1
|
Farooq S, Lone ML, Ul Haq A, Parveen S, Altaf F, Tahir I. Signalling cascades choreographing petal cell death: implications for postharvest quality. PLANT MOLECULAR BIOLOGY 2024; 114:63. [PMID: 38805152 DOI: 10.1007/s11103-024-01449-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 04/01/2024] [Indexed: 05/29/2024]
Abstract
Senescence is a multifaceted and dynamic developmental phase pivotal in the plant's lifecycle, exerting significant influence and involving intricate regulatory mechanisms marked by a variety of structural, biochemical and molecular alterations. Biochemical changes, including reactive oxygen species (ROS) generation, membrane deterioration, nucleic acid degradation and protein degradation, characterize flower senescence. The progression of senescence entails a meticulously orchestrated network of interconnected molecular mechanisms and signalling pathways, ensuring its synchronized and efficient execution. Within flowering plants, petal senescence emerges as a crucial aspect significantly impacting flower longevity and postharvest quality, emphasizing the pressing necessity of unravelling the underlying signalling cascades orchestrating this process. Understanding the complex signalling pathways regulating petal senescence holds paramount importance, not only shedding light on the broader phenomenon of plant senescence but also paving the way for the development of targeted strategies to enhance the postharvest longevity of cut flowers. Various signalling pathways participate in petal senescence, encompassing hormone signalling, calcium signalling, protein kinase signalling and ROS signalling. Among these, the ethylene signalling pathway is extensively studied, and the manipulation of genes associated with ethylene biosynthesis or signal transduction has demonstrated the potential to enhance flower longevity. A thorough understanding of these complex pathways is critical for effectively delaying flower senescence, thereby enhancing postharvest quality and ornamental value. Therefore, this review adopts a viewpoint that combines fundamental research into the molecular intricacies of senescence with a practical orientation towards developing strategies for improving the postharvest quality of cut flowers. The innovation of this review is to shed light on the pivotal signalling cascades underpinning flower senescence and offer insights into potential approaches for modulating these pathways to postpone petal senescence in ornamental plants.
Collapse
Affiliation(s)
- Sumira Farooq
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, India
| | - Mohammad Lateef Lone
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, India
| | - Aehsan Ul Haq
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, India
| | - Shazia Parveen
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, India
| | - Foziya Altaf
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, India
| | - Inayatullah Tahir
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
2
|
Abasi F, Raja NI, Mashwani ZUR, Ehsan M, Ali H, Shahbaz M. Heat and Wheat: Adaptation strategies with respect to heat shock proteins and antioxidant potential; an era of climate change. Int J Biol Macromol 2024; 256:128379. [PMID: 38000583 DOI: 10.1016/j.ijbiomac.2023.128379] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
Extreme changes in weather including heat-wave and high-temperature fluctuations are predicted to increase in intensity and duration due to climate change. Wheat being a major staple crop is under severe threat of heat stress especially during the grain-filling stage. Widespread food insecurity underscores the critical need to comprehend crop responses to forthcoming climatic shifts, pivotal for devising adaptive strategies ensuring sustainable crop productivity. This review addresses insights concerning antioxidant, physiological, molecular impacts, tolerance mechanisms, and nanotechnology-based strategies and how wheat copes with heat stress at the reproductive stage. In this study stress resilience strategies were documented for sustainable grain production under heat stress at reproductive stage. Additionally, the mechanisms of heat resilience including gene expression, nanomaterials that trigger transcription factors, (HSPs) during stress, and physiological and antioxidant traits were explored. The most reliable method to improve plant resilience to heat stress must include nano-biotechnology-based strategies, such as the adoption of nano-fertilizers in climate-smart practices and the use of advanced molecular approaches. Notably, the novel resistance genes through advanced molecular approach and nanomaterials exhibit promise for incorporation into wheat cultivars, conferring resilience against imminent adverse environmental conditions. This review will help scientific communities in thermo-tolerance wheat cultivars and new emerging strategies to mitigate the deleterious impact of heat stress.
Collapse
Affiliation(s)
- Fozia Abasi
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan.
| | - Naveed Iqbal Raja
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan.
| | | | - Maria Ehsan
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Habib Ali
- Department of Agronomy, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Muhammad Shahbaz
- Institute for Tropical Biology and Conservation (ITBC), Universiti Malaysia Sabah, 88400 Kota Kinabalu, Malaysia
| |
Collapse
|
3
|
Rogers HJ. How far can omics go in unveiling the mechanisms of floral senescence? Biochem Soc Trans 2023; 51:1485-1493. [PMID: 37387359 PMCID: PMC10586764 DOI: 10.1042/bst20221097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023]
Abstract
Floral senescence is of fundamental interest in understanding plant developmental regulation, it is of ecological and agricultural interest in relation to seed production, and is of key importance to the production of cut flowers. The biochemical changes occurring are well-studied and involve macromolecular breakdown and remobilisation of nutrients to developing seeds or other young organs in the plant. However, the initiation and regulation of the process and inter-organ communication remain to be fully elucidated. Although ethylene emission, which becomes autocatalytic, is a key regulator in some species, in other species it appears not to be as important. Other plant growth regulators such as cytokinins, however, seem to be important in floral senescence across both ethylene sensitive and insensitive species. Other plant growth regulators are also likely involved. Omics approaches have provided a wealth of data especially in ornamental species where genome data is lacking. Two families of transcription factors: NAC and WRKY emerge as major regulators, and omics information has been critical in understanding their functions. Future progress would greatly benefit from a single model species for understanding floral senescence; however, this is challenging due to the diversity of regulatory mechanisms. Combining omics data sets can be powerful in understanding different layers of regulation, but in vitro biochemical and or genetic analysis through transgenics or mutants is still needed to fully verify mechanisms and interactions between regulators.
