1
|
Dai GZ, Song WY, Xu HF, Tu M, Yu C, Li ZK, Shang JL, Jin CL, Ding CS, Zuo LZ, Liu YR, Yan WW, Zang SS, Liu K, Zhang Z, Bock R, Qiu BS. Hypothetical chloroplast reading frame 51 encodes a photosystem I assembly factor in cyanobacteria. THE PLANT CELL 2024; 36:1844-1867. [PMID: 38146915 PMCID: PMC11062458 DOI: 10.1093/plcell/koad330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 09/29/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Hypothetical chloroplast open reading frames (ycfs) are putative genes in the plastid genomes of photosynthetic eukaryotes. Many ycfs are also conserved in the genomes of cyanobacteria, the presumptive ancestors of present-day chloroplasts. The functions of many ycfs are still unknown. Here, we generated knock-out mutants for ycf51 (sll1702) in the cyanobacterium Synechocystis sp. PCC 6803. The mutants showed reduced photoautotrophic growth due to impaired electron transport between photosystem II (PSII) and PSI. This phenotype results from greatly reduced PSI content in the ycf51 mutant. The ycf51 disruption had little effect on the transcription of genes encoding photosynthetic complex components and the stabilization of the PSI complex. In vitro and in vivo analyses demonstrated that Ycf51 cooperates with PSI assembly factor Ycf3 to mediate PSI assembly. Furthermore, Ycf51 interacts with the PSI subunit PsaC. Together with its specific localization in the thylakoid membrane and the stromal exposure of its hydrophilic region, our data suggest that Ycf51 is involved in PSI complex assembly. Ycf51 is conserved in all sequenced cyanobacteria, including the earliest branching cyanobacteria of the Gloeobacter genus, and is also present in the plastid genomes of glaucophytes. However, Ycf51 has been lost from other photosynthetic eukaryotic lineages. Thus, Ycf51 is a PSI assembly factor that has been functionally replaced during the evolution of oxygenic photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Guo-Zheng Dai
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Wei-Yu Song
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Hai-Feng Xu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Miao Tu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Chen Yu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Zheng-Ke Li
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Jin-Long Shang
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Chun-Lei Jin
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Chao-Shun Ding
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Ling-Zi Zuo
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Yan-Ru Liu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Wei-Wei Yan
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Sha-Sha Zang
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Ke Liu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Zheng Zhang
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Ralph Bock
- Department III, Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Bao-Sheng Qiu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| |
Collapse
|
2
|
Jinkerson RE, Poveda-Huertes D, Cooney EC, Cho A, Ochoa-Fernandez R, Keeling PJ, Xiang T, Andersen-Ranberg J. Biosynthesis of chlorophyll c in a dinoflagellate and heterologous production in planta. Curr Biol 2024; 34:594-605.e4. [PMID: 38157859 DOI: 10.1016/j.cub.2023.12.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Chlorophyll c is a key photosynthetic pigment that has been used historically to classify eukaryotic algae. Despite its importance in global photosynthetic productivity, the pathway for its biosynthesis has remained elusive. Here we define the CHLOROPHYLL C SYNTHASE (CHLCS) discovered through investigation of a dinoflagellate mutant deficient in chlorophyll c. CHLCSs are proteins with chlorophyll a/b binding and 2-oxoglutarate-Fe(II) dioxygenase (2OGD) domains found in peridinin-containing dinoflagellates; other chlorophyll c-containing algae utilize enzymes with only the 2OGD domain or an unknown synthase to produce chlorophyll c. 2OGD-containing synthases across dinoflagellate, diatom, cryptophyte, and haptophyte lineages form a monophyletic group, 8 members of which were also shown to produce chlorophyll c. Chlorophyll c1 to c2 ratios in marine algae are dictated in part by chlorophyll c synthases. CHLCS heterologously expressed in planta results in the accumulation of chlorophyll c1 and c2, demonstrating a path to augment plant pigment composition with algal counterparts.
Collapse
Affiliation(s)
- Robert E Jinkerson
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92521, USA; Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA.
| | - Daniel Poveda-Huertes
- Department of Plant and Environmental Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Elizabeth C Cooney
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Anna Cho
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Rocio Ochoa-Fernandez
- Department of Plant and Environmental Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Tingting Xiang
- Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, USA.
| | - Johan Andersen-Ranberg
- Department of Plant and Environmental Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
| |
Collapse
|
3
|
Jirsová D, Wideman JG. Integrated overview of stramenopile ecology, taxonomy, and heterotrophic origin. THE ISME JOURNAL 2024; 18:wrae150. [PMID: 39077993 PMCID: PMC11412368 DOI: 10.1093/ismejo/wrae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/12/2024] [Accepted: 07/29/2024] [Indexed: 07/31/2024]
Abstract
Stramenopiles represent a significant proportion of aquatic and terrestrial biota. Most biologists can name a few, but these are limited to the phototrophic (e.g. diatoms and kelp) or parasitic species (e.g. oomycetes, Blastocystis), with free-living heterotrophs largely overlooked. Though our attention is slowly turning towards heterotrophs, we have only a limited understanding of their biology due to a lack of cultured models. Recent metagenomic and single-cell investigations have revealed the species richness and ecological importance of stramenopiles-especially heterotrophs. However, our lack of knowledge of the cell biology and behaviour of these organisms leads to our inability to match species to their particular ecological functions. Because photosynthetic stramenopiles are studied independently of their heterotrophic relatives, they are often treated separately in the literature. Here, we present stramenopiles as a unified group with shared synapomorphies and evolutionary history. We introduce the main lineages, describe their important biological and ecological traits, and provide a concise update on the origin of the ochrophyte plastid. We highlight the crucial role of heterotrophs and mixotrophs in our understanding of stramenopiles with the goal of inspiring future investigations in taxonomy and life history. To understand each of the many diversifications within stramenopiles-towards autotrophy, osmotrophy, or parasitism-we must understand the ancestral heterotrophic flagellate from which they each evolved. We hope the following will serve as a primer for new stramenopile researchers or as an integrative refresher to those already in the field.
Collapse
Affiliation(s)
- Dagmar Jirsová
- Center for Mechanisms of Evolution, Biodesign Institute, School of Life Sciences, Arizona State University, 1001 S McAllister Avenue, Tempe, Arizona, 85287-7701, United States
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, České Budějovice 37005, Czech Republic
| | - Jeremy G Wideman
- Center for Mechanisms of Evolution, Biodesign Institute, School of Life Sciences, Arizona State University, 1001 S McAllister Avenue, Tempe, Arizona, 85287-7701, United States
| |
Collapse
|
4
|
Jiang Y, Cao T, Yang Y, Zhang H, Zhang J, Li X. A chlorophyll c synthase widely co-opted by phytoplankton. Science 2023; 382:92-98. [PMID: 37797009 DOI: 10.1126/science.adg7921] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023]
Abstract
Marine and terrestrial photosynthesis exhibit a schism in the accessory chlorophyll (Chl) that complements the function of Chl a: Chl b for green plants versus Chl c for most eukaryotic phytoplankton. The enzymes that mediate Chl c biosynthesis have long remained elusive. In this work, we identified the CHLC dioxygenase (Phatr3_J43737) from the marine diatom Phaeodactylum tricornutum as the Chl c synthase. The chlc mutants lacked Chl c, instead accumulating its precursors, and exhibited growth defects. In vitro, recombinant CHLC protein converted these precursors into Chl c, thereby confirming its identity. Phylogenetic evidence demonstrates conserved use of CHLC across phyla but also the existence of distinct Chl c synthases in different algal groups. Our study addresses a long-outstanding question with implications for both contemporary and ancient marine photosynthesis.
Collapse
Affiliation(s)
- Yanyou Jiang
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Tianjun Cao
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yuqing Yang
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Huan Zhang
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Jingyu Zhang
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Xiaobo Li
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| |
Collapse
|
5
|
Mixotrophy in a Local Strain of Nannochloropsis granulata for Renewable High-Value Biomass Production on the West Coast of Sweden. Mar Drugs 2022; 20:md20070424. [PMID: 35877717 PMCID: PMC9316773 DOI: 10.3390/md20070424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 11/17/2022] Open
Abstract
A local strain of Nannochloropsis granulata (Ng) has been reported as the most productive microalgal strain in terms of both biomass yield and lipid content when cultivated in photobioreactors that simulate the light and temperature conditions during the summer on the west coast of Sweden. To further increase the biomass and the biotechnological potential of this strain in these conditions, mixotrophic growth (i.e., the simultaneous use of photosynthesis and respiration) with glycerol as an external carbon source was investigated in this study and compared with phototrophic growth that made use of air enriched with 1-2% CO2. The addition of either glycerol or CO2-enriched air stimulated the growth of Ng and theproduction of high-value long-chain polyunsaturated fatty acids (EPA) as well as the carotenoid canthaxanthin. Bioassays in human prostate cell lines indicated the highest antitumoral activity for Ng extracts and fractions from mixotrophic conditions. Metabolomics detected betaine lipids specifically in the bioactive fractions, suggesting their involvement in the observed antitumoral effect. Genes related to autophagy were found to be upregulated by the most bioactive fraction, suggesting a possible therapeutic target against prostate cancer progression. Taken together, our results suggest that the local Ng strain can be cultivated mixotrophically in summer conditions on the west coast of Sweden for the production of high-value biomass containing antiproliferative compounds, carotenoids, and EPA.
