1
|
Milusheva M, Stoyanova M, Gledacheva V, Stefanova I, Todorova M, Pencheva M, Stojnova K, Tsoneva S, Nedialkov P, Nikolova S. 2-Amino- N-Phenethylbenzamides for Irritable Bowel Syndrome Treatment. Molecules 2024; 29:3375. [PMID: 39064953 PMCID: PMC11280360 DOI: 10.3390/molecules29143375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Irritable bowel syndrome (IBS) is a common gastrointestinal (GI) disorder characterized by abdominal pain or discomfort. Mebeverine is an antispasmodic that has been widely used in clinical practice to relieve the symptoms of IBS. However, its systemic use usually leads to side effects. Therefore, the current paper aimed to synthesize more effective medicines for IBS treatment. We used ring opening of isatoic anhydride for the synthesis in reaction with 2-phenylethylamine. In silico simulation predicted spasmolytic activity for 2-amino-N-phenethylbenzamides. The newly synthesized compounds demonstrated a relaxation effect similar to mebeverine but did not affect the serotonin or Ca2+-dependent signaling pathway of contractile activity (CA) in contrast. Having in mind the anti-inflammatory potential of antispasmodics, the synthesized molecules were tested in vitro and ex vivo for their anti-inflammatory effects. Four of the newly synthesized compounds demonstrated very good activity by preventing albumin denaturation compared to anti-inflammatory drugs/agents well-established in medicinal practice. The newly synthesized compounds also inhibited the expression of interleukin-1β and stimulated the expression of neuronal nitric oxide synthase (nNOS), and, consequently, nitric oxide (NO) synthesis by neurons of the myenteric plexus. This characterizes the newly synthesized compounds as biologically active relaxants, offering a cleaner and more precise application in pharmacological practice, thereby enhancing their potential therapeutic value.
Collapse
Affiliation(s)
- Miglena Milusheva
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria or (M.M.); (M.S.); (M.T.)
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Mihaela Stoyanova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria or (M.M.); (M.S.); (M.T.)
| | - Vera Gledacheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (V.G.); (I.S.); (M.P.)
| | - Iliyana Stefanova
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (V.G.); (I.S.); (M.P.)
| | - Mina Todorova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria or (M.M.); (M.S.); (M.T.)
| | - Mina Pencheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (V.G.); (I.S.); (M.P.)
| | - Kirila Stojnova
- Department of General and Inorganic Chemistry with Methodology of Chemistry Education, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Slava Tsoneva
- Department of Analytical Chemistry and Computer Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Paraskev Nedialkov
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria;
| | - Stoyanka Nikolova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria or (M.M.); (M.S.); (M.T.)
| |
Collapse
|
2
|
Ivanov SM, Rudik AV, Lagunin AA, Filimonov DA, Poroikov VV. DIGEP-Pred 2.0: A web application for predicting drug-induced cell signaling and gene expression changes. Mol Inform 2024:e202400032. [PMID: 38979651 DOI: 10.1002/minf.202400032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/16/2024] [Accepted: 06/14/2024] [Indexed: 07/10/2024]
Abstract
The analysis of drug-induced gene expression profiles (DIGEP) is widely used to estimate the potential therapeutic and adverse drug effects as well as the molecular mechanisms of drug action. However, the corresponding experimental data is absent for many existing drugs and drug-like compounds. To solve this problem, we created the DIGEP-Pred 2.0 web application, which allows predicting DIGEP and potential drug targets by structural formula of drug-like compounds. It is based on the combined use of structure-activity relationships (SARs) and network analysis. SAR models were created using PASS (Prediction of Activity Spectra for Substances) technology for data from the Comparative Toxicogenomics Database (CTD), the Connectivity Map (CMap) for the prediction of DIGEP, and PubChem and ChEMBL for the prediction of molecular mechanisms of action (MoA). Using only the structural formula of a compound, the user can obtain information on potential gene expression changes in several cell lines and drug targets, which are potential master regulators responsible for the observed DIGEP. The mean accuracy of prediction calculated by leave-one-out cross validation was 86.5 % for 13377 genes and 94.8 % for 2932 proteins (CTD data), and it was 97.9 % for 2170 MoAs. SAR models (mean accuracy-87.5 %) were also created for CMap data given on MCF7, PC3, and HL60 cell lines with different threshold values for the logarithm of fold changes: 0.5, 0.7, 1, 1.5, and 2. Additionally, the data on pathways (KEGG, Reactome), biological processes of Gene Ontology, and diseases (DisGeNet) enriched by the predicted genes, together with the estimation of target-master regulators based on OmniPath data, is also provided. DIGEP-Pred 2.0 web application is freely available at https://www.way2drug.com/digep-pred.
Collapse
Affiliation(s)
- Sergey M Ivanov
- Department of Bioinformatics, Institute of Biomedical Chemistry, Pogodinskaya Street, 10 bldg. 8, Moscow, 119121, Russia
- Department of Bioinformatics, Pirogov Russian National Research Medical University, Ostrovityanova Street, 1, Moscow, 117997, Russia
| | - Anastasia V Rudik
- Department of Bioinformatics, Institute of Biomedical Chemistry, Pogodinskaya Street, 10 bldg. 8, Moscow, 119121, Russia
| | - Alexey A Lagunin
- Department of Bioinformatics, Institute of Biomedical Chemistry, Pogodinskaya Street, 10 bldg. 8, Moscow, 119121, Russia
- Department of Bioinformatics, Pirogov Russian National Research Medical University, Ostrovityanova Street, 1, Moscow, 117997, Russia
| | - Dmitry A Filimonov
- Department of Bioinformatics, Institute of Biomedical Chemistry, Pogodinskaya Street, 10 bldg. 8, Moscow, 119121, Russia
| | - Vladimir V Poroikov
- Department of Bioinformatics, Institute of Biomedical Chemistry, Pogodinskaya Street, 10 bldg. 8, Moscow, 119121, Russia
| |
Collapse
|
3
|
Ilyin NP, Nabiullin AD, Kozlova AD, Kupriyanova OV, Shevyrin VA, Gloriozova T, Filimonov D, Lagunin A, Galstyan DS, Kolesnikova TO, Mor MS, Efimova EV, Poroikov V, Yenkoyan KB, de Abreu MS, Demin KA, Kalueff AV. Chronic Behavioral and Neurochemical Effects of Four Novel N-Benzyl-2-phenylethylamine Derivatives Recently Identified as "Psychoactive" in Adult Zebrafish Screens. ACS Chem Neurosci 2024; 15:2006-2017. [PMID: 38683969 DOI: 10.1021/acschemneuro.4c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Potently affecting human and animal brain and behavior, hallucinogenic drugs have recently emerged as potentially promising agents in psychopharmacotherapy. Complementing laboratory rodents, the zebrafish (Danio rerio) is a powerful model organism for screening neuroactive drugs, including hallucinogens. Here, we tested four novel N-benzyl-2-phenylethylamine (NBPEA) derivatives with 2,4- and 3,4-dimethoxy substitutions in the phenethylamine moiety and the -F, -Cl, and -OCF3 substitutions in the ortho position of the phenyl ring of the N-benzyl moiety (34H-NBF, 34H-NBCl, 24H-NBOMe(F), and 34H-NBOMe(F)), assessing their behavioral and neurochemical effects following chronic 14 day treatment in adult zebrafish. While the novel tank test behavioral data indicate anxiolytic-like effects of 24H-NBOMe(F) and 34H-NBOMe(F), neurochemical analyses reveal reduced brain norepinephrine by all four drugs, and (except 34H-NBCl) - reduced dopamine and serotonin levels. We also found reduced turnover rates for all three brain monoamines but unaltered levels of their respective metabolites. Collectively, these findings further our understanding of complex central behavioral and neurochemical effects of chronically administered novel NBPEAs and highlight the potential of zebrafish as a model for preclinical screening of small psychoactive molecules.