Collapse
|
4
|
Li Z, Ahammed GJ. Hormonal regulation of anthocyanin biosynthesis for improved stress tolerance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107835. [PMID: 37348389 DOI: 10.1016/j.plaphy.2023.107835] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
Due to unprecedented climate change, rapid industrialization and increasing use of agrochemicals, abiotic stress, such as drought, low temperature, high salinity and heavy metal pollution, has become an increasingly serious problem in global agriculture. Anthocyanins, an important plant pigment, are synthesized through the phenylpropanoid pathway and have a variety of physiological and ecological functions, providing multifunctional and effective protection for plants under stress. Foliar anthocyanin accumulation often occurs under abiotic stress including high light, cold, drought, salinity, nutrient deficiency and heavy metal stress, causing leaf reddening or purpling in many plant species. Anthocyanins are used as sunscreens and antioxidants to scavenge reactive oxygen species (ROS), as metal(loid) chelators to mitigate heavy metal stress, and as crucial molecules with a role in delaying leaf senescence. In addition to environmental factors, anthocyanin synthesis is affected by various endogenous factors. Plant hormones such as abscisic acid, jasmonic acid, ethylene and gibberellin have been shown to be involved in regulating anthocyanin synthesis either positively or negatively. Particularly when plants are under abiotic stress, several plant hormones can induce foliar anthocyanin synthesis to enhance plant stress resistance. In this review, we revisit the role of plant hormones in anthocyanin biosynthesis and the mechanism of plant hormone-mediated anthocyanin accumulation and abiotic stress tolerance. We conclude that enhancing anthocyanin content with plant hormones could be a prospective management strategy for improving plant stress resistance, but extensive further research is essentially needed to provide future guidance for practical crop production.
Collapse
Affiliation(s)
- Zhe Li
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China; Henan International Joint Laboratory of Stress Resistance Regulation and Safe Production of Protected Vegetables, Luoyang, 471023, PR China; Henan Engineering Technology Research Center for Horticultural Crop Safety and Disease Control, Luoyang, 471023, PR China.
| |
Collapse
|
5
|
Casey M, Marchioni I, Lear B, Cort AP, Baldwin A, Rogers HJ, Stead AD. Senescence in dahlia flowers is regulated by a complex interplay between flower age and floret position. FRONTIERS IN PLANT SCIENCE 2023; 13:1085933. [PMID: 36714770 PMCID: PMC9880482 DOI: 10.3389/fpls.2022.1085933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/14/2022] [Indexed: 06/18/2023]
Abstract
Mechanisms regulating flower senescence are not fully understood in any species and are particularly complex in composite flowers. Dahlia (Dahlia pinnata Cav.) florets develop sequentially, hence each composite flower head includes florets of different developmental stages as the whole flower head ages. Moreover, the wide range of available cultivars enables assessment of intraspecific variation. Transcriptomes were compared amongst inner (younger) and outer (older) florets of two flower head ages to assess the effect of floret vs. flower head ageing. More gene expression, including ethylene and cytokinin pathway expression changed between inner and outer florets of older flower heads than between inner florets of younger and older flower heads. Additionally, based on Arabidopsis network analysis, different patterns of co-expressed ethylene response genes were elicited. This suggests that changes occur in young inner florets as the whole flower head ages that are different to ageing florets within a flower head. In some species floral senescence is orchestrated by the plant growth regulator ethylene. However, there is both inter and intra-species variation in its importance. There is a lack of conclusive data regarding ethylene sensitivity in dahlia. Speed of senescence progression, effects of ethylene signalling perturbation, and patterns of ethylene biosynthesis gene expression differed across three dahlia cultivars ('Sylvia', 'Karma Prospero' and 'Onesta') suggesting differences in the role of ethylene in their floral senescence, while effects of exogenous cytokinin were less cultivar-specific.
Collapse
Affiliation(s)
- Matthew Casey
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, United Kingdom
| | - Ilaria Marchioni
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
- Dipartimento di Scienze Agrarie, Alimentari e Agro-alimentari, Università di Pisa, Pisa, Italy
| | - Bianca Lear
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, United Kingdom
| | - Alex P. Cort
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Ashley Baldwin
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Hilary J. Rogers
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Anthony D. Stead
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, United Kingdom
| |
Collapse
|
6
|
Abstract
Rapeseed (Brassica napus) is one of the most important oil crops worldwide. However, an intriguing new use for rapeseed has recently developed: as an ornamental. Tourism based on blossoming fields of these yellow flowers has become a new economic growth opportunity in China. From a breeding perspective, two main problems currently limit the potential of rapeseed as an ornamental. First, the flowering period is quite short (30 days on average), which limits economic income; second, the flower color in commercial cultivars is currently limited to bright yellow, which may pall quickly for sightseers. This review summarizes the possible problems of using rapeseed as an ornamental, and details factors affecting the flowering period, how the flowering period can be prolonged by integrating optimal cultivation measures or/and spraying with chemical reagents, and ways of creating and breeding rapeseed with diverse flower colors.
