1
|
Ullah R, Farias J, Feyissa BA, Tsui MTK, Chow A, Williams C, Karanfil T, Ligaba-Osena A. Combined effects of polyamide microplastic and sulfamethoxazole in modulating the growth and transcriptome profile of hydroponically grown rice (Oryza sativa L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175909. [PMID: 39233070 DOI: 10.1016/j.scitotenv.2024.175909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
The use of reclaimed water from wastewater treatment plants for irrigation has a risk of introducing micropollutants such as microplastics (MPs) and antimicrobials (AMs) into the agroecosystem. This study was conducted to investigate the effects of single and combined treatment of 0.1 % polyamide (PA ∼15 μm), and varying sulfamethoxazole (SMX) levels 0, 10, 50, and 150 mg/L on rice seedlings (Oryza sativa L.) for 12 days. The study aimed to assess the impact of these contaminants on the morphological, physiological, and biochemical parameters of the rice plants. The findings revealed that rice seedlings were not sensitive to PA alone. However, SMX alone or in combination with PA, significantly inhibited shoot and root growth, total biomass, and affected photosynthetic pigments. Higher concentrations of SMX increased antioxidant enzyme activity, indicating oxidative stress. The roots had a higher SMX content than the shoots, and the concentration of minerals such as iron, copper, and magnesium were reduced in roots treated with SMX. RNA-seq analysis showed changes in the expression of genes related to stress, metabolism, and transport in response to the micropollutants. Overall, this study provides valuable insights on the combined impacts of MPs and AMs on food crops, the environment, and human health in future risk assessments and management strategies in using reclaimed water.
Collapse
Affiliation(s)
- Raza Ullah
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27402, USA
| | - Julia Farias
- USDA-ARS, US Arid Land Agricultural Research Center, 21881 N. Cardon Ln, Maricopa, AZ 85138, USA
| | | | - Martin Tsz-Ki Tsui
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27402, USA; School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, Shatin, New Territories, China; Earth and Environmental Sciences Program, The Chinese University of Hong Kong, Hong Kong SAR, Shatin, China
| | - Alex Chow
- Earth and Environmental Sciences Program, The Chinese University of Hong Kong, Hong Kong SAR, Shatin, China
| | - Clinton Williams
- USDA-ARS, US Arid Land Agricultural Research Center, 21881 N. Cardon Ln, Maricopa, AZ 85138, USA
| | - Tanju Karanfil
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA
| | - Ayalew Ligaba-Osena
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27402, USA.
| |
Collapse
|
2
|
Yu X, Huang Z, Cheng Y, Hu K, Zhou Y, Yao H, Shen J, Huang Y, Zhuang X, Cai Y. Comparative Genomics Screens Identify a Novel Small Secretory Peptide, SlSolP12, which Activates Both Local and Systemic Immune Response in Tomatoes and Exhibits Broad-Spectrum Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18507-18519. [PMID: 39113497 DOI: 10.1021/acs.jafc.4c03633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Small secreted peptides (SSPs) are essential for defense mechanisms in plant-microbe interactions, acting as danger-associated molecular patterns (DAMPs). Despite the first discovery of SSPs over three decades ago, only a limited number of SSP families, particularly within Solanaceae plants, have been identified due to inefficient approaches. This study employed comparative genomics screens with Solanaceae proteomes (tomato, tobacco, and pepper) to discover a novel SSP family, SolP. Bioinformatics analysis suggests that SolP may serve as an endogenous signal initiating the plant PTI response. Interestingly, SolP family members from tomato, tobacco, and pepper share an identical sequence (VTSNALALVNRFAD), named SlSolP12 (also referred to as NtSolP15 or CaSolP1). Biochemical and phenotypic analyses revealed that synthetic SlSolP12 peptide triggers multiple defense responses: ROS burst, MAPK activation, callose deposition, stomatal closure, and expression of immune defense genes. Furthermore, SlSolP12 enhances systemic resistance against Botrytis cinerea infection in tomato plants and interferes with classical peptides, flg22 and Systemin, which modulate the immune response. Remarkably, SolP12 activates ROS in diverse plant species, such as Arabidopsis thaliana, soybean, and rice, showing a broad spectrum of biological activities. This study provides valuable approaches for identifying endogenous SSPs and highlights SlSolP12 as a novel DAMP that could serve as a useful target for crop protection.
Collapse
Affiliation(s)
- Xiaosong Yu
- College of Life Sciences, Sichuan Agricultural University, Yaan 625000, Sichuan, China
| | - Zhongchao Huang
- College of Life Sciences, Sichuan Agricultural University, Yaan 625000, Sichuan, China
| | - Yuanyuan Cheng
- College of Life Sciences, Sichuan Agricultural University, Yaan 625000, Sichuan, China
| | - Keyi Hu
- College of Life Sciences, Sichuan Agricultural University, Yaan 625000, Sichuan, China
| | - Yan Zhou
- Chengdu Lusyno Biotechnology Co., Ltd., Chengdu 610000, Sichuan, China
| | - Huipeng Yao
- College of Life Sciences, Sichuan Agricultural University, Yaan 625000, Sichuan, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 310000, Zhejiang, China
| | - Yan Huang
- College of Life Sciences, Sichuan Agricultural University, Yaan 625000, Sichuan, China
| | - Xiaohong Zhuang
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Yi Cai
- College of Life Sciences, Sichuan Agricultural University, Yaan 625000, Sichuan, China
| |
Collapse
|
3
|
Li J, Huang Y, Yu X, Wu Q, Man X, Diao Z, You H, Shen J, Cai Y. Identification and Application of CLE Peptides for Drought Resistance in Solanaceae Crops. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38836320 DOI: 10.1021/acs.jafc.4c03684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The CLE (CLAVATA3/Embryo Surrounding Region-related) family, a group of peptides with hormone-like features, plays a pivotal role in plant growth, development, and adaptation to stress. Through homology-based blast analysis of 32 Arabidopsis thaliana CLE peptide sequences, we have identified 5, 14, and 10 CLE family members in Nicotiana tabacum, Capsicum annuum, and Solanum melongena, respectively. Chemical synthesis and functional assays of the peptides led to the discovery that NtCLE3 substantially enhances the drought resistance of these three Solanaceae crops. Our transcriptome, RT-qPCR, and antioxidant enzyme activity data showed that NtCLE3 increased antioxidant capacity and ABA synthesis in tobacco. Moreover, the recombinant protein RPNtCLE3, composed of 6*NtCLE3, preserved the capacity to foster drought resilience and proved to be a promising drought resistance regulator, which presents a more favorable alternative for field applications compared to ABA which degrades rapidly under sunlight exposure. This research unveils the prospective utility of NtCLE3 in enhancing drought tolerance in Solanaceae crops and provides new ideas for the development of novel bioregulators aimed at mitigating drought stress.
Collapse
Affiliation(s)
- Junhao Li
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Yan Huang
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Xiaosong Yu
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Qiqi Wu
- Chengdu Lusyno Biotechnology Co., Ltd., Chengdu 610213, PR China
| | - Xiaxia Man
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Zhihong Diao
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Huang You
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Yi Cai
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| |
Collapse
|
4
|
Geng A, Lian W, Wang Y, Liu M, Zhang Y, Wang X, Chen G. Molecular Mechanisms and Regulatory Pathways Underlying Drought Stress Response in Rice. Int J Mol Sci 2024; 25:1185. [PMID: 38256261 PMCID: PMC10817035 DOI: 10.3390/ijms25021185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Rice is a staple food for 350 million people globally. Its yield thus affects global food security. Drought is a serious environmental factor affecting rice growth. Alleviating the inhibition of drought stress is thus an urgent challenge that should be solved to enhance rice growth and yield. This review details the effects of drought on rice morphology, physiology, biochemistry, and the genes associated with drought stress response, their biological functions, and molecular regulatory pathways. The review further highlights the main future research directions to collectively provide theoretical support and reference for improving drought stress adaptation mechanisms and breeding new drought-resistant rice varieties.