Collapse
|
6
|
Villanova V, Spetea C. Mixotrophy in diatoms: Molecular mechanism and industrial potential. PHYSIOLOGIA PLANTARUM 2021; 173:603-611. [PMID: 34076276 DOI: 10.1111/ppl.13471] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/20/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Diatoms are microalgae well known for their high variability and high primary productivity, being responsible for about 20% of the annual global carbon fixation. Moreover, they are interesting as potential feedstocks for the production of biofuels and high-value lipids and carotenoids. Diatoms exhibit trophic flexibility and, under certain conditions, they can grow mixotrophically by combing photosynthesis and respiration. So far, only a few species of diatoms have been tested for their mixotrophic metabolism; in some cases, they produced more biomass and with higher lipid content when grown under this condition. Phaeodactylum tricornutum is the most studied diatom species for its mixotrophic metabolism due to available genome sequence and molecular tools. However, studies in additional species are needed to better understand the conservation of this process in diatoms and its potential in industrial applications. Here, we describe the photosynthetic and respiratory pathways involved in mixotrophy and provide an overview of the trophic variability in diatoms. This review also highlights promising areas of industrial applications for diatoms when cultivated under mixotrophy.
Collapse
Affiliation(s)
- Valeria Villanova
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Cornelia Spetea
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
7
|
Launay H, Huang W, Maberly SC, Gontero B. Regulation of Carbon Metabolism by Environmental Conditions: A Perspective From Diatoms and Other Chromalveolates. FRONTIERS IN PLANT SCIENCE 2020; 11:1033. [PMID: 32765548 PMCID: PMC7378808 DOI: 10.3389/fpls.2020.01033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/23/2020] [Indexed: 05/08/2023]
Abstract
Diatoms belong to a major, diverse and species-rich eukaryotic clade, the Heterokonta, within the polyphyletic chromalveolates. They evolved as a result of secondary endosymbiosis with one or more Plantae ancestors, but their precise evolutionary history is enigmatic. Nevertheless, this has conferred them with unique structural and biochemical properties that have allowed them to flourish in a wide range of different environments and cope with highly variable conditions. We review the effect of pH, light and dark, and CO2 concentration on the regulation of carbon uptake and assimilation. We discuss the regulation of the Calvin-Benson-Bassham cycle, glycolysis, lipid synthesis, and carbohydrate synthesis at the level of gene transcripts (transcriptomics), proteins (proteomics) and enzyme activity. In contrast to Viridiplantae where redox regulation of metabolic enzymes is important, it appears to be less common in diatoms, based on the current evidence, but regulation at the transcriptional level seems to be widespread. The role of post-translational modifications such as phosphorylation, glutathionylation, etc., and of protein-protein interactions, has been overlooked and should be investigated further. Diatoms and other chromalveolates are understudied compared to the Viridiplantae, especially given their ecological importance, but we believe that the ever-growing number of sequenced genomes combined with proteomics, metabolomics, enzyme measurements, and the application of novel techniques will provide a better understanding of how this important group of algae maintain their productivity under changing conditions.
Collapse
Affiliation(s)
- Hélène Launay
- BIP, Aix Marseille Univ CNRS, BIP UMR 7281, Marseille, France
| | - Wenmin Huang
- BIP, Aix Marseille Univ CNRS, BIP UMR 7281, Marseille, France
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Stephen C. Maberly
- UK Centre for Ecology & Hydrology, Lake Ecosystems Group, Lancaster Environment Centre, Lancaster, United Kingdom
| | | |
Collapse
|
8
|
Tamiaki H, Fukai K, Nakamura S. Intramolecular interaction of synthetic chlorophyll heterodyads with different π-skeletons. Photochem Photobiol Sci 2020; 19:332-340. [DOI: 10.1039/c9pp00373h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Covalently linked zinc chlorin and zinc porphyrin/bacteriochlorin heterodyads formed methanol-locked conformers with red-shifted Qy bands as models of Chl-a and Chl-c/BChl-a(or g) dimeric species, respectively, in photosynthetic apparatuses.
Collapse
Affiliation(s)
- Hitoshi Tamiaki
- Graduate School of Life Sciences
- Ritsumeikan University
- Kusatsu
- Japan
| | - Kazuhiro Fukai
- Graduate School of Life Sciences
- Ritsumeikan University
- Kusatsu
- Japan
| | - Soichi Nakamura
- Graduate School of Life Sciences
- Ritsumeikan University
- Kusatsu
- Japan
| |
Collapse
|
9
|
Takahashi T, Ogasawara S, Shinozaki Y, Tamiaki H. Synthesis of Cationic Pyridinium-(Bacterio)Chlorophyll Conjugates Bearing a Bacteriochlorin, Chlorin, or Porphyrin π-Skeleton and their Photophysical and Electrochemical Properties. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Tatsuya Takahashi
- Graduate School of Life Sciences; Ritsumeikan University; Kusatsu Shiga 525-8577 Japan
| | - Shin Ogasawara
- Graduate School of Life Sciences; Ritsumeikan University; Kusatsu Shiga 525-8577 Japan
| | - Yoshinao Shinozaki
- Graduate School of Life Sciences; Ritsumeikan University; Kusatsu Shiga 525-8577 Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences; Ritsumeikan University; Kusatsu Shiga 525-8577 Japan
| |
Collapse
|
10
|
Kaňa R, Kotabová E, Šedivá B, Kuthanová Trsková E. Photoprotective strategies in the motile cryptophyte alga Rhodomonas salina-role of non-photochemical quenching, ions, photoinhibition, and cell motility. Folia Microbiol (Praha) 2019; 64:691-703. [PMID: 31352667 DOI: 10.1007/s12223-019-00742-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 07/15/2019] [Indexed: 12/20/2022]
Abstract
We explored photoprotective strategies in a cryptophyte alga Rhodomonas salina. This cryptophytic alga represents phototrophs where chlorophyll a/c antennas in thylakoids are combined with additional light-harvesting system formed by phycobiliproteins in the chloroplast lumen. The fastest response to excessive irradiation is induction of non-photochemical quenching (NPQ). The maximal NPQ appears already after 20 s of excessive irradiation. This initial phase of NPQ is sensitive to Ca2+ channel inhibitor (diltiazem) and disappears, also, in the presence of non-actin, an ionophore for monovalent cations. The prolonged exposure to high light of R. salina cells causes photoinhibition of photosystem II (PSII) that can be further enhanced when Ca2+ fluxes are inhibited by diltiazem. The light-induced reduction in PSII photochemical activity is smaller when compared with immotile diatom Phaeodactylum tricornutum. We explain this as a result of their different photoprotective strategies. Besides the protective role of NPQ, the motile R. salina also minimizes high light exposure by increased cell velocity by almost 25% percent (25% from 82 to 104 μm/s). We suggest that motility of algal cells might have a photoprotective role at high light because algal cell rotation around longitudinal axes changes continual irradiation to periodically fluctuating light.
Collapse
Affiliation(s)
- Radek Kaňa
- Institute of Microbiology, Centre ALGATECH, Czech Academy of Sciences, Třeboň, Czech Republic.
| | - Eva Kotabová
- Institute of Microbiology, Centre ALGATECH, Czech Academy of Sciences, Třeboň, Czech Republic
| | - Barbora Šedivá
- Institute of Microbiology, Centre ALGATECH, Czech Academy of Sciences, Třeboň, Czech Republic
| | - Eliška Kuthanová Trsková
- Institute of Microbiology, Centre ALGATECH, Czech Academy of Sciences, Třeboň, Czech Republic.,Student of Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, Ceske Budejovice, Czech Republic
| |
Collapse
|
11
|
Affiliation(s)
- Michael J. Boucher
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
| | - Ellen Yeh
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
- Chan Zuckerberg Biohub, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
12
|
Morozov A, Galachyants YP. Diatom genes originating from red and green algae: Implications for the secondary endosymbiosis models. Mar Genomics 2019; 45:72-78. [DOI: 10.1016/j.margen.2019.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 11/27/2022]
|
13
|
Büchel C. Light harvesting complexes in chlorophyll c-containing algae. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1861:148027. [PMID: 31153887 DOI: 10.1016/j.bbabio.2019.05.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 12/30/2022]
Abstract
Besides the so-called 'green lineage' of eukaryotic photosynthetic organisms that include vascular plants, a huge variety of different algal groups exist that also harvest light by means of membrane intrinsic light harvesting proteins (Lhc). The main taxa of these algae are the Cryptophytes, Haptophytes, Dinophytes, Chromeridae and the Heterokonts, the latter including diatoms, brown algae, Xanthophyceae and Eustigmatophyceae amongst others. Despite the similarity in Lhc proteins between vascular plants and these algae, pigmentation is significantly different since no Chl b is bound, but often replaced by Chl c, and a large diversity in carotenoids functioning in light harvesting and/or photoprotection is present. Due to the presence of Chl c in most of the taxa the name 'Chl c-containing organisms' has become common, however, Chl b-less is more precise since some harbour Lhc proteins that only bind one type of Chl, Chl a. In recent years huge progress has been made about the occurrence and function of Lhc in diatoms, so-called fucoxanthin chlorophyll proteins (FCP), where also the first molecular structure became available recently. In addition, especially energy transfer amongst the unusual pigments bound was intensively studied in many of these groups. This review summarises the present knowledge about the molecular structure, the arrangement of the different Lhc in complexes, the excitation energy transfer abilities and the involvement in photoprotection of the different Lhc systems in the so-called Chl c-containing organisms. This article is part of a Special Issue entitled Light harvesting, edited by Dr. Roberta Croce.
