian Qian, ; Jiang Hu,
| |
Collapse
|
45
|
Machine Learning Enables High-Throughput Phenotyping for Analyses of the Genetic Architecture of Bulliform Cell Patterning in Maize. G3-GENES GENOMES GENETICS 2019; 9:4235-4243. [PMID: 31645422 PMCID: PMC6893188 DOI: 10.1534/g3.119.400757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bulliform cells comprise specialized cell types that develop on the adaxial (upper) surface of grass leaves, and are patterned to form linear rows along the proximodistal axis of the adult leaf blade. Bulliform cell patterning affects leaf angle and is presumed to function during leaf rolling, thereby reducing water loss during temperature extremes and drought. In this study, epidermal leaf impressions were collected from a genetically and anatomically diverse population of maize inbred lines. Subsequently, convolutional neural networks were employed to measure microscopic, bulliform cell-patterning phenotypes in high-throughput. A genome-wide association study, combined with RNAseq analyses of the bulliform cell ontogenic zone, identified candidate regulatory genes affecting bulliform cell column number and cell width. This study is the first to combine machine learning approaches, transcriptomics, and genomics to study bulliform cell patterning, and the first to utilize natural variation to investigate the genetic architecture of this microscopic trait. In addition, this study provides insight toward the improvement of macroscopic traits such as drought resistance and plant architecture in an agronomically important crop plant.
Collapse
|
46
|
CRISPR/Cas9-Induced Mutagenesis of Semi-Rolled Leaf1,2 Confers Curled Leaf Phenotype and Drought Tolerance by Influencing Protein Expression Patterns and ROS Scavenging in Rice (Oryza sativa L.). AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9110728] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Rice leaf morphology is an essential agronomic trait to develop drought-tolerant genotypes for adequate and stable crop production in drought-prone areas. Here, rolled leaf mutant plants were acquired by CRISPR/Cas9-based mutagenesis of Semi-rolled leaf1,2 (SRL1 and SRL2) genes, and isobaric tags for relative and absolute quantification (iTRAQ) based proteomic analysis was performed to analyze the subsequent proteomic regulation events. Homozygous mutants exhibit decreased chlorophyll content, transpiration rate, stomatal conductance, vascular bundles (VB), stomatal number, and agronomic traits with increased panicle number and bulliform cells (BCs). Under drought stress, mutant plants displayed lower malondialdehyde (MDA) content while higher survival rate, abscisic acid (ABA) content, superoxide dismutase (SOD), catalase (CAT) activities, and grain filling percentage compare with their wild type (WT). Proteomic results revealed that 270 proteins were significantly downregulated, and 107 proteins were upregulated in the mutant line compared with WT. Proteins related to lateral organ boundaries’ (LOB) domain (LBD) were downregulated, whereas abiotic stress-responsive proteins were upregulated in the CRISPR mutant. LBD proteins (Q5KQR7, Q6K713, Q7XGL4, Q8LQH4), probable indole-3-acetic acid-amido synthetase (Q60EJ6), putative auxin transporter-like protein 4 (Q53JG7), Monoculm 1 (Q84MM9) and AP2 (Apetala2) domain-containing protein (Q10A97) were found to be hub-proteins. The hybrids developed from mutant restorers showed a semi-rolled leaf phenotype with increased panicle number, grain number per panicle, and yield per plant. Our findings reveal the intrinsic value of genome editing and expand the knowledge about the network of proteins for leaf rolling and drought avoidance in rice.
Collapse
|
47
|
Gao L, Yang G, Li Y, Fan N, Li H, Zhang M, Xu R, Zhang M, Zhao A, Ni Z, Zhang Y. Fine mapping and candidate gene analysis of a QTL associated with leaf rolling index on chromosome 4 of maize (Zea mays L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:3047-3062. [PMID: 31399756 DOI: 10.1007/s00122-019-03405-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/21/2019] [Indexed: 05/19/2023]
Abstract
One QTL qLRI4 controlling leaf rolling index on chromosome 4 was finely mapped, and ZmOCL5, a member of the HD-Zip class IV genes, is likely a candidate. Leaf rolling is an important agronomic trait related to plant architecture that can change the light condition and photosynthetic efficiency of the population. Here, we isolated one EMS-induced mutant in Chang7-2 background with extreme abaxial rolling leaf, named abrl1. Histological analysis showed that the increased number and area of bulliform cells may contribute to abaxial rolling leaf in abrl1. The F2 and F2:3 populations derived from Wu9086 with flat leaves and abrl1 were developed to map abrl1. Non-Mendelian segregation of phenotypic variation was observed in these populations and five genomic regions controlling the leaf rolling index (LRI) were identified, which could be due to the phenotypic difference between Chang7-2 and Wu9086. Moreover, one major QTL qLRI4 on chromosome 4 was further validated and finely mapped to a genetic interval between InDel13 and InDel10, with a physical distance of approximately 277 kb using NIL populations, among which one 602-bp insertion was identified in the promoter region of HD-Zip class IV gene Zm00001d049443 (named as ZmOCL5) of abrl1 compared with wild-type Chang7-2. Remarkably, the 602-bp InDel was associated with LRI in an F2 population developed by crossing abrl1 mutant and its wild-type. In addition, the 602-bp insertion increased ZmOCL5 promoter activity and expression. Haplotype analysis demonstrated that the 602-bp insertion was a rare mutation event. Taken together, we propose that the rolled leaf in the abrl1 mutant may be partially attributed to the 602-bp insertion, which may be an attractive target for the genetic improvement of LRI in maize.