Collapse
Affiliation(s)
- Anjing Geng
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Wenli Lian
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Yihan Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Minghao Liu
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Yue Zhang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Guang Chen
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| |
Collapse
|
5
|
Feng YZ, Zhu QF, Xue J, Chen P, Yu Y. Shining in the dark: the big world of small peptides in plants. ABIOTECH 2023; 4:238-256. [PMID: 37970469 PMCID: PMC10638237 DOI: 10.1007/s42994-023-00100-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/24/2023] [Indexed: 11/17/2023]
Abstract
Small peptides represent a subset of dark matter in plant proteomes. Through differential expression patterns and modes of action, small peptides act as important regulators of plant growth and development. Over the past 20 years, many small peptides have been identified due to technical advances in genome sequencing, bioinformatics, and chemical biology. In this article, we summarize the classification of plant small peptides and experimental strategies used to identify them as well as their potential use in agronomic breeding. We review the biological functions and molecular mechanisms of small peptides in plants, discuss current problems in small peptide research and highlight future research directions in this field. Our review provides crucial insight into small peptides in plants and will contribute to a better understanding of their potential roles in biotechnology and agriculture.
Collapse
Affiliation(s)
- Yan-Zhao Feng
- Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Qing-Feng Zhu
- Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Jiao Xue
- Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Pei Chen
- Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Yang Yu
- Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| |
Collapse
|
6
|
Urmi TA, Islam MM, Zumur KN, Abedin MA, Haque MM, Siddiqui MH, Murata Y, Hoque MA. Combined Effect of Salicylic Acid and Proline Mitigates Drought Stress in Rice ( Oryza sativa L.) through the Modulation of Physiological Attributes and Antioxidant Enzymes. Antioxidants (Basel) 2023; 12:1438. [PMID: 37507977 PMCID: PMC10375981 DOI: 10.3390/antiox12071438] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Salicylic acid (SA) and proline exhibit protective effects against a wide range of stresses. However, the combined impact of SA and proline on rice under drought stress is still unknown. Therefore, we investigated the protective roles of SA and/or proline in conferring drought tolerance in rice. There were eight treatments comprising the control (T1; 95-100% FC), 1.5 mM SA (T2), 2 mM proline (T3), 0.75 mM SA + 1 mM proline (T4), 45-50% FC (T5, drought stress), T5 + 1.5 mM SA (T6), T5 + 2 mM proline (T7), and T5 + 0.75 mM SA + 1 mM proline (T8), and two rice varieties: BRRI dhan66 and BRRI dhan75. Drought stress significantly decreased the plant growth, biomass, yield attributes, photosynthetic rate (Pn), stomatal conductance (gs), transpiration rate (Tr), photosynthetic pigments (chlorophyll and carotenoids content), relative water content (RWC), membrane stability index (MSI), soluble sugar and starch content, and uptake of N, P and K+ in roots and shoots. Drought-induced oxidative stress in the form of increased hydrogen peroxide (H2O2) production and lipid peroxidation (MDA) was observed. The combined application of SA (0.75 mM) + proline (1 mM) was found to be more effective than the single application of either for drought stress mitigation in rice. A combined dose of SA + proline alleviated oxidative stress through boosting antioxidant enzymatic activity in contrast to their separate application. The application of SA + proline also enhanced proline, soluble sugar and starch content, which resulted in the amelioration of osmotic stress. Consequently, the combined application of SA and proline significantly increased the gas exchange characteristics, photosynthetic pigments, RWC, MSI, nutrient uptake, plant growth, biomass and yield of rice. Therefore, the combined application of SA and proline alleviated the detrimental impacts of drought stress more pronouncedly than their separate application did by increasing osmoprotectants, improving nutrient transport, up-regulating antioxidant enzyme activity and inhibiting oxidative stress.
Collapse
Affiliation(s)
- Tahmina Akter Urmi
- Department of Soil Science, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Moshiul Islam
- Department of Agronomy, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 1-1-1 Tsushima-Naka, Okayama 700-8530, Japan
| | - Kamrun Naher Zumur
- Department of Agronomy, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Md Anwarul Abedin
- Department of Soil Science, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - M Moynul Haque
- Department of Agronomy, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yoshiyuki Murata
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 1-1-1 Tsushima-Naka, Okayama 700-8530, Japan
| | - Md Anamul Hoque
- Department of Soil Science, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| |
Collapse
|
7
|
Ding Q, Liu H, Lin R, Wang Z, Jian S, Zhang M. Genome-wide functional characterization of Canavalia rosea cysteine-rich trans-membrane module (CrCYSTM) genes to reveal their potential protective roles under extreme abiotic stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107786. [PMID: 37257408 DOI: 10.1016/j.plaphy.2023.107786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023]
Abstract
Cysteine-rich transmembrane module (CYSTM) proteins constitute small molecular protein families and have been identified across eukaryotes, including yeast, humans, and several plant species. Plant CYSTMs play vital roles in growth regulation, development, phytohormone signal transduction, pathogen defense, environmental stress response, and even heavy metal binding and detoxification. Canavalia rosea (Sw.) DC is a perennial halophyte with great semi-arid and saline-alkali tolerance. In this study, the CrCYSTM family including 10 members were identified in the C. rosea genome, with the purpose of clarifying the possible roles of CrCYSTMs in C. rosea plants development and stress resistance. The phylogenetic relationships, exon-intron structure, domain structure, chromosomal localization, and putative cis-acting elements in promoter regions were predicted and analyzed. Transcriptome analysis combined with quantitative reverse transcription PCR showed that different CrCYSTM members exhibited varied expression patterns in different tissues and under different abiotic stress challenges. In addition, several CrCYSTMs were cloned and functionally characterized for their roles in abiotic stress tolerance with yeast expression system. Overall, these findings provide a foundation for functionally characterizing plant CYSTMs to unravel their possible roles in the adaptation of C. rosea to tropical coral reefs. Our results also lay the foundation for further research on the roles of plant CYSTM genes in abiotic stress signaling, especially for heavy metal detoxification.
Collapse
Affiliation(s)
- Qianqian Ding
- Guangdong Provincial Key Laboratory of Applied Botany&South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of the Chinese Academy of Sciences, Beijing, 100039, China
| | - Hao Liu
- Guangdong Provincial Key Laboratory of Applied Botany&South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of the Chinese Academy of Sciences, Beijing, 100039, China
| | - Ruoyi Lin
- Guangdong Provincial Key Laboratory of Applied Botany&South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of the Chinese Academy of Sciences, Beijing, 100039, China; Dongguan Research Institute of Forestry/Forest Ecosystem Research Station in City Cluster of the Pearl River Estuary, Dongguan, 523106, China
| | - Zhengfeng Wang
- Guangdong Provincial Key Laboratory of Applied Botany&South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems&Carbon Sequestration in Terrestrial Ecosystem, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Shuguang Jian
- Guangdong Provincial Key Laboratory of Applied Botany&South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems&Carbon Sequestration in Terrestrial Ecosystem, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Mei Zhang
- Guangdong Provincial Key Laboratory of Applied Botany&South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
8
|
Zhang C, Li M, Rey JD, Feng T, Lafitte R, Zheng T, Lv Y, Wu F, Fu B, Xu J, Zhang F, Zeng W, Liu E, Ali J, Wang W, Li Z. Simultaneous improvement and genetic dissection of drought and submergence tolerances in rice ( Oryza sativa L.) by selective introgression. FRONTIERS IN PLANT SCIENCE 2023; 14:1134450. [PMID: 37180379 PMCID: PMC10172858 DOI: 10.3389/fpls.2023.1134450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/27/2023] [Indexed: 05/16/2023]
Abstract
Introduction Drought and submergence are contrasting abiotic stresses that often occur in the same rice crop season and cause complete crop failure in many rain-fed lowland areas of Asia. Methods To develop rice varieties with good tolerances to drought and submergence, 260 introgression lines (ILs) selected for drought tolerance (DT) from nine BC2 populations were screened for submergence tolerance (ST), resulting in 124 ILs with significantly improved ST. Results Genetic characterization of the 260 ILs with DNA markers identified 59 DT quantitative trait loci (QTLs) and 68 ST QTLs with an average 55% of the identified QTLs associated with both DT and ST. Approximately 50% of the DT QTLs showed 'epigenetic' segregation with very high donor introgression and/or loss of heterozygosity (LOH). Detailed comparison of the ST QTLs identified in ILs selected only for ST with ST QTLs detected in the DT-ST selected ILs of the same populations revealed three groups of QTLs underlying the relationship between DT and ST in rice: a) QTLs with pleiotropic effects on both DT and ST; b) QTLs with opposite effects on DT and ST; and c) QTLs with independent effects on DT and ST. Combined evidence identified most likely candidate genes for eight major QTLs affecting both DT and ST. Moreover, group b QTLs were involved in the Sub1regulated pathway that were negatively associated with most group aQTLs. Discussion These results were consistent with the current knowledge that DT and ST in rice are controlled by complex cross-talks between or among different phytohormone-mediated signaling pathways. Again, the results demonstrated that the strategy of selective introgression was powerful and efficient for simultaneous improvement and genetic dissection of multiple complex traits, including DT and ST.
