1
|
Zhang T, Day NJ, Gaffrey M, Weitz KK, Attah K, Mimche PN, Paine R, Qian WJ, Helms MN. Regulation of hyperoxia-induced neonatal lung injury via post-translational cysteine redox modifications. Redox Biol 2022; 55:102405. [PMID: 35872399 PMCID: PMC9307955 DOI: 10.1016/j.redox.2022.102405] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/11/2022] [Indexed: 12/17/2022] Open
Abstract
Preterm infants and patients with lung disease often have excess fluid in the lungs and are frequently treated with oxygen, however long-term exposure to hyperoxia results in irreversible lung injury. Although the adverse effects of hyperoxia are mediated by reactive oxygen species, the full extent of the impact of hyperoxia on redox-dependent regulation in the lung is unclear. In this study, neonatal mice overexpressing the beta-subunit of the epithelial sodium channel (β-ENaC) encoded by Scnn1b and their wild type (WT; C57Bl6) littermates were utilized to study the pathogenesis of high fraction inspired oxygen (FiO2)-induced lung injury. Results showed that O2-induced lung injury in transgenic Scnn1b mice is attenuated following chronic O2 exposure. To test the hypothesis that reversible cysteine-redox-modifications of proteins play an important role in O2-induced lung injury, we performed proteome-wide profiling of protein S-glutathionylation (SSG) in both WT and Scnn1b overexpressing mice maintained at 21% O2 (normoxia) or FiO2 85% (hyperoxia) from birth to 11-15 days postnatal. Over 7700 unique Cys sites with SSG modifications were identified and quantified, covering more than 3000 proteins in the lung. In both mouse models, hyperoxia resulted in a significant alteration of the SSG levels of Cys sites belonging to a diverse range of proteins. In addition, substantial SSG changes were observed in the Scnn1b overexpressing mice exposed to hyperoxia, suggesting that ENaC plays a critically important role in cellular regulation. Hyperoxia-induced SSG changes were further supported by the results observed for thiol total oxidation, the overall level of reversible oxidation on protein cysteine residues. Differential analyses reveal that Scnn1b overexpression may protect against hyperoxia-induced lung injury via modulation of specific processes such as cell adhesion, blood coagulation, and proteolysis. This study provides a landscape view of protein oxidation in the lung and highlights the importance of redox regulation in O2-induced lung injury.
Collapse
Affiliation(s)
- Tong Zhang
- Integrative Omics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Nicholas J Day
- Integrative Omics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Matthew Gaffrey
- Integrative Omics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Karl K Weitz
- Integrative Omics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kwame Attah
- Integrative Omics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Patrice N Mimche
- Division of Microbiology and Immunology, Department of Pathology, University of Utah Molecular Medicine Program, Salt Lake City, UT, USA
| | - Robert Paine
- Pulmonary Division, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Wei-Jun Qian
- Integrative Omics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - My N Helms
- Pulmonary Division, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
2
|
Mitogen-Activated Protein Kinase 4-Regulated Metabolic Networks. Int J Mol Sci 2022; 23:ijms23020880. [PMID: 35055063 PMCID: PMC8779387 DOI: 10.3390/ijms23020880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 01/21/2023] Open
Abstract
Mitogen-activated protein kinase 4 (MPK4) was first identified as a negative regulator of systemic acquired resistance. It is also an important kinase involved in many other biological processes in plants, including cytokinesis, reproduction, and photosynthesis. Arabidopsis thaliana mpk4 mutant is dwarf and sterile. Previous omics studies including genomics, transcriptomics, and proteomics have revealed new functions of MPK4 in different biological processes. However, due to challenges in metabolomics, no study has touched upon the metabolomic profiles of the mpk4 mutant. What metabolites and metabolic pathways are potentially regulated by MPK4 are not known. Metabolites are crucial components of plants, and they play important roles in plant growth and development, signaling, and defense. Here we used targeted and untargeted metabolomics to profile metabolites in the wild type and the mpk4 mutant. We found that in addition to the jasmonic acid and salicylic acid pathways, MPK4 is involved in polyamine synthesis and photosynthesis. In addition, we also conducted label-free proteomics of the two genotypes. The integration of metabolomics and proteomics data allows for an insight into the metabolomic networks that are potentially regulated by MPK4.