Collapse
Affiliation(s)
- Claudia Büchel
- Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Straße 9, 60438 Frankfurt, Germany.
| |
Collapse
|
14
|
Koh HG, Kang NK, Jeon S, Shin SE, Jeong BR, Chang YK. Heterologous synthesis of chlorophyll b in Nannochloropsis salina enhances growth and lipid production by increasing photosynthetic efficiency. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:122. [PMID: 31114631 PMCID: PMC6515666 DOI: 10.1186/s13068-019-1462-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/04/2019] [Indexed: 05/16/2023]
Abstract
BACKGROUND Chlorophylls play important roles in photosynthesis, and thus are critical for growth and related metabolic pathways in photosynthetic organisms. They are particularly important in microalgae, emerging as the next generation feedstock for biomass and biofuels. Nannochloropsis are industrial microalgae for these purposes, but are peculiar in that they lack accessory chlorophylls. In addition, the localization of heterologous proteins to the chloroplast of Nannochloropsis has not been fully studied, due to the secondary plastid surrounded by four membranes. This study addressed questions of correct localization and functional benefits of heterologous expression of chlorophyllide a oxygenase from Chlamydomonas (CrCAO) in Nannochloropsis. RESULTS We cloned CrCAO from Chlamydomonas, which catalyzes oxidation of Chla producing Chlb, and overexpressed it in N. salina to reveal effects of the heterologous Chlb for photosynthesis, growth, and lipid production. For correct localization of CrCAO into the secondary plastid in N. salina, we added the signal-recognition sequence and the transit peptide (cloned from an endogenous chloroplast-localized protein) to the N terminus of CrCAO. We obtained two transformants that expressed CrCAO and produced Chlb. They showed improved growth under medium light (90 μmol/m2/s) conditions, and their photosynthetic efficiency was increased compared to WT. They also showed increased expression of certain photosynthetic proteins, accompanied by an increased maximum electron-transfer rate up to 15.8% and quantum yields up to 17%, likely supporting the faster growth. This improved growth resulted in increased biomass production, and more importantly lipid productivity particularly with medium light. CONCLUSIONS We demonstrated beneficial effects of heterologous expression of CrCAO in Chlb-less organism N. salina, where the newly produced Chlb enhanced photosynthesis and growth. Accordingly, transformants showed improved production of biomass and lipids, important traits of microalgae from the industrial perspectives. Our transformants are the first Nannochloropsis cells that produced Chlb in the whole evolutionary path. We also succeeded in delivering a heterologous protein into the secondary plastid for the first time in Nannochloropsis. Taken together, our data showed that manipulation of photosynthetic pigments, including Chlb, can be employed in genetic improvements of microalgae for production of biofuels and other biomaterials.
Collapse
Affiliation(s)
- Hyun Gi Koh
- Advanced Biomass R&D Center, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Nam Kyu Kang
- Advanced Biomass R&D Center, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
- Present Address: Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Seungjib Jeon
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Sung-Eun Shin
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
- Present Address: LG Chem, 188 Munji-ro, Yuseong-gu, Daejeon, 34122 Republic of Korea
| | - Byeong-ryool Jeong
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Yong Keun Chang
- Advanced Biomass R&D Center, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| |
Collapse
|
15
|
Extensive gain and loss of photosystem I subunits in chromerid algae, photosynthetic relatives of apicomplexans. Sci Rep 2017; 7:13214. [PMID: 29038514 PMCID: PMC5643376 DOI: 10.1038/s41598-017-13575-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/26/2017] [Indexed: 12/16/2022] Open
Abstract
In oxygenic photosynthesis the initial photochemical processes are carried out by photosystem I (PSI) and II (PSII). Although subunit composition varies between cyanobacterial and plastid photosystems, the core structures of PSI and PSII are conserved throughout photosynthetic eukaryotes. So far, the photosynthetic complexes have been characterised in only a small number of organisms. We performed in silico and biochemical studies to explore the organization and evolution of the photosynthetic apparatus in the chromerids Chromera velia and Vitrella brassicaformis, autotrophic relatives of apicomplexans. We catalogued the presence and location of genes coding for conserved subunits of the photosystems as well as cytochrome b6f and ATP synthase in chromerids and other phototrophs and performed a phylogenetic analysis. We then characterised the photosynthetic complexes of Chromera and Vitrella using 2D gels combined with mass-spectrometry and further analysed the purified Chromera PSI. Our data suggest that the photosynthetic apparatus of chromerids underwent unique structural changes. Both photosystems (as well as cytochrome b6f and ATP synthase) lost several canonical subunits, while PSI gained one superoxide dismutase (Vitrella) or two superoxide dismutases and several unknown proteins (Chromera) as new regular subunits. We discuss these results in light of the extraordinarily efficient photosynthetic processes described in Chromera.
Collapse
|
16
|
Kunugi M, Satoh S, Ihara K, Shibata K, Yamagishi Y, Kogame K, Obokata J, Takabayashi A, Tanaka A. Evolution of Green Plants Accompanied Changes in Light-Harvesting Systems. PLANT & CELL PHYSIOLOGY 2016; 57:1231-43. [PMID: 27057002 DOI: 10.1093/pcp/pcw071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 03/31/2016] [Indexed: 05/10/2023]
Abstract
Photosynthetic organisms have various pigments enabling them to adapt to various light environments. Green plants are divided into two groups: streptophytes and chlorophytes. Streptophytes include some freshwater green algae and land plants, while chlorophytes comprise the other freshwater green algae and seawater green algae. The environmental conditions driving the divergence of green plants into these two groups and the changes in photosynthetic properties accompanying their evolution remain unknown. Here, we separated the core antennae of PSI and the peripheral antennae [light-harvesting complexes (LHCs)] in green plants by green-native gel electrophoresis and determined their pigment compositions. Freshwater green algae and land plants have high Chl a/b ratios, with most Chl b existing in LHCs. In contrast, seawater green algae have low Chl a/b ratios. In addition, Chl b exists not only in LHCs but also in PSI core antennae in these organisms, a situation beneficial for survival in deep seawater, where blue-green light is the dominant light source. Finally, low-energy Chl (red Chl) of PSI was detected in freshwater green algae and land plants, but not in seawater green algae. We thus conclude that the different level of Chl b accumulation in core antennae and differences in PSI red Chl between freshwater and seawater green algae are evolutionary adaptations of these algae to their habitats, especially to high- or low-light environments.
Collapse
Affiliation(s)
- Motoshi Kunugi
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-ku, Sapporo, 060-0819 Japan
| | - Soichirou Satoh
- Graduate School of Life and Environmental Sciences, Kyoto Prefecture University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522 Japan
| | - Kunio Ihara
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602 Japan
| | - Kensuke Shibata
- AIMEN Co., Ltd, 81-1 Takaoka-cho, Matsuyama, Ehime, 791-8036 Japan
| | - Yukimasa Yamagishi
- Faculty of Life Science and Biotechnology, Fukuyama University, 1 Sanzo, Gakuen-cho, Fukuyama, Hiroshima, 729-0292 Japan
| | - Kazuhiro Kogame
- Faculty of Science, Hokkaido University, N10 W8 Kita-ku, Sapporo, 060-0810 Japan
| | - Junichi Obokata
- Graduate School of Life and Environmental Sciences, Kyoto Prefecture University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522 Japan
| | - Atsushi Takabayashi
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-ku, Sapporo, 060-0819 Japan CREST, JST, N19 W8 Kita-ku, Sapporo, 060-0819 Japan
| | - Ayumi Tanaka
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-ku, Sapporo, 060-0819 Japan CREST, JST, N19 W8 Kita-ku, Sapporo, 060-0819 Japan
| |
Collapse
|
17
|
Xu M, Kinoshita Y, Matsubara S, Tamiaki H. Synthesis of chlorophyll-c derivatives by modifying natural chlorophyll-a. PHOTOSYNTHESIS RESEARCH 2016; 127:335-45. [PMID: 26346903 DOI: 10.1007/s11120-015-0190-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 08/28/2015] [Indexed: 05/28/2023]
Abstract
Chlorophyll-a (Chl-a) was extracted from cyanobacterial cells and modified to methyl pyropheophorbide-a. The 3-vinyl-chlorin was transformed to zinc complex of the corresponding 3-acetyl-porphyrin. The zinc porphyrin was oxidized to give cis-7,8- and 17,18-dihydroxy-chlorins as well cis-7,8-cis-17,18-tetrahydroxybacteriochlorin. After zinc-demetallation, the isolated cis-7,8- and 17,18-diols were reduced at the 3-acetyl group and triply dehydrated under acidic conditions to afford two regioisomeric 3-vinyl-porphyrins, methyl divinyl-pyroprotopheophorbide-a possessing the 8-vinyl group and 17-propionate residue (one of the divinyl-protoChl-a derivatives) and methyl pyropheophorbide-c 1 possessing the 8-ethyl group and 17-acrylate residue (one of the Chl-c 1 derivatives), respectively. The resulting 7,8,17,18-tetrol was reduced and then acidically treated, giving five-fold dehydrated free base porphyrin, methyl pyropheophorbide-c 2 possessing the 3,8-divinyl groups and 17-acrylate residue (one of the Chl-c 2 derivatives). The visible absorption and fluorescence emission spectra of the three semi-synthetic 3-vinyl-porphyrins in dichloromethane were compared with those of the corresponding 8-ethyl-porphyrin bearing the 17-propionate residue, methyl pyroprotopheophorbide-a (one of the protoChl-a derivatives). The Soret and Qy absorption maxima were shifted to longer wavelengths with an increase of π-conjugation in a molecule: protoChl-a (8-CH2CH3/17-CH2CH2COOCH3) < divinyl-protoChl-a (8-CH=CH2/17-CH2CH2COOCH3) < Chl-c 1 (8-CH2CH3/17-CH=CHCOOCH3) < Chl-c 2 derivatives (8-CH=CH2/17-CH=CHCOOCH3). The 17(1),17(2)-dehydrogenation broadened the absorption bands. The emission maxima were bathochromically shifted in the same order. The reaction mechanism of the present dehydration indicates that the biosynthetic pathway of Chls-c would include the hydroxylation of the 17-propionate reside at the 17(1)-position and successive dehydration to the 17-acrylate residue.