Collapse
Affiliation(s)
- Chaopu Zhang
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Min Li
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Jessica Domingo Rey
- International Rice Research Institute, Manila, Philippines
- Institute of Biology, College of Science, UP Diliman, Philippines
| | - Ting Feng
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Renee Lafitte
- International Rice Research Institute, Manila, Philippines
| | - Tianqing Zheng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yamei Lv
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Fengcai Wu
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Binying Fu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianlong Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Zeng
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Erbao Liu
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Jauhar Ali
- International Rice Research Institute, Manila, Philippines
| | - Wensheng Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Hainan Yazhou Bay Seed Lab/National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
| | - Zhikang Li
- College of Agronomy, Anhui Agricultural University, Hefei, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
9
|
Guo Y, Tan Y, Qu M, Hong K, Zeng L, Wang L, Zhuang C, Qian Q, Hu J, Xiong G. OsWR2 recruits HDA704 to regulate the deacetylation of H4K8ac in the promoter of OsABI5 in response to drought stress. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36920174 DOI: 10.1111/jipb.13481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Drought stress is a major environmental factor that limits the growth, development, and yield of rice (Oryza sativa L.). Histone deacetylases (HDACs) are involved in the regulation of drought stress responses. HDA704 is an RPD3/HDA1 class HDAC that mediates the deacetylation of H4K8 (lysine 8 of histone H4) for drought tolerance in rice. In this study, we show that plants overexpressing HDA704 (HDA704-OE) are resistant to drought stress and sensitive to abscisic acid (ABA), whereas HDA704 knockout mutant (hda704) plants displayed decreased drought tolerance and ABA sensitivity. Transcriptome analysis revealed that HDA704 regulates the expression of ABA-related genes in response to drought stress. Moreover, HDA704 was recruited by a drought-resistant transcription factor, WAX SYNTHESIS REGULATORY 2 (OsWR2), and co-regulated the expression of the ABA biosynthesis genes NINE-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (NCED3), NCED4, and NCED5 under drought stress. HDA704 also repressed the expression of ABA-INSENSITIVE 5 (OsABI5) and DWARF AND SMALL SEED 1 (OsDSS1) by regulating H4K8ac levels in the promoter regions in response to polyethylene glycol 6000 treatment. In agreement, the loss of OsABI5 function increased resistance to dehydration stress in rice. Our results demonstrate that HDA704 is a positive regulator of the drought stress response and offers avenues for improving drought resistance in rice.
Collapse
Affiliation(s)
- Yalu Guo
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yiqing Tan
- Plant Phenomics Research Center, Academy of Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, China
| | - Minghao Qu
- College of Animal Science and Technology, Southwest University, Chongqing, 402460, China
| | - Kai Hong
- Plant Phenomics Research Center, Academy of Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, China
| | - Longjun Zeng
- Yichun Academy of Sciences, Yinchun, 336000, China
| | - Lei Wang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
| | - Chuxiong Zhuang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310000, China
| | - Jiang Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310000, China
| | - Guosheng Xiong
- Plant Phenomics Research Center, Academy of Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
10
|
Yang Z, Qin F. The battle of crops against drought: Genetic dissection and improvement. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:496-525. [PMID: 36639908 DOI: 10.1111/jipb.13451] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
With ongoing global climate change, water scarcity-induced drought stress remains a major threat to agricultural productivity. Plants undergo a series of physiological and morphological changes to cope with drought stress, including stomatal closure to reduce transpiration and changes in root architecture to optimize water uptake. Combined phenotypic and multi-omics studies have recently identified a number of drought-related genetic resources in different crop species. The functional dissection of these genes using molecular techniques has enriched our understanding of drought responses in crops and has provided genetic targets for enhancing resistance to drought. Here, we review recent advances in the cloning and functional analysis of drought resistance genes and the development of technologies to mitigate the threat of drought to crop production.
Collapse
Affiliation(s)
- Zhirui Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Feng Qin
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
11
|
Narawatthana S, Phansenee Y, Thammasamisorn BO, Vejchasarn P. Multi-model genome-wide association studies of leaf anatomical traits and vein architecture in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1107718. [PMID: 37123816 PMCID: PMC10130391 DOI: 10.3389/fpls.2023.1107718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Introduction The anatomy of rice leaves is closely related to photosynthesis and grain yield. Therefore, exploring insight into the quantitative trait loci (QTLs) and alleles related to rice flag leaf anatomical and vein traits is vital for rice improvement. Methods Here, we aimed to explore the genetic architecture of eight flag leaf traits using one single-locus model; mixed-linear model (MLM), and two multi-locus models; fixed and random model circulating probability unification (FarmCPU) and Bayesian information and linkage disequilibrium iteratively nested keyway (BLINK). We performed multi-model GWAS using 329 rice accessions of RDP1 with 700K single-nucleotide polymorphisms (SNPs) markers. Results The phenotypic correlation results indicated that rice flag leaf thickness was strongly correlated with leaf mesophyll cells layer (ML) and thickness of both major and minor veins. All three models were able to identify several significant loci associated with the traits. MLM identified three non-synonymous SNPs near NARROW LEAF 1 (NAL1) in association with ML and the distance between minor veins (IVD) traits. Discussion Several numbers of significant SNPs associated with known gene function in leaf development and yield traits were detected by multi-model GWAS performed in this study. Our findings indicate that flag leaf traits could be improved via molecular breeding and can be one of the targets in high-yield rice development.