Collapse
Affiliation(s)
- Nikita P Ilyin
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Arslan D Nabiullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Anna D Kozlova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Olga V Kupriyanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Kazan State Medical University, Kazan 420012, Russia
| | - Vadim A Shevyrin
- Institute of Chemical Engineering, Ural Federal University, 19 Mira Str. ,Ekaterinburg 620002, Russia
| | - Tatyana Gloriozova
- Institute of Biomedical Chemistry, Pogodinskaya str., 10, bldg. 8 ,Moscow 119121, Russia
| | - Dmitry Filimonov
- Institute of Biomedical Chemistry, Pogodinskaya str., 10, bldg. 8 ,Moscow 119121, Russia
| | - Alexey Lagunin
- Institute of Biomedical Chemistry, Pogodinskaya str., 10, bldg. 8 ,Moscow 119121, Russia
| | - David S Galstyan
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Tatiana O Kolesnikova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after Mkhitar Heratsi, Yerevan 0025, Armenia
| | - Mikael S Mor
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Evgeniya V Efimova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Vladimir Poroikov
- Institute of Biomedical Chemistry, Pogodinskaya str., 10, bldg. 8 ,Moscow 119121, Russia
| | - Konstantin B Yenkoyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after Mkhitar Heratsi, Yerevan 0025, Armenia
- Biochemistry Department, Yerevan State Medical University after Mkhitar Heratsi, Yerevan 0025, Armenia
| | - Murilo S de Abreu
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre 900050, Brazil
| | - Konstantin A Demin
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Allan V Kalueff
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
- Neurobiology Program, Sirius University of Science and Technology, Sochi 354340, Russia
- Suzhou Key Laboratory of Neurobiology and Cell Signalling, Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| |
Collapse
|
4
|
Merlani M, Nadaraia N, Barbakadze N, Amiranashvili L, Kakhabrishvili M, Petrou A, Carević T, Glamočlija J, Geronikaki A. Steroidal hydrazones as antimicrobial agents: biological evaluation and molecular docking studies. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2024; 35:137-155. [PMID: 38312087 DOI: 10.1080/1062936x.2024.2309183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/17/2024] [Indexed: 02/06/2024]
Abstract
Most of pharmaceutical agents display several or even many biological activities. It is obvious that testing even one compound for thousands of biological activities is a practically not reasonable task. Therefore, computer-aided prediction is the method of choice for the selection of the most promising bioassays for particular compounds. Using PASS Online software, we determined the probable antimicrobial activity of the 31 steroid derivatives. Experimental testing of the antimicrobial activity of the tested compounds by microdilution method confirmed the computational predictions. Furthermore, P. aeruginosa and C. albicans biofilm formation was investigated. Compound 11 showed a biofilm reduction by 42.26% at the MIC of the tested compound. The percentages are lower than ketoconazole, but very close to its activity.
Collapse
Affiliation(s)
- M Merlani
- TSMU I, Kutateladze Institute of Pharmacochemistry, Tbilisi, Georgia
| | - N Nadaraia
- TSMU I, Kutateladze Institute of Pharmacochemistry, Tbilisi, Georgia
| | - N Barbakadze
- TSMU I, Kutateladze Institute of Pharmacochemistry, Tbilisi, Georgia
| | - L Amiranashvili
- TSMU I, Kutateladze Institute of Pharmacochemistry, Tbilisi, Georgia
| | - M Kakhabrishvili
- TSMU I, Kutateladze Institute of Pharmacochemistry, Tbilisi, Georgia
| | - A Petrou
- School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - T Carević
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - J Glamočlija
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - A Geronikaki
- School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
5
|
Pogodin PV, Salina EG, Semenov VV, Raihstat MM, Druzhilovskiy DS, Filimonov DA, Poroikov VV. Ligand-based virtual screening and biological evaluation of inhibitors of Mycobacterium tuberculosis H37Rv. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2024; 35:53-69. [PMID: 38282553 DOI: 10.1080/1062936x.2024.2304803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/07/2024] [Indexed: 01/30/2024]
Abstract
Novel antimycobacterial compounds are needed to expand the existing toolbox of therapeutic agents, which sometimes fail to be effective. In our study we extracted, filtered, and aggregated the diverse data on antimycobacterial activity of chemical compounds from the ChEMBL database version 24.1. These training sets were used to create the classification and regression models with PASS and GUSAR software. The IOC chemical library consisting of approximately 200,000 chemical compounds was screened using these (Q)SAR models to select novel compounds potentially having antimycobacterial activity. The QikProp tool (Schrödinger) was used to predict ADME properties and find compounds with acceptable ADME profiles. As a result, 20 chemical compounds were selected for further biological evaluation, of which 13 were the Schiff bases of isoniazid. To diversify the set of selected compounds we applied substructure filtering and selected an additional 10 compounds, none of which were Schiff bases of isoniazid. Thirty compounds selected using virtual screening were biologically evaluated in a REMA assay against the M. tuberculosis strain H37Rv. Twelve compounds demonstrated MIC below 20 µM (ranging from 2.17 to 16.67 µM) and 18 compounds demonstrated substantially higher MIC values. The discovered antimycobacterial agents represent different chemical classes.
