1
|
Chen Z, Li J, Wang BC, Tian L. In vivo two-photon FLIM resolves photosynthetic properties of maize bundle sheath cells. PHOTOSYNTHESIS RESEARCH 2025; 163:11. [PMID: 39836265 DOI: 10.1007/s11120-024-01135-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 12/30/2024] [Indexed: 01/22/2025]
Abstract
Maize (Zea mays L.) performs highly efficient C4 photosynthesis by dividing photosynthetic metabolism between mesophyll and bundle sheath cells. In vivo physiological measurements are indispensable for C4 photosynthesis research as photosynthetic activities are easily interrupted by leaf section or cell isolation. Yet, direct in vivo observation regarding bundle sheath cells in the delicate anatomy of the C4 leaf is still challenging. In the current work, we used two-photon fluorescence-lifetime imaging microscopy (two-photon-FLIM) to access the photosynthetic properties of bundle sheath cells on intact maize leaves. The results provide spectroscopic evidence for the diminished total PSII activity in bundle sheath cells at its physiological level and show that the single PSIIs could undergo charge separation as usual. We also report an acetic acid-induced chlorophyll fluorescence quenching on intact maize leaves, which might be a physiological state related to the nonphotochemical quenching mechanism.
Collapse
Affiliation(s)
- Zhufeng Chen
- State Key Laboratory of Forage Breeding-by-Design and Utilization, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, 100093, China
| | - Jing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Bai-Chen Wang
- State Key Laboratory of Forage Breeding-by-Design and Utilization, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, 100093, China
| | - Lijin Tian
- State Key Laboratory of Forage Breeding-by-Design and Utilization, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- China National Botanical Garden, Beijing, 100093, China.
| |
Collapse
|
2
|
Bury G, Pushkar Y. Insights from Ca 2+→Sr 2+ substitution on the mechanism of O-O bond formation in photosystem II. PHOTOSYNTHESIS RESEARCH 2024:10.1007/s11120-024-01117-2. [PMID: 39186214 DOI: 10.1007/s11120-024-01117-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/06/2024] [Indexed: 08/27/2024]
Abstract
In recent years, there has been a steady interest in unraveling the intricate mechanistic details of water oxidation mechanism in photosynthesis. Despite the substantial progress made over several decades, a comprehensive understanding of the precise kinetics underlying O-O bond formation and subsequent evolution remains elusive. However, it is well-established that the oxygen evolving complex (OEC), specifically the CaMn4O5 cluster, plays a crucial role in O-O bond formation, undergoing a series of four oxidative events as it progresses through the S-states of the Kok cycle. To gain further insights into the OEC, researchers have explored the substitution of the Ca2+ cofactor with strontium (Sr), the sole atomic replacement capable of retaining oxygen-evolving activity. Empirical investigations utilizing spectroscopic techniques such as XAS, XRD, EPR, FTIR, and XANES have been conducted to probe the structural consequences of Ca2+→Sr2+ substitution. In parallel, the development of DFT and QM/MM computational models has explored different oxidation and protonation states, as well as variations in ligand coordination at the catalytic center involving amino acid residues. In this review, we critically evaluate and integrate these computational and spectroscopic approaches, focusing on the structural and mechanistic implications of Ca2+→Sr2+ substitution in PS II. We contribute DFT modelling and simulate EXAFS Fourier transforms of Sr-substituted OEC, analyzing promising structures of the S3 state. Through the combination of computational modeling and spectroscopic investigations, valuable insights have been gained, developing a deeper understanding of the photosynthetic process.
Collapse
Affiliation(s)
- Gabriel Bury
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Yulia Pushkar
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
3
|
Liu M, Wang Y, Zhang H, Hao Y, Wu H, Shen H, Zhang P. Mechanisms of photoprotection in overwintering evergreen conifers: Sustained quenching of chlorophyll fluorescence. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108638. [PMID: 38653096 DOI: 10.1016/j.plaphy.2024.108638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Evergreen conifers growing in high-latitude regions must endure prolonged winters that are characterized by sub-zero temperatures combined with light, conditions that can cause significant photooxidative stress. Understanding overwintering mechanisms is crucial for addressing winter adversity in temperate forest ecosystems and enhancing the ability of conifers to adapt to climate change. This review synthesizes the current understanding of the photoprotective mechanisms that conifers employ to mitigate photooxidative stress, particularly non-photochemical "sustained quenching", the mechanism of which is hypothesized to be a recombination or deformation of the original mechanism employed by conifers in response to short-term low temperature and intense light stress in the past. Based on this hypothesis, scattered studies in this field are assembled and integrated into a complete mechanism of sustained quenching embedded in the adaptation process of plant physiology. It also reveals which parts of the whole system have been verified in conifers and which have only been verified in non-conifers, and proposes specific directions for future research. The functional implications of studies of non-coniferous plant species for the study of coniferous trees are also considered, as a wide range of plant responses lead to sustained quenching, even among different conifer species. In addition, the review highlights the challenges of measuring sustained quenching and discusses the application of ultrafast-time-resolved fluorescence and decay-associated spectra for the elucidation of photosynthetic principles.
Collapse
Affiliation(s)
- Mingyu Liu
- College of Forestry, Northeast Forestry University, Harbin, 150040, China.
| | - Yu Wang
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| | - Huihui Zhang
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| | - Yuanqin Hao
- College of Forestry, Northeast Forestry University, Harbin, 150040, China.
| | - Haibo Wu
- College of Forestry, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; State Forestry and Grassland Administration Engineering Technology Research Center of Korean Pine, Harbin, 150040, China.
| | - Hailong Shen
- College of Forestry, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; State Forestry and Grassland Administration Engineering Technology Research Center of Korean Pine, Harbin, 150040, China.
| | - Peng Zhang
- College of Forestry, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; State Forestry and Grassland Administration Engineering Technology Research Center of Korean Pine, Harbin, 150040, China.
| |
Collapse
|
4
|
Laisk A, Peterson RB, Oja V. Excitation transfer and quenching in photosystem II, enlightened by carotenoid triplet state in leaves. PHOTOSYNTHESIS RESEARCH 2024; 160:31-44. [PMID: 38502255 DOI: 10.1007/s11120-024-01086-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/06/2024] [Indexed: 03/21/2024]
Abstract
Accumulation of carotenoid (Car) triplet states was investigated by singlet-triplet annihilation, measured as chlorophyll (Chl) fluorescence quenching in sunflower and lettuce leaves. The leaves were illuminated by Xe flashes of 4 μs length at half-height and 525-565 or 410-490 nm spectral band, maximum intensity 2 mol quanta m-2 s-1, flash photon dose up to 10 μmol m-2 or 4-10 PSII excitations. Superimposed upon the non-photochemically unquenched Fmd state, fluorescence was strongly quenched near the flash maximum (minimum yield Fe), but returned to the Fmd level after 30-50 μs. The fraction of PSII containing a 3Car in equilibrium with singlet excitation was calculated as Te = (Fmd-Fe)/Fmd. Light dependence of Te was a rectangular hyperbola, whose initial slope and plateau were determined by the quantum yields of triplet formation and annihilation and by the triplet lifetime. The intrinsic lifetime was 9 μs, but it was strongly shortened by the presence of O2. The triplet yield was 0.66 without nonphotochemical quenching (NPQ) but approached zero when NP-Quenched fluorescence approached 0.2 Fmd. The results show that in the Fmd state a light-adapted charge-separated PSIIL state is formed (Sipka et al., The Plant Cell 33:1286-1302, 2021) in which Pheo-P680+ radical pair formation is hindered, and excitation is terminated in the antenna by 3Car formation. The results confirm that there is no excitonic connectivity between PSII units. In the PSIIL state each PSII is individually turned into the NPQ state, where excess excitation is quenched in the antenna without 3Car formation.