Collapse
Affiliation(s)
- Meiyun Xu
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Shiga, Japan
| | - Yusuke Kinoshita
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Shiga, Japan
| | - Shogo Matsubara
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Shiga, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Shiga, Japan.
| |
Collapse
|
18
|
Yamada N, Tanaka A, Horiguchi T. Pigment compositions are linked to the habitat types in dinoflagellates. JOURNAL OF PLANT RESEARCH 2015; 128:923-932. [PMID: 26243150 DOI: 10.1007/s10265-015-0745-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 06/22/2015] [Indexed: 06/04/2023]
Abstract
Compared to planktonic species, there is little known about the ecology, physiology, and existence of benthic dinoflagellates living in sandy beach or seafloor environments. In a previous study, we discovered 13(2),17(3)-cyclopheophorbide a enol (cPPB-aE) from sand-dwelling benthic dinoflagellates. This enol had never been detected in phytoplankton despite the fact that it is a chlorophyll a catabolite. We speculated from this discovery that habitat selection might be linked to pigment compositions in dinoflagellates. To test the hypothesis of habitat selection linking to pigment compositions, we conducted extensive analysis of pigments with high performance liquid chromatography (HPLC) for 40 species using 45 strains of dinoflagellates including three habitat types; sand-dwelling benthic forms, tidal pool inhabitants and planktonic species. The 40 dinoflagellates are also able to be distinguished into two types based on their chloroplast origins; red alga-derived secondary chloroplasts and diatom-derived tertiary ones. By plotting the pigments profiles onto three habitats, we noticed that twelve pigments including cPPB-aE were found to occur only in benthic sand-dwelling species of red alga-derived type. The similar tendency was also observed in dinoflagellates with diatom-derived chloroplasts, i.e. additional sixteen pigments including chl c 3 were found only in sand-dwelling forms. This is the first report of the occurrence of chl c 3 in dinoflagellates with diatom-derived chloroplasts. These results clarify that far greater diversity of pigments are produced by the dinoflagellates living in sand regardless of chloroplast types relative to those of planktonic and tidal pool forms. Dinoflagellates seem to produce a part of their pigments in response to their habitats.
Collapse
Affiliation(s)
- Norico Yamada
- Department of Natural History Sciences, Graduate School of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Ayumi Tanaka
- JST/CREST, Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819, Japan
| | - Takeo Horiguchi
- Department of Natural History Sciences, Graduate School of Science, Hokkaido University, Sapporo, 060-0810, Japan.
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
| |
Collapse
|
19
|
Zhang L, Wang X, Liu T, Wang G, Chi S, Liu C, Wang H. Complete Plastid Genome Sequence of the Brown Alga Undaria pinnatifida. PLoS One 2015; 10:e0139366. [PMID: 26426800 PMCID: PMC4591262 DOI: 10.1371/journal.pone.0139366] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/10/2015] [Indexed: 01/13/2023] Open
Abstract
In this study, we fully sequenced the circular plastid genome of a brown alga, Undaria pinnatifida. The genome is 130,383 base pairs (bp) in size; it contains a large single-copy (LSC, 76,598 bp) and a small single-copy region (SSC, 42,977 bp), separated by two inverted repeats (IRa and IRb: 5,404 bp). The genome contains 139 protein-coding, 28 tRNA, and 6 rRNA genes; none of these genes contains introns. Organization and gene contents of the U. pinnatifida plastid genome were similar to those of Saccharina japonica. There is a co-linear relationship between the plastid genome of U. pinnatifida and that of three previously sequenced large brown algal species. Phylogenetic analyses of 43 taxa based on 23 plastid protein-coding genes grouped all plastids into a red or green lineage. In the large brown algae branch, U. pinnatifida and S. japonica formed a sister clade with much closer relationship to Ectocarpus siliculosus than to Fucus vesiculosus. For the first time, the start codon ATT was identified in the plastid genome of large brown algae, in the atpA gene of U. pinnatifida. In addition, we found a gene-length change induced by a 3-bp repetitive DNA in ycf35 and ilvB genes of the U. pinnatifida plastid genome.
Collapse
Affiliation(s)
- Lei Zhang
- Laboratory of Genetics and Breeding of Marine Organism, College of Marine Life Sciences, Ocean University of China, Qingdao, People’s Republic of China
| | - Xumin Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Tao Liu
- Laboratory of Genetics and Breeding of Marine Organism, College of Marine Life Sciences, Ocean University of China, Qingdao, People’s Republic of China
| | - Guoliang Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Shan Chi
- Laboratory of Genetics and Breeding of Marine Organism, College of Marine Life Sciences, Ocean University of China, Qingdao, People’s Republic of China
| | - Cui Liu
- Laboratory of Genetics and Breeding of Marine Organism, College of Marine Life Sciences, Ocean University of China, Qingdao, People’s Republic of China
| | - Haiyang Wang
- Laboratory of Genetics and Breeding of Marine Organism, College of Marine Life Sciences, Ocean University of China, Qingdao, People’s Republic of China
| |
Collapse
|
20
|
Hunsperger HM, Randhawa T, Cattolico RA. Extensive horizontal gene transfer, duplication, and loss of chlorophyll synthesis genes in the algae. BMC Evol Biol 2015; 15:16. [PMID: 25887237 PMCID: PMC4337275 DOI: 10.1186/s12862-015-0286-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/15/2015] [Indexed: 11/10/2022] Open
Abstract
Background Two non-homologous, isofunctional enzymes catalyze the penultimate step of chlorophyll a synthesis in oxygenic photosynthetic organisms such as cyanobacteria, eukaryotic algae and land plants: the light-independent (LIPOR) and light-dependent (POR) protochlorophyllide oxidoreductases. Whereas the distribution of these enzymes in cyanobacteria and land plants is well understood, the presence, loss, duplication, and replacement of these genes have not been surveyed in the polyphyletic and remarkably diverse eukaryotic algal lineages. Results A phylogenetic reconstruction of the history of the POR enzyme (encoded by the por gene in nuclei) in eukaryotic algae reveals replacement and supplementation of ancestral por genes in several taxa with horizontally transferred por genes from other eukaryotic algae. For example, stramenopiles and haptophytes share por gene duplicates of prasinophytic origin, although their plastid ancestry predicts a rhodophytic por signal. Phylogenetically, stramenopile pors appear ancestral to those found in haptophytes, suggesting transfer from stramenopiles to haptophytes by either horizontal or endosymbiotic gene transfer. In dinoflagellates whose plastids have been replaced by those of a haptophyte or diatom, the ancestral por genes seem to have been lost whereas those of the new symbiotic partner are present. Furthermore, many chlorarachniophytes and peridinin-containing dinoflagellates possess por gene duplicates. In contrast to the retention, gain, and frequent duplication of algal por genes, the LIPOR gene complement (chloroplast-encoded chlL, chlN, and chlB genes) is often absent. LIPOR genes have been lost from haptophytes and potentially from the euglenid and chlorarachniophyte lineages. Within the chlorophytes, rhodophytes, cryptophytes, heterokonts, and chromerids, some taxa possess both POR and LIPOR genes while others lack LIPOR. The gradual process of LIPOR gene loss is evidenced in taxa possessing pseudogenes or partial LIPOR gene compliments. No horizontal transfer of LIPOR genes was detected. Conclusions We document a pattern of por gene acquisition and expansion as well as loss of LIPOR genes from many algal taxa, paralleling the presence of multiple por genes and lack of LIPOR genes in the angiosperms. These studies present an opportunity to compare the regulation and function of por gene families that have been acquired and expanded in patterns unique to each of various algal taxa. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0286-4) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
In vivo Localization Studies in the Stramenopile Alga Nannochloropsis oceanica. Protist 2015; 166:161-71. [DOI: 10.1016/j.protis.2015.01.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 01/08/2015] [Accepted: 01/12/2015] [Indexed: 01/21/2023]
|
22
|
Büchel C. Evolution and function of light harvesting proteins. JOURNAL OF PLANT PHYSIOLOGY 2015; 172:62-75. [PMID: 25240794 DOI: 10.1016/j.jplph.2014.04.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/11/2014] [Accepted: 04/14/2014] [Indexed: 05/10/2023]
Abstract
Photosynthetic eukaryotes exhibit very different light-harvesting proteins, but all contain membrane-intrinsic light-harvesting complexes (Lhcs), either as additional or sole antennae. Lhcs non-covalently bind chlorophyll a and in most cases another Chl, as well as very different carotenoids, depending on the taxon. The proteins fall into two major groups: The well-defined Lhca/b group of proteins binds typically Chl b and lutein, and the group is present in the 'green lineage'. The other group consists of Lhcr/Lhcf, Lhcz and Lhcx/LhcSR proteins. The former are found in the so-called Chromalveolates, where they mostly bind Chl c and carotenoids very efficient in excitation energy transfer, and in their red algae ancestors. Lhcx/LhcSR are present in most Chromalveolates and in some members of the green lineage as well. Lhcs function in light harvesting, but also in photoprotection, and they influence the organisation of the thylakoid membrane. The different functions of the Lhc subfamilies are discussed in the light of their evolution.
