1
|
Errante F, Sforzi L, Supuran CT, Papini AM, Rovero P. Peptide and peptidomimetic tyrosinase inhibitors. Enzymes 2024; 56:135-189. [PMID: 39304286 DOI: 10.1016/bs.enz.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Melanin, which is produced by melanocytes and spread over keratinocytes, is responsible for human skin browning. There are several processes involved in melanogenesis, mostly prompted by enzymatic activities. Tyrosinase (TYR), a copper containing metalloenzyme, is considered the main actor in melanin production, as it catalyzes two crucial steps that modify tyrosine residues in dopaquinone. For this reason, TYR inhibition has been exploited as a possible mechanism of modulation of hyper melanogenesis. There are various types of molecules used to block TYR activity, principally used as skin whitening agents in cosmetic products, e.g., tretinoin, hydroquinone, azelaic acid, kojic acid, arbutin and peptides. Peptides are highly valued for their versatile nature, making them promising candidates for various functions. Their specificity often leads to excellent safety, tolerability, and efficacy in humans, which can be considered their primary advantage over traditional small molecules. There are several examples of tyrosinase inhibitor peptides (TIPs) operating as possible hypo-pigmenting agents, which can be classified according to their origin: natural, hybrid or synthetically produced. Moreover, the possibility of variating their backbones, introducing non-canonical amino acids or modifying one or more peptide bond(s), to obtain peptidomimetic molecules, is an added value to avoid or delay proteolytic activity, while the possibility of conjugation with other bioactive peptides or organic moieties can bring other specific activity leading to dual-functional peptides.
Collapse
Affiliation(s)
- Fosca Errante
- Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, University of Florence, Sesto Fiorentino, Florence, Italy; Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Lucrezia Sforzi
- Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, University of Florence, Sesto Fiorentino, Florence, Italy; Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Claudiu T Supuran
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Anna Maria Papini
- Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, University of Florence, Sesto Fiorentino, Florence, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Florence, Italy
| | - Paolo Rovero
- Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, University of Florence, Sesto Fiorentino, Florence, Italy; Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
2
|
Gerónimo-Alonso M, Ortíz-Vázquez E, Rodríguez-Canto W, Chel-Guerrero L, Betancur-Ancona D. Antithrombotic and anticariogenic activity of peptide fractions from cowpea (Vigna unguiculata) protein hydrolysates. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39139024 DOI: 10.1002/jsfa.13819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/03/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Protein-derived peptide fractions can play a key role in the physiological and metabolic regulation and modulation of the body, which suggests that they could be used as functional ingredients to improve health and to reduce the risk of disease. This work aimed to evaluate the in vitro antithrombotic and anticariogenic bioactivity of hydrolysates and protein fractions obtained from cowpea (Vigna unguiculata) by biocatalysis. RESULTS Cowpea protein concentrate was hydrolyzed by sequential action with two enzyme systems, Pepsin-Pancreatin or Alcalase-Flavourzyme. There was extensive enzymatic hydrolysis, with degrees of hydrolysis of 34.94% and 81.43% for Pepsin-Pancreatin and Alcalase-Flavourzyme, respectively. The degree of hydrolysis for the control treatments, without the addition of the enzymes Pepsin-Pancreatin and Alcalase-Flavourzyme was 1.1% and 1.2%, respectively. The hydrolysates were subjected to fractionation by ultrafiltration, with five cut-off points according to molecular weight (<1, 1-3, 3-5, 5-10 and >10 kDa). The Alcalase-Flavourzyme hydrolysate led to 100% inhibition of platelet aggregation, while the Pepsin-Pancreatin hydrolysate showed 77.41% inhibition, but this was approximately 100% in the ultrafiltered fractions. The highest anticariogenic activity was obtained with the Pepsin-Pancreatin system, with 61.55% and 56.07% for calcium and phosphorus demineralization, respectively. CONCLUSION Hydrolysates and their peptide fractions from Vigna unguiculata exhibited inhibition of platelet aggregation and protection of tooth enamel and have the potential for use in the development of functional products with beneficial health effects. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - Wilbert Rodríguez-Canto