Collapse
Affiliation(s)
- Supatthra Narawatthana
- Rice Department, Thailand Rice Science Institute, Ministry of Agriculture and Cooperatives (MOAC), Suphan Buri, Thailand
- *Correspondence: Supatthra Narawatthana,
| | - Yotwarit Phansenee
- Ubon Ratchathani Rice Research Center, Rice Department, Ministry of Agriculture and Cooperatives (MOAC), Ubon Ratchathani, Thailand
| | - Bang-On Thammasamisorn
- Rice Department, Thailand Rice Science Institute, Ministry of Agriculture and Cooperatives (MOAC), Suphan Buri, Thailand
| | - Phanchita Vejchasarn
- Ubon Ratchathani Rice Research Center, Rice Department, Ministry of Agriculture and Cooperatives (MOAC), Ubon Ratchathani, Thailand
| |
Collapse
|
12
|
Yang Y, Yu J, Qian Q, Shang L. Enhancement of Heat and Drought Stress Tolerance in Rice by Genetic Manipulation: A Systematic Review. RICE (NEW YORK, N.Y.) 2022; 15:67. [PMID: 36562861 PMCID: PMC9789292 DOI: 10.1186/s12284-022-00614-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 12/13/2022] [Indexed: 05/11/2023]
Abstract
As a result of global warming, plants are subjected to ever-increasing abiotic stresses including heat and drought. Drought stress frequently co-occurs with heat stress as a result of water evaporation. These stressors have adverse effects on crop production, which in turn affects human food security. Rice is a major food resource grown widely in crop-producing regions throughout the world. However, increasingly common heat and drought stresses in growth regions can have negative impacts on seedling morphogenesis, reproductive organ establishment, overall yield, and quality. This review centers on responses to heat and drought stress in rice. Current knowledge of molecular regulation mechanisms is summarized. We focus on approaches to cope with heat and drought stress, both at the genetic level and from an agricultural practice perspective. This review establishes a basis for improving rice stress tolerance, grain quality, and yield for human benefit.
Collapse
Affiliation(s)
- Yingxue Yang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120 China
| | - Jianping Yu
- College of Plant Science and Technology, Key Laboratory of New Technology in Agricultural Application, Beijing University of Agriculture, Beijing, 102206 China
| | - Qian Qian
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120 China
- China National Rice Research Institute (CNRRI), Chinese Academy of Agricultural Sciences, Hangzhou, 311401 China
| | - Lianguang Shang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120 China
| |
Collapse
|
13
|
Zhou Y, Zhai H, Xing S, Wei Z, He S, Zhang H, Gao S, Zhao N, Liu Q. A novel small open reading frame gene, IbEGF, enhances drought tolerance in transgenic sweet potato. FRONTIERS IN PLANT SCIENCE 2022; 13:965069. [PMID: 36388596 PMCID: PMC9660231 DOI: 10.3389/fpls.2022.965069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Small open reading frames (sORFs) can encode functional polypeptides or act as cis-translational regulators in stress responses in eukaryotes. Their number and potential importance have only recently become clear in plants. In this study, we identified a novel sORF gene in sweet potato, IbEGF, which encoded the 83-amino acid polypeptide containing an EGF_CA domain. The expression of IbEGF was induced by PEG6000, H2O2, abscisic acid (ABA), methyl-jasmonate (MeJA) and brassinosteroid (BR). The IbEGF protein was localized to the nucleus and cell membrane. Under drought stress, overexpression of IbEGF enhanced drought tolerance, promoted the accumulation of ABA, MeJA, BR and proline and upregulated the genes encoding superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in transgenic sweet potato. The IbEGF protein was found to interact with IbCOP9-5α, a regulator in the phytohormone signalling pathways. These results suggest that IbEGF interacting with IbCOP9-5α enhances drought tolerance by regulating phytohormone signalling pathways, increasing proline accumulation and further activating reactive oxygen species (ROS) scavenging system in transgenic sweet potato.
Collapse
Affiliation(s)
- Yuanyuan Zhou
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/ Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Hong Zhai
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/ Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Shihan Xing
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/ Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Zihao Wei
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/ Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Shaozhen He
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/ Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Huan Zhang
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/ Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Shaopei Gao
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/ Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Ning Zhao
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/ Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Qingchang Liu
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/ Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
14
|
Ahmad H, Zafar SA, Naeem MK, Shokat S, Inam S, Rehman MAU, Naveed SA, Xu J, Li Z, Ali GM, Khan MR. Impact of Pre-Anthesis Drought Stress on Physiology, Yield-Related Traits, and Drought-Responsive Genes in Green Super Rice. Front Genet 2022; 13:832542. [PMID: 35401708 PMCID: PMC8987348 DOI: 10.3389/fgene.2022.832542] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/27/2022] [Indexed: 12/12/2022] Open
Abstract
Optimum soil water availability is vital for maximum yield production in rice which is challenged by increasing spells of drought. The reproductive stage drought is among the main limiting factors leading to the drastic reduction in grain yield. The objective of this study was to investigate the molecular and morphophysiological responses of pre-anthesis stage drought stress in green super rice. The study assessed the performance of 26 rice lines under irrigated and drought conditions. Irrigated treatment was allowed to grow normally, while drought stress was imposed for 30 days at the pre-anthesis stage. Three important physiological traits including pollen fertility percentage (PFP), cell membrane stability (CMS), and normalized difference vegetative index (NDVI) were recorded at anthesis stage during the last week of drought stress. Agronomic traits of economic importance including grain yield were recorded at maturity stage. The analysis of variance demonstrated significant variation among the genotypes for most of the studied traits. Correlation and principal component analyses demonstrated highly significant associations of particular agronomic traits with grain yield, and genetic diversity among genotypes, respectively. Our study demonstrated a higher drought tolerance potential of GSR lines compared with local cultivars, mainly by higher pollen viability, plant biomass, CMS, and harvest index under drought. In addition, the molecular basis of drought tolerance in GSR lines was related to upregulation of certain drought-responsive genes including OsSADRI, OsDSM1, OsDT11, but not the DREB genes. Our study identified novel drought-responsive genes (LOC_Os11g36190, LOC_Os12g04500, LOC_Os12g26290, and LOC_Os02g11960) that could be further characterized using reverse genetics to be utilized in molecular breeding for drought tolerance.
Collapse
Affiliation(s)
- Hassaan Ahmad
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre, Islamabad, Pakistan
| | - Syed Adeel Zafar
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre, Islamabad, Pakistan
| | - Muhammad Kashif Naeem
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre, Islamabad, Pakistan
| | - Sajid Shokat
- Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Safeena Inam
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre, Islamabad, Pakistan
| | - Malik Attique ur Rehman
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre, Islamabad, Pakistan
| | - Shahzad Amir Naveed
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianlong Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhikang Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ghulam Muhammad Ali
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre, Islamabad, Pakistan
| | - Muhammad Ramzan Khan
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre, Islamabad, Pakistan
- *Correspondence: Muhammad Ramzan Khan,
| |
Collapse
|
15
|
Wu T, Zhang H, Bi Y, Yu Y, Liu H, Yang H, Yuan B, Ding X, Chu Z. Tal2c Activates the Expression of OsF3H04g to Promote Infection as a Redundant TALE of Tal2b in Xanthomonas oryzae pv. oryzicola. Int J Mol Sci 2021; 22:ijms222413628. [PMID: 34948428 PMCID: PMC8707247 DOI: 10.3390/ijms222413628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022] Open
Abstract
Xanthomonas oryzae delivers transcription activator-like effectors (TALEs) into plant cells to facilitate infection. Following economic principles, the redundant TALEs are rarely identified in Xanthomonas. Previously, we identified the Tal2b, which activates the expression of the rice 2-oxoglutarate-dependent dioxygenase gene OsF3H03g to promote infection in the highly virulent strain of X. oryzae pv. oryzicola HGA4. Here, we reveal that another clustered TALE, Tal2c, also functioned as a virulence factor to target rice OsF3H04g, a homologue of OsF3H03g. Transferring Tal2c into RS105 induced expression of OsF3H04g to coincide with increased susceptibility in rice. Overexpressing OsF3H04g caused higher susceptibility and less salicylic acid (SA) production compared to wild-type plants. Moreover, CRISPR–Cas9 system-mediated editing of the effector-binding element in the promoters of OsF3H03g or OsF3H04g was found to specifically enhance resistance to Tal2b- or Tal2c-transferring strains, but had no effect on resistance to either RS105 or HGA4. Furthermore, transcriptome analysis revealed that several reported SA-related and defense-related genes commonly altered expression in OsF3H04g overexpression line compared with those identified in OsF3H03g overexpression line. Overall, our results reveal a functional redundancy mechanism of pathogenic virulence in Xoc in which tandem Tal2b and Tal2c specifically target homologues of host genes to interfere with rice immunity by reducing SA.