Collapse
|
7
|
Jing W, Zhao Q, Zhang S, Zeng D, Xu J, Zhou H, Wang F, Liu Y, Li Y. RhWRKY33 Positively Regulates Onset of Floral Senescence by Responding to Wounding- and Ethylene-Signaling in Rose Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:726797. [PMID: 34804083 PMCID: PMC8602865 DOI: 10.3389/fpls.2021.726797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Rose plants are one of the most important horticultural crops, whose commercial value mainly depends on long-distance transportation, and wounding and ethylene are the main factors leading to their quality decline and accelerated senescence in the process. However, underlying molecular mechanisms of crosstalk between wounding and ethylene in the regulation of flower senescence remain poorly understood. In relation to this, transcriptome analysis was performed on rose flowers subjected to various treatments, including control, wounding, ethylene, and wounding- and ethylene- (EW) dual treatment. A large number of differentially expressed genes (DEGs) were identified, ranging from 2,442 between the ethylene- and control-treated groups to 4,055 between the EW- and control-treated groups. Using weighted gene co-expression network analysis (WGCNA), we identified a hub gene RhWRKY33 (rchiobhmchr5g0071811), accumulated in the nucleus, where it may function as a transcription factor. Moreover, quantitative reverse transcription PCR (RT-qPCR) results showed that the expression of RhWRKY33 was higher in the wounding-, ethylene, and EW-treated petals than in the control-treated petals. We also functionally characterized the RhWRKY33 gene through virus-induced gene silencing (VIGS). The silencing of RhWRKY33 significantly delayed the senescence process in the different treatments (control, wounding, ethylene, and EW). Meanwhile, we found that the effect of RhWRKY33-silenced petals under ethylene and EW dual-treatment were stronger than those under wounding treatment in delaying the petal senescence process, implying that RhWRKY33 is closely involved with ethylene and wounding mediated petal senescence. Overall, the results indicate that RhWRKY33 positively regulates the onset of floral senescence mediated by both ethylene and wounding signaling, but relies heavily on ethylene signaling.
Collapse
Affiliation(s)
- Weikun Jing
- School of Food and Drug, Shenzhen Polytechnic, Shenzhen, China
- Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, China
| | - Qingcui Zhao
- School of Food and Drug, Shenzhen Polytechnic, Shenzhen, China
- Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, China
| | - Shuai Zhang
- School of Food and Drug, Shenzhen Polytechnic, Shenzhen, China
- Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, China
| | - Daxing Zeng
- School of Construction Engineering, Shenzhen Polytechnic, Shenzhen, China
| | - Jiehua Xu
- School of Construction Engineering, Shenzhen Polytechnic, Shenzhen, China
| | - Hougao Zhou
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Fenglan Wang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yang Liu
- School of Construction Engineering, Shenzhen Polytechnic, Shenzhen, China
| | - Yonghong Li
- School of Food and Drug, Shenzhen Polytechnic, Shenzhen, China
| |
Collapse
|
8
|
Zhong S, Sang L, Zhao Z, Deng Y, Liu H, Yu Y, Liu J. Phosphoproteome analysis reveals the involvement of protein dephosphorylation in ethylene-induced corolla senescence in petunia. BMC PLANT BIOLOGY 2021; 21:512. [PMID: 34732145 PMCID: PMC8565076 DOI: 10.1186/s12870-021-03286-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Senescence represents the last stage of flower development. Phosphorylation is the key posttranslational modification that regulates protein functions, and kinases may be more required than phosphatases during plant growth and development. However, little is known about global phosphorylation changes during flower senescence. RESULTS In this work, we quantitatively investigated the petunia phosphoproteome following ethylene or air treatment. In total, 2170 phosphosites in 1184 protein groups were identified, among which 2059 sites in 1124 proteins were quantified. To our surprise, treatment with ethylene resulted in 697 downregulated and only 117 upregulated phosphosites using a 1.5-fold threshold (FDR < 0.05), which showed that ethylene negatively regulates global phosphorylation levels and that phosphorylation of many proteins was not necessary during flower senescence. Phosphoproteome analysis showed that ethylene regulates ethylene and ABA signalling transduction pathways via phosphorylation levels. One of the major targets of ethylene-induced dephosphorylation is the plant mRNA splicing machinery, and ethylene treatment increases the number of alternative splicing events of precursor RNAs in petunia corollas. CONCLUSIONS Protein dephosphorylation could play an important role in ethylene-induced senescence, and ethylene treatment increased the number of AS precursor RNAs in petunia corollas.