- Tecnológico Nacional de México/Instituto Tecnológico de Mérida, Mérida, Mexico
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Luis Chel-Guerrero
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Mérida, Mexico
| | | |
Collapse
|
3
|
Preparation, Characterization and Iron Absorption by Caco-2 Cells of the Casein Peptides-Iron Chelate. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10423-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Hu S, Lin S, He X, Sun N. Iron delivery systems for controlled release of iron and enhancement of iron absorption and bioavailability. Crit Rev Food Sci Nutr 2022; 63:10197-10216. [PMID: 35588258 DOI: 10.1080/10408398.2022.2076652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Iron deficiency is a global nutritional problem, and adding iron salts directly to food will have certain side effects on the human body. Therefore, there is growing interest in food-grade iron delivery systems. This review provides an overview of iron delivery systems, with emphasis on the controlled release of iron during gastrointestinal digestion, as well as the enhancement of iron absorption and bioavailability. Iron-bearing proteins are easily degraded by digestive enzymes and absorbed through receptor-mediated endocytosis. Instead, protein aggregates are slowly degraded in the stomach, which delays iron release and serves as a potential iron supplement. Amino acids, peptides and polysaccharides can bind iron through iron binding sites, but the formed compounds are prone to dissociation in the stomach. Moreover, peptides and polysaccharides can deliver iron by mediating the formation of ferric oxyhydroxide which is absorbed through endocytosis or bivalent transporter 1. In addition, liposomes are unstable during gastric digestion and iron is released in large quantities. Complexes formed by polysaccharides and proteins, and microcapsules formed by polysaccharides can delay the release of iron in the gastric environment and prolong iron release in the intestinal environment. This review is conducive to the development of iron functional ingredients and dietary supplements.
Collapse
Affiliation(s)
- Shengjie Hu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| | - Songyi Lin
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| | - Xueqing He
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| | - Na Sun
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| |
Collapse
|
5
|
Ale A, Bacchetta C, Rossi AS, Scarabotti PA, Cazenave J. Low temperature stress in a cultured fish (Piaractus mesopotamicus) fed with Pyropia columbina red seaweed-supplemented diet. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:829-839. [PMID: 33723682 DOI: 10.1007/s10695-021-00944-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
This study aimed to analyze the cold stress effects (in terms of hematology, energy reserves, and oxidative stress) in Piaractus mesopotamicus (pacú) and their mitigation by a Pyropia columbina red seaweed-supplemented diet. For this purpose, juvenile fish were fed with a control (CD) or a red seaweed-supplemented diet (RD) for 60 days, and then, the animals were exposed to a low temperature (14 °C) and a control temperature (24 °C) for 24 h. The cold shock generated an increase of hemoglobin levels in fish fed with both diets. In CD-fed fish, plasmatic triglycerides, cholesterol, and hepatic glycogen decreased after the thermal shock; meanwhile, the animals fed with RD showed decreased hepatic proteins, but increased cholesterol and hepatic glycogen. Regarding oxidative stress, antioxidant enzymes augmented their activity in the liver, intestine, and gills; meanwhile, lipid oxidative damage was observed in the liver and intestine of fish exposed to 14 °C and fed with both diets. Pacú was sensitive to cold shock, but no mitigation effects were observed in fish fed with the supplemented diet. Further research should target higher concentrations of P. columbina in supplemented diets to take advantage of this valuable resource.