Collapse
Affiliation(s)
- Agu Laisk
- Institute of Technology, University of Tartu, Nooruse St. 1, 50411, Tartu, Estonia.
| | - Richard B Peterson
- The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, CT, 06511, USA
| | - Vello Oja
- Institute of Technology, University of Tartu, Nooruse St. 1, 50411, Tartu, Estonia
| |
Collapse
|
5
|
Nanda S, Shutova T, Cainzos M, Hu C, Sasbrink B, Bag P, Blanken TD, Buijs R, Gracht LVD, Hendriks F, Lambrev P, Limburg R, Mascoli V, Nawrocki WJ, Reus M, Parmessar R, Singerling B, Stokkum IHM, Jansson S, Holzwarth AR. ChloroSpec: A new in vivo chlorophyll fluorescence spectrometer for simultaneous wavelength- and time-resolved detection. PHYSIOLOGIA PLANTARUM 2024; 176:e14306. [PMID: 38659135 DOI: 10.1111/ppl.14306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
Chlorophyll fluorescence is a ubiquitous tool in basic and applied plant science research. Various standard commercial instruments are available for characterization of photosynthetic material like leaves or microalgae, most of which integrate the overall fluorescence signals above a certain cut-off wavelength. However, wavelength-resolved (fluorescence signals appearing at different wavelengths having different time dependent decay) signals contain vast information required to decompose complex signals and processes into their underlying components that can untangle the photo-physiological process of photosynthesis. Hence, to address this we describe an advanced chlorophyll fluorescence spectrometer - ChloroSpec - allowing three-dimensional simultaneous detection of fluorescence intensities at different wavelengths in a time-resolved manner. We demonstrate for a variety of typical examples that most of the generally used fluorescence parameters are strongly wavelength dependent. This indicates a pronounced heterogeneity and a highly dynamic nature of the thylakoid and the photosynthetic apparatus under actinic illumination. Furthermore, we provide examples of advanced global analysis procedures integrating this three-dimensional signal and relevant information extracted from them that relate to the physiological properties of the organism. This conveniently obtained broad range of data can make ChloroSpec a new standard tool in photosynthesis research.
Collapse
Affiliation(s)
- Sanchali Nanda
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Tatyana Shutova
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Maximiliano Cainzos
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Chen Hu
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, The Netherlands
| | - Bart Sasbrink
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, The Netherlands
| | - Pushan Bag
- Section of Molecular Plant Biology, Department of Biology, Oxford University, Oxford, United Kingdom
| | | | - Ronald Buijs
- Technology Centre, Vrije Universiteit Amsterdam, The Netherlands
| | | | - Frans Hendriks
- Technology Centre, Vrije Universiteit Amsterdam, The Netherlands
| | - Petar Lambrev
- Max-Planck-Institute for Chemical Energy Conversion, Mülheim a.d. Ruhr, Germany
| | - Rob Limburg
- Technology Centre, Vrije Universiteit Amsterdam, The Netherlands
| | - Vincenzo Mascoli
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, The Netherlands
| | - Wojciech J Nawrocki
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, The Netherlands
| | - Michael Reus
- Max-Planck-Institute for Chemical Energy Conversion, Mülheim a.d. Ruhr, Germany
| | - Ramon Parmessar
- Technology Centre, Vrije Universiteit Amsterdam, The Netherlands
| | - Björn Singerling
- Technology Centre, Vrije Universiteit Amsterdam, The Netherlands
| | - Ivo H M Stokkum
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, The Netherlands
| | - Stefan Jansson
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Alfred R Holzwarth
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, The Netherlands
- Max-Planck-Institute for Chemical Energy Conversion, Mülheim a.d. Ruhr, Germany
- ChloroSpec B.V., De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
6
|
Xu Z, Zhou H, Li L, Chen Z, Zhang X, Feng Y, Wang J, Li Y, Wu Y. Immunoassay System Based on the Technology of Time-Resolved Fluorescence Resonance Energy Transfer. SENSORS (BASEL, SWITZERLAND) 2024; 24:1430. [PMID: 38474966 DOI: 10.3390/s24051430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024]
Abstract
To enhance the specificity and sensitivity, cut the cost, and realize joint detection of multiple indicators, an immunoassay system based on the technology of time-resolved fluorescence resonance energy transfer (TR-FRET) was studied. Due to the FRET of the reagent, the donor probe and acceptor probe emitted specific fluorescence to enhance specificity. Long-lifetime specific fluorescence from the acceptor probe was combined with time-resolved technology to enhance sensitivity. A xenon flash lamp and a photomultiplier tube (PMT) were selected as the light source and detector, respectively. A filter-switching mechanism was placed in the light path, so the fluorescence signal from the donor and acceptor was measured alternately. The instrument's design is given, and some specificI parts are described in detail. Key technical specifications of the instrument and procalcitonin (PCT), C-reactive protein (CRP), and interleukin-6(IL-6) were tested, and the test results were presented subsequently. The CV value of the self-designed counting module is better than 0.01%, and the instrument noises for 620 nm and 665 nm are 41.44 and 10.59, respectively. When set at 37 °C, the temperature bias (B) is 0.06 °C, and the temperature fluctuation is 0.10 °C. The CV and bias are between ±3% and 5%, respectively, when pipetting volumes are between 10 μL and 100 μL. Within the concentration range of 0.01 nM to 10 nM, the luminescence values exhibit linear regression correlation coefficients greater than 0.999. For PCT detection, when the concentration ranges from 0.02 ng/mL to 50 ng/mL, the correlation coefficient of linear fitting exceeds 0.999, and the limit of quantification is 0.096 ng/mL. For CRP and IL-6, the detection concentration ranges from 0 ng/mL to 500 ng/mL and 0 ng/mL to 20 ng/mL, respectively, with limits of quantification of 2.70 ng/mL and 2.82 ng/mL, respectively. The experimental results confirm the feasibility of the technical and instrumental solutions.