Collapse
Affiliation(s)
- Shiwei Zhong
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642 China
- School of Landscape Architecture School of Tourism and Health, Zhejiang A & F University, Zhejiang, 311300 Hangzhou China
| | - Lina Sang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642 China
| | - Zhixia Zhao
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642 China
| | - Ying Deng
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642 China
| | - Haitao Liu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642 China
| | - Yixun Yu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642 China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642 China
| | - Juanxu Liu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642 China
- School of Landscape Architecture School of Tourism and Health, Zhejiang A & F University, Zhejiang, 311300 Hangzhou China
| |
Collapse
|
9
|
Chen WH, Jiang ZY, Hsu HF, Yang CH. Silencing of FOREVER YOUNG FLOWER-Like Genes from Phalaenopsis Orchids Promotes Flower Senescence and Abscission. PLANT & CELL PHYSIOLOGY 2021; 62:111-124. [PMID: 33237274 DOI: 10.1093/pcp/pcaa145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/10/2020] [Indexed: 06/11/2023]
Abstract
Ectopic expression of FOREVER YOUNG FLOWER (FYF) delays floral senescence and abscission in transgenic Arabidopsis. To analyze the FYF function in Phalaenopsis orchids, two FYF-like genes (PaFYF1/2) were identified. PaFYF1/2 were highly expressed in young Phalaenopsis flowers, and their expression decreased significantly afterward until flower senescence. This pattern was strongly correlated with the process of flower senescence and revealed that PaFYF1/2 function to suppress senescence/abscission during early flower development. Interestingly, in flowers, PaFYF1 was consistently expressed less in petals than in lips/sepals, whereas PaFYF2 was expressed relatively evenly in all flower organs. This difference suggests a regulatory modification of the functions of PaFYF1 and PaFYF2 during Phalaenopsis flower evolution. Delayed flower senescence and abscission, which were unaffected by ethylene treatment, were observed in 35S::PaFYF1/2 and 35S::PaFYF1/2 + SRDX transgenic Arabidopsis plants due to the downregulation of the ethylene signaling and abscission-associated genes EDF1-4, IDA and BOP1/2. These results suggest a possible repressor role for Phalaenopsis PaFYF1/2 in controlling floral senescence/abscission by suppressing ethylene signaling and abscission-associated genes. To further validate the function of PaFYF1/2, PaFYF1/2-VIGS (virus-induced gene silencing) Phalaenopsis were generated and analyzed. Promotion of senescence and abscission was observed in PaFYF1/2-VIGS Phalaenopsis flowers by the upregulation of PeEDF1/2, PeSAG39 and PeBOP1/2 expression, the early occurrence of greening according to their increased chlorophyll content and the reduction in water content in flower organs. Our results support that PaFYF1/2 function as transcriptional repressors to prohibit flower senescence and abscission in Phalaenopsis.
Collapse
Affiliation(s)
- Wei-Han Chen
- Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Zhi-Yi Jiang
- Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Hsing-Fun Hsu
- Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chang-Hsien Yang
- Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
10
|
Dani KGS, Fineschi S, Michelozzi M, Trivellini A, Pollastri S, Loreto F. Diversification of petal monoterpene profiles during floral development and senescence in wild roses: relationships among geraniol content, petal colour, and floral lifespan. Oecologia 2020; 197:957-969. [PMID: 32712874 PMCID: PMC8591013 DOI: 10.1007/s00442-020-04710-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 06/23/2020] [Indexed: 01/01/2023]
Abstract
Wild roses store and emit a large array of fragrant monoterpenes from their petals. Maximisation of fragrance coincides with floral maturation in many angiosperms, which enhances pollination efficiency, reduces floral predation, and improves plant fitness. We hypothesized that petal monoterpenes serve additional lifelong functions such as limiting metabolic damage from reactive oxygen species (ROS), and altering isoprenoid hormonal abundance to increase floral lifespan. Petal monoterpenes were quantified at three floral life-stages (unopened bud, open mature, and senescent) in 57 rose species and 16 subspecies originating from Asia, America, and Europe, and relationships among monoterpene richness, petal colour, ROS, hormones, and floral lifespan were analysed within a phylogenetic context. Three distinct types of petal monoterpene profiles, revealing significant developmental and functional differences, were identified: Type A, species where monoterpene abundance peaked in open mature flowers depleting thereafter; Type B, where monoterpenes peaked in senescing flowers increasing from bud stage, and a rare Type C (8 species) where monoterpenes depleted from bud stage to senescence. Cyclic monoterpenes peaked during early floral development, whereas acyclic monoterpenes (dominated by geraniol and its derivatives, often 100-fold more abundant than other monoterpenes) peaked during floral maturation in Type A and B roses. Early-diverging roses were geraniol-poor (often Type C) and white-petalled. Lifetime changes in hydrogen peroxide (H2O2) revealed a significant negative regression with the levels of petal geraniol at all floral life-stages. Geraniol-poor Type C roses also showed higher cytokinins (in buds) and abscisic acid (in mature petals), and significantly shorter floral lifespan compared with geraniol-rich Type A and B roses. We conclude that geraniol enrichment, intensification of petal colour, and lower potential for H2O2-related oxidative damage characterise and likely contribute to longer floral lifespan in monoterpene-rich wild roses.
Collapse
Affiliation(s)
- K G Srikanta Dani
- Institute for Sustainable Plant Protection, National Research Council of Italy, Via Madonna del Piano 10, Sesto Fiorentino, 50019, Florence, Italy. .,Department of Biology, Agriculture and Food Sciences, National Research Council of Italy, Piazzale Aldo Moro 7, 00185, Rome, Italy.
| | - Silvia Fineschi
- Institute of Heritage Science, National Research Council of Italy, Via Madonna del Piano 10, Sesto Fiorentino, 50019, Florence, Italy
| | - Marco Michelozzi
- Laboratory for the Analysis and Research in Environmental Chemistry, Institute of Biosciences and Bioresources, National Research Council of Italy, Via Madonna del Piano 10, Sesto Fiorentino, 50019, Florence, Italy
| | - Alice Trivellini
- Institute of Life Sciences, Scuola Superiore Sant'Anna, 56124, Pisa, Italy
| | - Susanna Pollastri
- Institute for Sustainable Plant Protection, National Research Council of Italy, Via Madonna del Piano 10, Sesto Fiorentino, 50019, Florence, Italy
| | - Francesco Loreto
- Department of Biology, Agriculture and Food Sciences, National Research Council of Italy, Piazzale Aldo Moro 7, 00185, Rome, Italy.