Collapse
Affiliation(s)
- Analía Ale
- Instituto Nacional de Limnología, CONICET, UNL, Paraje El Pozo, Ciudad Universitaria UNL, 3000, Santa Fe, Argentina
| | - Carla Bacchetta
- Instituto Nacional de Limnología, CONICET, UNL, Paraje El Pozo, Ciudad Universitaria UNL, 3000, Santa Fe, Argentina.
| | - Andrea S Rossi
- Instituto Nacional de Limnología, CONICET, UNL, Paraje El Pozo, Ciudad Universitaria UNL, 3000, Santa Fe, Argentina
- Facultad de Humanidades y Ciencias, UNL, Paraje El Pozo, Ciudad Universitaria UNL, 3000, Santa Fe, Argentina
| | - Pablo A Scarabotti
- Instituto Nacional de Limnología, CONICET, UNL, Paraje El Pozo, Ciudad Universitaria UNL, 3000, Santa Fe, Argentina
- Facultad de Humanidades y Ciencias, UNL, Paraje El Pozo, Ciudad Universitaria UNL, 3000, Santa Fe, Argentina
| | - Jimena Cazenave
- Instituto Nacional de Limnología, CONICET, UNL, Paraje El Pozo, Ciudad Universitaria UNL, 3000, Santa Fe, Argentina
- Facultad de Humanidades y Ciencias, UNL, Paraje El Pozo, Ciudad Universitaria UNL, 3000, Santa Fe, Argentina
| |
Collapse
|
6
|
Alboofetileh M, Hamzeh A, Abdollahi M. Seaweed Proteins as a Source of Bioactive Peptides. Curr Pharm Des 2021; 27:1342-1352. [PMID: 33557731 DOI: 10.2174/1381612827666210208153249] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 10/01/2020] [Indexed: 11/22/2022]
Abstract
Seaweeds have received great attention as a vegetarian and sustainable marine source of protein, which does not need irrigation, arable land, and fertilization. Besides, seaweeds are considered as an untapped resource for discovering bioactive compounds with health benefits where bioactive peptides have shown outstanding potential. This review provides a detailed overview of available scientific knowledge on production methods, bioactivity and application of peptides from seaweed proteins. The emphasis is on the effects from seaweed varieties and peptide production conditions on the bioactivity of the peptides and their potential health benefits. Bioactive properties of seaweed peptides, including antioxidant, antihypertensive, antidiabetic, anti-inflammatory, anticancer activities and other potential health benefits, have been discussed. It also covers current challenges and required future research and innovations for the successful application of seaweeds proteins as a sustainable source of bioactive peptides. Effects from seasonal variation of seaweed composition on the bioactivity of their peptides, difficulties in the extraction of proteins from seaweed complex structure, scalability and reproducibility of the developed methods for the production of bioactive peptides, the safety of the peptides are examples of highlighted challenges. Further studies on the bioavailability of the seaweed bioactive peptides and validation of the results in animal models and human trials are needed before their application as functional foods or pharmaceutical ingredients.
Collapse
Affiliation(s)
- Mehdi Alboofetileh
- Iran Fish Processing Technology Research Center, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Bandar Anzali, Iran
| | - Ali Hamzeh
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Mehdi Abdollahi
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| |
Collapse
|
7
|
Drabińska N, Ogrodowczyk A. Crossroad of Tradition and Innovation – The Application of Lactic Acid Fermentation to Increase the Nutritional and Health-Promoting Potential of Plant-Based Food Products – a Review. POL J FOOD NUTR SCI 2021. [DOI: 10.31883/pjfns/134282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
8
|
Campos Espinosa GY, Udenigwe CC, Tsopmo A. Inhibition of low-density lipoprotein oxidation, antioxidative and bile acid-binding capacities of hydrolyzed proteins from carbohydrase-treated oat bran. J Food Biochem 2021; 46:e13675. [PMID: 33650139 DOI: 10.1111/jfbc.13675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 11/28/2022]
Abstract
This study investigated the valorization of oat bran and the use of its proteins to generate polypeptides with antioxidant and bile acid-binding properties. Ten protein hydrolysates were prepared by treating cellulase (CPI) or Viscozyme (VPI) protein isolates with five proteases. VPI-pepsin was the best peroxyl radical scavenger (497 ± 6-μM Trolox equivalents [TE]/g) while VPI-Flavourzyme quenched hydroxyl radicals (28 ± 0.6) and VPI-pepsin superoxide anion radicals (45.3 ± 6.6%). Hydrolysates, except those produced with pepsin, dose-dependently chelated iron whereas VPI-Protamex had the best copper-chelating capacity (59.83 ± 1.40%). These antioxidative capacities were important in preventing by 50% in vitro copper-induced oxidation of human low-density lipoprotein. Furthermore, due to their aromatic amino acid contents and hydrophobicity, the hydrolysates bound up to 46.3% the bile acids taurodeoxycholate and taurocholate. PRACTICAL