Collapse
Affiliation(s)
- P V Pogodin
- Laboratory of Structure-Function Based Drug Design, Department for Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia
| | - E G Salina
- Group of Biochemistry of Adaptation of Microorganisms, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - V V Semenov
- Laboratory of Medicinal Chemistry (N17), N. D. Zelinsky Institute of Organic Chemistry RAS, Moscow, Russia
| | - M M Raihstat
- Laboratory of Medicinal Chemistry (N17), N. D. Zelinsky Institute of Organic Chemistry RAS, Moscow, Russia
| | - D S Druzhilovskiy
- Laboratory of Structure-Function Based Drug Design, Department for Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia
| | - D A Filimonov
- Laboratory of Structure-Function Based Drug Design, Department for Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia
| | - V V Poroikov
- Laboratory of Structure-Function Based Drug Design, Department for Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
6
|
Lagunin AA, Sezganova AS, Muraviova ES, Rudik AV, Filimonov DA. BC CLC-Pred: a freely available web-application for quantitative and qualitative predictions of substance cytotoxicity in relation to human breast cancer cell lines. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2024; 35:1-9. [PMID: 38112004 DOI: 10.1080/1062936x.2023.2289050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/24/2023] [Indexed: 12/20/2023]
Abstract
In silico prediction of cell line cytotoxicity considerably decreases time and financial costs during drug development of new antineoplastic agents. (Q)SAR models for the prediction of drug-like compound cytotoxicity in relation to nine breast cancer cell lines (T47D, ZR-75-1, MX1, Hs-578T, MCF7-DOX, MCF7, Bcap37, MCF7R, BT-20) were created by GUSAR software based on the data from ChEMBL database (v. 30). The separate datasets related with IC50 and IG50 values were used for the creation of (Q)SAR models for each cell line. Based on leave-one-out and 5F CV procedures, 24 reasonable (Q)SAR models were selected for the creation of a freely available web-application (BC CLC-Pred: https://www.way2drug.com/bc/) to predict substance cytotoxicity in relation to human breast cancer cell lines. The mean accuracies of prediction r2, RMSE, Balance Accuracy for the selected (Q)SAR models calculated by 5F CV were 0.599, 0.679 and 0.875, respectively. As a result, BC CLC-Pred provides simultaneous quantitative and qualitative predictions of IC50 and IG50 values for most of the nine breast cancer cell lines, which may be helpful in selecting promising compounds and optimizing lead compounds during the development of new antineoplastic agents against breast cancer.
Collapse
Affiliation(s)
- A A Lagunin
- Department of Bioinformatics, Pirogov Russian National Research Medical University, Moscow, Russia
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia
| | - A S Sezganova
- Department of Bioinformatics, Pirogov Russian National Research Medical University, Moscow, Russia
| | - E S Muraviova
- Department of Bioinformatics, Pirogov Russian National Research Medical University, Moscow, Russia
| | - A V Rudik
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia
| | - D A Filimonov
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
7
|
Algaissi A, Tabassum H, Khan E, Dwivedi S, Lohani M, Khamjan NA, Farasani A, Ahmad IZ. HDAC inhibition by Nigella sativa L. sprouts extract in hepatocellular carcinoma: an approach to study anti-cancer potential. J Biomol Struct Dyn 2023:1-19. [PMID: 37948309 DOI: 10.1080/07391102.2023.2279283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
A wide variety of natural products have been widely used in chemoprevention therapy because they have antioxidant, anti-inflammatory, and anticancer activity. In the present study, we shed light on the 5th day germinated sprouts of N. sativa seeds and evaluated them against HDAC inhibition and antioxidant activity. The extract from the seed and sprout was extracted and characterised by LC-MS/MS, FTIR, and NMR to reveal its chemical composition, especially thymol (THY) and thymoquinone (TQ). Hepatocellular carcinoma (HCC) is a global health concern as it is a major lifestyle disease. Hence, incorporating herbal-based therapeutic compounds into everyday routines has become an attractive alternative for preventing hepatic diseases. Histone deacetylase (HDAC) inhibition (HDACi) is emerging as a promising therapeutic strategy for managing various carcinomas including HCC. Therefore, the 5th day of N. sativa can be used as a potential anticancer agent by inhibiting HDAC activity, as it is reported to have an important role in the management of oxidative stress. The bioactive compound of N. sativa, i.e. thymoquinone, also showed a good binding affinity with the HDAC protein (3MAX) with a stable interaction in an in silico study as compared to the standard drug (Trichostatin A) and thymol.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abdullah Algaissi
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Heena Tabassum
- Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Pune, Maharashtra, India
| | - Elhan Khan
- Natural Products Laboratory, Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| | - Sonam Dwivedi
- Natural Products Laboratory, Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| | - Mohtashim Lohani
- Medical Research Centre, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Nizar A Khamjan
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Abdullah Farasani
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Iffat Zareen Ahmad
- Natural Products Laboratory, Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
8
|
Sundararajan P, Dharmaraj Rajaselvi D, Vivekananthan S, Priya Ramasamy S. In-silico method for elucidation of prodigiosin as PARP-1 inhibitor a prime target of Triple-negative breast cancer. Bioorg Chem 2023; 138:106618. [PMID: 37244231 DOI: 10.1016/j.bioorg.2023.106618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 05/29/2023]
Abstract
Triple-Negative Breast Cancer (TNBC) is found to be one of the life-threatening cancer. Poly (ADP-Ribose) Polymerase-1 (PARP-1) is overexpressed by those tumour cells, which become resistant to chemotherapies. Inhibition of PARP-1 has a considerable effect on treating TNBC. Prodigiosin is a valuable pharmaceutical compound that exhibits anticancer properties. The present study aims to virtually evaluate prodigiosin as a potent PARP-1 inhibitor using Molecular docking and Molecular Dynamics (MD) simulation studies. The PASS (Prediction of Activity Spectra for Substances) prediction tool evaluated the biological properties of prodigiosin. Then the drug-likeness and pharmacokinetic properties of prodigiosin were determined using Swiss-ADME software. It was suggested that prodigiosin obeyed Lipinski's rule of five and thus could act as a drug with good pharmacokinetic properties. Moreover, molecular docking was done with AutoDock 4.2 to identify the critical amino acids of the protein-ligand complex. It was indicated that prodigiosin has a docking score of -8.08 kcal/mol, which showed its effective interaction with crucial amino acid, His201A of PARP-1 protein. Further, MD simulation was performed using Gromacs software to validate the stability of the prodigiosin-PARP-1 complex. Prodigiosin was found to have good structural stability and affinity at the active site of PARP-1 protein. Additionally, PCA and MM-PBSA were calculated for the prodigiosin-PARP-1 complex, which revealed that prodigiosin has an excellent binding affinity towards PARP-1 protein. Prodigiosin can possibly be used as oral drug due to its PARP-1 inhibition through high binding affinity, structural stability, and receptor flexibility towards crucial amino acid residue His201A of PARP-1 protein. In-addition, in-vitro cytotoxicity, and apoptosis analysis of prodigiosin-treated TNBC cell line-MDA-MB-231 revealed that prodigiosin exhibited significant anticancer activity in 101.1 µg/mL concentration, when compared to commercially available synthetic drug cisplatin. Thus, prodigiosin could act as a potential candidate for treatment of TNBC than the commercially available synthetic drugs.