Collapse
Affiliation(s)
- Zhengping Xu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Hong Zhou
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Li Li
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Zhang Chen
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Xin Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Yongtong Feng
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Jianping Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Yuan Li
- Chongqing Guoke Medical Innovation Technology Development Co., Ltd., Chongqing 401122, China
| | - Yanfan Wu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| |
Collapse
|
7
|
Bag S, Bhowmik S. Fluorescence Spectroscopy: A Useful Method to Explore the Interactions of Small Molecule Ligands with DNA Structures. Methods Mol Biol 2024; 2719:33-49. [PMID: 37803111 DOI: 10.1007/978-1-0716-3461-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
Small molecule ligands-DNA interactions have recently received a lot of attention in the fields of life sciences, medicine, and chemical sciences. To decode these interactions, many strategies have been developed. DNA is the primary target for a wide range of drugs that may interact with DNA in particular or non-specific ways and impact its activities. Fluorescence spectroscopy is a highly advanced and non-invasive technology for measuring the concentrations of substrates and products or identifying characteristic processing states. Small molecule ligands-DNA interaction studies are beneficial not only in comprehending the method of interaction, but also in synthesizing DNA-targeted particular drugs. Several small compounds that bind to DNA are clinically established therapeutic medicines, while their specific mechanism of action is unknown. Figuring out their molecular recognizing patterns is the only way to construct innovative compounds that can target specific DNA sequences with strong affinities. This book chapter will mostly explore several fluorescence spectroscopic methodologies used to investigate interactions between small molecule ligands and DNA. In addition, we provide many approaches for determining a drug's binding mode with DNA. These strategies produce data that is both trustworthy and easy to comprehend. All of the knowledge gained by studying these fluorescence spectroscopies are supposed to lead to the development of more efficient new pharmaceuticals that might aid in the treatment of diseases.
Collapse
Affiliation(s)
- Sagar Bag
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, West Bengal, India
| | - Sudipta Bhowmik
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, West Bengal, India.
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Pondicherry, India.
| |
Collapse
|
8
|
Schreiber U. Light-induced changes of far-red excited chlorophyll fluorescence: further evidence for variable fluorescence of photosystem I in vivo. PHOTOSYNTHESIS RESEARCH 2023; 155:247-270. [PMID: 36598714 PMCID: PMC9958156 DOI: 10.1007/s11120-022-00994-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Recently, the long-standing paradigm of variable chlorophyll (Chl) fluorescence (Fv) in vivo originating exclusively from PSII was challenged, based on measurements with green algae and cyanobacteria (Schreiber and Klughammer 2021, PRES 149, 213-231). Fv(I) was identified by comparing light-induced changes of Fv > 700 nm and Fv < 710 nm. The Fv(I) induced by strong light was about 1.5 × larger in Fv > 700 nm compared to Fv < 710 nm. In the present communication, concentrating on the model green alga Chlorella vulgaris, this work is extended by comparing the light-induced changes of long-wavelength fluorescence (> 765 nm) that is excited by either far-red light (720 nm, mostly absorbed in PSI) or visible light (540 nm, absorbed by PSI and PSII). Polyphasic rise curves of Fv induced by saturating 540 nm light are measured, which after normalization of the initial O-I1 rises, assumed to reflect Fv(II), display a 2 × higher I2-P transient with 720 nm excitation (720ex) compared with 540ex. Analysis of the Fo(I) contributions to Fo(720ex) and Fo(540ex) reveals that also Fo(I)720ex is 2 × higher than Fo(I)540ex, which supports the notion that the whole I2-P transient is due to Fv(I). The twofold increase of the excitation ratio of F(I)/F(II) from 680 to 720 nm is much smaller than the eight-tenfold increase of PSI/PSII known from action spectra. It is suggested that the measured F > 765 nm is not representative for the bulk chlorophyll of PSI, but rather reflects a small fraction of far-red absorbing chlorophyll forms ("red Chls") with particular properties. Based on the same approach (comparison of polyphasic rise curves measured with 720ex and 540ex), the existence of Fv(I) is confirmed in a variety of other photosynthetic organisms (cyanobacteria, moss, fern, higher plant leaves).
Collapse
Affiliation(s)
- Ulrich Schreiber
- Julius-von-Sachs Institut für Biowissenschaften, Universität Würzburg, Julius-von-Sachs Platz 2, 97082, Würzburg, Germany.
| |
Collapse
|
9
|
dos Santos Rodrigues FH, Delgado GG, Santana da Costa T, Tasic L. Applications of fluorescence spectroscopy in protein conformational changes and intermolecular contacts. BBA ADVANCES 2023; 3:100091. [PMID: 37207090 PMCID: PMC10189374 DOI: 10.1016/j.bbadva.2023.100091] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023] Open
Abstract
Emission fluorescence is one of the most versatile and powerful biophysical techniques used in several scientific subjects. It is extensively applied in the studies of proteins, their conformations, and intermolecular contacts, such as in protein-ligand and protein-protein interactions, allowing qualitative, quantitative, and structural data elucidation. This review, aimed to outline some of the most widely used fluorescence techniques in this area, illustrate their applications and display a few examples. At first, the data on the intrinsic fluorescence of proteins is disclosed, mainly on the tryptophan side chain. Predominantly, research to study protein conformational changes, protein interactions, and changes in intensities and shifts of the fluorescence emission maximums were discussed. Fluorescence anisotropy or fluorescence polarization is a measurement of the changing orientation of a molecule in space, concerning the time between the absorption and emission events. Absorption and emission indicate the spatial alignment of the molecule's dipoles relative to the electric vector of the electromagnetic wave of excitation and emitted light, respectively. In other words, if the fluorophore population is excited with vertically polarized light, the emitted light will retain some polarization based on how fast it rotates in solution. Therefore, fluorescence anisotropy can be successfully used in protein-protein interaction investigations. Then, green fluorescent proteins (GFPs), photo-transformable fluorescent proteins (FPs) such as photoswitchable and photoconvertible FPs, and those with Large Stokes Shift (LSS) are disclosed in more detail. FPs are potent tools for the study of biological systems. Their versatility and wide range of colours and properties allow many applications. Finally, the application of fluorescence in life sciences is exposed, especially the application of FPs in fluorescence microscopy techniques with super-resolution that enables precise in vivo photolabeling to monitor the movement and interactions of target proteins.
Collapse
Affiliation(s)
| | - Gonzalo Garcia Delgado
- Chemical Biology Laboratory, Institute of Chemistry, Organic Chemistry Department, University of Campinas, P. O. Box 6154, Campinas 13083-970, SP, Brazil
| | - Thyerre Santana da Costa
- Chemical Biology Laboratory, Institute of Chemistry, Organic Chemistry Department, University of Campinas, P. O. Box 6154, Campinas 13083-970, SP, Brazil
| | - Ljubica Tasic
- Chemical Biology Laboratory, Institute of Chemistry, Organic Chemistry Department, University of Campinas, P. O. Box 6154, Campinas 13083-970, SP, Brazil
- Corresponding author: Ljubica Tasic: IQ, UNICAMP, Rua Josué de Castro sn, 13083-970 Campinas, SP, Brazil
| |
Collapse
|
10
|
Bru P, Steen CJ, Park S, Amstutz CL, Sylak-Glassman EJ, Lam L, Fekete A, Mueller MJ, Longoni F, Fleming GR, Niyogi KK, Malnoë A. The major trimeric antenna complexes serve as a site for qH-energy dissipation in plants. J Biol Chem 2022; 298:102519. [PMID: 36152752 PMCID: PMC9615032 DOI: 10.1016/j.jbc.2022.102519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 11/28/2022] Open
Abstract
Plants and algae are faced with a conundrum: harvesting sufficient light to drive their metabolic needs while dissipating light in excess to prevent photodamage, a process known as nonphotochemical quenching. A slowly relaxing form of energy dissipation, termed qH, is critical for plants’ survival under abiotic stress; however, qH location in the photosynthetic membrane is unresolved. Here, we tested whether we could isolate subcomplexes from plants in which qH was induced that would remain in an energy-dissipative state. Interestingly, we found that chlorophyll (Chl) fluorescence lifetimes were decreased by qH in isolated major trimeric antenna complexes, indicating that they serve as a site for qH-energy dissipation and providing a natively quenched complex with physiological relevance to natural conditions. Next, we monitored the changes in thylakoid pigment, protein, and lipid contents of antenna with active or inactive qH but did not detect any evident differences. Finally, we investigated whether specific subunits of the major antenna complexes were required for qH but found that qH was insensitive to trimer composition. Because we previously observed that qH can occur in the absence of specific xanthophylls, and no evident changes in pigments, proteins, or lipids were detected, we tentatively propose that the energy-dissipative state reported here may stem from Chl–Chl excitonic interaction.