APPLICATIONS: The presence of oxidants in foods can damage food molecules and decrease their quality. They are also known to increase the risk of developing chronic conditions like cardiovascular disease. Finding new antioxidant molecules are therefore useful in the management of chronic diseases. Data from this work showed that hydrolyzed oat bran proteins can be useful in stabilizing commercial oil as they reduced the oxidation of peanut oil. Additionally, the protein hydrolysates not only prevented the oxidation of linoleic, a common component of both vegetable oils and biological cell membranes, they also inhibited the oxidation of human LDL cholesterol and chelated bile acids. These hydrolysates can then be further explored as multifunctional ingredients for the development of stable functional food products with potential beneficial effects on the cardiovascular system.
Collapse
Affiliation(s)
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Apollinaire Tsopmo
- Food Science and Nutrition Program, Department of Chemistry, Carleton University, Ottawa, ON, Canada.,Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
9
|
Cian RE, Proaño JL, Salgado PR, Mauri AN, Drago SR. High iron bioaccessibility from co-microencapsulated iron/ascorbic acid using chelating polypeptides from brewers’ spent grain protein as wall material. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Preparation process optimization, structural characterization and in vitro digestion stability analysis of Antarctic krill (Euphausia superba) peptides-zinc chelate. Food Chem 2020; 340:128056. [PMID: 33032152 DOI: 10.1016/j.foodchem.2020.128056] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/14/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023]
Abstract
In the study, a novel kind of peptides-zinc (AKP-Zn) chelate was obtained using the Antarctic krill (Euphausia superba) peptides (AKP) as raw material, the reaction was carried out with the mass ratio of the AKP to ZnSO4·7H2O of 1:2 at pH 6.0 and 60 °C for 10 min. The structure and composition of the AKP, including particle size, Zeta potential, molecular weight distribution, amino acid composition, microstructure and surface elemental composition, changed significantly after chelating with zinc. The result of Fourier transform infrared spectroscopy indicated that zinc could be chelated by carboxyl oxygen and amino nitrogen atoms of the AKP. Furthermore, compared with zinc sulfate and zinc gluconate, the AKP-Zn chelate was more stable at various pH conditions and the simulated gastrointestinal digestion experiment. These findings would provide a scientific basis for developing new zinc supplements and the high-value utilization of Antarctic krill protein resource.
Collapse
|
11
|
|
12
|
Cermeño M, Kleekayai T, Amigo‐Benavent M, Harnedy‐Rothwell P, FitzGerald RJ. Current knowledge on the extraction, purification, identification, and validation of bioactive peptides from seaweed. Electrophoresis 2020; 41:1694-1717. [DOI: 10.1002/elps.202000153] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Maria Cermeño
- Department of Biological Sciences University of Limerick Limerick Ireland
| | | | | | | | | |
Collapse
|
13
|
Caetano-Silva ME, Netto FM, Bertoldo-Pacheco MT, Alegría A, Cilla A. Peptide-metal complexes: obtention and role in increasing bioavailability and decreasing the pro-oxidant effect of minerals. Crit Rev Food Sci Nutr 2020; 61:1470-1489. [PMID: 32370550 DOI: 10.1080/10408398.2020.1761770] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bioactive peptides derived from food protein sources have been widely studied in the last years, and scientific researchers have been proving their role in human health, beyond their nutritional value. Several bioactivities have been attributed to these peptides, such as immunomodulatory, antimicrobial, antioxidant, antihypertensive, and opioid. Among them, metal-binding capacity has gained prominence. Mineral chelating peptides have shown potential to be applied in food products so as to decrease mineral deficiencies since peptide-metal complexes could enhance their bioavailability. Furthermore, many studies have been investigating their potential to decrease the Fe pro-oxidant effect by forming a stable structure with the metal and avoiding its interaction with other food constituents. These complexes can be formed during gastrointestinal digestion or can be synthesized prior to intake, with the aim to protect the mineral through the gastrointestinal tract. This review addresses: (i) the amino acid residues for metal-binding peptides and their main protein sources, (ii) peptide-metal complexation prior to or during gastrointestinal digestion, (iii) the function of metal (especially Fe, Ca, and Zn)-binding peptides on the metal bioavailability and (iv) their reactivity and possible pro-oxidant and side effects.