Collapse
Affiliation(s)
- Priya Sundararajan
- Department of Microbiology, PSG College of Arts & Science, Coimbatore 641014, Tamil Nadu, India
| | | | - Suseela Vivekananthan
- Department of Biochemistry, PSG College of Arts & Science, Coimbatore 641014, Tamil Nadu, India
| | - Shanmuga Priya Ramasamy
- Department of Microbiology, PSG College of Arts & Science, Coimbatore 641014, Tamil Nadu, India.
| |
Collapse
|
9
|
Folawiyo MA, Omotuyi IO, Ajao FO, Besong E, Adelusi TI, Ajayi AF. Catechin from Anonna senegalensis is a Potential Inhibitor of Erectile Dysfunction: Implication for Its Use in Male Sexual Enhancement. Appl Biochem Biotechnol 2023; 195:4936-4964. [PMID: 37115384 DOI: 10.1007/s12010-023-04557-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2023] [Indexed: 04/29/2023]
Abstract
Erectile dysfunction (ED) is a major challenge for men. The drugs for its treatment are associated with side effects. Hence, in phytomedicinal research, where Anonna senegalensis (A. senegalensis) is a candidate with abundant phytochemicals possessing various pharmacological properties, but the sex-enhancing phytochemical is elusive in the literature. This study aimed to understand the molecular interaction of its potent molecule mediating male sexual enhancement. A library of 69 compounds from A. senegalensis was docked against the ED-targeted proteins. Sildenafil citrate was used as the reference standard. Thereafter, the lead compound was screened for drug-likeness by applying the Lipinski rule of 5 (RO5), pharmacokinetic properties, and bioactivity using SwissADME and Molinspiration web servers, respectively. The results show catechin as the lead phytochemical compound with a stronger binding affinity for most of the proteins of ED. Also, catechin demonstrates good compliance with the RO5, great pharmacokinetic profiles, and could be said to be a polypharmacological molecule with good bioactivity scores. The research findings unravel the potential of catechin (a phytochemical belonging to the flavonoids class) from A. senegalensis leaf as a potential male sexual enhancement molecule via its high binding affinity for most erectile dysfunction-targeted proteins. They may require further toxicity and therapeutic evaluations in vivo.
Collapse
Affiliation(s)
- Moshood Abiola Folawiyo
- Faculty of Basic Medical Sciences, Department of Physiology, Ladoke Akintola University of Technology, Ogbomosho, P.M.B. 4000, Nigeria
- Faculty of Basic Medical Sciences, College of Medicine, Ekiti State University, Ado-Ekiti, Nigeria
- Molecular Biology and Molecular Simulation Center (Mols &Sims), Ado-Ekiti, Nigeria
| | - Idowu Olamiposi Omotuyi
- Molecular Biology and Molecular Simulation Center (Mols &Sims), Ado-Ekiti, Nigeria
- Institute for Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, Ado-Ekiti, Nigeria
| | | | - Elizabeth Besong
- Faculty of Basic Medical Sciences, Department of Physiology, Ebonyi State University, Abakaliki, P.M.B. 053, Nigeria
| | - Temitope Isaac Adelusi
- Computational Biology and Drug Discovery Laboratory, Faculty of Basic Medical Sciences, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, P.M.B. 4000, Nigeria
| | - Ayodeji Folorunsho Ajayi
- Faculty of Basic Medical Sciences, Department of Physiology, Ladoke Akintola University of Technology, Ogbomosho, P.M.B. 4000, Nigeria.
| |
Collapse
|
10
|
Adamovich SN, Ushakov IA, Oborina EN, Lukyanova SV, Komarov VY. New 3-Aminopropylsilatrane Derivatives: Synthesis, Structure, Properties, and Biological Activity. Int J Mol Sci 2023; 24:9965. [PMID: 37373114 DOI: 10.3390/ijms24129965] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The biologically active compound 3-aminopropylsilatrane (a compound with a pentacoordinated silicon atom) underwent an aza-Michael reaction with various acrylates and other Michael acceptors. Depending on the molar ratio, the reaction yielded Michael mono- or diadducts (11 examples) containing functional groups (silatranyl, carbonyl, nitrile, amino, etc.). These compounds were characterized via IR and NMR spectroscopy, mass spectrometry, X-ray diffraction, and elemental analysis. Calculations (using in silico, PASS, and SwissADMET online software) revealed that the functionalized (hybrid) silatranes were bioavailable, druglike compounds that exhibited pronounced antineoplastic and macrophage-colony-stimulating activity. The in vitro effect of silatranes on the growth of pathogenic bacteria (Listeria, Staphylococcus, and Yersinia) was studied. It was found that the synthesized compounds exerted inhibitory and stimulating effects in high and low concentrations, respectively.
Collapse
Affiliation(s)
- Sergey N Adamovich
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Street, 664033 Irkutsk, Russia
| | - Igor A Ushakov
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Street, 664033 Irkutsk, Russia
| | - Elizaveta N Oborina
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Street, 664033 Irkutsk, Russia
| | - Svetlana V Lukyanova
- Irkutsk Antiplague Research Institute of Siberia and Far East, 78 Trilisser Street, 664047 Irkutsk, Russia
| | - Vladislav Y Komarov
- A.V. Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Prospekt, 630090 Novosibirsk, Russia
| |
Collapse
|
11
|
Dascalu D, Isvoran A, Ianovici N. Predictions of the Biological Effects of Several Acyclic Monoterpenes as Chemical Constituents of Essential Oils Extracted from Plants. Molecules 2023; 28:4640. [PMID: 37375196 DOI: 10.3390/molecules28124640] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Acyclic terpenes are biologically active natural products having applicability in medicine, pharmacy, cosmetics and other practices. Consequently, humans are exposed to these chemicals, and it is necessary to assess their pharmacokinetics profiles and possible toxicity. The present study considers a computational approach to predict both the biological and toxicological effects of nine acyclic monoterpenes: beta-myrcene, beta-ocimene, citronellal, citrolellol, citronellyl acetate, geranial, geraniol, linalool and linalyl acetate. The outcomes of the study emphasize that the investigated compounds are usually safe for humans, they do not lead to hepatotoxicity, cardiotoxicity, mutagenicity, carcinogenicity and endocrine disruption, and usually do not have an inhibitory potential against the cytochromes involved in the metabolism of xenobiotics, excepting CYP2B6. The inhibition of CYP2B6 should be further analyzed as this enzyme is involved in both the metabolism of several common drugs and in the activation of some procarcinogens. Skin and eye irritation, toxicity through respiration and skin-sensitization potential are the possible harmful effects revealed by the investigated compounds. These outcomes underline the necessity of in vivo studies regarding the pharmacokinetics and toxicological properties of acyclic monoterpenes so as to better establish the clinical relevance of their use.