| |
Collapse
|
11
|
Jing D, Chen W, Xia Y, Shi M, Wang P, Wang S, Wu D, He Q, Liang G, Guo Q. Homeotic transformation from stamen to petal in Eriobotrya japonica is associated with hormone signal transduction and reduction of the transcriptional activity of EjAG. PHYSIOLOGIA PLANTARUM 2020; 168:893-908. [PMID: 31587280 DOI: 10.1111/ppl.13029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/18/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Double-flower loquat (Eriobotrya japonica) is a new germplasm with homeotic transformation of stamen into petal in whorl 3. However, little information is available on the molecular mechanism of this transformation. Herein, we analyzed the transcriptome, candidate genes and endogenous hormones to investigate the mechanisms underlying this homeotic transformation. Some transcription factors, such as MADS-box, TCP and MYB, were significantly differentially expressed. Importantly, we confirmed that one of these (DN39625_c0_g1), which encoded a C-class floral homeotic protein referred to as AGAMOUS ortholog (EjAG), was significantly downregulated. Subcellular localization of EjAG was found to be in the nucleus. Ectopic expression of EjAG rescued the development of stamens and carpels from the double-flower phenotype in an Arabidopsis ag mutant, suggesting that EjAG expression is associated with double-flower formation. Meanwhile, enrichment analyses showed that the differentially expressed genes (DEGs) were mainly involved in the metabolic pathways of hormone signal transduction. The DEGs of auxin, gibberellin A (GA) and cytokinin signaling pathways were mainly upregulated. However, the DEGs of abscisic acid (ABA) and the ethylene signaling pathway were mainly downregulated. Accordingly, the concentrations of indoleacetic acid, kinetin and GA3 were high at the petaloid stamen stage, but the ABA concentration remained low. The identified genes and pathways provide abundant sequence resources for studying the mechanisms underlying the homeotic transformation in loquat and other Rosaceae species.
Collapse
Affiliation(s)
- Danlong Jing
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, China
| | - Weiwei Chen
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, China
| | - Yan Xia
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Min Shi
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, China
| | - Peng Wang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, China
| | - Shuming Wang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, China
| | - Di Wu
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, China
| | - Qiao He
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Guolu Liang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, China
| | - Qigao Guo
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, China
| |
Collapse
|
12
|
Zhang S, Zhao Q, Zeng D, Xu J, Zhou H, Wang F, Ma N, Li Y. RhMYB108, an R2R3-MYB transcription factor, is involved in ethylene- and JA-induced petal senescence in rose plants. HORTICULTURE RESEARCH 2019; 6:131. [PMID: 31814984 PMCID: PMC6885062 DOI: 10.1038/s41438-019-0221-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/18/2019] [Accepted: 11/03/2019] [Indexed: 05/27/2023]
Abstract
Rose (Rosa hybrida) plants are major ornamental species worldwide, and their commercial value greatly depends on their open flowers, as both the quality of fully open petals and long vase life are important. Petal senescence can be started and accelerated by various hormone signals, and ethylene is considered an accelerator of petal senescence in rose. To date, however, the underlying mechanism of signaling crosstalk between ethylene and other hormones such as JA in petal senescence remains largely unknown. Here, we isolated RhMYB108, an R2R3-MYB transcription factor, which is highly expressed in senescing petals as well as in petals treated with exogenous ethylene and JA. Applications of exogenous ethylene and JA markedly accelerated petal senescence, while the process was delayed in response to applications of 1-MCP, an ethylene action inhibitor. In addition, silencing of RhMYB108 alter the expression of SAGs such as RhNAC029, RhNAC053, RhNAC092, RhSAG12, and RhSAG113, and finally block ethylene- and JA-induced petal senescence. Furthermore, RhMYB108 was identified to target the promoters of RhNAC053, RhNAC092, and RhSAG113. Our results reveal a model in which RhMYB108 functions as a receptor of ethylene and JA signals to modulate the onset of petal senescence by targeting and enhancing senescence-associated gene expression.