Collapse
|
3
|
Yip Delormel T, Avila-Ospina L, Davanture M, Zivy M, Lang J, Valentin N, Rayapuram N, Hirt H, Colcombet J, Boudsocq M. In vivo identification of putative CPK5 substrates in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 314:111121. [PMID: 34895550 DOI: 10.1016/j.plantsci.2021.111121] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Calcium signaling mediates most developmental processes and stress responses in plants. Among plant calcium sensors, the calcium-dependent protein kinases display a unique structure harboring both calcium sensing and kinase responding activities. AtCPK5 is an essential member of this family in Arabidopsis that regulates immunity and abiotic stress tolerance. To understand the underlying molecular mechanisms, we implemented a biochemical approach to identify in vivo substrates of AtCPK5. We generated transgenic lines expressing a constitutively active form of AtCPK5 under the control of a dexamethasone-inducible promoter. Lines expressing a kinase-dead version were used as a negative control. By comparing the phosphoproteome of the kinase-active and kinase-dead lines upon dexamethasone treatment, we identified 5 phosphopeptides whose abundance increased specifically in the kinase-active lines. Importantly, we showed that all 5 proteins were phosphorylated in vitro by AtCPK5 in a calcium-dependent manner, suggesting that they are direct targets of AtCPK5. We also detected several interaction patterns between the kinase and the candidates in the cytosol, membranes or nucleus, consistent with the ubiquitous localization of AtCPK5. Finally, we further validated the two phosphosites S245 and S280 targeted by AtCPK5 in the E3 ubiquitin ligase ATL31. Altogether, those results open new perspectives to decipher AtCPK5 biological functions.
Collapse
Affiliation(s)
- Tiffany Yip Delormel
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France; Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France.
| | - Liliana Avila-Ospina
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France; Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France.
| | - Marlène Davanture
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Évolution (GQE) - Le Moulon, 91190, Gif-sur-Yvette, France.
| | - Michel Zivy
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Évolution (GQE) - Le Moulon, 91190, Gif-sur-Yvette, France.
| | - Julien Lang
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France; Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France.
| | - Nicolas Valentin
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France; Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France.
| | - Naganand Rayapuram
- Center for Desert Agriculture, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Heribert Hirt
- Center for Desert Agriculture, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Jean Colcombet
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France; Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France.
| | - Marie Boudsocq
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France; Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France.
| |
Collapse
|
4
|
Santos-Ortega Y, Killiny N. The Chorion Proteome of Diaphorina citri, the Vector of Huanglongbing Disease in Citrus. INSECTS 2021; 12:insects12110959. [PMID: 34821760 PMCID: PMC8618194 DOI: 10.3390/insects12110959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/11/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022]
Abstract
Nowadays, the Asian citrus psyllid, Diaphorina citri (Kuwayama) (Hemiptera: Liviidae) is considered the most devastating pest of citrus because it transmits "Candidatus Liberibacter asiaticus", the putative causal agent of huanglongbing (HLB) or citrus greening. Controlling the vector is the main strategy used to mitigate HLB. Targeting D. citri at the very early stages of its development may offer an effective control strategy. Identifying chorion proteins will contribute to a better understanding of embryo development and egg hatching and thus could lead to valuable targets to better control psyllid populations. Herein, we analyze the chorion proteins of D. citri. Mass spectrometry-based bottom-up/shotgun proteomics and databases were queried to achieve protein identification. Fifty-one proteins were identified in D. citri chorion. The D. citri chorion proteins were divided into eight categories according to their biological or molecular function: i-enzymes (25%); ii-binding proteins (10%); iii-structural proteins (8%); iv-homeostasis-related proteins, mostly vitellogenins (8%); v-proteins related to gene expression (6%); vi-immune system proteins (6%); vii-other proteins (16%); and viii-uncharacterized proteins (21%). The composition of the chorion proteome suggested that the hatching rate could be reduced by silencing chorion-related genes. The proteomic analysis of D. citri chorion tissue allowed us to identify its proteins, providing promising new targets for D. citri control through RNA interference technology.