Collapse
Affiliation(s)
- Tao Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (T.W.); (H.Z.); (Y.Y.); (H.L.)
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China;
| | - Haimiao Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (T.W.); (H.Z.); (Y.Y.); (H.L.)
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
| | - Yunya Bi
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China;
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China;
| | - Yue Yu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (T.W.); (H.Z.); (Y.Y.); (H.L.)
| | - Haifeng Liu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (T.W.); (H.Z.); (Y.Y.); (H.L.)
| | - Hong Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China;
| | - Bin Yuan
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan 430064, China;
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (T.W.); (H.Z.); (Y.Y.); (H.L.)
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
- Correspondence: (X.D.); (Z.C.); Tel.: +86-538-8245569 (X.D.); +86-27-68752095 (Z.C.)
| | - Zhaohui Chu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (T.W.); (H.Z.); (Y.Y.); (H.L.)
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China;
- Correspondence: (X.D.); (Z.C.); Tel.: +86-538-8245569 (X.D.); +86-27-68752095 (Z.C.)
| |
Collapse
|
16
|
Qin P, Lu H, Du H, Wang H, Chen W, Chen Z, He Q, Ou S, Zhang H, Li X, Li X, Li Y, Liao Y, Gao Q, Tu B, Yuan H, Ma B, Wang Y, Qian Y, Fan S, Li W, Wang J, He M, Yin J, Li T, Jiang N, Chen X, Liang C, Li S. Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations. Cell 2021; 184:3542-3558.e16. [PMID: 34051138 DOI: 10.1016/j.cell.2021.04.046] [Citation(s) in RCA: 215] [Impact Index Per Article: 71.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/31/2021] [Accepted: 04/24/2021] [Indexed: 12/30/2022]
Abstract
Structural variations (SVs) and gene copy number variations (gCNVs) have contributed to crop evolution, domestication, and improvement. Here, we assembled 31 high-quality genomes of genetically diverse rice accessions. Coupling with two existing assemblies, we developed pan-genome-scale genomic resources including a graph-based genome, providing access to rice genomic variations. Specifically, we discovered 171,072 SVs and 25,549 gCNVs and used an Oryza glaberrima assembly to infer the derived states of SVs in the Oryza sativa population. Our analyses of SV formation mechanisms, impacts on gene expression, and distributions among subpopulations illustrate the utility of these resources for understanding how SVs and gCNVs shaped rice environmental adaptation and domestication. Our graph-based genome enabled genome-wide association study (GWAS)-based identification of phenotype-associated genetic variations undetectable when using only SNPs and a single reference assembly. Our work provides rich population-scale resources paired with easy-to-access tools to facilitate rice breeding as well as plant functional genomics and evolutionary biology research.
Collapse
Affiliation(s)
- Peng Qin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China.
| | - Hongwei Lu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Huilong Du
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Hao Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Weilan Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhuo Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Qiang He
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Shujun Ou
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Hongyu Zhang
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Xuanzhao Li
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Xiuxiu Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yan Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yi Liao
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| | - Qiang Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Bin Tu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hua Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bingtian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yuping Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yangwen Qian
- Biogle Genome Editing Center, Changzhou, Jiangsu, China
| | - Shijun Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Weitao Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Min He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Junjie Yin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ting Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ning Jiang
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Chengzhi Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Shigui Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
17
|
Stührwohldt N, Bühler E, Sauter M, Schaller A. Phytosulfokine (PSK) precursor processing by subtilase SBT3.8 and PSK signaling improve drought stress tolerance in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3427-3440. [PMID: 33471900 DOI: 10.1093/jxb/erab017] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/17/2021] [Indexed: 05/06/2023]
Abstract
Increasing drought stress poses a severe threat to agricultural productivity. Plants, however, have evolved numerous mechanisms to cope with such environmental stress. Here we report that the stress-induced production of a peptide signal contributes to stress tolerance. The expression of phytosulfokine (PSK) peptide precursor genes, and transcripts of three subtilisin-like serine proteases, SBT1.4, SBT3.7, and SBT3.8, were found to be up-regulated in response to osmotic stress. Stress symptoms were more pronounced in sbt3.8 loss-of-function mutants and could be alleviated by PSK treatment. Osmotic stress tolerance was improved in plants overexpressing the PSK1 precursor (proPSK1) or SBT3.8, resulting in higher fresh weight and improved lateral root development in transgenic plants compared with wild-type plants. We further showed that SBT3.8 is involved in the biogenesis of the bioactive PSK peptide. ProPSK1 was cleaved by SBT3.8 at the C-terminus of the PSK pentapeptide. Processing by SBT3.8 depended on the aspartic acid residue directly following the cleavage site. ProPSK1 processing was impaired in the sbt3.8 mutant. The data suggest that increased expression of proPSK1 in response to osmotic stress followed by the post-translational processing of proPSK1 by SBT3.8 leads to the production of PSK as a peptide signal for stress mitigation.
Collapse
Affiliation(s)
- Nils Stührwohldt
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Eric Bühler
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Margret Sauter
- Plant Developmental Biology and Physiology, University of Kiel, Kiel, Germany
| | - Andreas Schaller
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
18
|
Smith S, Zhu S, Joos L, Roberts I, Nikonorova N, Vu LD, Stes E, Cho H, Larrieu A, Xuan W, Goodall B, van de Cotte B, Waite JM, Rigal A, Ramans Harborough S, Persiau G, Vanneste S, Kirschner GK, Vandermarliere E, Martens L, Stahl Y, Audenaert D, Friml J, Felix G, Simon R, Bennett MJ, Bishopp A, De Jaeger G, Ljung K, Kepinski S, Robert S, Nemhauser J, Hwang I, Gevaert K, Beeckman T, De Smet I. The CEP5 Peptide Promotes Abiotic Stress Tolerance, As Revealed by Quantitative Proteomics, and Attenuates the AUX/IAA Equilibrium in Arabidopsis. Mol Cell Proteomics 2020; 19:1248-1262. [PMID: 32404488 PMCID: PMC8011570 DOI: 10.1074/mcp.ra119.001826] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/02/2020] [Indexed: 01/20/2023] Open
Abstract
Peptides derived from non-functional precursors play important roles in various developmental processes, but also in (a)biotic stress signaling. Our (phospho)proteome-wide analyses of C-TERMINALLY ENCODED PEPTIDE 5 (CEP5)-mediated changes revealed an impact on abiotic stress-related processes. Drought has a dramatic impact on plant growth, development and reproduction, and the plant hormone auxin plays a role in drought responses. Our genetic, physiological, biochemical, and pharmacological results demonstrated that CEP5-mediated signaling is relevant for osmotic and drought stress tolerance in Arabidopsis, and that CEP5 specifically counteracts auxin effects. Specifically, we found that CEP5 signaling stabilizes AUX/IAA transcriptional repressors, suggesting the existence of a novel peptide-dependent control mechanism that tunes auxin signaling. These observations align with the recently described role of AUX/IAAs in stress tolerance and provide a novel role for CEP5 in osmotic and drought stress tolerance.