Collapse
Affiliation(s)
- Claudia Büchel
- Goethe University Frankfurt, Institute of Molecular Biosciences, Max von Laue Str. 9, 60438 Frankfurt, Germany.
| |
Collapse
|
23
|
Xu M, Tamiaki H. Transformation of Natural Chlorophyll-ainto Chlorophyll-cAnalogs Possessing the 17-Acrylate Residue. CHEM LETT 2014. [DOI: 10.1246/cl.140798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Meiyun Xu
- Graduate School of Life Sciences, Ritsumeikan University
| | | |
Collapse
|
24
|
Evidence of functional trimeric chlorophyll a/c-peridinin proteins in the dinoflagellate Symbiodinium. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1904-1912. [DOI: 10.1016/j.bbabio.2014.07.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 07/07/2014] [Accepted: 07/24/2014] [Indexed: 12/17/2022]
|
25
|
Petersen J, Ludewig AK, Michael V, Bunk B, Jarek M, Baurain D, Brinkmann H. Chromera velia, endosymbioses and the rhodoplex hypothesis--plastid evolution in cryptophytes, alveolates, stramenopiles, and haptophytes (CASH lineages). Genome Biol Evol 2014; 6:666-84. [PMID: 24572015 PMCID: PMC3971594 DOI: 10.1093/gbe/evu043] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The discovery of Chromera velia, a free-living photosynthetic relative of apicomplexan pathogens, has provided an unexpected opportunity to study the algal ancestry of malaria parasites. In this work, we compared the molecular footprints of a eukaryote-to-eukaryote endosymbiosis in C. velia to their equivalents in peridinin-containing dinoflagellates (PCD) to reevaluate recent claims in favor of a common ancestry of their plastids. To this end, we established the draft genome and a set of full-length cDNA sequences from C. velia via next-generation sequencing. We documented the presence of a single coxI gene in the mitochondrial genome, which thus represents the genetically most reduced aerobic organelle identified so far, but focused our analyses on five "lucky genes" of the Calvin cycle. These were selected because of their known support for a common origin of complex plastids from cryptophytes, alveolates (represented by PCDs), stramenopiles, and haptophytes (CASH) via a single secondary endosymbiosis with a red alga. As expected, our broadly sampled phylogenies of the nuclear-encoded Calvin cycle markers support a rhodophycean origin for the complex plastid of Chromera. However, they also suggest an independent origin of apicomplexan and dinophycean (PCD) plastids via two eukaryote-to-eukaryote endosymbioses. Although at odds with the current view of a common photosynthetic ancestry for alveolates, this conclusion is nonetheless in line with the deviant plastome architecture in dinoflagellates and the morphological paradox of four versus three plastid membranes in the respective lineages. Further support for independent endosymbioses is provided by analysis of five additional markers, four of them involved in the plastid protein import machinery. Finally, we introduce the "rhodoplex hypothesis" as a convenient way to designate evolutionary scenarios where CASH plastids are ultimately the product of a single secondary endosymbiosis with a red alga but were subsequently horizontally spread via higher-order eukaryote-to-eukaryote endosymbioses.
Collapse
Affiliation(s)
- Jörn Petersen
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Stadnichuk IN, Tropin IV. Antenna replacement in the evolutionary origin of chloroplasts. Microbiology (Reading) 2014. [DOI: 10.1134/s0026261714030163] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
27
|
Hovde BT, Starkenburg SR, Hunsperger HM, Mercer LD, Deodato CR, Jha RK, Chertkov O, Monnat RJ, Cattolico RA. The mitochondrial and chloroplast genomes of the haptophyte Chrysochromulina tobin contain unique repeat structures and gene profiles. BMC Genomics 2014; 15:604. [PMID: 25034814 PMCID: PMC4226036 DOI: 10.1186/1471-2164-15-604] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/09/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Haptophytes are widely and abundantly distributed in both marine and freshwater ecosystems. Few genomic analyses of representatives within this taxon have been reported, despite their early evolutionary origins and their prominent role in global carbon fixation. RESULTS The complete mitochondrial and chloroplast genome sequences of the haptophyte Chrysochromulina tobin (Prymnesiales) provide insight into the architecture and gene content of haptophyte organellar genomes. The mitochondrial genome (~34 kb) encodes 21 protein coding genes and contains a complex, 9 kb tandem repeat region. Similar to other haptophytes and rhodophytes, but not cryptophytes or stramenopiles, the mitochondrial genome has lost the nad7, nad9 and nad11 genes. The ~105 kb chloroplast genome encodes 112 protein coding genes, including ycf39 which has strong structural homology to NADP-binding nitrate transcriptional regulators; a divergent 'CheY-like' two-component response regulator (ycf55) and Tic/Toc (ycf60 and ycf80) membrane transporters. Notably, a zinc finger domain has been identified in the rpl36 ribosomal protein gene of all chloroplasts sequenced to date with the exception of haptophytes and cryptophytes--algae that have gained (via lateral gene transfer) an alternative rpl36 lacking the zinc finger motif. The two C. tobin chloroplast ribosomal RNA operon spacer regions differ in tRNA content. Additionally, each ribosomal operon contains multiple single nucleotide polymorphisms (SNPs)--a pattern observed in rhodophytes and cryptophytes, but few stramenopiles. Analysis of small (<200 bp) chloroplast encoded tandem and inverted repeats in C. tobin and 78 other algal chloroplast genomes show that repeat type, size and location are correlated with gene identity and taxonomic clade. CONCLUSION The Chrysochromulina tobin organellar genomes provide new insight into organellar function and evolution. These are the first organellar genomes to be determined for the prymnesiales, a taxon that is present in both oceanic and freshwater systems and represents major primary photosynthetic producers and contributors to global ecosystem stability.
Collapse
|
28
|
Ito H, Tanaka A. Evolution of a new chlorophyll metabolic pathway driven by the dynamic changes in enzyme promiscuous activity. PLANT & CELL PHYSIOLOGY 2014; 55:593-603. [PMID: 24399236 DOI: 10.1093/pcp/pct203] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Organisms generate an enormous number of metabolites; however, the mechanisms by which a new metabolic pathway is acquired are unknown. To elucidate the importance of promiscuous enzyme activity for pathway evolution, the catalytic and substrate specificities of Chl biosynthetic enzymes were examined. In green plants, Chl a and Chl b are interconverted by the Chl cycle: Chl a is hydroxylated to 7-hydroxymethyl chlorophyll a followed by the conversion to Chl b, and both reactions are catalyzed by chlorophyllide a oxygenase. Chl b is reduced to 7-hydroxymethyl chlorophyll a by Chl b reductase and then converted to Chl a by 7-hydroxymethyl chlorophyll a reductase (HCAR). A phylogenetic analysis indicated that HCAR evolved from cyanobacterial 3,8-divinyl chlorophyllide reductase (DVR), which is responsible for the reduction of an 8-vinyl group in the Chl biosynthetic pathway. In addition to vinyl reductase activity, cyanobacterial DVR also has Chl b reductase and HCAR activities; consequently, three of the four reactions of the Chl cycle already existed in cyanobacteria, the progenitor of the chloroplast. During the evolution of cyanobacterial DVR to HCAR, the HCAR activity, a promiscuous reaction of cyanobacterial DVR, became the primary reaction. Moreover, the primary reaction (vinyl reductase activity) and some disadvantageous reactions were lost, but the neutral promiscuous reaction (NADH dehydrogenase) was retained in both DVR and HCAR. We also show that a portion of the Chl c biosynthetic pathway already existed in cyanobacteria. We discuss the importance of dynamic changes in promiscuous activity and of the latent pathways for metabolic evolution.
Collapse
Affiliation(s)
- Hisashi Ito
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Kita-ku, Sapporo, 060-0819 Japan
| | | |
Collapse
|
29
|
Non-Photochemical Quenching Mechanisms in Intact Organisms as Derived from Ultrafast-Fluorescence Kinetic Studies. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2014. [DOI: 10.1007/978-94-017-9032-1_5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Structure and Functional Heterogeneity of Fucoxanthin-Chlorophyll Proteins in Diatoms. THE STRUCTURAL BASIS OF BIOLOGICAL ENERGY GENERATION 2014. [DOI: 10.1007/978-94-017-8742-0_2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Huesgen PF, Alami M, Lange PF, Foster LJ, Schröder WP, Overall CM, Green BR. Proteomic amino-termini profiling reveals targeting information for protein import into complex plastids. PLoS One 2013; 8:e74483. [PMID: 24066144 PMCID: PMC3774753 DOI: 10.1371/journal.pone.0074483] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 08/01/2013] [Indexed: 01/14/2023] Open
Abstract
In organisms with complex plastids acquired by secondary endosymbiosis from a photosynthetic eukaryote, the majority of plastid proteins are nuclear-encoded, translated on cytoplasmic ribosomes, and guided across four membranes by a bipartite targeting sequence. In-depth understanding of this vital import process has been impeded by a lack of information about the transit peptide part of this sequence, which mediates transport across the inner three membranes. We determined the mature N-termini of hundreds of proteins from the model diatom Thalassiosira pseudonana, revealing extensive N-terminal modification by acetylation and proteolytic processing in both cytosol and plastid. We identified 63 mature N-termini of nucleus-encoded plastid proteins, deduced their complete transit peptide sequences, determined a consensus motif for their cleavage by the stromal processing peptidase, and found evidence for subsequent processing by a plastid methionine aminopeptidase. The cleavage motif differs from that of higher plants, but is shared with other eukaryotes with complex plastids.