Collapse
Affiliation(s)
- Shuai Zhang
- School of Applied Chemistry and Biological Technology, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, Guangdong 518055 China
- Shenzhen Key Laboratory of Fermentation, Purification and Analysis, Shenzhen Polytechnic, Shenzhen, 518055 Guangdong China
| | - Qingcui Zhao
- School of Applied Chemistry and Biological Technology, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, Guangdong 518055 China
- Shenzhen Key Laboratory of Fermentation, Purification and Analysis, Shenzhen Polytechnic, Shenzhen, 518055 Guangdong China
| | - Daxing Zeng
- School of Applied Chemistry and Biological Technology, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, Guangdong 518055 China
- Shenzhen Key Laboratory of Fermentation, Purification and Analysis, Shenzhen Polytechnic, Shenzhen, 518055 Guangdong China
| | - Jiehua Xu
- School of Applied Chemistry and Biological Technology, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, Guangdong 518055 China
- Shenzhen Key Laboratory of Fermentation, Purification and Analysis, Shenzhen Polytechnic, Shenzhen, 518055 Guangdong China
| | - Hougao Zhou
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510642 China
| | - Fenglan Wang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510642 China
| | - Nan Ma
- China Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Yonghong Li
- School of Applied Chemistry and Biological Technology, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, Guangdong 518055 China
- Shenzhen Key Laboratory of Fermentation, Purification and Analysis, Shenzhen Polytechnic, Shenzhen, 518055 Guangdong China
| |
Collapse
|
13
|
Khaskheli AJ, Ahmed W, Ma C, Zhang S, Liu Y, Li Y, Zhou X, Gao J. RhERF113 Functions in Ethylene-Induced Petal Senescence by Modulating Cytokinin Content in Rose. PLANT & CELL PHYSIOLOGY 2018; 59:2442-2451. [PMID: 30101287 DOI: 10.1093/pcp/pcy162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 08/05/2018] [Indexed: 05/21/2023]
Abstract
In rose (Rosa hybrida), flower senescence is accelerated by ethylene and delayed by cytokinins (CTKs). However, the effectors that regulate these processes are not currently understood. In this study, we identified an APETALA2/ethylene-responsive factor (AP2/ERF) gene, RhERF113, which was induced by ethylene and up-regulated during flower senescence in most floral organs, including sepal, petal, stamen and pistil. The virus-induced gene silencing (VIGS) of RhERF113 expression accelerated rose flower senescence, which was accompanied by a lower CTK content in the flowers. This accelerated senescence could be restored by exogenous CTK treatment. Moreover, the expression levels of genes related to CTK biosynthesis and signaling, including ISOPENTENYL TRANSFERASE 5 (RhIPT5), RhIPT8, HISTIDINE KINASE 2 (RhHK2), RhHK3, CYTOKININ RESPONSE REGULATOR 3 (RhCRR3), RhCRR5, RhCRR8, HOMEOBOX PROTEIN 6 (RhHB6) and PATHOGENESIS-RELATED 10.1 (RhPR10.1), were decreased in the RhERF113-silenced rose flowers. Taken together, our results demonstrate that RhERF113 delays ethylene-induced flower senescence by increasing the CTK content of the floral tissues.
Collapse
Affiliation(s)
- Allah Jurio Khaskheli
- Department of Ornamental Horticulture, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, China
| | - Waqas Ahmed
- Department of Ornamental Horticulture, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, China
| | - Chao Ma
- Department of Ornamental Horticulture, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, China
| | - Shuai Zhang
- Department of Ornamental Horticulture, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, China
| | - Yanyan Liu
- Department of Ornamental Horticulture, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, China
| | - Yuqi Li
- Department of Ornamental Horticulture, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, China
| | - Xiaofeng Zhou
- Department of Ornamental Horticulture, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, China
| | - Junping Gao
- Department of Ornamental Horticulture, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, China
| |
Collapse
|
14
|
Ahmad SS, Tahir I, Wani AS, Dar RA, Nisar S. Adenine type and diphenyl urea derived cytokinins improve the postharvest performance of Iris germanica L. cut scapes. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:1127-1137. [PMID: 30425429 PMCID: PMC6214446 DOI: 10.1007/s12298-018-0554-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 04/21/2018] [Accepted: 05/21/2018] [Indexed: 06/09/2023]
Abstract
An experiment was designed to evaluate the effect of various adenine derived cytokinins (kinetin and 6-benzylaminopurine) and diphenyl urea cytokinin (thidiazuron) on the postharvest performance of cut scapes of Iris germanica. Flower scapes were harvested with the oldest bud at '1 day before anthesis stage', brought to laboratory under water, cut to a uniform length of 35 cm, divided into three sets viz., kinetin (KIN), 6-benzyl aminopurine (BAP) and thidiazuron (TDZ). Each set of scapes was treated with a particular cytokinin alone or in combination with 0.1 M sucrose. TDZ was effective than KIN and BAP in improving the postharvest life of the I. germanica scapes by 5.4 days as compared to the control (untreated scapes held in distilled water). This was because of the minimum percentage of bud abortion by TDZ application. Cytokinin application resulted in increased antioxidant activity, higher protein and phenolic content, besides a decrease in specific protease activity and α-amino acids in the tepal tissues. Application of TDZ resulted in the maximum increase in the superoxide dismutase, catalase and ascorbate peroxidase activity in the tepal tissues. The scapes treated with BAP and KIN maintained higher carbohydrate content in the tissue samples as compared to control and TDZ treated scapes. TDZ and BAP application resulted in increased membrane stability because of the decreased lipoxygenase activity which prevented membrane lipid peroxidation. Among the cytokinins tested, TDZ proved to be the promising cytokinin in improving the postharvest performance of beautiful flowers of I. germanica scapes.