Collapse
Affiliation(s)
- Pierrick Bru
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Collin J Steen
- Department of Chemistry, University of California, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division (formerly Physical Biosciences Division), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Kavli Energy Nanoscience Institute, Berkeley, CA 94720, USA
| | - Soomin Park
- Department of Chemistry, University of California, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division (formerly Physical Biosciences Division), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Kavli Energy Nanoscience Institute, Berkeley, CA 94720, USA; School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education, Cheonan, Chungnam 31253, Republic of Korea
| | - Cynthia L Amstutz
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Emily J Sylak-Glassman
- Department of Chemistry, University of California, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division (formerly Physical Biosciences Division), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Lam Lam
- Molecular Biophysics and Integrated Bioimaging Division (formerly Physical Biosciences Division), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Kavli Energy Nanoscience Institute, Berkeley, CA 94720, USA; Graduate Group in Biophysics, University of California, Berkeley, CA 94720, USA
| | - Agnes Fekete
- Julius-von-Sachs-Institute, Biocenter, Pharmaceutical Biology, University of Wuerzburg, D-97082 Wuerzburg, Germany
| | - Martin J Mueller
- Julius-von-Sachs-Institute, Biocenter, Pharmaceutical Biology, University of Wuerzburg, D-97082 Wuerzburg, Germany
| | - Fiamma Longoni
- Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division (formerly Physical Biosciences Division), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Kavli Energy Nanoscience Institute, Berkeley, CA 94720, USA; Graduate Group in Biophysics, University of California, Berkeley, CA 94720, USA
| | - Krishna K Niyogi
- Molecular Biophysics and Integrated Bioimaging Division (formerly Physical Biosciences Division), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Alizée Malnoë
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden.
| |
Collapse
|
11
|
Jung JY. Fabricated Flexible Composite for a UV-LED Color Filter and Anti-Counterfeiting Application of Calcium Molybdate Phosphor Synthesized at Room Temperature. MATERIALS 2022; 15:ma15062078. [PMID: 35329528 PMCID: PMC8949206 DOI: 10.3390/ma15062078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023]
Abstract
Crystalline CaMoO4 and rare-earth-doped CaMoO4:RE3+ (RE = Tb, Eu) phosphors were synthesized at room temperature using a co-precipitation method. The crystal structure of the synthesized powder was a tetragonal structure with a main diffraction peak (112) phase. When CaMoO4 was excited at 295 nm, it showed a central peak of 498 nm and light emission in a wide range of 420 to 700 nm. Rare-earth-ion-doped CaMoO4:Tb3+ was excited at 288 nm and a green light emission was observed at 544 nm, and CaMoO4:Eu3+ was excited at 292 nm and a red light emission was observed at 613 nm. To take advantage of the light-emitting characteristics, a flexible composite was manufactured and a color filter that could be used for UV-LEDs was manufactured. In addition, it was suggested that an ink that could be checked only by UV light could be produced and applied to banknotes so as to prevent counterfeiting.
Collapse
Affiliation(s)
- Jae-Yong Jung
- Research and Business Development Foundation, Engineering Building, Silla University, Busan 45985, Korea
| |
Collapse
|
12
|
Salvatori N, Carteni F, Giannino F, Alberti G, Mazzoleni S, Peressotti A. A System Dynamics Approach to Model Photosynthesis at Leaf Level Under Fluctuating Light. FRONTIERS IN PLANT SCIENCE 2022; 12:787877. [PMID: 35154180 PMCID: PMC8833254 DOI: 10.3389/fpls.2021.787877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Photosynthesis has been mainly studied under steady-state conditions even though this assumption results inadequate for assessing the biochemical responses to rapid variations occurring in natural environments. The combination of mathematical models with available data may enhance the understanding of the dynamic responses of plants to fluctuating environments and can be used to make predictions on how photosynthesis would respond to non-steady-state conditions. In this study, we present a leaf level System Dynamics photosynthesis model based and validated on an experiment performed on two soybean varieties, namely, the wild type Eiko and the chlorophyll-deficient mutant MinnGold, grown in constant and fluctuating light conditions. This mutant is known to have similar steady-state photosynthesis compared to the green wild type, but it is found to have less biomass at harvest. It has been hypothesized that this might be due to an unoptimized response to non-steady-state conditions; therefore, this mutant seems appropriate to investigate dynamic photosynthesis. The model explained well the photosynthetic responses of these two varieties to fluctuating and constant light conditions and allowed to make relevant conclusions on the different dynamic responses of the two varieties. Deviations between data and model simulations are mostly evident in the non-photochemical quenching (NPQ) dynamics due to the oversimplified combination of PsbS- and zeaxanthin-dependent kinetics, failing in finely capturing the NPQ responses at different timescales. Nevertheless, due to its simplicity, the model can provide the basis of an upscaled dynamic model at a plant level.
Collapse
Affiliation(s)
- Nicole Salvatori
- DI4A, Department of Agri-Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Fabrizio Carteni
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Francesco Giannino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Giorgio Alberti
- DI4A, Department of Agri-Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
- Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy
| | - Stefano Mazzoleni
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Alessandro Peressotti
- DI4A, Department of Agri-Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| |
Collapse
|
13
|
Ruban A, Saccon F. Chlorophyll a De-Excitation Pathways in the LHCII antenna. J Chem Phys 2022; 156:070902. [DOI: 10.1063/5.0073825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Alexander Ruban
- SBBS, Queen Mary University of London - Mile End Campus, United Kingdom
| | - Francesco Saccon
- School of Biological and Chemical Sciences, Queen Mary University of London - Mile End Campus, United Kingdom
| |
Collapse
|
14
|
Seasonal Changes in the Photosynthetic Activity of Terrestrial Lichens and Mosses in the Lichen Scots Pine Forest Habitat. DIVERSITY 2021. [DOI: 10.3390/d13120642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Photosynthetic activity is one of the most important metabolic processes that can be quickly and easily studied in the field. It can be used for identifying the environmental factors affecting ecosystem balance, as any stressor influencing metabolic and physiological processes will have a measurable effect on photosynthesis. The aim of this study was to measure the photosynthetic activity of selected lichens and mosses and investigate its changes resulted from diurnal and seasonal variability. We studied two lichens (Cladonia mitis Sandst and Cladonia uncialis (L.) Weber ex F.H. Wigg.) and two mosses (Pleurozium schreberi (Willd. ex Brid.) Mitt. and Dicranum scoparium (L.) Hedw.). Samples were collected in the area of lichen Scots pine forest of the “Bory Tucholskie” National Park. Our study revealed that the photosynthetic activity of cryptogams depended on species, season, time of the day, and water availability. Cladonia species, which are the main component of lichen Scots pine forests, have higher photosynthetic activity than Pleurozium schreberi, which represents species of fresh coniferous forests. Photosynthetic activity increased from spring through summer and reached the highest values in autumn. It was also higher in soaked samples collected in the morning and afternoon compared to noon. Despite the water access, noon samples still showed the lowest activity. This can result from natural changes in humidity during the day to which cryptogams are well-adapted.