Collapse
Affiliation(s)
- Stephanie Smith
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Shanshuo Zhu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium; VIB-UGent Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Lisa Joos
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ianto Roberts
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Natalia Nikonorova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium; VIB-UGent Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Elisabeth Stes
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium; VIB-UGent Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Hyunwoo Cho
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Antoine Larrieu
- Centre for Plant Integrative Biology, University of Nottingham, Loughborough, United Kingdom
| | - Wei Xuan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Benjamin Goodall
- Centre for Plant Integrative Biology, University of Nottingham, Loughborough, United Kingdom
| | - Brigitte van de Cotte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Jessic Marie Waite
- Department of Biology, University of Washington, Seattle, Washington, USA
| | - Adeline Rigal
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Sigurd Ramans Harborough
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Geert Persiau
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Gwendolyn K Kirschner
- Institute for Developmental Genetics, Heinrich-Heine University, Düsseldorf, Germany
| | - Elien Vandermarliere
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Lennart Martens
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Yvonne Stahl
- Institute for Developmental Genetics, Heinrich-Heine University, Düsseldorf, Germany
| | - Dominique Audenaert
- Screening Core, Gent, Belgium; Expertise Centre for Bioassay Development and Screening (C-BIOS), Ghent University, Ghent, Belgium
| | - Jirí Friml
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University (MU), Brno, Czech Republic; Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Georg Felix
- Zentrum für Molekularbiologie der Pflanzen, Plant Biochemistry, University Tübingen, Tübingen, Germany
| | - Rüdiger Simon
- Institute for Developmental Genetics, Heinrich-Heine University, Düsseldorf, Germany
| | - Malcolm J Bennett
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough, United Kingdom; Centre for Plant Integrative Biology, University of Nottingham, Loughborough, United Kingdom
| | - Anthony Bishopp
- Centre for Plant Integrative Biology, University of Nottingham, Loughborough, United Kingdom
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Stefan Kepinski
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Stephanie Robert
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Jennifer Nemhauser
- Department of Biology, University of Washington, Seattle, Washington, USA
| | - Ildoo Hwang
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ive De Smet
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough, United Kingdom; Department of Plant Biotechnology and Bioinformatics, Ghent University, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium; Centre for Plant Integrative Biology, University of Nottingham, Loughborough, United Kingdom.
| |
Collapse
|
19
|
Liu X, Wu D, Shan T, Xu S, Qin R, Li H, Negm M, Wu D, Li J. The trihelix transcription factor OsGTγ-2 is involved adaption to salt stress in rice. PLANT MOLECULAR BIOLOGY 2020; 103:545-560. [PMID: 32504260 DOI: 10.1007/s11103-020-01010-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/01/2020] [Indexed: 05/21/2023]
Abstract
OsGTγ-2, a trihelix transcription factor, is a positive regulator of rice responses to salt stress by regulating the expression of ion transporters. Salinity stress seriously restricts rice growth and yield. Trihelix transcription factors (GT factors) specifically bind to GT elements and play a diverse role in plant morphological development and responses to abiotic stresses. In our previous study, we found that the GT-1 element (GAAAAA) is a key element in the salinity-induced OsRAV2 promoter. Here, we identified a rice OsGTγ family member, OsGTγ-2, which directly interacted with the GT-1 element in the OsRAV2 promoter. OsGTγ-2 specifically targeted the nucleus, was mainly expressed in roots, sheathes, stems and seeds, and was induced by salinity, osmotic and oxidative stresses and abscisic acid (ABA). The seed germination rate, seedling growth and survival rate under salinity stress was improved in OsGTγ-2 overexpressing lines (PZmUbi::OsGTγ-2). In contrast, CRISPR/Cas9-mediated OsGTγ-2 knockout lines (osgtγ-2) showed salt-hypersensitive phenotypes. In response to salt stress, different Na+ and K+ acclamation patterns were observed in PZmUbi::OsGTγ-2 lines and osgtγ-2 plants were observed. The molecular mechanism of OsGTγ-2 in rice salt adaptation was also investigated. Several major genes responsible for ion transporting, such as the OsHKT2; 1, OsHKT1; 3 and OsNHX1 were transcriptionally regulated by OsGTγ-2. A subsequent yeast one-hybrid assay and EMSA indicated that OsGTγ-2 directly interacted with the promoters of OsHKT2; 1, OsNHX1 and OsHKT1; 3. Taken together, these results suggest that OsGTγ-2 is an important positive regulator involved in rice responses to salt stress and suggest a potential role for OsGTγ-2 in regulating salinity adaptation in rice.
Collapse
Affiliation(s)
- Xiaoshuang Liu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Rice Genetics & Breeding of Anhui Province, Institute of Rice Research, Anhui Academy of Agricultural Science, Hefei, 230031, China
| | - Dechuan Wu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Tiaofeng Shan
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Shanbin Xu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Ruiying Qin
- Key Laboratory of Rice Genetics & Breeding of Anhui Province, Institute of Rice Research, Anhui Academy of Agricultural Science, Hefei, 230031, China
| | - Hao Li
- Key Laboratory of Rice Genetics & Breeding of Anhui Province, Institute of Rice Research, Anhui Academy of Agricultural Science, Hefei, 230031, China
| | - Mahrous Negm
- Rice Research Department, Field Crops Research Institute, Agricultural Research Center, Giza, Egypt
| | - Dexiang Wu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China.
| | - Juan Li
- Key Laboratory of Rice Genetics & Breeding of Anhui Province, Institute of Rice Research, Anhui Academy of Agricultural Science, Hefei, 230031, China.
| |
Collapse
|
20
|
Meng X, Zhao X, Ding X, Li Y, Cao G, Chu Z, Su X, Liu Y, Chen X, Guo J, Cai Z, Ding X. Integrated Functional Omics Analysis of Flavonoid-Related Metabolism in AtMYB12 Transcript Factor Overexpressed Tomato. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6776-6787. [PMID: 32396374 DOI: 10.1021/acs.jafc.0c01894] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Genetic engineering (GE) technology is widely used in plant modification. However, the results of modification may not exactly meet the expectations. Herein, we propose a new multi-omics method for GE plant evaluation based on the optimized use of the metID algorithm. Using this method, we found that flavonoid accumulation was at the expense of the great sacrifice of l-phenylalanine in GE tomatoes for the first time. Meanwhile, the ceramide series of sphingolipid is synthesized de novo from l-serine, and ceramides are the primary source of vesicles coated with flavonoids and secreted from the endoplasmic reticulum. Therefore, the accumulation of the ceramide series of sphingolipid changed the cell component of intracellular organelles. Furthermore, the improvement of the method allows us to identify more metabolites related to dysregulated pathways.
Collapse
Affiliation(s)
- Xuanlin Meng
- College of Plant Protection, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong 271000, People's Republic of China
- Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region of the People's Republic of China
| | - Xingchen Zhao
- Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region of the People's Republic of China
| | - Xiangyu Ding
- College of Plant Protection, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong 271000, People's Republic of China
| | - Yang Li
- College of Plant Protection, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong 271000, People's Republic of China
| | - Guodong Cao
- Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region of the People's Republic of China
| | - Zhaohui Chu
- College of Plant Protection, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong 271000, People's Republic of China
| | - Xiuli Su
- Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region of the People's Republic of China
| | - Yuanchen Liu
- Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region of the People's Republic of China
| | - Xiangfeng Chen
- Key Laboratory for Applied Technology of Sophisticated Analytic Instrument, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong 250014, People's Republic of China
| | - Jinggong Guo
- Center for Multi-Omics Research, State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Zongwei Cai
- Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region of the People's Republic of China
| | - Xinhua Ding
- College of Plant Protection, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong 271000, People's Republic of China
| |
Collapse
|
21
|
Greetatorn T, Hashimoto S, Maeda T, Fukudome M, Piromyou P, Teamtisong K, Tittabutr P, Boonkerd N, Kawaguchi M, Uchiumi T, Teaumroong N. Mechanisms of Rice Endophytic Bradyrhizobial Cell Differentiation and Its Role in Nitrogen Fixation. Microbes Environ 2020; 35:ME20049. [PMID: 32727975 PMCID: PMC7511792 DOI: 10.1264/jsme2.me20049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/23/2020] [Indexed: 11/25/2022] Open
Abstract
Bradyrhizobium sp. strain SUTN9-2 is a symbiotic and endophytic diazotrophic bacterium found in legume and rice plants and has the potential to promote growth. The present results revealed that SUTN9-2 underwent cell enlargement, increased its DNA content, and efficiently performed nitrogen fixation in response to rice extract. Some factors in rice extract induced the expression of cell cycle and nitrogen fixation genes. According to differentially expressed genes (DEGs) from the transcriptomic analysis, SUTN9-2 was affected by rice extract and the deletion of the bclA gene. The up-regulated DEGs encoding a class of oxidoreductases, which act with oxygen atoms and may have a role in controlling oxygen at an appropriate level for nitrogenase activity, followed by GroESL chaperonins are required for the function of nitrogenase. These results indicate that following its exposure to rice extract, nitrogen fixation by SUTN9-2 is induced by the collective effects of GroESL and oxidoreductases. The expression of the sensitivity to antimicrobial peptides transporter (sapDF) was also up-regulated, resulting in cell differentiation, even when bclA (sapDF) was mutated. This result implies similarities in the production of defensin-like antimicrobial peptides (DEFs) by rice and nodule-specific cysteine-rich (NCR) peptides in legume plants, which affect bacterial cell differentiation.