Collapse
Affiliation(s)
- Pitter F. Huesgen
- Centre for Blood Research and Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Meriem Alami
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Philipp F. Lange
- Centre for Blood Research and Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Leonard J. Foster
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wolfgang P. Schröder
- Centre for Blood Research and Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Chemistry and Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Christopher M. Overall
- Centre for Blood Research and Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Beverley R. Green
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
32
|
Sturm S, Engelken J, Gruber A, Vugrinec S, G Kroth P, Adamska I, Lavaud J. A novel type of light-harvesting antenna protein of red algal origin in algae with secondary plastids. BMC Evol Biol 2013; 13:159. [PMID: 23899289 PMCID: PMC3750529 DOI: 10.1186/1471-2148-13-159] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 07/22/2013] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Light, the driving force of photosynthesis, can be harmful when present in excess; therefore, any light harvesting system requires photoprotection. Members of the extended light-harvesting complex (LHC) protein superfamily are involved in light harvesting as well as in photoprotection and are found in the red and green plant lineages, with a complex distribution pattern of subfamilies in the different algal lineages. RESULTS Here, we demonstrate that the recently discovered "red lineage chlorophyll a/b-binding-like proteins" (RedCAPs) form a monophyletic family within this protein superfamily. The occurrence of RedCAPs was found to be restricted to the red algal lineage, including red algae (with primary plastids) as well as cryptophytes, haptophytes and heterokontophytes (with secondary plastids of red algal origin). Expression of a full-length RedCAP:GFP fusion construct in the diatom Phaeodactylum tricornutum confirmed the predicted plastid localisation of RedCAPs. Furthermore, we observed that similarly to the fucoxanthin chlorophyll a/c-binding light-harvesting antenna proteins also RedCAP transcripts in diatoms were regulated in a diurnal way at standard light conditions and strongly repressed at high light intensities. CONCLUSIONS The absence of RedCAPs from the green lineage implies that RedCAPs evolved in the red lineage after separation from the the green lineage. During the evolution of secondary plastids, RedCAP genes therefore must have been transferred from the nucleus of the endocytobiotic alga to the nucleus of the host cell, a process that involved complementation with pre-sequences allowing import of the gene product into the secondary plastid bound by four membranes. Based on light-dependent transcription and on localisation data, we propose that RedCAPs might participate in the light (intensity and quality)-dependent structural or functional reorganisation of the light-harvesting antennae of the photosystems upon dark to light shifts as regularly experienced by diatoms in nature. Remarkably, in plastids of the red lineage as well as in green lineage plastids, the phycobilisome based cyanobacterial light harvesting system has been replaced by light harvesting systems that are based on members of the extended LHC protein superfamily, either for one of the photosystems (PS I of red algae) or for both (diatoms). In their proposed function, the RedCAP protein family may thus have played a role in the evolutionary structural remodelling of light-harvesting antennae in the red lineage.
Collapse
Affiliation(s)
- Sabine Sturm
- Ökophysiologie der Pflanzen, Fach 611, Universität Konstanz 78457 Konstanz, Germany
| | - Johannes Engelken
- Biochemie und Physiologie der Pflanzen, Fach 602, Universität Konstanz 78457 Konstanz, Germany
- Present address: Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003 Barcelona,Spain
| | - Ansgar Gruber
- Ökophysiologie der Pflanzen, Fach 611, Universität Konstanz 78457 Konstanz, Germany
- Present address: Department of Biochemistry & Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, Nova Scotia B3H 4R2, Canada
| | - Sascha Vugrinec
- Ökophysiologie der Pflanzen, Fach 611, Universität Konstanz 78457 Konstanz, Germany
| | - Peter G Kroth
- Ökophysiologie der Pflanzen, Fach 611, Universität Konstanz 78457 Konstanz, Germany
| | - Iwona Adamska
- Biochemie und Physiologie der Pflanzen, Fach 602, Universität Konstanz 78457 Konstanz, Germany
| | - Johann Lavaud
- Ökophysiologie der Pflanzen, Fach 611, Universität Konstanz 78457 Konstanz, Germany
- Present address: UMR 7266 CNRS-ULR ’LIENSs’, CNRS/University of La Rochelle, Institute for Coastal and Environmental Research, La Rochelle Cedex, France
| |
Collapse
|
33
|
Wang X, Shao Z, Fu W, Yao J, Hu Q, Duan D. Chloroplast genome of one brown seaweed, Saccharina japonica (Laminariales, Phaeophyta): its structural features and phylogenetic analyses with other photosynthetic plastids. Mar Genomics 2013; 10:1-9. [PMID: 23305622 DOI: 10.1016/j.margen.2012.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 11/19/2022]
Abstract
The chloroplast genome sequence of one brown seaweed, Saccharina japonica, was fully determined. It is characterized by 130,584 base pairs (bp) with a large and a small single-copy region (LSC and SSC), separated by two copies of inverted repeats (IR1 and IR2). The inverted repeat is 5015 bp long, and the sizes of SSC and LSC are 43,174 bp and 77,378 bp, respectively. The chloroplast genome of S. japonica consists of 139 protein-coding genes, 29 tRNA genes, and 3 ribosomal RNA genes. One intron was found in one tRNA-Leu gene in the chloroplast genome of S. japonica. Four types of overlapping genes were identified, ycf24 overlapped with ycf16 by 4 nucleotides (nt), ftrB overlapped with ycf12 by 6 nt, rpl4 and rpl23 overlapped by 8 nt, finally, psbC overlapped with psbD by 53 nt. With two sets of concatenated plastid protein data, 40-protein dataset and 26-protein dataset, the chloroplast phylogenetic relationship among S. japonica and the other photosynthetic species was evaluated. We found that the chloroplast genomes of haptophyte, cryptophyte and heterokont were not resolved into one cluster by the 40-protein dataset with amino acid composition bias, although it was recovered with strong support by the 26-protein dataset.
Collapse
Affiliation(s)
- Xiuliang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | | | | | | | | | | |
Collapse
|
34
|
Light harvesting complexes of Chromera velia, photosynthetic relative of apicomplexan parasites. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:723-9. [PMID: 23428396 DOI: 10.1016/j.bbabio.2013.02.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 01/31/2013] [Accepted: 02/05/2013] [Indexed: 01/24/2023]
Abstract
The structure and composition of the light harvesting complexes from the unicellular alga Chromera velia were studied by means of optical spectroscopy, biochemical and electron microscopy methods. Two different types of antennae systems were identified. One exhibited a molecular weight (18-19kDa) similar to FCP (fucoxanthin chlorophyll protein) complexes from diatoms, however, single particle analysis and circular dichroism spectroscopy indicated similarity of this structure to the recently characterized XLH antenna of xanthophytes. In light of these data we denote this antenna complex CLH, for "Chromera Light Harvesting" complex. The other system was identified as the photosystem I with bound Light Harvesting Complexes (PSI-LHCr) related to the red algae LHCI antennae. The result of this study is the finding that C. velia, when grown in natural light conditions, possesses light harvesting antennae typically found in two different, evolutionary distant, groups of photosynthetic organisms.
Collapse
|
35
|
Kumari P, Bijo AJ, Mantri VA, Reddy CRK, Jha B. Fatty acid profiling of tropical marine macroalgae: an analysis from chemotaxonomic and nutritional perspectives. PHYTOCHEMISTRY 2013; 86:44-56. [PMID: 23168246 DOI: 10.1016/j.phytochem.2012.10.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 10/18/2012] [Accepted: 10/22/2012] [Indexed: 05/24/2023]
Abstract
The lipid and fatty acid (FA) compositions for 100 marine macroalgae were determined and discussed from the context of chemotaxonomic and nutritional perspectives. In general, the lipid contents in macroalgae were low (2.3-20 mg/g fr. wt.) but with substantially high amounts of nutritionally important polyunsaturated fatty acids (PUFAs) such as LA, ALA, STA, AA, EPA and DHA, that ranged from 10% to 70% of TFAs. More than 90% of the species showed nutritionally beneficial n6/n3 ratio (0.1:1-3.6:1) (p≤0.001). A closer look at the FA data revealed characteristic chemotaxonomic features with C18 PUFAs (LA, ALA and STA) being higher in Chlorophyta, C20 PUFAs (AA and EPA) in Rhodophyta while Phaeophyta depicted evenly distribution of C18 and C20 PUFAs. The ability of macroalgae to produce long-chain PUFAs could be attributed to the coupling of chloroplastic FA desaturase enzyme system from a photosynthetic endosymbiont to the FA desaturase/elongase enzyme system of a non-photosynthetic eukaryotic protist host. Further, the principal component analysis segregated the three macroalgal groups with a marked distinction of different genera, families and orders, Hierarchical cluster analyses substantiated the phylogenetic relationships of all orders investigated except for those red algal taxa belonging to Gigartinales, Ceramiales, Halymeniales and Rhodymeniales for which increased sampling effort is required to infer a conclusion. Also, the groups deduced from FA compositions were congruent with the clades inferred from nuclear and plastid genome sequences. This study further indicates that FA signatures could be employed as a valid chemotaxonomic tool to differentiate macroalgae at higher taxonomic levels such as family and orders.