Collapse
Affiliation(s)
- Daniela Dascalu
- Department of Biology Chemistry, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania
- Advanced Environmental Research Laboratories, West University of Timisoara, 4 Oituz, 300086 Timisoara, Romania
| | - Adriana Isvoran
- Department of Biology Chemistry, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania
- Advanced Environmental Research Laboratories, West University of Timisoara, 4 Oituz, 300086 Timisoara, Romania
| | - Nicoleta Ianovici
- Department of Biology Chemistry, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania
- Environmental Biology and Biomonitoring Research Center, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania
| |
Collapse
|
12
|
Kositsyn YM, de Abreu MS, Kolesnikova TO, Lagunin AA, Poroikov VV, Harutyunyan HS, Yenkoyan KB, Kalueff AV. Towards Novel Potential Molecular Targets for Antidepressant and Antipsychotic Pharmacotherapies. Int J Mol Sci 2023; 24:ijms24119482. [PMID: 37298431 DOI: 10.3390/ijms24119482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 06/12/2023] Open
Abstract
Depression and schizophrenia are two highly prevalent and severely debilitating neuropsychiatric disorders. Both conventional antidepressant and antipsychotic pharmacotherapies are often inefficient clinically, causing multiple side effects and serious patient compliance problems. Collectively, this calls for the development of novel drug targets for treating depressed and schizophrenic patients. Here, we discuss recent translational advances, research tools and approaches, aiming to facilitate innovative drug discovery in this field. Providing a comprehensive overview of current antidepressants and antipsychotic drugs, we also outline potential novel molecular targets for treating depression and schizophrenia. We also critically evaluate multiple translational challenges and summarize various open questions, in order to foster further integrative cross-discipline research into antidepressant and antipsychotic drug development.
Collapse
Affiliation(s)
- Yuriy M Kositsyn
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg 197341, Russia
- Neurobiology Program, Sirius University of Science and Technology, Sirius Federal Territory 354340, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny 197758, Russia
| | - Murilo S de Abreu
- Neuroscience Group, Moscow Institute of Physics and Technology, Moscow 115184, Russia
| | - Tatiana O Kolesnikova
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg 197341, Russia
- Neurobiology Program, Sirius University of Science and Technology, Sirius Federal Territory 354340, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
- Vivarium, Ural Federal University, Yekaterinburg 620049, Russia
| | - Alexey A Lagunin
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow 119121, Russia
- Department of Bioinformatics, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Vladimir V Poroikov
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow 119121, Russia
| | - Hasmik S Harutyunyan
- Neuroscience Laboratory, COBRAIN Center, Yerevan State Medical University Named after M. Heratsi, Yerevan 0025, Armenia
- Department of Biochemistry, Yerevan State Medical University Named after M. Heratsi, Yerevan 0025, Armenia
| | - Konstantin B Yenkoyan
- Neuroscience Laboratory, COBRAIN Center, Yerevan State Medical University Named after M. Heratsi, Yerevan 0025, Armenia
- Department of Biochemistry, Yerevan State Medical University Named after M. Heratsi, Yerevan 0025, Armenia
| | - Allan V Kalueff
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg 197341, Russia
- Neurobiology Program, Sirius University of Science and Technology, Sirius Federal Territory 354340, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny 197758, Russia
- Neuroscience Group, Moscow Institute of Physics and Technology, Moscow 115184, Russia
- Vivarium, Ural Federal University, Yekaterinburg 620049, Russia
- Neuroscience Laboratory, COBRAIN Center, Yerevan State Medical University Named after M. Heratsi, Yerevan 0025, Armenia
| |
Collapse
|
13
|
CLC-Pred 2.0: A Freely Available Web Application for In Silico Prediction of Human Cell Line Cytotoxicity and Molecular Mechanisms of Action for Druglike Compounds. Int J Mol Sci 2023; 24:ijms24021689. [PMID: 36675202 PMCID: PMC9861947 DOI: 10.3390/ijms24021689] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
In vitro cell-line cytotoxicity is widely used in the experimental studies of potential antineoplastic agents and evaluation of safety in drug discovery. In silico estimation of cytotoxicity against hundreds of tumor cell lines and dozens of normal cell lines considerably reduces the time and costs of drug development and the assessment of new pharmaceutical agent perspectives. In 2018, we developed the first freely available web application (CLC-Pred) for the qualitative prediction of cytotoxicity against 278 tumor and 27 normal cell lines based on structural formulas of 59,882 compounds. Here, we present a new version of this web application: CLC-Pred 2.0. It also employs the PASS (Prediction of Activity Spectra for Substance) approach based on substructural atom centric MNA descriptors and a Bayesian algorithm. CLC-Pred 2.0 provides three types of qualitative prediction: (1) cytotoxicity against 391 tumor and 47 normal human cell lines based on ChEMBL and PubChem data (128,545 structures) with a mean accuracy of prediction (AUC), calculated by the leave-one-out (LOO CV) and the 20-fold cross-validation (20F CV) procedures, of 0.925 and 0.923, respectively; (2) cytotoxicity against an NCI60 tumor cell-line panel based on the Developmental Therapeutics Program's NCI60 data (22,726 structures) with different thresholds of IG50 data (100, 10 and 1 nM) and a mean accuracy of prediction from 0.870 to 0.945 (LOO CV) and from 0.869 to 0.942 (20F CV), respectively; (3) 2170 molecular mechanisms of actions based on ChEMBL and PubChem data (656,011 structures) with a mean accuracy of prediction 0.979 (LOO CV) and 0.978 (20F CV). Therefore, CLC-Pred 2.0 is a significant extension of the capabilities of the initial web application.
Collapse
|
14
|
Efimova JA, Shetnev AA, Gasilina OA, Tarasenko MV, Korsakov MK. Synthesis of 3,5-Disubstituted-1,2,4-oxadiazole Sulfonamides in the Superbasic t-BuONa/DMAA System. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222120568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
15
|
Haroun M, Petrou A, Tratrat C, Kolokotroni A, Fesatidou M, Zagaliotis P, Gavalas A, Venugopala KN, Sreeharsha N, Nair AB, Elsewedy HS, Geronikaki A. Discovery of 5-Methylthiazole-Thiazolidinone Conjugates as Potential Anti-Inflammatory Agents: Molecular Target Identification and In Silico Studies. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238137. [PMID: 36500230 PMCID: PMC9737349 DOI: 10.3390/molecules27238137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022]
Abstract
A series of previously synthesized 5-benzyliden-2-(5-methylthiazole-2-ylimino)thiazoli- din-4-one were evaluated for their anti-inflammatory activity on the basis of PASS predictive outcomes. The predictive compounds were found to demonstrate moderate to good anti-inflammatory activity, and some of them displayed better activity than indomethacin used as the reference drug. Structure-activity relationships revealed that the activity of compounds depends not only on the nature of the substituent but also on its position in the benzene ring. The most active compounds were selected to investigate their possible mechanism of action. COX and LOX activity were determined and found that the title compounds were active only to COX-1 enzymes with an inhibitory effect superior to the reference drug naproxen. As for LOX inhibitory activity, the derivatives failed to show remarkable LOX inhibition. Therefore, COX-1 has been identified as the main molecular target for the anti-inflammatory activity of our compounds. The docking study against COX-1 active site revealed that the residue Arg 120 was found to be responsible for activity. In summary, the 5-thiazol-based thiazolidinone derivatives have been identified as a novel class of selective COX-1 inhibitors.