Collapse
Affiliation(s)
- Teerana Greetatorn
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Shun Hashimoto
- Graduate School of Science and Engineering, Kagoshima University, 890–0065 Kagoshima, Japan
| | - Taro Maeda
- National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki 444–8585 Aichi, Japan
| | - Mitsutaka Fukudome
- Graduate School of Science and Engineering, Kagoshima University, 890–0065 Kagoshima, Japan
| | - Pongdet Piromyou
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Kamonluck Teamtisong
- The Center for Scientific and Technological Equipment, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Panlada Tittabutr
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Nantakorn Boonkerd
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Masayoshi Kawaguchi
- National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki 444–8585 Aichi, Japan
| | - Toshiki Uchiumi
- Graduate School of Science and Engineering, Kagoshima University, 890–0065 Kagoshima, Japan
| | - Neung Teaumroong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
22
|
Wang J, Gao C, Li L, Cao W, Dong R, Ding X, Zhu C, Chu Z. Transgenic RXLR Effector PITG_15718.2 Suppresses Immunity and Reduces Vegetative Growth in Potato. Int J Mol Sci 2019; 20:ijms20123031. [PMID: 31234322 PMCID: PMC6627464 DOI: 10.3390/ijms20123031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 01/25/2023] Open
Abstract
Phytophthora infestans causes the severe late blight disease of potato. During its infection process, P. infestans delivers hundreds of RXLR (Arg-x-Leu-Arg, x behalf of any one amino acid) effectors to manipulate processes in its hosts, creating a suitable environment for invasion and proliferation. Several effectors interact with host proteins to suppress host immunity and inhibit plant growth. However, little is known about how P. infestans regulates the host transcriptome. Here, we identified an RXLR effector, PITG_15718.2, which is upregulated and maintains a high expression level throughout the infection. Stable transgenic potato (Solanum tuberosum) lines expressing PITG_15718.2 show enhanced leaf colonization by P. infestans and reduced vegetative growth. We further investigated the transcriptional changes between three PITG_15718.2 transgenic lines and the wild type Désirée by using RNA sequencing (RNA-Seq). Compared with Désirée, 190 differentially expressed genes (DEGs) were identified, including 158 upregulated genes and 32 downregulated genes in PITG_15718.2 transgenic lines. Eight upregulated and nine downregulated DEGs were validated by real-time RT-PCR, which showed a high correlation with the expression level identified by RNA-Seq. These DEGs will help to explore the mechanism of PITG_15718.2-mediated immunity and growth inhibition in the future.
Collapse
Affiliation(s)
- Jiao Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China.
- Shandong Provincial Key Laboratory of Vegetable Disease and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China.
| | - Cungang Gao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China.
- College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| | - Long Li
- College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| | - Weilin Cao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China.
- College of Life Science, Shandong Agricultural University, Tai'an, 271018, China.
| | - Ran Dong
- Shandong Provincial Key Laboratory of Vegetable Disease and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China.
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China.
- Shandong Provincial Key Laboratory of Vegetable Disease and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China.
| | - Changxiang Zhu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China.
- College of Life Science, Shandong Agricultural University, Tai'an, 271018, China.
| | - Zhaohui Chu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China.
- College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
23
|
Huang L, Chen L, Wang L, Yang Y, Rao Y, Ren D, Dai L, Gao Y, Zou W, Lu X, Zhang G, Zhu L, Hu J, Chen G, Shen L, Dong G, Gao Z, Guo L, Qian Q, Zeng D. A Nck-associated protein 1-like protein affects drought sensitivity by its involvement in leaf epidermal development and stomatal closure in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:884-897. [PMID: 30771248 PMCID: PMC6849750 DOI: 10.1111/tpj.14288] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/09/2019] [Accepted: 02/13/2019] [Indexed: 05/05/2023]
Abstract
Water deficit is a major environmental threat affecting crop yields worldwide. In this study, a drought stress-sensitive mutant drought sensitive 8 (ds8) was identified in rice (Oryza sativa L.). The DS8 gene was cloned using a map-based approach. Further analysis revealed that DS8 encoded a Nck-associated protein 1 (NAP1)-like protein, a component of the SCAR/WAVE complex, which played a vital role in actin filament nucleation activity. The mutant exhibited changes in leaf cuticle development. Functional analysis revealed that the mutation of DS8 increased stomatal density and impaired stomatal closure activity. The distorted actin filaments in the mutant led to a defect in abscisic acid (ABA)-mediated stomatal closure and increased ABA accumulation. All these resulted in excessive water loss in ds8 leaves. Notably, antisense transgenic lines also exhibited increased drought sensitivity, along with impaired stomatal closure and elevated ABA levels. These findings suggest that DS8 affects drought sensitivity by influencing actin filament activity.
Collapse
Affiliation(s)
- Lichao Huang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Long Chen
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Lan Wang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Yaolong Yang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Yuchun Rao
- College of Chemistry and Life SciencesZhejiang Normal UniversityJinhua321004China
| | - Deyong Ren
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Liping Dai
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Yihong Gao
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Weiwei Zou
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Xueli Lu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Guangheng Zhang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Li Zhu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Jiang Hu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Guang Chen
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Lan Shen
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Guojun Dong
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Zhenyu Gao
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Longbiao Guo
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Qian Qian
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Dali Zeng
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| |
Collapse
|
24
|
Liang J, Guo S, Sun B, Liu Q, Chen X, Peng H, Zhang Z, Xie Q. Constitutive expression of REL1 confers the rice response to drought stress and abscisic acid. RICE (NEW YORK, N.Y.) 2018; 11:59. [PMID: 30361842 PMCID: PMC6202306 DOI: 10.1186/s12284-018-0251-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/14/2018] [Indexed: 05/14/2023]
Abstract
Leaf rolling is one of the most significant symptoms of drought stress in plant. Previously, we identified a dominant negative mutant, termed rolled and erect 1 (hereafter referred to rel1-D), regulating leaf rolling and erectness in rice. However, the role of REL1 in drought response is still poorly understood. Here, our results indicated that rel1-D displayed higher tolerance to drought relative to wild type, and the activity of superoxide dismutase (SOD) and drought responsive genes were significantly up-regulated in rel1-D. Moreover, our results revealed that rel1-D was hypersensitive to ABA and the expression of ABA associated genes was significantly increased in rel1-D, suggesting that REL1 likely coordinates ABA to regulate drought response. Using the RNA-seq approach, we identified a large group of differentially expressed genes that regulate stimuli and stresses response. Consistently, we also found that constitutive expression of REL1 alters the expression of biotic and abiotic stress responsive genes by the isobaric tags for relative and absolute quantification (iTRAQ) analysis. Integrative analysis demonstrated that 8 genes/proteins identified by both RNA-seq and iTRAQ would be the potential targets in term of the REL1-mediated leaf morphology. Together, we proposed that leaf rolling and drought tolerance of rel1-D under normal condition might be caused by the endogenously perturbed homeostasis derived from continuous stressful dynamics.