Collapse
Affiliation(s)
- Puja Kumari
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002, India
| | | | | | | | | |
Collapse
|
36
|
Abstract
Brown algae are an extremely interesting, but surprisingly poorly explored, group of organisms. They are one of only five eukaryotic lineages to have independently evolved complex multicellularity, which they express through a wide variety of morphologies ranging from uniseriate branched filaments to complex parenchymatous thalli with multiple cell types. Despite their very distinct evolutionary history, brown algae and land plants share a striking amount of developmental features. This has led to an interest in several aspects of brown algal development, including embryogenesis, polarity, cell cycle, asymmetric cell division and a putative role for plant hormone signalling. This review describes how investigations using brown algal models have helped to increase our understanding of the processes controlling early embryo development, in particular polarization, axis formation and asymmetric cell division. Additionally, the diversity of life cycles in the brown lineage and the emergence of Ectocarpus as a powerful model organism, are affording interesting insights on the molecular mechanisms underlying haploid-diploid life cycles. The use of these and other emerging brown algal models will undoubtedly add to our knowledge on the mechanisms that regulate development in multicellular photosynthetic organisms.
Collapse
Affiliation(s)
- Kenny A Bogaert
- Phycology Research Group, Department of Biology, Center for Molecular Phylogenetics and Evolution, Ghent University, Ghent, Belgium
| | | | | | | |
Collapse
|
37
|
Weatherby K, Carter D. Chromera velia: The Missing Link in the Evolution of Parasitism. ADVANCES IN APPLIED MICROBIOLOGY 2013; 85:119-44. [PMID: 23942150 DOI: 10.1016/b978-0-12-407672-3.00004-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Since the pivotal publication announcing the discovery of Chromera velia in 2008, there has been a flurry of interest and research into this novel alga. Found by chance while studying the symbionts of corals in Australian reefs, C. velia has turned out to be a very important organism. It holds a unique position as the evolutionary intermediate between photosynthetic dinoflagellate algae and parasitic apicomplexans. Biological characterization has revealed similarities to both dinoflagellates and apicomplexans. Of particular interest is the photosynthetic plastid that is closely related to the apicomplexan apicoplast. This plastid in C. velia has a highly effective photosynthetic system with photoprotective properties such as nonphotochemical quenching. The apicoplast is essential for cell health and is therefore a potential drug target for the apicomplexans that cause malaria and other diseases. The tetrapyrrole, sterol, and galactolipid pathways have been explored in C. velia to find parallels with apicomplexans that could lead to new insights to fight these parasites. Ecologically, C. velia is very similar to dinoflagellates, reflecting their common ancestry and revealing how the ancestors of apicomplexans may have lived before they evolved to become parasitic.
Collapse
Affiliation(s)
- Kate Weatherby
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | | |
Collapse
|
38
|
Nozaki H, Yang Y, Maruyama S, Suzaki T. A case study for effects of operational taxonomic units from intracellular endoparasites and ciliates on the eukaryotic phylogeny: phylogenetic position of the haptophyta in analyses of multiple slowly evolving genes. PLoS One 2012; 7:e50827. [PMID: 23226396 PMCID: PMC3511332 DOI: 10.1371/journal.pone.0050827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 10/25/2012] [Indexed: 01/09/2023] Open
Abstract
Recent multigene phylogenetic analyses have contributed much to our understanding of eukaryotic phylogeny. However, the phylogenetic positions of various lineages within the eukaryotes have remained unresolved or in conflict between different phylogenetic studies. These phylogenetic ambiguities might have resulted from mixtures or integration from various factors including limited taxon sampling, missing data in the alignment, saturations of rapidly evolving genes, mixed analyses of short- and long-branched operational taxonomic units (OTUs), intracellular endoparasite and ciliate OTUs with unusual substitution etc. In order to evaluate the effects from intracellular endoparasite and ciliate OTUs co-analyzed on the eukaryotic phylogeny and simplify the results, we here used two different sets of data matrices of multiple slowly evolving genes with small amounts of missing data and examined the phylogenetic position of the secondary photosynthetic chromalveolates Haptophyta, one of the most abundant groups of oceanic phytoplankton and significant primary producers. In both sets, a robust sister relationship between Haptophyta and SAR (stramenopiles, alveolates, rhizarians, or SA [stramenopiles and alveolates]) was resolved when intracellular endoparasite/ciliate OTUs were excluded, but not in their presence. Based on comparisons of character optimizations on a fixed tree (with a clade composed of haptophytes and SAR or SA), disruption of the monophyly between haptophytes and SAR (or SA) in the presence of intracellular endoparasite/ciliate OTUs can be considered to be a result of multiple evolutionary reversals of character positions that supported the synapomorphy of the haptophyte and SAR (or SA) clade in the absence of intracellular endoparasite/ciliate OTUs.
Collapse
Affiliation(s)
- Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan.
| | | | | | | |
Collapse
|
39
|
Distribution of the SELMA translocon in secondary plastids of red algal origin and predicted uncoupling of ubiquitin-dependent translocation from degradation. EUKARYOTIC CELL 2012; 11:1472-81. [PMID: 23042132 DOI: 10.1128/ec.00183-12] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Protein import into complex plastids of red algal origin is a multistep process including translocons of different evolutionary origins. The symbiont-derived ERAD-like machinery (SELMA), shown to be of red algal origin, is proposed to be the transport system for preprotein import across the periplastidal membrane of heterokontophytes, haptophytes, cryptophytes, and apicomplexans. In contrast to the canonical endoplasmic reticulum-associated degradation (ERAD) system, SELMA translocation is suggested to be uncoupled from proteasomal degradation. We investigated the distribution of known and newly identified SELMA components in organisms with complex plastids of red algal origin by intensive data mining, thereby defining a set of core components present in all examined organisms. These include putative pore-forming components, a ubiquitylation machinery, as well as a Cdc48 complex. Furthermore, the set of known 20S proteasomal components in the periplastidal compartment (PPC) of diatoms was expanded. These newly identified putative SELMA components, as well as proteasomal subunits, were in vivo localized as PPC proteins in the diatom Phaeodactylum tricornutum. The presented data allow us to speculate about the specific features of SELMA translocation in contrast to the canonical ERAD system, especially the uncoupling of translocation from degradation.
Collapse
|
40
|
Lohr M, Schwender J, Polle JEW. Isoprenoid biosynthesis in eukaryotic phototrophs: a spotlight on algae. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 185-186:9-22. [PMID: 22325862 DOI: 10.1016/j.plantsci.2011.07.018] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 07/25/2011] [Accepted: 07/29/2011] [Indexed: 05/04/2023]
Abstract
Isoprenoids are one of the largest groups of natural compounds and have a variety of important functions in the primary metabolism of land plants and algae. In recent years, our understanding of the numerous facets of isoprenoid metabolism in land plants has been rapidly increasing, while knowledge on the metabolic network of isoprenoids in algae still lags behind. Here, current views on the biochemistry and genetics of the core isoprenoid metabolism in land plants and in the major algal phyla are compared and some of the most pressing open questions are highlighted. Based on the different evolutionary histories of the various groups of eukaryotic phototrophs, we discuss the distribution and regulation of the mevalonate (MVA) and the methylerythritol phosphate (MEP) pathways in land plants and algae and the potential consequences of the loss of the MVA pathway in groups such as the green algae. For the prenyltransferases, serving as gatekeepers to the various branches of terpenoid biosynthesis in land plants and algae, we explore the minimal inventory necessary for the formation of primary isoprenoids and present a preliminary analysis of their occurrence and phylogeny in algae with primary and secondary plastids. The review concludes with some perspectives on genetic engineering of the isoprenoid metabolism in algae.
Collapse
Affiliation(s)
- Martin Lohr
- Institut für Allgemeine Botanik, Johannes Gutenberg-Universität, 55099 Mainz, Germany.
| | | | | |
Collapse
|
41
|
Pan H, Slapeta J, Carter D, Chen M. Phylogenetic analysis of the light-harvesting system in Chromera velia. PHOTOSYNTHESIS RESEARCH 2012; 111:19-28. [PMID: 22161624 DOI: 10.1007/s11120-011-9710-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Accepted: 11/23/2011] [Indexed: 05/31/2023]
Abstract
Chromera velia is a newly discovered photosynthetic eukaryotic alga that has functional chloroplasts closely related to the apicoplast of apicomplexan parasites. Recently, the chloroplast in C. velia was shown to be derived from the red algal lineage. Light-harvesting protein complexes (LHC), which are a group of proteins involved in photon capture and energy transfer in photosynthesis, are important for photosynthesis efficiency, photo-adaptation/accumulation and photo-protection. Although these proteins are encoded by genes located in the nucleus, LHC peptides migrate and function in the chloroplast, hence the LHC may have a different evolutionary history compared to chloroplast evolution. Here, we compare the phylogenetic relationship of the C. velia LHCs to LHCs from other photosynthetic organisms. Twenty-three LHC homologues retrieved from C. velia EST sequences were aligned according to their conserved regions. The C. velia LHCs are positioned in four separate groups on trees constructed by neighbour-joining, maximum likelihood and Bayesian methods. A major group of seventeen LHCs from C. velia formed a separate cluster that was closest to dinoflagellate LHC, and to LHC and fucoxanthin chlorophyll-binding proteins from diatoms. One C. velia LHC sequence grouped with LI1818/LI818-like proteins, which were recently identified as environmental stress-induced protein complexes. Only three LHC homologues from C. velia grouped with the LHCs from red algae.