Collapse
Affiliation(s)
- Michelyne Haroun
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Correspondence: (M.H.); (A.G.); Tel.: +966-550909890 (M.H.); +30-2310-997-616 (A.G.)
| | - Anthi Petrou
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Christophe Tratrat
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Aggeliki Kolokotroni
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Fesatidou
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Panagiotis Zagaliotis
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY 10065, USA
| | - Antonis Gavalas
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Heba Sadek Elsewedy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Dariyah, Riyadh 13713, Saudi Arabia
| | - Athina Geronikaki
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence: (M.H.); (A.G.); Tel.: +966-550909890 (M.H.); +30-2310-997-616 (A.G.)
| |
Collapse
|
16
|
Kramarova EP, Borisevich SS, Khamitov EM, Korlyukov AA, Dorovatovskii PV, Shagina AD, Mineev KS, Tarasenko DV, Novikov RA, Lagunin AA, Boldyrev I, Ezdoglian AA, Karpechenko NY, Shmigol TA, Baukov YI, Negrebetsky VV. Pyridine Carboxamides Based on Sulfobetaines: Design, Reactivity, and Biological Activity. Molecules 2022; 27:7542. [PMID: 36364369 PMCID: PMC9658115 DOI: 10.3390/molecules27217542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 03/09/2024] Open
Abstract
The synthesis of the products of the 1,3-propanesultone ring opening during its interaction with amides of pyridinecarboxylic acids has been carried out. The dependence of the yield of the reaction products on the position (ortho-, meta-, para-) of the substituent in the heteroaromatic fragment and temperature condition was revealed. In contrast to the meta- and para-substituted substrates, the reaction involving ortho-derivatives at the boiling point of methanol unexpectedly led to the formation of a salt. On the basis of spectroscopic, X-Ray, and quantum-chemical calculation data, a model of the transition-state, as well as a mechanism for this alkylation reaction of pyridine carboxamides with sultone were proposed in order to explain the higher yields obtained with the nicotinamide and its N-methyl analog compared to ortho or meta parents. Based on the analysis of ESP maps, the positions of the binding sites of reagents with a potential complexing agent in space were determined. The in silico evaluation of possible biological activity showed that the synthetized compounds revealed some promising pharmacological effects and low acute toxicity.
Collapse
Affiliation(s)
- Eugene P. Kramarova
- Department of Medical Chemistry and Toxicology, Pirogov National Research Medical University, Ministry of Health of Russia, 117997 Moscow, Russia
| | - Sophia S. Borisevich
- Laboratory of Physical Chemistry, Ufa Institute of Chemistry, Ufa Federal Research Center, Russian Academy of Sciences, 450071 Ufa, Russia
| | - Edward M. Khamitov
- Laboratory of Physical Chemistry, Ufa Institute of Chemistry, Ufa Federal Research Center, Russian Academy of Sciences, 450071 Ufa, Russia
| | - Alexander A. Korlyukov
- Department of Medical Chemistry and Toxicology, Pirogov National Research Medical University, Ministry of Health of Russia, 117997 Moscow, Russia
| | | | - Anastasia D. Shagina
- Department of Medical Chemistry and Toxicology, Pirogov National Research Medical University, Ministry of Health of Russia, 117997 Moscow, Russia
| | - Konstantin S. Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Dmitri V. Tarasenko
- Department of Medical Chemistry and Toxicology, Pirogov National Research Medical University, Ministry of Health of Russia, 117997 Moscow, Russia
| | - Roman A. Novikov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey A. Lagunin
- Department of Medical Chemistry and Toxicology, Pirogov National Research Medical University, Ministry of Health of Russia, 117997 Moscow, Russia
| | - Ivan Boldyrev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Aiarpi A. Ezdoglian
- Department of Medical Chemistry and Toxicology, Pirogov National Research Medical University, Ministry of Health of Russia, 117997 Moscow, Russia
| | - Natalia Yu. Karpechenko
- Department of Medical Chemistry and Toxicology, Pirogov National Research Medical University, Ministry of Health of Russia, 117997 Moscow, Russia
| | - Tatiana A. Shmigol
- Department of Medical Chemistry and Toxicology, Pirogov National Research Medical University, Ministry of Health of Russia, 117997 Moscow, Russia
| | - Yuri I. Baukov
- Department of Medical Chemistry and Toxicology, Pirogov National Research Medical University, Ministry of Health of Russia, 117997 Moscow, Russia
| | - Vadim V. Negrebetsky
- Department of Medical Chemistry and Toxicology, Pirogov National Research Medical University, Ministry of Health of Russia, 117997 Moscow, Russia
| |
Collapse
|
17
|
Medvedeva SM, Shikhaliev KS. Synthesis of 4,5-Dihydro-1 H-[1,2]dithiolo[3,4- c]quinoline-1-thione Derivatives and Their Application as Protein Kinase Inhibitors. Molecules 2022; 27:4033. [PMID: 35807279 PMCID: PMC9268448 DOI: 10.3390/molecules27134033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
This study represents the design and synthesis of a new set of hybrid and chimeric derivatives of 4,5-dihydro-4,4-dimethyl-1H-[1,2]dithiolo[3,4-c]quinoline-1-thiones, the structure of which the tricyclic fragment linearly bound or/and condensed with another heterocyclic fragment. Using the PASS Online software, among the previously synthesized and new derivatives of 1,2-dithiolo[3,4-c]quinoline-1-thione we identified 12 substances with pleiotropic activity, including chemoprotective and antitumor activity. All the synthesized derivatives were screened for their inhibitory assessment against a number of kinases. Compounds which exhibited prominent inhibition percentage in cells (>85%) were also examined for their inhibitory efficiency on human kinases via ELISA utilizing sorafenib as a reference standard to estimate their IC50 values. It was revealed that compounds 2a, 2b, 2c, and 2q displayed a significant inhibition JAK3 (IC50 = 0.36 μM, 0.38 μM, 0.41 μM, and 0.46 μM, respectively); moreover, compounds 2a and 2b displayed excellent activities against NPM1-ALK (IC50 = 0.54 μM, 0.25 μM, respectively), against cRAF[Y340D][Y341D], compound 2c showed excellent activity, and compound 2q showed weak activity (IC50 = 0.78 μM, 5.34 μM, respectively) (sorafenib IC50 = 0.78 μM, 0.43 μM, 1.95 μM, respectively). Thus, new promising preferred structures for the creation of drugs for the treatment of cancer and other multifactorial diseases in the future have been found.