Collapse
Affiliation(s)
- Jiayan Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Shaoying Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Bo Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Qing Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Xionghui Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Haifeng Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Zemin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.
| | - Qingjun Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
25
|
Cui Y, Li M, Yin X, Song S, Xu G, Wang M, Li C, Peng C, Xia X. OsDSSR1, a novel small peptide, enhances drought tolerance in transgenic rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 270:85-96. [PMID: 29576089 DOI: 10.1016/j.plantsci.2018.02.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 02/09/2018] [Accepted: 02/14/2018] [Indexed: 05/06/2023]
Abstract
Small signaling peptides play important roles in plant development and responses to abiotic and biotic stresses. We have identified a novel small peptide gene in rice, OsDSSR1, which is expressed mainly in the root, stem, node, leaf, and panicle. OsDSSR1 expression is also induced by drought, salinity, ABA, and H2O2 treatment. OsDSSR1 is localized in the nucleus and cytoplasm. Transgenic plants overexpressing OsDSSR1 exhibited enhanced drought stress tolerance and decreased ABA sensitivity as compared to the wild type. Overexpression of OsDSSR1 promoted the accumulation of compatible osmolytes, such as free proline and soluble sugars. OsDSSR1-overexpressing plants displayed enhanced OsSodCc2 and OscAPX expression and superoxide dismutase and ascorbate peroxidase activities under drought stress. RNA-sequencing data revealed that the expression of 72 abiotic stress-responsive genes was significantly altered in homozygous transgenic plants. These stress-responsive candidate genes will aid in expanding our understanding of the mechanisms by which small peptides mediate tolerance in crop species.
Collapse
Affiliation(s)
- Yanchun Cui
- Key Laboratory for Agro-ecological Process in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125 Hunan, China
| | - Mingjuan Li
- Key Laboratory for Agro-ecological Process in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125 Hunan, China
| | - Xuming Yin
- Key Laboratory for Agro-ecological Process in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125 Hunan, China
| | - Shufeng Song
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Centre, Changsha, 410125, China
| | - Guoyun Xu
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou, 450001, China
| | - Manling Wang
- Key Laboratory for Agro-ecological Process in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125 Hunan, China
| | - Chunyong Li
- Key Laboratory for Agro-ecological Process in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125 Hunan, China
| | - Can Peng
- Key Laboratory for Agro-ecological Process in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125 Hunan, China
| | - Xinjie Xia
- Key Laboratory for Agro-ecological Process in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125 Hunan, China.
| |
Collapse
|
26
|
Genome-wide identification of glutathione peroxidase (GPX) gene family and their response to abiotic stress in cucumber. 3 Biotech 2018. [PMID: 29515965 DOI: 10.1007/s13205-018-1185-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Plant glutathione peroxidases (GPXs) are non-heme thiol peroxidases that play vital roles in maintaining H2O2 homeostasis and regulating plant response to abiotic stress. Here, we performed a comparative genomic analysis of the GPX gene family in cucumber (Cucumis sativus). As a result, a total of 6 CsGPX genes were identified, which were unevenly located in four out of the seven chromosomes in cucumber genome. Based on the phylogenetic analysis, the GPX genes of cucumber, Arabidopsis and rice could be classified into five groups. Analysis of the distribution of conserved domains of GPX proteins showed that all these proteins contain three highly conserved motifs, as well as other conserved sequences and residues. Gene structure analysis revealed a conserved exon-intron organization pattern of these genes. Through analyzing the promoter regions of CsGPX genes, many hormone-, stress-, and development-responsive cis-elements were identified. Moreover, we also investigated their expression patterns in different tissues and developmental stages as well as in response to abiotic stress and x acid (ABA) treatments. The qRT-PCR results showed that the transcripts of CsGPX genes varied largely under abiotic stress and ABA treatments at different time points. These results demonstrate that cucumber GPX gene family may function in tissue development and plant stress responses.
Collapse
|
27
|
Zhou Y, Hu L, Jiang L, Liu S. Genome-wide identification and expression analysis of YTH domain-containing RNA-binding protein family in cucumber (Cucumis sativus). Genes Genomics 2018; 40:579-589. [PMID: 29892943 DOI: 10.1007/s13258-018-0659-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/16/2018] [Indexed: 10/18/2022]
Abstract
YTH domain-containing RNA-binding proteins are involved in post-transcriptional regulation and play important roles in the growth and development as well as abiotic stress responses of plants. However, YTH genes have not been previously studied in cucumber (Cucumis sativus). In this study, a total of five YTH genes (CsYTH1-CsYTH5) were identified in cucumber, which could be mapped on three out of the seven cucumber chromosomes. All CsYTH proteins had highly conserved C-terminal YTH domains, and two of them (CsYTH1 and CsYTH4) harbored extra CCCH and P/Q/N-rich domains. The phylogenesis, conserved motifs and exon-intron structure of YTH genes from cucumber, Arabidopsis and rice were also analyzed. The phylogenetically closely clustered YTHs shared similar gene structures and conserved motifs. An analysis of the cis-acting regulatory elements in the upstream region of these genes resulted in the identification of many cis-elements related to stress, hormone and development. Expression analysis based on the transcriptome data showed that some CsYTHs had development- or tissue-specific expression. In addition, their expression levels were altered under various stresses such as salt, drought, cold, and abscisic acid (ABA) treatments. These findings lay the foundation for the functional analysis of CsYTHs in the future.
Collapse
Affiliation(s)
- Yong Zhou
- Department of Biochemistry and Molecular Biology, College of Science, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Lifang Hu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Lunwei Jiang
- Department of Biochemistry and Molecular Biology, College of Science, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Shiqiang Liu
- Department of Biochemistry and Molecular Biology, College of Science, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China.
| |
Collapse
|
28
|
Xu Y, Yu Z, Zhang D, Huang J, Wu C, Yang G, Yan K, Zhang S, Zheng C. CYSTM, a Novel Non-Secreted Cysteine-Rich Peptide Family, Involved in Environmental Stresses in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2018; 59:423-438. [PMID: 29272523 DOI: 10.1093/pcp/pcx202] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/12/2017] [Indexed: 05/24/2023]
Abstract
The cysteine-rich transmembrane module (CYSTM) is comprised of a small molecular protein family that is found in a diversity of tail-anchored membrane proteins across eukaryotes. This protein family belongs to novel uncharacteristic non-secreted cysteine-rich peptides (NCRPs) according to their conserved domain and small molecular weight, and genome-wide analysis of this family has not yet been undertaken in plants. In this study, 13 CYSTM genes were identified and located on five chromosomes with diverse densities in Arabidopsis thaliana. The CYSTM proteins could be classified into four subgroups based on domain similarity and phylogenetic topology. Encouragingly, the CYSTM members were expressed in at least one of the tested tissues and dramatically responded to various abiotic stresses, indicating that they played vital roles in diverse developmental processes, especially in stress responses. CYSTM peptides displayed a complex subcellular localization, and most were detected at the plasma membrane and cytoplasm. Of particular interest, CYSTM members could dimerize with themselves or others through the C-terminal domain, and we built a protein-protein interaction map between CYSTM members in Arabidopsis for the first time. In addition, an analysis of CYSTM3 overexpression lines revealed negative regulation for this gene in salt stress responses. We demonstrate that the CYSTM family, as a novel and ubiquitous non-secreted cysteine-rich peptide family, plays a vital role in resistance to abiotic stress. Collectively, our comprehensive analysis of CYSTM members will facilitate future functional studies of the small peptides.
Collapse
Affiliation(s)
- Yang Xu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Zipeng Yu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Di Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Jinguang Huang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Changai Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Guodong Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Kang Yan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Shizhong Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Chengchao Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| |
Collapse
|