Collapse
|
15
|
Nedbal L, Lazár D. Photosynthesis dynamics and regulation sensed in the frequency domain. PLANT PHYSIOLOGY 2021; 187:646-661. [PMID: 34608969 PMCID: PMC8491066 DOI: 10.1093/plphys/kiab317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/19/2021] [Indexed: 05/20/2023]
Abstract
Foundations of photosynthesis research have been established mainly by studying the response of plants to changing light, typically to sudden exposure to a constant light intensity after dark acclimation or light flashes. This approach remains valid and powerful, but can be limited by requiring dark acclimation before time-domain measurements and often assumes that rate constants determining the photosynthetic response do not change between dark and light acclimation. We show that these limits can be overcome by measuring plant responses to sinusoidally modulated light of varying frequency. By its nature, such frequency-domain characterization is performed in light-acclimated plants with no need for prior dark acclimation. Amplitudes, phase shifts, and upper harmonic modulation extracted from the data for a wide range of frequencies can target different kinetic domains and regulatory feedbacks. The occurrence of upper harmonic modulation reflects nonlinear phenomena, including photosynthetic regulation. To support these claims, we measured chlorophyll fluorescence emission of the green alga Chlorella sorokiniana in light that was sinusoidally modulated in the frequency range 1000-0.001 Hz. Based on these experimental data and numerical as well as analytical mathematical models, we propose that frequency-domain measurements can become a versatile tool in plant sensing.
Collapse
Affiliation(s)
- Ladislav Nedbal
- Institute of Bio- and Geosciences/Plant Sciences (IBG-2), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-52428 Jülich, Germany
- Author for communication:
| | - Dušan Lazár
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
16
|
Schreiber U, Klughammer C. Evidence for variable chlorophyll fluorescence of photosystem I in vivo. PHOTOSYNTHESIS RESEARCH 2021; 149:213-231. [PMID: 33464442 PMCID: PMC8382641 DOI: 10.1007/s11120-020-00814-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/16/2020] [Indexed: 05/09/2023]
Abstract
Room temperature fluorescence in vivo and its light-induced changes are dominated by chlorophyll a fluorescence excited in photosystem II, F(II), peaking around 685 nm. Photosystem I fluorescence, F(I), peaking around 730 nm, so far has been assumed to be constant in vivo. Here, we present evidence for significant contributions of F(I) to variable fluorescence in the green unicellular alga Chlorella vulgaris, the cyanobacterium Synechococcus leopoliensis and a light-green ivy leaf. A Multi-Color-PAM fluorometer was applied for measurements of the polyphasic fluorescence rise (O-I1-I2-P) induced by strong 440 nm light in a dilute suspension of Chlorella, with detection alternating between emission above 700 nm (F > 700) and below 710 nm (F < 710). By averaging 10 curves each of the F > 700 and F < 710 recordings even small differences could be reliably evaluated. After equalizing the amplitudes of the O-I1 phase, which constitutes a specific F(II) response, the O-I1-I2 parts of the two recordings were close to identical, whereas the I2-P phase was larger in F > 700 than in F < 710 by a factor of 1.42. In analogous measurements with Synechococcus carried out in the dark state 2 using strong 625 nm actinic light, after O-I1 equalization the I2-P phase in F > 700 exceeded that in F < 710 even by a factor of 1.99. In measurements with Chlorella, the I2-P phase and with it the apparent variable fluorescence of PS I, Fv(I), were suppressed by moderate actinic background light and by the plastoquinone antagonist DBMIB. Analogous measurements with leaves are rendered problematic by unavoidable light intensity gradients and the resulting heterogenic origins of F > 700 and F < 710. However, a light-green young ivy leaf gave qualitatively similar results as those obtained with the suspensions, thus strongly suggesting the existence of Fv(I) also in leaves.
Collapse
Affiliation(s)
- Ulrich Schreiber
- Julius-Von-Sachs Institut für Biowissenschaften, Universität Würzburg, Julius-von-Sachs Platz 2, 97082, Würzburg, Germany.
| | - Christof Klughammer
- Julius-Von-Sachs Institut für Biowissenschaften, Universität Würzburg, Julius-von-Sachs Platz 2, 97082, Würzburg, Germany
| |
Collapse
|
17
|
Johnson JE, Berry JA. The role of Cytochrome b 6f in the control of steady-state photosynthesis: a conceptual and quantitative model. PHOTOSYNTHESIS RESEARCH 2021; 148:101-136. [PMID: 33999328 PMCID: PMC8292351 DOI: 10.1007/s11120-021-00840-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 04/26/2021] [Indexed: 05/06/2023]
Abstract
Here, we present a conceptual and quantitative model to describe the role of the Cytochrome [Formula: see text] complex in controlling steady-state electron transport in [Formula: see text] leaves. The model is based on new experimental methods to diagnose the maximum activity of Cyt [Formula: see text] in vivo, and to identify conditions under which photosynthetic control of Cyt [Formula: see text] is active or relaxed. With these approaches, we demonstrate that Cyt [Formula: see text] controls the trade-off between the speed and efficiency of electron transport under limiting light, and functions as a metabolic switch that transfers control to carbon metabolism under saturating light. We also present evidence that the onset of photosynthetic control of Cyt [Formula: see text] occurs within milliseconds of exposure to saturating light, much more quickly than the induction of non-photochemical quenching. We propose that photosynthetic control is the primary means of photoprotection and functions to manage excitation pressure, whereas non-photochemical quenching functions to manage excitation balance. We use these findings to extend the Farquhar et al. (Planta 149:78-90, 1980) model of [Formula: see text] photosynthesis to include a mechanistic description of the electron transport system. This framework relates the light captured by PS I and PS II to the energy and mass fluxes linking the photoacts with Cyt [Formula: see text], the ATP synthase, and Rubisco. It enables quantitative interpretation of pulse-amplitude modulated fluorometry and gas-exchange measurements, providing a new basis for analyzing how the electron transport system coordinates the supply of Fd, NADPH, and ATP with the dynamic demands of carbon metabolism, how efficient use of light is achieved under limiting light, and how photoprotection is achieved under saturating light. The model is designed to support forward as well as inverse applications. It can either be used in a stand-alone mode at the leaf-level or coupled to other models that resolve finer-scale or coarser-scale phenomena.