Collapse
Affiliation(s)
- Lulu Gao
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Guanghui Yang
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Yufeng Li
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Nannan Fan
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Maize Improvement Centre of China, China Agricultural University, Beijing, China
| | - Hongjian Li
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Ming Zhang
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Ruibin Xu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Mingyi Zhang
- Dryland Agricultural Research Centre, Shanxi Academy of Agricultural Sciences, Taiyuan, 030031, China
| | - Aiju Zhao
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Hebei Crop Genetic Breeding Laboratory, Shijiazhuang, 050035, China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Yirong Zhang
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
- National Maize Improvement Centre of China, China Agricultural University, Beijing, China.
| |
Collapse
|
48
|
Hu H, Zhang R, Tang Y, Peng C, Wu L, Feng S, Chen P, Wang Y, Du X, Peng L. Cotton CSLD3 restores cell elongation and cell wall integrity mainly by enhancing primary cellulose production in the Arabidopsis cesa6 mutant. PLANT MOLECULAR BIOLOGY 2019; 101:389-401. [PMID: 31432304 DOI: 10.1007/s11103-019-00910-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Overexpression of cotton cellulose synthase like D3 (GhCSLD3) gene partially rescued growth defect of atcesa6 mutant with restored cell elongation and cell wall integrity mainly by enhancing primary cellulose production. Among cellulose synthase like (CSL) family proteins, CSLDs share the highest sequence similarity to cellulose synthase (CESA) proteins. Although CSLD proteins have been implicated to participate in the synthesis of carbohydrate-based polymers (cellulose, pectins and hemicelluloses), and therefore plant cell wall formation, the exact biochemical function of CSLD proteins remains controversial and the function of the remaining CSLD genes in other species have not been determined. In this study, we attempted to illustrate the function of CSLD proteins by overexpressing Arabidopsis AtCSLD2, -3, -5 and cotton GhCSLD3 genes in the atcesa6 mutant, which has a background that is defective for primary cell wall cellulose synthesis in Arabidopsis. We found that GhCSLD3 overexpression partially rescued the growth defect of the atcesa6 mutant during early vegetative growth. Despite the atceas6 mutant having significantly reduced cellulose contents, the defected cell walls and lower dry mass, GhCSLD3 overexpression largely restored cell wall integrity (CWI) and improved the biomass yield. Our result suggests that overexpression of the GhCSLD protein enhances primary cell wall synthesis and compensates for the loss of CESAs, which is required for cellulose production, therefore rescuing defects in cell elongation and CWI.
Collapse
Affiliation(s)
- Huizhen Hu
- State Key Laboratory of Biocatalysis & Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Science, Hubei University, Wuhan, 430062, China
| | - Ran Zhang
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yiwei Tang
- State Key Laboratory of Biocatalysis & Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Science, Hubei University, Wuhan, 430062, China
| | - Chenglang Peng
- State Key Laboratory of Biocatalysis & Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Science, Hubei University, Wuhan, 430062, China
| | - Leiming Wu
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shengqiu Feng
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Peng Chen
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanting Wang
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuezhu Du
- State Key Laboratory of Biocatalysis & Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Science, Hubei University, Wuhan, 430062, China.