Collapse
Affiliation(s)
| | - Flavia Maria Netto
- Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | - Amparo Alegría
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Antonio Cilla
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| |
Collapse
|
14
|
Chen L, Lin X, Fan X, Lv Q, Fang H, Chenchen Y, Teng H. A self-emulsifying formulation of Sonchus oleraceus Linn for an improved anti-diabetic effect in vivo. Food Funct 2020; 11:1225-1229. [DOI: 10.1039/c9fo00772e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
The aim of the present study was to develop a self-emulsifying drug delivery system (SEDDS) containing the extract of S oleraceus Linn (SOL) with improved intestinal stability in order to increase oral bio-potency.
Collapse
Affiliation(s)
- Lei Chen
- College of Food Science
- Fujian Agriculture and Forestry University
- Fuzhou
- China
| | - Xiujun Lin
- College of Food Science
- Fujian Agriculture and Forestry University
- Fuzhou
- China
| | - Xiaoyun Fan
- College of Food Science
- Fujian Agriculture and Forestry University
- Fuzhou
- China
| | - Qiyan Lv
- College of Food Science
- Fujian Agriculture and Forestry University
- Fuzhou
- China
| | - Huan Fang
- College of Food Science
- Fujian Agriculture and Forestry University
- Fuzhou
- China
| | - Yaqiong Chenchen
- College of Food Science
- Fujian Agriculture and Forestry University
- Fuzhou
- China
| | - Hui Teng
- College of Food Science
- Fujian Agriculture and Forestry University
- Fuzhou
- China
| |
Collapse
|
15
|
Bioactive compounds in seaweeds: An overview of their biological properties and safety. Food Chem Toxicol 2019; 135:111013. [PMID: 31794803 DOI: 10.1016/j.fct.2019.111013] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/20/2019] [Accepted: 11/29/2019] [Indexed: 02/08/2023]
Abstract
Seaweeds are among the significant currently exploited marine plant resources which are gaining full applications in culinary, cosmetic, pharmaceutical, and biotechnological processes. Much attention has been devoted to seaweeds based on their proven health benefits and is considered as a rich source of structurally different bioactive metabolites for the discovery of novel functional food-based pharmacophores/drugs. Nonetheless, there is still a dearth of updated compilation and analysis of the in-depth pharmacological activities of these compounds. This review, therefore, aims to provide a piece of up-to-date detailed information on the major compounds isolated from various seaweed species together with their in-vitro and in-vivo biological properties. These compounds were found to possess broad pharmacological properties and inhibitory enzyme activities against critical enzymes involved in the aetiology of noncommunicable diseases. However, their toxicity, clinical efficacy, mechanisms of action, and interaction with conventional foods, are still less explored and require more attention in future studies.
Collapse
|
16
|
Abstract
Recent interest in seaweeds as a source of macronutrients, micronutrients, and bioactive components has highlighted prospective applications within the functional food and nutraceutical industries, with impetus toward the alleviation of risk factors associated with noncommunicable diseases such as obesity, type 2 diabetes, and cardiovascular disease. This narrative review summarizes the nutritional composition of edible seaweeds; evaluates the evidence regarding the health benefits of whole seaweeds, extracted bioactive components, and seaweed-based food products in humans; and assesses the potential adverse effects of edible seaweeds, including those related to ingestion of excess iodine and arsenic. If the potential functional food and nutraceutical applications of seaweeds are to be realized, more evidence from human intervention studies is needed to evaluate the nutritional benefits of seaweeds and the efficacy of their purported bioactive components. Mechanistic evidence, in particular, is imperative to substantiate health claims.