Collapse
Affiliation(s)
- Svetlana M. Medvedeva
- Department of Organic Chemistry, Faculty of Chemistry, Voronezh State University, 1 Universitetskaya Sq., 394018 Voronezh, Russia;
| | | |
Collapse
|
18
|
Lawal B, Wu ATH, Huang HS. Leveraging Bulk and Single-Cell RNA Sequencing Data of NSCLC Tumor Microenvironment and Therapeutic Potential of NLOC-15A, A Novel Multi-Target Small Molecule. Front Immunol 2022; 13:872470. [PMID: 35655775 PMCID: PMC9152008 DOI: 10.3389/fimmu.2022.872470] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/15/2022] [Indexed: 01/10/2023] Open
Abstract
Lung cancer poses a serious threat to human health and has recently been tagged the most common malignant disease with the highest incidence and mortality rate. Although epidermal growth factor (EGFR)-tyrosine kinase inhibitors (TKIs) have significantly improved the prognosis of advanced non-small cell lung cancer (NSCLC) patients with EGFR mutations, patients often develop resistance to these drugs. There is therefore a need to identify new drug candidates with multitarget potential for treating NSCLC. We hereby provide preclinical evidence of the therapeutic efficacy of NLOC-015A a multitarget small-molecule inhibitor of EGFR/mitogen-activated protein (MAP) kinase kinase 1 (MAP2K1)/mammalian target of rapamycin (mTOR)/yes-associated protein 1 (YAP1) for the treatment NSCLC. Our multi-omics analysis of clinical data from cohorts of NSCLC revealed that dysregulation of EGFR/MAP2K1/mTOR/YAP1 signaling pathways was associated with the progression, therapeutic resistance, immune-invasive phenotypes, and worse prognoses of NSCLC patients. Analysis of single-cell RNA sequencing datasets revealed that MAP2K1, mTOR, YAP1 and EGFR were predominantly located on monocytes/macrophages, Treg and exhaustive CD8 T cell, and are involved in M2 polarization within the TME of patients with primary and metastatic NSCLC which further implied gene’s role in remodeling the tumor immune microenvironment. A molecular-docking analysis revealed that NLOC-015A bound to YAP1, EGFR, MAP kinase/extracellular signal-related kinase kinase 1 (MEK1), and mTOR with strong binding efficacies ranging –8.4 to –9.50 kcal/mol. Interestingly, compared to osimertinib, NLOC-015 bound with higher efficacy to the tyrosine kinase (TK) domains of both T790M and T790M/C797S mutant-bearing EGFR. Our in vitro studies and sequencing analysis revealed that NLOC-015A inhibited the proliferation and oncogenic phenotypes of NSCLC cell lines with concomitant downregulation of expression levels of mTOR, EGFR, YAP1, and MEK1 signaling network. We, therefore, suggest that NLOC-015A might represent a new candidate for treating NSCLC via acting as a multitarget inhibitor of EGFR, mTOR/NF-κB, YAP1, MEK1 in NSCLC.
Collapse
Affiliation(s)
- Bashir Lawal
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan.,Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Alexander T H Wu
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.,The PhD Program of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Hsu-Shan Huang
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan.,Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,School of Pharmacy, National Defense Medical Center, Taipei, Taiwan.,PhD Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
19
|
Yamashkin SA, Stepanenko IS. Synthesis and antimicrobial activity of N-(indol-5-yl)trifluoroacetamides and indol-5-ylaminium trifluoroacetates substituted in the pyrrole ring. Russ Chem Bull 2022; 71:1043-1049. [PMID: 35615061 PMCID: PMC9123606 DOI: 10.1007/s11172-022-3506-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/10/2022] [Accepted: 02/09/2022] [Indexed: 10/24/2022]
Abstract
Based on a series of 1H-indol-5-ylamines substituted in the pyrrole ring, the corresponding N-(indol-5-yl)trifluoroacetamides and indol-5-ylaminium trifluoroacetates were prepared. An in silico study showed a wide range of their biological activity, including antimicrobial, antiviral, antiprotozoal, anthelmintic, and antifungal effects. The results of in silico and in vitro screening for antimicrobial activity correlate with each other. All compounds are capable of inhibiting the growth of the tested microorganism strains. The dependence of minimum inhibitory concentrations on the nature of the substituents at the benzene and pyrrole rings of the indole system was revealed.
Collapse
Affiliation(s)
- S. A. Yamashkin
- Evseviev Mordovian State Pedagogical University, 11a ul. Studencheskaya, 430007 Saranks, Russian Federation
| | - I. S. Stepanenko
- National Research Mordovia State University, 68 ul. Bolshevitskaya, 430005 Saransk, Russian Federation
| |
Collapse
|
20
|
Hanwarinroj C, Phusi N, Kamsri B, Kamsri P, Punkvang A, Ketrat S, Saparpakorn P, Hannongbua S, Suttisintong K, Kittakoop P, Spencer J, Mulholland AJ, Pungpo P. Discovery of novel and potent InhA inhibitors by an in silico screening and pharmacokinetic prediction. Future Med Chem 2022; 14:717-729. [PMID: 35485258 DOI: 10.4155/fmc-2021-0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: In silico screening approaches were performed to discover novel InhA inhibitors. Methods: Candidate InhA inhibitors were obtained from the combination of virtual screening and pharmacokinetic prediction. In addition, molecular mechanics Poisson-Boltzmann surface area, molecular mechanics Generalized Born surface area and WaterSwap methods were performed to investigate the binding interactions and binding energy of candidate compounds. Results: Four candidate compounds with suitable physicochemical, pharmacokinetic and antibacterial properties are proposed. The crucial interactions of the candidate compounds were H-bond, pi-pi and sigma-pi interactions observed in the InhA binding site. The binding affinity of these compounds was improved by hydrophobic interactions with hydrophobic side chains in the InhA pocket. Conclusion: The four newly identified InhA inhibitors reported in this study could serve as promising hit compounds against Mycobacterium tuberculosis and may be considered for further experimental studies.