Collapse
Affiliation(s)
- Yulica Santos-Ortega
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA;
- Department of Biological Environmental and Earth Sciences, Discipline: Cell and Molecular Biology, The University of Southern Mississippi, 118 College Drive, Hattiesburg, MS 39406, USA
| | - Nabil Killiny
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA;
- Correspondence: author:
| |
Collapse
|
5
|
HopA1 Effector from Pseudomonas syringae pv syringae Strain 61 Affects NMD Processes and Elicits Effector-Triggered Immunity. Int J Mol Sci 2021; 22:ijms22147440. [PMID: 34299060 PMCID: PMC8306789 DOI: 10.3390/ijms22147440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 01/25/2023] Open
Abstract
Pseudomonas syringae-secreted HopA1 effectors are important determinants in host range expansion and increased pathogenicity. Their recent acquisitions via horizontal gene transfer in several non-pathogenic Pseudomonas strains worldwide have caused alarming increase in their virulence capabilities. In Arabidopsis thaliana, RESISTANCE TO PSEUDOMONAS SYRINGAE 6 (RPS6) gene confers effector-triggered immunity (ETI) against HopA1pss derived from P. syringae pv. syringae strain 61. Surprisingly, a closely related HopA1pst from the tomato pathovar evades immune detection. These responsive differences in planta between the two HopA1s represents a unique system to study pathogen adaptation skills and host-jumps. However, molecular understanding of HopA1′s contribution to overall virulence remain undeciphered. Here, we show that immune-suppressive functions of HopA1pst are more potent than HopA1pss. In the resistance-compromised ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) null-mutant, transcriptomic changes associated with HopA1pss-elicited ETI are still induced and carry resemblance to PAMP-triggered immunity (PTI) signatures. Enrichment of HopA1pss interactome identifies proteins with regulatory roles in post-transcriptional and translational processes. With our demonstration here that both HopA1 suppress reporter-gene translations in vitro imply that the above effector-associations with plant target carry inhibitory consequences. Overall, with our results here we unravel possible virulence role(s) of HopA1 in suppressing PTI and provide newer insights into its detection in resistant plants.
Collapse
|
6
|
Proteomics of Homeobox7 Enhanced Salt Tolerance in Mesembryanthemum crystallinum. Int J Mol Sci 2021; 22:ijms22126390. [PMID: 34203768 PMCID: PMC8232686 DOI: 10.3390/ijms22126390] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 11/17/2022] Open
Abstract
Mesembryanthemum crystallinum (common ice plant) is a halophyte species that has adapted to extreme conditions. In this study, we cloned a McHB7 transcription factor gene from the ice plant. The expression of McHB7 was significantly induced by 500 mM NaCl and it reached the peak under salt treatment for 7 days. The McHB7 protein was targeted to the nucleus. McHB7-overexpressing in ice plant leaves through Agrobacterium-mediated transformation led to 25 times more McHB7 transcripts than the non-transformed wild type (WT). After 500 mM NaCl treatment for 7 days, the activities of superoxide dismutase (SOD) and peroxidase (POD) and water content of the transgenic plants were higher than the WT, while malondialdehyde (MDA) was decreased in the transgenic plants. A total of 1082 and 1072 proteins were profiled by proteomics under control and salt treatment, respectively, with 22 and 11 proteins uniquely identified under control and salt stress, respectively. Among the 11 proteins, 7 were increased and 4 were decreased after salt treatment. Most of the proteins whose expression increased in the McHB7 overexpression (OE) ice plants under high salinity were involved in transport regulation, catalytic activities, biosynthesis of secondary metabolites, and response to stimulus. The results demonstrate that the McHB7 transcription factor plays a positive role in improving plant salt tolerance.
Collapse
|
7
|
Zhang H, Li F, Li Z, Cheng J, Chen X, Wang Q, Joosten MH, Shan W, Du Y. Potato StMPK7 is a downstream component of StMKK1 and promotes resistance to the oomycete pathogen Phytophthora infestans. MOLECULAR PLANT PATHOLOGY 2021; 22:644-657. [PMID: 33764635 PMCID: PMC8126187 DOI: 10.1111/mpp.13050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 02/05/2021] [Accepted: 02/16/2021] [Indexed: 05/05/2023]
Abstract
A cascade formed by phosphorylation events of mitogen-activated protein kinases (MAPKs) takes part in plant stress responses. However, the roles of these MAPKs in resistance of potato (Solanum tuberosum) against Phytophthora pathogens is not well studied. Our previous work showed that a Phytophthora infestans RXLR effector targets and stabilizes the negative regulator of MAPK kinase 1 of potato (StMKK1). Because in Arabidopsis thaliana the AtMPK4 is the downstream phosphorylation target of AtMKK1, we performed a phylogenetic analysis and found that potato StMPK4/6/7 are closely related and are orthologs of AtMPK4/5/11/12. Overexpression of StMPK4/7 enhances plant resistance to P. infestans and P. parasitica. Yeast two-hybrid analysis revealed that StMPK7 interacts with StMKK1, and StMPK7 is phosphorylated on flg22 treatment and by expressing constitutively active StMKK1 (CA-StMKK1), indicating that StMPK7 is a direct downstream signalling partner of StMKK1. Overexpression of StMPK7 in potato enhances potato resistance to P. infestans. Constitutively active StMPK7 (CA-StMPK7; StMPK7D198G, E202A ) was found to promote immunity to Phytophthora pathogens and to trigger host cell death when overexpressed in Nicotiana benthamiana leaves. Cell death triggered by CA-StMPK7 is SGT1/RAR1-dependent. Furthermore, cell death triggered by CA-StMPK7 is suppressed on coexpression with the salicylate hydroxylase NahG, and StMPK7 activation promotes salicylic acid (SA)-responsive gene expression. We conclude that potato StMPK7 is a downstream signalling component of the phosphorelay cascade involving StMKK1 and StMPK7 plays a role in immunity to Phytophthora pathogens via an SA-dependent signalling pathway.