Collapse
Affiliation(s)
- Paul Cherry
- Nutrition Innovation Centre for Food and Health, School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | | | - Pamela J Magee
- Nutrition Innovation Centre for Food and Health, School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - Emeir M McSorley
- Nutrition Innovation Centre for Food and Health, School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - Philip J Allsopp
- Nutrition Innovation Centre for Food and Health, School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| |
Collapse
|
17
|
Kubglomsong S, Theerakulkait C, Reed RL, Yang L, Maier CS, Stevens JF. Isolation and Identification of Tyrosinase-Inhibitory and Copper-Chelating Peptides from Hydrolyzed Rice-Bran-Derived Albumin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8346-8354. [PMID: 30016586 PMCID: PMC6431294 DOI: 10.1021/acs.jafc.8b01849] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Rice-bran albumin (RBAlb), which shows higher tyrosinase-inhibitory activity than other protein fractions, was hydrolyzed with papain to improve the bioactivity. The obtained RBAlb hydrolysate (RBAlbH) was separated into 11 peptide fractions by RP-HPLC. Tyrosinase inhibition and copper chelation activities decreased with increasing retention times of the peptide fractions. RBAlbH fraction 1, which exhibited the greatest activity, contained 13 peptides whose sequences were determined by using LC-MS/MS. Most of the peptide sequences contained features of previously reported tyrosinase-inhibitory and metal-chelating peptides, especially peptide SSEYYGGEGSSSEQGYYGEG. RBAlbH fraction 1 showed more effective tyrosinase inhibition (IC50 = 1.31 mg/mL) than citric acid (IC50 = 9.38 mg/mL), but it was less effective than ascorbic acid (IC50 = 0.03 mg/mL, P ≤ 0.05). It showed copper-chelating activity (IC50 = 0.62 mg/mL) stronger than that of EDTA (IC50 = 1.06 mg/mL, P ≤ 0.05). These results suggest that RBAlbH has potential as a natural tyrosinase inhibitor and copper chelator for application in the food and cosmetic industries.
Collapse
Affiliation(s)
- Supatcha Kubglomsong
- School of Human Ecology (Program in Food, Nutrition and Applications) , Sukhothai Thammathirat Open University , Chaengwattana Road , Bangpood, Pakkret , Nonthaburi 11120 , Thailand
| | - Chockchai Theerakulkait
- Department of Food Science and Technology, Faculty of Agro-Industry , Kasetsart University , Chatuchak, Bangkok 10900 , Thailand
| | - Ralph L Reed
- Department of Pharmaceutical Sciences, College of Pharmacy and the Linus Pauling Institute , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Liping Yang
- Department of Chemistry , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Claudia S Maier
- Department of Chemistry , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Jan F Stevens
- Department of Pharmaceutical Sciences, College of Pharmacy and the Linus Pauling Institute , Oregon State University , Corvallis , Oregon 97331 , United States
| |
Collapse
|
18
|
Zhi M, Li Y, Santoso SP, Chen F, Huang G. Complex formation constant of ferric ion with Gly, Pro-Hyp and Gly-Pro-Hyp. RSC Adv 2018; 8:27157-27162. [PMID: 35539970 PMCID: PMC9083272 DOI: 10.1039/c8ra04763d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/16/2018] [Indexed: 11/21/2022] Open
Abstract
The complexes of protein hydrolysates with iron ions may provide one solution for treating iron deficiency because they can work as iron absorption promoters. The chelating ability of some protein hydrolyzates is the key for their iron absorption promotion. Collagen is the most abundant protein in the nature, and collagen peptides are reported to have the ability to promote iron absorption. Collagen's basic tri-peptide unit, i.e., glycine-proline-hydroxyproline (Gly-Pro-Hyp) and its digestion products, glycine (Gly) and proline-hydroxyproline (Pro-Hyp), have been studied against the ferric metal ion. The complexation abilities were determined potentiometrically at three different temperatures of 25 °C, 37 °C, and 40 °C. The ionic strength was maintained using 0.15 mol dm-3 NaCl. Potentiometric data were refined using Hyperquad 2008, and the species distributions were simulated using HySS2009. The complexes of [MA x H y ], with x = 1 to 3 and y = -4 to 2, were refined from three ligands at different temperatures and in the pH range from 2 to 11. The complex formation constant (log β) indicated that the complex of Gly-Pro-Hyp was the most stable followed by Pro-Hyp and Gly complexes. Thermodynamic analysis revealed that the formation of the complexes of [MA x H y ], with x = 1 to 3 and y = 0, was spontaneous since the ΔG value was negative; this means that Gly, Pro-Hyp and Gly-Pro-Hyp have good iron chelating abilities and therefore, they can act as promising iron absorption promoters. The thermodynamic properties of these complexes were also studied, and the base for the usage of these complexes was provided.