Collapse
Affiliation(s)
- J E Johnson
- Dept. Global Ecology, Carnegie Institution, Stanford, CA, 94305, USA.
| | - J A Berry
- Dept. Global Ecology, Carnegie Institution, Stanford, CA, 94305, USA
| |
Collapse
|
18
|
Meredith SA, Yoneda T, Hancock AM, Connell SD, Evans SD, Morigaki K, Adams PG. Model Lipid Membranes Assembled from Natural Plant Thylakoids into 2D Microarray Patterns as a Platform to Assess the Organization and Photophysics of Light-Harvesting Proteins. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006608. [PMID: 33690933 PMCID: PMC11476343 DOI: 10.1002/smll.202006608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Natural photosynthetic "thylakoid" membranes found in green plants contain a large network of light-harvesting (LH) protein complexes. Rearrangement of this photosynthetic machinery, laterally within stacked membranes called "grana", alters protein-protein interactions leading to changes in the energy balance within the system. Preparation of an experimentally accessible model system that allows the detailed investigation of these complex interactions can be achieved by interfacing thylakoid membranes and synthetic lipids into a template comprised of polymerized lipids in a 2D microarray pattern on glass surfaces. This paper uses this system to interrogate the behavior of LH proteins at the micro- and nanoscale and assesses the efficacy of this model. A combination of fluorescence lifetime imaging and atomic force microscopy reveals the differences in photophysical state and lateral organization between native thylakoid and hybrid membranes, the mechanism of LH protein incorporation into the developing hybrid membranes, and the nanoscale structure of the system. The resulting model system within each corral is a high-quality supported lipid bilayer that incorporates laterally mobile LH proteins. Photosynthetic activity is assessed in the hybrid membranes versus proteoliposomes, revealing that commonly used photochemical assays to test the electron transfer activity of photosystem II may actually produce false-positive results.
Collapse
Affiliation(s)
- Sophie A. Meredith
- School of Physics and Astronomy and The Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Takuro Yoneda
- Graduate School of Agricultural Science and Biosignal Research CenterKobe UniversityRokkodaicho 1‐1, NadaKobe657‐8501Japan
| | - Ashley M. Hancock
- School of Physics and Astronomy and The Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Simon D. Connell
- School of Physics and Astronomy and The Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Stephen D. Evans
- School of Physics and Astronomy and The Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Kenichi Morigaki
- Graduate School of Agricultural Science and Biosignal Research CenterKobe UniversityRokkodaicho 1‐1, NadaKobe657‐8501Japan
| | - Peter G. Adams
- School of Physics and Astronomy and The Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
| |
Collapse
|
19
|
Pfündel EE. Simultaneously measuring pulse-amplitude-modulated (PAM) chlorophyll fluorescence of leaves at wavelengths shorter and longer than 700 nm. PHOTOSYNTHESIS RESEARCH 2021; 147:345-358. [PMID: 33528756 DOI: 10.1007/s11120-021-00821-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
PAM fluorescence of leaves of cherry laurel (Prunus laurocerasus L.) was measured simultaneously in the spectral range below 700 nm (sw) and above 700 nm (lw). A high-sensitivity photodiode was employed to measure the low intensities of sw fluorescence. Photosystem II (PSII) performance was analyzed by the saturation pulse method during a light response curve with subsequent dark phase. The sw fluorescence was more variable, resulting in higher PSII photochemical yields compared to lw fluorescence. The variations between sw and lw data were explained by different levels of photosystem I (PSI) fluorescence: the contribution of PSI fluorescence to minimum fluorescence (F0) was calculated to be 14% at sw wavelengths and 45% at lw wavelengths. With the results obtained, the validity of an earlier method for the quantification of PSI fluorescence (Genty et al. in Photosynth Res 26:133-139, 1990, https://doi.org/10.1007/BF00047085 ) was reconsidered. After subtracting PSI fluorescence from all fluorescence levels, the maximum PSII photochemical yield (FV/FM) in the sw range was 0.862 and it was 0.883 in the lw range. The lower FV/FM at sw wavelengths was suggested to arise from inactive PSII reaction centers in the outermost leaf layers. Polyphasic fluorescence transients (OJIP or OI1I2P kinetics) were recorded simultaneously at sw and lw wavelengths: the slowest phase of the kinetics (IP or I2P) corresponded to 11% and 13% of total variable sw and lw fluorescence, respectively. The idea that this difference is due to variable PSI fluorescence is critically discussed. Potential future applications of simultaneously recording fluorescence in two spectral windows include studies of PSI non-photochemical quenching and state I-state II transitions, as well as measuring the fluorescence from pH-sensitive dyes simultaneously with chlorophyll fluorescence.
Collapse
|
20
|
Virtanen O, Khorobrykh S, Tyystjärvi E. Acclimation of Chlamydomonas reinhardtii to extremely strong light. PHOTOSYNTHESIS RESEARCH 2021; 147:91-106. [PMID: 33280077 PMCID: PMC7728646 DOI: 10.1007/s11120-020-00802-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 11/17/2020] [Indexed: 05/27/2023]
Abstract
Most photosynthetic organisms are sensitive to very high light, although acclimation mechanisms enable them to deal with exposure to strong light up to a point. Here we show that cultures of wild-type Chlamydomonas reinhardtii strain cc124, when exposed to photosynthetic photon flux density 3000 μmol m-2 s-1 for a couple of days, are able to suddenly attain the ability to grow and thrive. We compared the phenotypes of control cells and cells acclimated to this extreme light (EL). The results suggest that genetic or epigenetic variation, developing during maintenance of the population in moderate light, contributes to the acclimation capability. EL acclimation was associated with a high carotenoid-to-chlorophyll ratio and slowed down PSII charge recombination reactions, probably by affecting the pre-exponential Arrhenius factor of the rate constant. In agreement with these findings, EL acclimated cells showed only one tenth of the 1O2 level of control cells. In spite of low 1O2 levels, the rate of the damaging reaction of PSII photoinhibition was similar in EL acclimated and control cells. Furthermore, EL acclimation was associated with slow PSII electron transfer to artificial quinone acceptors. The data show that ability to grow and thrive in extremely strong light is not restricted to photoinhibition-resistant organisms such as Chlorella ohadii or to high-light tolerant mutants, but a wild-type strain of a common model microalga has this ability as well.
Collapse
Affiliation(s)
- Olli Virtanen
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014, Turku, Finland
| | - Sergey Khorobrykh
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014, Turku, Finland
| | - Esa Tyystjärvi
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014, Turku, Finland.
| |
Collapse
|
21
|
Bag P, Chukhutsina V, Zhang Z, Paul S, Ivanov AG, Shutova T, Croce R, Holzwarth AR, Jansson S. Direct energy transfer from photosystem II to photosystem I confers winter sustainability in Scots Pine. Nat Commun 2020; 11:6388. [PMID: 33319777 PMCID: PMC7738668 DOI: 10.1038/s41467-020-20137-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 11/13/2020] [Indexed: 11/24/2022] Open
Abstract
Evergreen conifers in boreal forests can survive extremely cold (freezing) temperatures during long dark winter and fully recover during summer. A phenomenon called "sustained quenching" putatively provides photoprotection and enables their survival, but its precise molecular and physiological mechanisms are not understood. To unveil them, here we have analyzed seasonal adjustment of the photosynthetic machinery of Scots pine (Pinus sylvestris) trees by monitoring multi-year changes in weather, chlorophyll fluorescence, chloroplast ultrastructure, and changes in pigment-protein composition. Analysis of Photosystem II and Photosystem I performance parameters indicate that highly dynamic structural and functional seasonal rearrangements of the photosynthetic apparatus occur. Although several mechanisms might contribute to 'sustained quenching' of winter/early spring pine needles, time-resolved fluorescence analysis shows that extreme down-regulation of photosystem II activity along with direct energy transfer from photosystem II to photosystem I play a major role. This mechanism is enabled by extensive thylakoid destacking allowing for the mixing of PSII with PSI complexes. These two linked phenomena play crucial roles in winter acclimation and protection.