Collapse
Affiliation(s)
- Syed Sabhi Ahmad
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006 India
| | - Inayatullah Tahir
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006 India
| | - Arif Shafi Wani
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006 India
| | - Riyaz Ahmad Dar
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006 India
| | - Shaziya Nisar
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006 India
| |
Collapse
|
15
|
Ma N, Ma C, Liu Y, Shahid MO, Wang C, Gao J. Petal senescence: a hormone view. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:719-732. [PMID: 29425359 DOI: 10.1093/jxb/ery009] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Indexed: 05/20/2023]
Abstract
Flowers are highly complex organs that have evolved to enhance the reproductive success of angiosperms. As a key component of flowers, petals play a vital role in attracting pollinators and ensuring successful pollination. Having fulfilled this function, petals senesce through a process that involves many physiological and biochemical changes that also occur during leaf senescence. However, petal senescence is distinct, due to the abundance of secondary metabolites in petals and the fact that petal senescence is irreversible. Various phytohormones are involved in regulating petal senescence, and are thought to act both synergistically and antagonistically. In this regard, there appears to be developmental point during which such regulatory signals are sensed and senescence is initiated. Here, we review current understanding of petal senescence, and discuss associated regulatory mechanisms involving hormone interactions and epigenetic regulation.
Collapse
Affiliation(s)
- Nan Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Chao Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Yang Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Muhammad Owais Shahid
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Chengpeng Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
16
|
Wang H, Chang X, Lin J, Chang Y, Chen JC, Reid MS, Jiang CZ. Transcriptome profiling reveals regulatory mechanisms underlying corolla senescence in petunia. HORTICULTURE RESEARCH 2018; 5:16. [PMID: 29619227 PMCID: PMC5878830 DOI: 10.1038/s41438-018-0018-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 01/09/2018] [Accepted: 01/12/2018] [Indexed: 05/08/2023]
Abstract
The genetic regulatory mechanisms that govern natural corolla senescence in petunia are not well understood. To identify key genes and pathways that regulate the process, we performed a transcriptome analysis in petunia corolla at four developmental stages, including corolla fully opening without anther dehiscence (D0), corolla expansion, 2 days after anthesis (D2), corolla with initial signs of senescence (D4), and wilting corolla (D7). We identified large numbers of differentially expressed genes (DEGs), ranging from 4626 between the transition from D0 and D2, 1116 between D2 and D4, a transition to the onset of flower senescence, and 327 between D4 and D7, a developmental stage representing flower senescence. KEGG analysis showed that the auxin- and ethylene-related hormone biosynthesis and signaling transduction pathways were significantly activated during the flower development and highly upregulated at onset of flower senescence. Ethylene emission was detected at the D2 to D4 transition, followed by a large eruption at the D4 to D7 transition. Furthermore, large numbers of transcription factors (TFs) were activated over the course of senescence. Functional analysis by virus-induced gene silencing (VIGS) experiments demonstrated that inhibition of the expression of TFs, such as ethylene-related ERF, auxin-related ARF, bHLH, HB, and MADS-box, significantly extended or shortened flower longevity. Our data suggest that hormonal interaction between auxin and ethylene may play critical regulatory roles in the onset of natural corolla senescence in petunia.
Collapse
Affiliation(s)
- Hong Wang
- Institute of Pomology/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, China
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616 USA
| | - XiaoXiao Chang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Science, 510640 Guangzhou, China
| | - Jing Lin
- Institute of Pomology/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, China
| | - Youhong Chang
- Institute of Pomology/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, China
| | - Jen-Chih Chen
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616 USA
- Institute of Biotechnology, National Taiwan University, 10617 Taipei, Taiwan
| | - Michael S. Reid
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616 USA
| | - Cai-Zhong Jiang
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616 USA
- United States Department of Agriculture, Crops Pathology and Genetics Research Unit, Agricultural Research Service, Davis, CA 95616 USA
| |
Collapse
|
17
|
Abstract
As a representative form of plant senescence, leaf senescence has received the most attention during the last two decades. In this chapter we summarize the initiation of leaf senescence by various internal and external signals, the progression of senescence including switches in gene expression, as well as changes at the biochemical and cellular levels during leaf senescence. Impacts of leaf senescence in agriculture and genetic approaches that have been used in manipulating leaf senescence of crop plants are discussed.
Collapse
Affiliation(s)
- Akhtar Ali
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China.,Nuclear Institute for Food and Agriculture, Peshawar, Pakistan
| | - Xiaoming Gao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China.
| |
Collapse
|
18
|
Iqbal N, Khan NA, Ferrante A, Trivellini A, Francini A, Khan MIR. Ethylene Role in Plant Growth, Development and Senescence: Interaction with Other Phytohormones. FRONTIERS IN PLANT SCIENCE 2017; 8:475. [PMID: 28421102 PMCID: PMC5378820 DOI: 10.3389/fpls.2017.00475] [Citation(s) in RCA: 350] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 03/17/2017] [Indexed: 05/18/2023]
Abstract
The complex juvenile/maturity transition during a plant's life cycle includes growth, reproduction, and senescence of its fundamental organs: leaves, flowers, and fruits. Growth and senescence of leaves, flowers, and fruits involve several genetic networks where the phytohormone ethylene plays a key role, together with other hormones, integrating different signals and allowing the onset of conditions favorable for stage progression, reproductive success and organ longevity. Changes in ethylene level, its perception, and the hormonal crosstalk directly or indirectly regulate the lifespan of plants. The present review focused on ethylene's role in the development and senescence processes in leaves, flowers and fruits, paying special attention to the complex networks of ethylene crosstalk with other hormones. Moreover, aspects with limited information have been highlighted for future research, extending our understanding on the importance of ethylene during growth and senescence and boosting future research with the aim to improve the qualitative and quantitative traits of crops.