Collapse
Affiliation(s)
- Mingyu Zhi
- Hangzhou Vocational & Technical College Hangzhou Zhejiang Province 310018 China
| | - Yanan Li
- College of Life Sciences, China Jiliang University Hangzhou Zhejiang Province 310018 China
| | | | - Fangyuan Chen
- College of Life Sciences, China Jiliang University Hangzhou Zhejiang Province 310018 China
| | - Guangrong Huang
- College of Life Sciences, China Jiliang University Hangzhou Zhejiang Province 310018 China
| |
Collapse
|
19
|
Hou T, Tako E. The In Ovo Feeding Administration (Gallus Gallus)-An Emerging In Vivo Approach to Assess Bioactive Compounds with Potential Nutritional Benefits. Nutrients 2018; 10:nu10040418. [PMID: 29597266 PMCID: PMC5946203 DOI: 10.3390/nu10040418] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/15/2018] [Accepted: 03/24/2018] [Indexed: 12/22/2022] Open
Abstract
In recent years, the in ovo feeding in fertilized broiler (Gallus gallus) eggs approach was further developed and currently is widely applied in the evaluation process of the effects of functional foods (primarily plant origin compounds) on the functionality of the intestinal brush border membrane, as well as potential prebiotic properties and interactions with the intestinal microbial populations. This review collates the information of potential nutrients and their effects on the mineral absorption, gut development, brush border membrane functionality, and immune system. In addition, the advantages and limitations of the in ovo feeding method in the assessment of potential prebiotic effects of plant origin compounds is discussed.
Collapse
Affiliation(s)
- Tao Hou
- College of Food Science and Technology, HuaZhong Agricultural University, Wuhan 430070, China.
| | - Elad Tako
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
20
|
Chye FY, Ooi PW, Ng SY, Sulaiman MR. Fermentation-Derived Bioactive Components from Seaweeds: Functional Properties and Potential Applications. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2017. [DOI: 10.1080/10498850.2017.1412375] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Fook Yee Chye
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Pei Wan Ooi
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Seah Young Ng
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Mohd Rosni Sulaiman
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
21
|
Li Y, Jiang H, Huang G. Protein Hydrolysates as Promoters of Non-Haem Iron Absorption. Nutrients 2017; 9:E609. [PMID: 28617327 PMCID: PMC5490588 DOI: 10.3390/nu9060609] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/13/2017] [Accepted: 06/13/2017] [Indexed: 12/27/2022] Open
Abstract
Iron (Fe) is an essential micronutrient for human growth and health. Organic iron is an excellent iron supplement due to its bioavailability. Both amino acids and peptides improve iron bioavailability and absorption and are therefore valuable components of iron supplements. This review focuses on protein hydrolysates as potential promoters of iron absorption. The ability of protein hydrolysates to chelate iron is thought to be a key attribute for the promotion of iron absorption. Iron-chelatable protein hydrolysates are categorized by their absorption forms: amino acids, di- and tri-peptides and polypeptides. Their structural characteristics, including their size and amino acid sequence, as well as the presence of special amino acids, influence their iron chelation abilities and bioavailabilities. Protein hydrolysates promote iron absorption by keeping iron soluble, reducing ferric iron to ferrous iron, and promoting transport across cell membranes into the gut. We also discuss the use and relative merits of protein hydrolysates as iron supplements.