Collapse
Affiliation(s)
- Pushan Bag
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Volha Chukhutsina
- Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Life Sciences, Imperial College London, London, UK
| | - Zishan Zhang
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Shandong, China
| | - Suman Paul
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Alexander G Ivanov
- Department of Biology, University of Western Ontario, London, Ontario, Canada
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Tatyana Shutova
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Roberta Croce
- Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Alfred R Holzwarth
- Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Stefan Jansson
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden.
| |
Collapse
|
22
|
van den Berg TE, Arshad R, Nawrocki WJ, Boekema EJ, Kouřil R, Croce R. PSI of the Colonial Alga Botryococcus braunii Has an Unusually Large Antenna Size. PLANT PHYSIOLOGY 2020; 184:2040-2051. [PMID: 33051267 PMCID: PMC7723122 DOI: 10.1104/pp.20.00823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/28/2020] [Indexed: 05/03/2023]
Abstract
PSI is an essential component of the photosynthetic apparatus of oxygenic photosynthesis. While most of its subunits are conserved, recent data have shown that the arrangement of the light-harvesting complexes I (LHCIs) differs substantially in different organisms. Here we studied the PSI-LHCI supercomplex of Botryococccus braunii, a colonial green alga with potential for lipid and sugar production, using functional analysis and single-particle electron microscopy of the isolated PSI-LHCI supercomplexes complemented by time-resolved fluorescence spectroscopy in vivo. We established that the largest purified PSI-LHCI supercomplex contains 10 LHCIs (∼240 chlorophylls). However, electron microscopy showed heterogeneity in the particles and a total of 13 unique binding sites for the LHCIs around the PSI core. Time-resolved fluorescence spectroscopy indicated that the PSI antenna size in vivo is even larger than that of the purified complex. Based on the comparison of the known PSI structures, we propose that PSI in B. braunii can bind LHCIs at all known positions surrounding the core. This organization maximizes the antenna size while maintaining fast excitation energy transfer, and thus high trapping efficiency, within the complex.
Collapse
Affiliation(s)
- Tomas E van den Berg
- Biophysics of Photosynthesis, Department of Physics and Astronomy-Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Rameez Arshad
- Electron Microscopy Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, 783 71 Olomouc, Czech Republic
| | - Wojciech J Nawrocki
- Biophysics of Photosynthesis, Department of Physics and Astronomy-Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Egbert J Boekema
- Electron Microscopy Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Roman Kouřil
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, 783 71 Olomouc, Czech Republic
| | - Roberta Croce
- Biophysics of Photosynthesis, Department of Physics and Astronomy-Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
23
|
Xu P, Chukhutsina VU, Nawrocki WJ, Schansker G, Bielczynski LW, Lu Y, Karcher D, Bock R, Croce R. Photosynthesis without β-carotene. eLife 2020; 9:e58984. [PMID: 32975516 PMCID: PMC7609050 DOI: 10.7554/elife.58984] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/24/2020] [Indexed: 01/31/2023] Open
Abstract
Carotenoids are essential in oxygenic photosynthesis: they stabilize the pigment-protein complexes, are active in harvesting sunlight and in photoprotection. In plants, they are present as carotenes and their oxygenated derivatives, xanthophylls. While mutant plants lacking xanthophylls are capable of photoautotrophic growth, no plants without carotenes in their photosystems have been reported so far, which has led to the common opinion that carotenes are essential for photosynthesis. Here, we report the first plant that grows photoautotrophically in the absence of carotenes: a tobacco plant containing only the xanthophyll astaxanthin. Surprisingly, both photosystems are fully functional despite their carotenoid-binding sites being occupied by astaxanthin instead of β-carotene or remaining empty (i.e. are not occupied by carotenoids). These plants display non-photochemical quenching, despite the absence of both zeaxanthin and lutein and show that tobacco can regulate the ratio between the two photosystems in a very large dynamic range to optimize electron transport.
Collapse
Affiliation(s)
- Pengqi Xu
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam and LaserLab AmsterdamAmsterdamNetherlands
| | - Volha U Chukhutsina
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam and LaserLab AmsterdamAmsterdamNetherlands
| | - Wojciech J Nawrocki
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam and LaserLab AmsterdamAmsterdamNetherlands
| | - Gert Schansker
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam and LaserLab AmsterdamAmsterdamNetherlands
| | - Ludwik W Bielczynski
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam and LaserLab AmsterdamAmsterdamNetherlands
| | - Yinghong Lu
- Max Planck Institute of Molecular Plant PhysiologyPotsdam-GolmGermany
| | - Daniel Karcher
- Max Planck Institute of Molecular Plant PhysiologyPotsdam-GolmGermany
| | - Ralph Bock
- Max Planck Institute of Molecular Plant PhysiologyPotsdam-GolmGermany
| | - Roberta Croce
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam and LaserLab AmsterdamAmsterdamNetherlands
| |
Collapse
|
24
|
Chukhutsina VU, Liu X, Xu P, Croce R. Light-harvesting complex II is an antenna of photosystem I in dark-adapted plants. NATURE PLANTS 2020; 6:860-868. [PMID: 32572215 DOI: 10.1038/s41477-020-0693-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 05/14/2020] [Indexed: 05/19/2023]
Abstract
Photosystem I (PSI) is a major player in the light reactions of photosynthesis. In higher plants, it consists of a core complex and four external antennae, Lhca1-4 forming the PSI-light-harvesting complex I (LHCI) supercomplex. The protein and pigment composition as well as the spectroscopic properties of this complex are considered to be identical in different higher plant species. In addition to the four Lhca, a pool of mobile LHCII increases the antenna size of PSI under most light conditions. In this work, we have first investigated purified PSI complexes and then PSI in vivo upon long-term dark-adaptation of four well-studied plant species: Arabidopsis thaliana, Zea mays, Nicotiana tabacum and Hordeum vulgare. By performing time-resolved fluorescence measurements, we show that LHCII is associated with PSI also in a dark-adapted state in all the plant species investigated. The number of LHCII subunits per PSI is plant-dependent, varying between one and three. Furthermore, we show that the spectroscopic properties of PSI-LHCI supercomplexes differ in different plants.