Collapse
Affiliation(s)
| | - Nafees A. Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim UniversityAligarh, India
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences, Università degli Studi di MilanoMilano, Italy
| | - Alice Trivellini
- Institute of Life Sciences, Scuola Superiore Sant’AnnaPisa, Italy
| | | | - M. I. R. Khan
- Crop and Environmental Sciences Division, International Rice Research InstituteManila, Philippines
| |
Collapse
|
19
|
Trivellini A, Cocetta G, Hunter DA, Vernieri P, Ferrante A. Spatial and temporal transcriptome changes occurring during flower opening and senescence of the ephemeral hibiscus flower, Hibiscus rosa-sinensis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5919-5931. [PMID: 27591432 PMCID: PMC5091337 DOI: 10.1093/jxb/erw295] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Flowers are complex systems whose vegetative and sexual structures initiate and die in a synchronous manner. The rapidity of this process varies widely in flowers, with some lasting for months while others such as Hibiscus rosa-sinensis survive for only a day. The genetic regulation underlying these differences is unclear. To identify key genes and pathways that coordinate floral organ senescence of ephemeral flowers, we identified transcripts in H. rosa-sinensis floral organs by 454 sequencing. During development, 2053 transcripts increased and 2135 decreased significantly in abundance. The senescence of the flower was associated with increased abundance of many hydrolytic genes, including aspartic and cysteine proteases, vacuolar processing enzymes, and nucleases. Pathway analysis suggested that transcripts altering significantly in abundance were enriched in functions related to cell wall-, aquaporin-, light/circadian clock-, autophagy-, and calcium-related genes. Finding enrichment in light/circadian clock-related genes fits well with the observation that hibiscus floral development is highly synchronized with light and the hypothesis that ageing/senescence of the flower is orchestrated by a molecular clock. Further study of these genes will provide novel insight into how the molecular clock is able to regulate the timing of programmed cell death in tissues.
Collapse
Affiliation(s)
- Alice Trivellini
- Institute of Life Science, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Giacomo Cocetta
- Department of Agricultural and Environmental Sciences, Università degli Studi Milano, Milan, Italy
| | - Donald A Hunter
- The New Zealand Institute for Plant & Food Research Limited, Palmerston North, New Zealand
| | - Paolo Vernieri
- Department of Agriculture, Food and Environment, Università degli Studi di Pisa, Pisa, Italy
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences, Università degli Studi Milano, Milan, Italy
| |
Collapse
|
20
|
Maita S, Sotomayor C. The effect of three plant bioregulators on pollen germination, pollen tube growth and fruit set in almond [Prunus dulcis (Mill.) D.A. Webb] cvs. Non Pareil and Carmel. ELECTRON J BIOTECHN 2015. [DOI: 10.1016/j.ejbt.2015.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
21
|
Khan MIR, Trivellini A, Fatma M, Masood A, Francini A, Iqbal N, Ferrante A, Khan NA. Role of ethylene in responses of plants to nitrogen availability. FRONTIERS IN PLANT SCIENCE 2015; 6:927. [PMID: 26579172 PMCID: PMC4626634 DOI: 10.3389/fpls.2015.00927] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/14/2015] [Indexed: 05/05/2023]
Abstract
Ethylene is a plant hormone involved in several physiological processes and regulates the plant development during the whole life. Stressful conditions usually activate ethylene biosynthesis and signaling in plants. The availability of nutrients, shortage or excess, influences plant metabolism and ethylene plays an important role in plant adaptation under suboptimal conditions. Among the plant nutrients, the nitrogen (N) is one the most important mineral element required for plant growth and development. The availability of N significantly influences plant metabolism, including ethylene biology. The interaction between ethylene and N affects several physiological processes such as leaf gas exchanges, roots architecture, leaf, fruits, and flowers development. Low plant N use efficiency (NUE) leads to N loss and N deprivation, which affect ethylene biosynthesis and tissues sensitivity, inducing cell damage and ultimately lysis. Plants may respond differently to N availability balancing ethylene production through its signaling network. This review discusses the recent advances in the interaction between N availability and ethylene at whole plant and different organ levels, and explores how N availability induces ethylene biology and plant responses. Exogenously applied ethylene seems to cope the stress conditions and improves plant physiological performance. This can be explained considering the expression of ethylene biosynthesis and signaling genes under different N availability. A greater understanding of the regulation of N by means of ethylene modulation may help to increase NUE and directly influence crop productivity under conditions of limited N availability, leading to positive effects on the environment. Moreover, efforts should be focused on the effect of N deficiency or excess in fruit trees, where ethylene can have detrimental effects especially during postharvest.
Collapse
Affiliation(s)
- M. I. R. Khan
- Department of Botany, Aligarh Muslim UniversityAligarh, India
| | - Alice Trivellini
- Institute of Life Sciences, Scuola Superiore Sant’AnnaPisa, Italy
| | - Mehar Fatma
- Department of Botany, Aligarh Muslim UniversityAligarh, India
| | - Asim Masood
- Department of Botany, Aligarh Muslim UniversityAligarh, India
| | | | - Noushina Iqbal
- Department of Botany, Jamia Hamdard University New Delhi, India
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences, Università degli Studi di MilanoMilan, Italy
| | - Nafees A. Khan
- Department of Botany, Aligarh Muslim UniversityAligarh, India
- *Correspondence: Nafees A. Khan,
| |
Collapse
|