Collapse
Affiliation(s)
- Yanan Li
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China.
| | - Han Jiang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China.
| | - Guangrong Huang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China.
- Key Lab of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China.
- National and Local United Engineering Lab of Quality Controlling Technology and Instrument for Marine Food, Hangzhou 310018, China.
| |
Collapse
|
22
|
Drago SR, Franco-Miranda H, Cian RE, Betancur-Ancona D, Chel-Guerrero L. Bioactive Properties of Phaseolus lunatus (Lima Bean) and Vigna unguiculata (Cowpea) Hydrolyzates Incorporated into Pasta. Residual Activity after Pasta Cooking. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2016; 71:339-345. [PMID: 27422785 DOI: 10.1007/s11130-016-0565-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The aims of the study were to study the inclusion of P. lunatus (PLH) and V. unguiculata (VUH) protein hydrolyzates with bioactive properties into a pasta-extruded product and determine residual activity after extrusion or pasta cooking. Both protein hydrolyzates showed angiotensin-converting enzyme inhibition (ACEI) and antioxidant activity (TEAC). PLH showed higher ACEI but lower TEAC than VUH (97.19 ± 0.23 vs. 91.95 ± 0.29 % and 244.7 ± 3.4 vs. 293.7 ± 3.3 μmol Trolox/g, respectively). They were included at 5 or 10 % into wheat pasta. Control pasta had the lowest ACEI activity or TEAC (22.01 ± 0.76 % or 14.14 ± 1.28 μmol Trolox/g, respectively). Higher activity remained in pasta with PLH than VUH after extrusion, and higher the level of addition, higher the ACEI was. Pasta had practically the same ACEI activity after cooking, thus active compounds were not lost by temperature or lixiviation. Regarding TEAC, higher activity remained in pasta with 10 % VUH (31.84 ± 0.17 μmol Trolox/g). Other samples with hydrolyzates had the same activity. After cooking, pasta with hydrolyzates had higher TEAC values than control, but these were not modified by the level of incorporation. Moreover, the profile changed because pasta with PLH had the highest TEAC values (21.39 ± 0.01 and 20.34 ± 0.15 for 5 or 10 % hydrolyzates, respectively). Cooking decreased this activity (~ 20 %), for all samples. Although a certain loss of antioxidant activity was observed, pasta could be a good vehicle for bioactive compounds becoming a functional food.
Collapse
Affiliation(s)
- Silvina R Drago
- Instituto de Tecnología de Alimentos, CONICET, FIQ - UNL, 1° de Mayo 3250, (3000), Santa Fe, República Argentina
| | - Hanai Franco-Miranda
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte. Km 33.5, Tablaje Catastral 13615, Colonia Chuburná de Hidalgo Inn, 97203, Mérida, Yuc., México
| | - Raúl E Cian
- Instituto de Tecnología de Alimentos, CONICET, FIQ - UNL, 1° de Mayo 3250, (3000), Santa Fe, República Argentina
| | - David Betancur-Ancona
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte. Km 33.5, Tablaje Catastral 13615, Colonia Chuburná de Hidalgo Inn, 97203, Mérida, Yuc., México
| | - Luis Chel-Guerrero
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte. Km 33.5, Tablaje Catastral 13615, Colonia Chuburná de Hidalgo Inn, 97203, Mérida, Yuc., México.
| |
Collapse
|