Collapse
Affiliation(s)
- Volha U Chukhutsina
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam and LaserLaB Amsterdam, Amsterdam, the Netherlands
| | - Xin Liu
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam and LaserLaB Amsterdam, Amsterdam, the Netherlands
| | - Pengqi Xu
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam and LaserLaB Amsterdam, Amsterdam, the Netherlands
| | - Roberta Croce
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam and LaserLaB Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
25
|
Saccon F, Giovagnetti V, Shukla MK, Ruban AV. Rapid regulation of photosynthetic light harvesting in the absence of minor antenna and reaction centre complexes. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3626-3637. [PMID: 32149343 PMCID: PMC7307847 DOI: 10.1093/jxb/eraa126] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/02/2020] [Indexed: 05/25/2023]
Abstract
Plants are subject to dramatic fluctuations in the intensity of sunlight throughout the day. When the photosynthetic machinery is exposed to high light, photons are absorbed in excess, potentially leading to oxidative damage of its delicate membrane components. A photoprotective molecular process called non-photochemical quenching (NPQ) is the fastest response carried out in the thylakoid membranes to harmlessly dissipate excess light energy. Despite having been intensely studied, the site and mechanism of this essential regulatory process are still debated. Here, we show that the main NPQ component called energy-dependent quenching (qE) is present in plants with photosynthetic membranes largely enriched in the major trimeric light-harvesting complex (LHC) II, while being deprived of all minor LHCs and most photosystem core proteins. This fast and reversible quenching depends upon thylakoid lumen acidification (ΔpH). Enhancing ΔpH amplifies the extent of the quenching and restores qE in the membranes lacking PSII subunit S protein (PsbS), whereas the carotenoid zeaxanthin modulates the kinetics and amplitude of the quenching. These findings highlight the self-regulatory properties of the photosynthetic light-harvesting membranes in vivo, where the ability to switch reversibly between the harvesting and dissipative states is an intrinsic property of the major LHCII.
Collapse
Affiliation(s)
- Francesco Saccon
- Queen Mary University of London, School of Biological and Chemical Sciences, London, UK
| | - Vasco Giovagnetti
- Queen Mary University of London, School of Biological and Chemical Sciences, London, UK
| | - Mahendra K Shukla
- Queen Mary University of London, School of Biological and Chemical Sciences, London, UK
| | - Alexander V Ruban
- Queen Mary University of London, School of Biological and Chemical Sciences, London, UK
| |
Collapse
|
26
|
Observation of dissipative chlorophyll-to-carotenoid energy transfer in light-harvesting complex II in membrane nanodiscs. Nat Commun 2020; 11:1295. [PMID: 32157079 PMCID: PMC7064482 DOI: 10.1038/s41467-020-15074-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 02/17/2020] [Indexed: 11/08/2022] Open
Abstract
Plants prevent photodamage under high light by dissipating excess energy as heat. Conformational changes of the photosynthetic antenna complexes activate dissipation by leveraging the sensitivity of the photophysics to the protein structure. The mechanisms of dissipation remain debated, largely due to two challenges. First, because of the ultrafast timescales and large energy gaps involved, measurements lacked the temporal or spectral requirements. Second, experiments have been performed in detergent, which can induce non-native conformations, or in vivo, where contributions from homologous antenna complexes cannot be disentangled. Here, we overcome both challenges by applying ultrabroadband two-dimensional electronic spectroscopy to the principal antenna complex, LHCII, in a near-native membrane. Our data provide evidence that the membrane enhances two dissipative pathways, one of which is a previously uncharacterized chlorophyll-to-carotenoid energy transfer. Our results highlight the sensitivity of the photophysics to local environment, which may control the balance between light harvesting and dissipation in vivo.
Collapse
|
27
|
Laisk A, Oja V. Variable fluorescence of closed photochemical reaction centers. PHOTOSYNTHESIS RESEARCH 2020; 143:335-346. [PMID: 31960223 DOI: 10.1007/s11120-020-00712-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/13/2020] [Indexed: 05/12/2023]
Abstract
Chlorophyll fluorescence induction during 0.4 to 200 ms multiple-turnover pulses (MTP) was measured in parallel with O2 evolution induced by the MTP light. Additionally, a saturating single-turnover flash (STF) was applied at the end of each MTP and the total MTP +STF O2 evolution was measured. Quantum yield of O2 evolution during the MTP transients was calculated and related to the number of open PSII centers, found from the STF O2 evolution. Proportionality between the number of open PSII and their running photochemical activity showed the quantum yield of open PSII remained constant independent of the closure of adjacent centers. During the induction, total fluorescence was partitioned between Fo of all the open centers and Fc of all the closed centers. The fluorescence yield of a closed center was 0.55 of the final Fm while less than a half of the centers were closed, but later increased, approaching Fm to the end of the induction. In the framework of the antenna/radical pair equilibrium model, the collective rise of the fluorescence of centers closed earlier during the induction is explained by an electric field, facilitating return of excitation energy from the Pheo- P680+ radical pair to the antenna.
Collapse
Affiliation(s)
- Agu Laisk
- Institute of Technology, University of Tartu, Nooruse st. 1, 50411, Tartu, Estonia.
| | - Vello Oja
- Institute of Technology, University of Tartu, Nooruse st. 1, 50411, Tartu, Estonia
| |
Collapse
|
28
|
Cupellini L, Bondanza M, Nottoli M, Mennucci B. Successes & challenges in the atomistic modeling of light-harvesting and its photoregulation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1861:148049. [PMID: 31386831 DOI: 10.1016/j.bbabio.2019.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022]
Abstract
Light-harvesting is a crucial step of photosynthesis. Its mechanisms and related energetics have been revealed by a combination of experimental investigations and theoretical modeling. The success of theoretical modeling is largely due to the application of atomistic descriptions combining quantum chemistry, classical models and molecular dynamics techniques. Besides the important achievements obtained so far, a complete and quantitative understanding of how the many different light-harvesting complexes exploit their structural specificity is still missing. Moreover, many questions remain unanswered regarding the mechanisms through which light-harvesting is regulated in response to variable light conditions. Here we show that, in both fields, a major role will be played once more by atomistic descriptions, possibly generalized to tackle the numerous time and space scales on which the regulation takes place: going from the ultrafast electronic excitation of the multichromophoric aggregate, through the subsequent conformational changes in the embedding protein, up to the interaction between proteins.
Collapse
Affiliation(s)
- Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Mattia Bondanza
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Michele Nottoli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy.
| |
Collapse
|
29
|
Kirchhoff H. Chloroplast ultrastructure in plants. THE NEW PHYTOLOGIST 2019; 223:565-574. [PMID: 30721547 DOI: 10.1111/nph.15730] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 01/25/2019] [Indexed: 05/23/2023]
Abstract
The chloroplast organelle in mesophyll cells of higher plants represents a sunlight-driven metabolic factory that eventually fuels life on our planet. Knowledge of the ultrastructure and the dynamics of this unique organelle is essential to understanding its function in an ever-changing and challenging environment. Recent technological developments promise unprecedented insights into chloroplast architecture and its functionality. The review highlights these new methodical approaches and provides structural models based on recent findings about the plasticity of the thylakoid membrane system in response to different light regimes. Furthermore, the potential role of the lipid droplets plastoglobuli is discussed. It is emphasized that detailed structural insights are necessary on different levels ranging from molecules to entire membrane systems for a holistic understanding of chloroplast function.
Collapse
Affiliation(s)
- Helmut Kirchhoff
- Institute of Biological Chemistry, Washington State University, PO Box 646340, Pullman, WA, 99164-6340, USA
| |
Collapse
|