Collapse
Affiliation(s)
- Houxiao Zhang
- College of HorticultureNorthwest A&F University and State Key Laboratory of Crop Stress Biology for Arid AreasYanglingChina
- Shaanxi Engineering Research Center for VegetablesYanglingChina
| | - Fangfang Li
- College of HorticultureNorthwest A&F University and State Key Laboratory of Crop Stress Biology for Arid AreasYanglingChina
- Shaanxi Engineering Research Center for VegetablesYanglingChina
| | - Zhenzhen Li
- College of HorticultureNorthwest A&F University and State Key Laboratory of Crop Stress Biology for Arid AreasYanglingChina
- Shaanxi Engineering Research Center for VegetablesYanglingChina
| | - Jing Cheng
- College of HorticultureNorthwest A&F University and State Key Laboratory of Crop Stress Biology for Arid AreasYanglingChina
- Shaanxi Engineering Research Center for VegetablesYanglingChina
| | - Xiaokang Chen
- College of HorticultureNorthwest A&F University and State Key Laboratory of Crop Stress Biology for Arid AreasYanglingChina
- Shaanxi Engineering Research Center for VegetablesYanglingChina
| | - Qinhu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | | | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Yu Du
- College of HorticultureNorthwest A&F University and State Key Laboratory of Crop Stress Biology for Arid AreasYanglingChina
- Shaanxi Engineering Research Center for VegetablesYanglingChina
| |
Collapse
|
8
|
Zhang T, Schneider JD, Lin C, Koh J, Chen S. Proteomics data of SNF1-related protein kinase 2.4 interacting proteins revealed by immunoprecipitation-mass spectrometry. Data Brief 2020; 32:106326. [PMID: 33005707 PMCID: PMC7519261 DOI: 10.1016/j.dib.2020.106326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/05/2020] [Accepted: 09/16/2020] [Indexed: 01/04/2023] Open
Abstract
Identification of kinase substrates is a prerequisite for elucidating the mechanism by which a kinase transduces internal or external stimuli to cellular responses. Conventional methods to profile this type of protein-protein interaction typically deal with one kinase-substrate pair at a time. Mass spectrometry-based proteomics, on the other hand, can determine putative kinase-substrate pairs at a large-scale in an unbiased manner. In this study, we identified the interacting partners of SNF1-related protein kinase 2.4 (SnRK2.4) via immunoprecipitation coupled with mass spectrometry. Proteins from stable transgenic Arabidopsis plants overexpressing a FLAG-tagged SnRK2.4 (cloned from Brassica napus) were pulled down using an anti-FLAG antibody. The protein components were then identified by mass spectrometry. In parallel, proteins from wild type plants were also analyzed, providing a list of nonspecific binding proteins that were further removed from the candidate SnRK2.4-interacting protein list. Our data identified over 30 putative SnRK2.4 interacting partners, which included many key players in stress responses, transport, and cellular metabolic processes.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Biology, University of Florida, Gainesville, FL 32610, USA
| | | | - Chuwei Lin
- Department of Biology, University of Florida, Gainesville, FL 32610, USA
| | - Jin Koh
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA
| | - Sixue Chen
- Department of Biology, University of Florida, Gainesville, FL 32610, USA.,Genetics Institute, University of Florida, Gainesville, FL 32610, USA.,Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA.,Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|