Collapse
Affiliation(s)
- Hao Pan
- School of Biological Sciences (A08), Faculty of Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | | | | | | |
Collapse
|
42
|
Prihoda J, Tanaka A, de Paula WBM, Allen JF, Tirichine L, Bowler C. Chloroplast-mitochondria cross-talk in diatoms. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1543-57. [PMID: 22268145 DOI: 10.1093/jxb/err441] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Diatoms are unicellular, mainly photosynthetic, eukaryotes living within elaborate silicified cell walls and believed to be responsible for around 40% of global primary productivity in the oceans. Their abundance in aquatic ecosystems is such that they have on different occasions been described as the insects, the weeds, or the cancer cells of the ocean. In contrast to higher plants and green algae which derive from a primary endosymbiosis, diatoms are now believed to originate from a serial secondary endosymbiosis involving both green and red algae and a heterotrophic exosymbiont host. As a consequence of their dynamic evolutionary history, they appear to have red algal-derived chloroplasts empowered largely by green algal proteins, working alongside mitochondria derived from the non-photosynthetic exosymbiont. This review will discuss the evidence for such an unusual assemblage of organelles in diatoms, and will present the evidence implying that it has enabled them with unorthodox metabolisms that may have contributed to their profound ecological success.
Collapse
Affiliation(s)
- Judit Prihoda
- Environmental and Evolutionary Genomics Section, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR 8197 INSERM U1024, Ecole Normale Supérieure, Paris, 46 rue d'Ulm, 75230 Paris Cedex 05, France
| | | | | | | | | | | |
Collapse
|
43
|
Kaňa R, Kotabová E, Sobotka R, Prášil O. Non-photochemical quenching in cryptophyte alga Rhodomonas salina is located in chlorophyll a/c antennae. PLoS One 2012; 7:e29700. [PMID: 22235327 PMCID: PMC3250475 DOI: 10.1371/journal.pone.0029700] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 12/03/2011] [Indexed: 01/25/2023] Open
Abstract
Photosynthesis uses light as a source of energy but its excess can result in production of harmful oxygen radicals. To avoid any resulting damage, phototrophic organisms can employ a process known as non-photochemical quenching (NPQ), where excess light energy is safely dissipated as heat. The mechanism(s) of NPQ vary among different phototrophs. Here, we describe a new type of NPQ in the organism Rhodomonas salina, an alga belonging to the cryptophytes, part of the chromalveolate supergroup. Cryptophytes are exceptional among photosynthetic chromalveolates as they use both chlorophyll a/c proteins and phycobiliproteins for light harvesting. All our data demonstrates that NPQ in cryptophytes differs significantly from other chromalveolates – e.g. diatoms and it is also unique in comparison to NPQ in green algae and in higher plants: (1) there is no light induced xanthophyll cycle; (2) NPQ resembles the fast and flexible energetic quenching (qE) of higher plants, including its fast recovery; (3) a direct antennae protonation is involved in NPQ, similar to that found in higher plants. Further, fluorescence spectroscopy and biochemical characterization of isolated photosynthetic complexes suggest that NPQ in R. salina occurs in the chlorophyll a/c antennae but not in phycobiliproteins. All these results demonstrate that NPQ in cryptophytes represents a novel class of effective and flexible non-photochemical quenching.
Collapse
Affiliation(s)
- Radek Kaňa
- Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czech Republic.
| | | | | | | |
Collapse
|
44
|
The stereochemistry of chlorophyll-c3 from the haptophyte Emiliania huxleyi: The (132R)-enantiomers of chlorophylls-c are exclusively selected as the photosynthetically active pigments in chromophyte algae. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1467-73. [DOI: 10.1016/j.bbabio.2011.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 07/15/2011] [Accepted: 07/15/2011] [Indexed: 11/22/2022]
|
45
|
Chen M, Blankenship RE. Expanding the solar spectrum used by photosynthesis. TRENDS IN PLANT SCIENCE 2011; 16:427-31. [PMID: 21493120 DOI: 10.1016/j.tplants.2011.03.011] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 03/11/2011] [Accepted: 03/11/2011] [Indexed: 05/03/2023]
Abstract
A limiting factor for photosynthetic organisms is their light-harvesting efficiency, that is the efficiency of their conversion of light energy to chemical energy. Small modifications or variations of chlorophylls allow photosynthetic organisms to harvest sunlight at different wavelengths. Oxygenic photosynthetic organisms usually utilize only the visible portion of the solar spectrum. The cyanobacterium Acaryochloris marina carries out oxygenic photosynthesis but contains mostly chlorophyll d and only traces of chlorophyll a. Chlorophyll d provides a potential selective advantage because it enables Acaryochloris to use infrared light (700-750 nm) that is not absorbed by chlorophyll a. Recently, an even more red-shifted chlorophyll termed chlorophyll f has been reported. Here, we discuss using modified chlorophylls to extend the spectral region of light that drives photosynthetic organisms.
Collapse
Affiliation(s)
- Min Chen
- School of Biological Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | | |
Collapse
|
46
|
Dorrell RG, Smith AG. Do red and green make brown?: perspectives on plastid acquisitions within chromalveolates. EUKARYOTIC CELL 2011; 10:856-68. [PMID: 21622904 PMCID: PMC3147421 DOI: 10.1128/ec.00326-10] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The chromalveolate "supergroup" is of key interest in contemporary phycology, as it contains the overwhelming majority of extant algal species, including several phyla of key importance to oceanic net primary productivity such as diatoms, kelps, and dinoflagellates. There is also intense current interest in the exploitation of these algae for industrial purposes, such as biodiesel production. However, the evolution of the constituent species, and in particular the origin and radiation of the chloroplast genomes, remains poorly understood. In this review, we discuss current theories of the origins of the extant red alga-derived chloroplast lineages in the chromalveolates and the potential ramifications of the recent discovery of large numbers of green algal genes in chromalveolate genomes. We consider that the best explanation for this is that chromalveolates historically possessed a cryptic green algal endosymbiont that was subsequently replaced by a red algal chloroplast. We consider how changing selective pressures acting on ancient chromalveolate lineages may have selectively favored the serial endosymbioses of green and red algae and whether a complex endosymbiotic history facilitated the rise of chromalveolates to their current position of ecological prominence.
Collapse
Affiliation(s)
- Richard G Dorrell
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom.
| | | |
Collapse
|
47
|
Green BR. Chloroplast genomes of photosynthetic eukaryotes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:34-44. [PMID: 21443621 DOI: 10.1111/j.1365-313x.2011.04541.x] [Citation(s) in RCA: 221] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Chloroplast genomes have retained a core set of genes from their cyanobacterial ancestor, most of them required for the light reactions of photosynthesis or functions connected with transcription and translation. Other genes have been transferred to the nucleus or were lost in a lineage-specific manner. The genomes are distinguished by the selection of genes retained, whether or not transcripts are edited, presence/absence of introns and small repeats and their physical organization. Plants and green algae have kept fewer plastid genes than either the red algae or the chromistan algae, which obtained their plastids from red algae by secondary endosymbiosis. Photosynthetic dinoflagellates have the fewest (fewer than 20), but still grow photoautotrophically. All chloroplast genomes map as a circle, but there have been extensive rearrangements of gene order even between related species. Genome sizes vary much more than gene content, depending on the extent of gene duplication and small repeats and the size of intergenic spacers.
Collapse
Affiliation(s)
- Beverley R Green
- Botany Department, University of British Columbia, #3529-6270 University Blvd., Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
48
|
Abstract
The integrated functioning of two photosystems (I and II) whether in cyanobacteria or in chloroplasts is the outstanding sign of a common ancestral origin. Many variations on the basic theme are currently evident in oxygenic photosynthetic organisms whether they are prokaryotes, unicellular, or multicellular. By conservative estimates, oxygenic photosynthesis has been around for at least ca. 2.2-2.7 billions years, consistent with cyanobacteria-type microfossils, biomarkers, and an atmospheric rise in oxygen to less than 1.0% of the present concentration. The presumptions of chloroplast formation by the cyanobacterial uptake into a eukaryote prior to 1.6 BYa ago are confounded by assumptions of host type(s) and potential tolerance of oxygen toxicity. The attempted dating and interrelationships of particular chloroplasts in various plant or animal lineages has relied heavily on phylogenomic analysis and evaluations that have been difficult to confirm separately. Many variations occur in algal groups, involving the type and number of accessory pigments, and the number(s) of membranes (2-4) enclosing a chloroplast, which can both help and complicate inferences made about early or late origins of chloroplasts. Integration of updated phylogenomics with physiological and cytological observations remains a special challenge, but could lead to more accurate assumptions of initial and extant endosymbiotic event(s) leading toward stable chloroplast associations.
Collapse
Affiliation(s)
- Elisabeth Gantt
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|