| | - Liangcai Peng
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
49
|
Xiao Y, You S, Kong W, Tang Q, Bai W, Cai Y, Zheng H, Wang C, Jiang L, Wang C, Zhao Z, Wan J. A GARP transcription factor anther dehiscence defected 1 (OsADD1) regulates rice anther dehiscence. PLANT MOLECULAR BIOLOGY 2019; 101:403-414. [PMID: 31420780 DOI: 10.1007/s11103-019-00911-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/12/2019] [Indexed: 05/18/2023]
Abstract
Anther dehiscence, one of the essential steps in pollination and double fertilization, is regulated by a complex signaling pathway encompassing hormones and environmental factors. However, key components underlying the signaling pathway that regulate anther dehiscence remain largely elusive. Here, we isolated a rice mutant anther dehiscence defected 1 (Osadd1) that exhibited defects in anther dehiscence and glume open. Map-based cloning revealed that OsADD1 encoded a GARP (Golden2, ARR-B and Psr1) transcription factor. Sequence analysis showed that a single base deletion in Osadd1 mutant resulted in pre-termination of the GARP domain. OsADD1 was constitutively expressed in various tissues, with more abundance in the panicles. The major genes associated with anther dehiscence were affected in the Osadd1 mutant, and the expression level of the cellulose synthase-like D sub-family 4 (OsCSLD4) was significantly decreased. We demonstrate that OsADD1 regulated the expression of OsCSLD4 by binding to its promoter, and affects rice anther dehiscence.
Collapse
Affiliation(s)
- Yanjia Xiao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shimin You
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiyi Kong
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qianying Tang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenting Bai
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yue Cai
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hai Zheng
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chaolong Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ling Jiang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunming Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhigang Zhao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianmin Wan
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing, 100081, China.
| |
Collapse
|
50
|
Li Y, Yang Y, Liu Y, Li D, Zhao Y, Li Z, Liu Y, Jiang D, Li J, Zhou H, Chen J, Zhuang C, Liu Z. Overexpression of OsAGO1b Induces Adaxially Rolled Leaves by Affecting Leaf Abaxial Sclerenchymatous Cell Development in Rice. RICE (NEW YORK, N.Y.) 2019; 12:60. [PMID: 31396773 PMCID: PMC6687834 DOI: 10.1186/s12284-019-0323-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 08/02/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND ARGONAUTE 1 (AGO1) proteins can recruit small RNAs to regulate gene expression, involving several growth and development processes in Arabidopsis. Rice genome contains four AGO1 genes, OsAGO1a to OsAGO1d. However, the regulatory functions to rice growth and development of each AGO1 gene are still unknown. RESULTS We obtained overexpression and RNAi transgenic lines of each OsAGO1 gene. However, only up- and down-regulation of OsAGO1b caused multiple abnormal phenotypic changes in rice, indicating that OsAGO1b is the key player in rice growth and organ development compared with other three OsAGO1s. qRT-PCR assays showed that OsAGO1b was almost unanimously expressed in leaves at different developmental stages, and strongly expressed in spikelets at S1 to S3 stages. OsAGO1b is a typical AGO protein, and co-localized in both the nucleus and cytoplasm simultaneously. Overexpression of OsAGO1b caused adaxially rolled leaves and a series of abnormal phenotypes, such as the reduced tiller number and plant height. Knockdown lines of OsAGO1b showed almost normal leaves, but the seed setting percentage was significantly reduced accompanied by the disturbed anther patterning and reduced pollen fertility. Further anatomical observation revealed that OsAGO1b overexpression plants showed the partially defective development of sclerenchymatous cells on the abaxial side of leaves. In situ hybridization showed OsAGO1b mRNA was uniformly accumulated in P1 to P3 primordia without polarity property, suggesting OsAGO1b did not regulate the adaxial-abaxial polarity development directly. The expression levels of several genes related to leaf polarity development and vascular bundle differentiation were observably changed. Notably, the accumulation of miR166 and TAS3-siRNA was decreased, and their targeted OSHBs and OsARFs were significantly up-regulated. The mRNA distribution patterns of OSHB3 and OsARF4 in leaves remained almost unchanged between ZH11 and OsAGO1b overexpression lines, but their expression levels were enhanced at the regions of vascular bundles and sclerenchymatous cell differentiation. CONCLUSIONS In summary, we demonstrated OsAGO1b is the leading player among four OsAGO1s in rice growth and development. We propose that OsAGO1b may regulate the abaxial sclerenchymatous cell differentiation by affecting the expression of OSHBs in rice.
Collapse
Affiliation(s)
- Youhan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
- Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223 China
| | - Yiqi Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
| | - Ye Liu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223 China
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026 China
| | - Dexia Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
| | - Yahuan Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
| | - Zhijie Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
| | - Ying Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
| | - Dagang Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
| | - Jing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
| | - Hai Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
| | - Jianghua Chen
- Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223 China
| | - Chuxiong Zhuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
| | - Zhenlan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|