Collapse
Affiliation(s)
- Chayanin Hanwarinroj
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Nareudon Phusi
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Bundit Kamsri
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Pharit Kamsri
- Division of Chemistry, Faculty of Science, Nakhon Phanom University, Nakhon Phanom, 48000, Thailand
| | - Auradee Punkvang
- Division of Chemistry, Faculty of Science, Nakhon Phanom University, Nakhon Phanom, 48000, Thailand
| | - Sombat Ketrat
- School of Information Science & Technology, Vidyasirimedhi Institute of Science & Technology, Rayong, 21210, Thailand
| | | | - Supa Hannongbua
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | | | - Prasat Kittakoop
- Chulabhorn Research Institute, Bangkok, 10210, Thailand
- Chulabhorn Graduate Institute, Chemical Biology Program, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
- Center of Excellence on Environmental Health & Toxicology (EHT), CHE, Ministry of Education, Bangkok, 10300, Thailand
| | - James Spencer
- School of Cellular & Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom
| | - Pornpan Pungpo
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| |
Collapse
|
21
|
Shetnev AA, Vasilieva EA, Proskurina IK, Forostyanko AS, Presnukhina SI, Tarasenko MV, Lebedev AS, Ivanovskii SA, Kotov AD. Synthesis and Biological Activity of 3-Aryl-5-(aryloxymethyl)-1,2,4-oxadiazoles. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022030071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Medvedeva SM, Shikhaliev KS, Geronikaki AA, Savosina PI, Druzhilovskiy DS, Poroikov VV. Computer-aided discovery of pleiotropic effects: Anti-inflammatory action of dithioloquinolinethiones as a case study. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:273-287. [PMID: 35469533 DOI: 10.1080/1062936x.2022.2064547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Most of pharmaceutical agents exhibit several or even many biological activities. It is clear that testing even one compound for thousands of biological activities is a practically not feasible task. Therefore, computer-aided prediction is the method-of-the-choice to select the most promising bioassays for particular compounds. Using PASS Online software, we determined the likely anti-inflammatory action of the 13 dithioloquinolinethione derivatives with antimicrobial activities. Chemical similarity search in the Cortellis Drug Discovery Intelligence database did not reveal close structural analogues with anti-inflammatory action. Experimental testing of anti-inflammatory activity of the synthesized compounds in carrageenan-induced inflammation mouse model confirmed the computational predictions. The anti-inflammatory activity of the studied compounds was comparable with or higher than the reference drug Indomethacin. Thus, based on the in silico predictions, novel class of the anti-inflammatory agents was discovered.
Collapse
Affiliation(s)
- S M Medvedeva
- Department of Organic Chemistry, Faculty of Chemistry, Voronezh State University, Voronezh, Russia
| | - K S Shikhaliev
- Department of Organic Chemistry, Faculty of Chemistry, Voronezh State University, Voronezh, Russia
| | - A A Geronikaki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - P I Savosina
- Laboratory of Structure-Function Based Drug Design, Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia
| | - D S Druzhilovskiy
- Laboratory of Structure-Function Based Drug Design, Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia
| | - V V Poroikov
- Laboratory of Structure-Function Based Drug Design, Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
23
|
Synthesis, Biological Evaluation and Molecular Docking Studies of 5-indolylmethylen-4-oxo-2-thioxothiazolidine Derivatives. Molecules 2022; 27:molecules27031068. [PMID: 35164333 PMCID: PMC8839324 DOI: 10.3390/molecules27031068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Infectious diseases represent a significant global strain on public health security and impact on socio-economic stability all over the world. The increasing resistance to the current antimicrobial treatment has resulted in the crucial need for the discovery and development of novel entities for the infectious treatment with different modes of action that could target both sensitive and resistant strains. Methods: Compounds were synthesized using the classical organic chemistry methods. Prediction of biological activity spectra was carried out using PASS and PASS-based web applications. Pharmacophore modeling in LigandScout software was used for quantitative modeling of the antibacterial activity. Antimicrobial activity was evaluated using the microdilution method. AutoDock 4.2® software was used to elucidate probable bacterial and fungal molecular targets of the studied compounds. Results: All compounds exhibited better antibacterial potency than ampicillin against all bacteria tested. Three compounds were tested against resistant strains MRSA, P.aeruginosa and E.coli and were found to be more potent than MRSA than reference drugs. All compounds demonstrated a higher degree of antifungal activity than the reference drugs bifonazole (6–17-fold) and ketoconazole (13–52-fold). Three of the most active compounds could be considered for further development of the new, more potent antimicrobial agents. Conclusion: Compounds 5b (Z)-3-(3-hydroxyphenyl)-5-((1-methyl-1H-indol-3-yl)methylene)-2-thioxothiazolidin-4-one and 5g (Z)-3-[5-(1H-Indol-3-ylmethylene)-4-oxo-2-thioxo-thiazolidin-3-yl]-benzoic acid as well as 5h (Z)-3-(5-((5-methoxy-1H-indol-3-yl)methylene)-4-oxo-2-thioxothiazolidin-3-yl)benzoic acid can be considered as lead compounds for further development of more potent and safe antibacterial and antifungal agents.
Collapse
|
24
|
Adamovich SN, Ushakov IA, Oborina EN, Vashchenko AV. Silatrane-sulfonamide hybrids: Synthesis, characterization, and evaluation of biological activity. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2021.122150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Lataliza AAB, de Assis PM, da Rocha Laurindo L, Gonçalves ECD, Raposo NRB, Dutra RC. Antidepressant-like effect of rosmarinic acid during LPS-induced neuroinflammatory model: The potential role of cannabinoid receptors/PPAR-γ signaling pathway. Phytother Res 2021; 35:6974-6989. [PMID: 34709695 DOI: 10.1002/ptr.7318] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/17/2021] [Accepted: 10/13/2021] [Indexed: 01/03/2023]
Abstract
Rosmarinic acid (RA), an ester of caffeic acid and 3, 4-dihydroxyphenyllactic acid, has anti-inflammatory and neuroprotective activities. Herein, this study investigated in silico the drug-likeness and the potential molecular targets to RA. Moreover, it tested the antidepressant-like potential of RA in the lipopolysaccharide (LPS)-induced depression model. RA (MW = 360.31 g/mol) meets the criteria of both Lipinski's rule of five and the Ghose filter. It also attends to relevant pharmacokinetic parameters. Target prediction analysis identified RA's potential targets and biological activities, including the peroxisome proliferator-activated receptor (PPAR) and the cannabinoid receptors CB1 and CB2 . In vivo, RA's acute, repetitive, and therapeutic administration showed antidepressant-like effect since it significantly reduced the immobility time in the tail suspension test and increased grooming time in the splash test. Further, the pretreatment with antagonists of CB1 , CB2 , and PPAR-γ receptors significantly blocked the antidepressant-like effect of RA. Altogether, our findings suggest that cannabinoid receptors/PPAR-γ signaling pathways are involved with the antidepressant-like effect of RA. Moreover, this molecule meets important physicochemical and pharmacokinetic parameters that favor its bioavailability. RA constitutes a promising, innovative, and safe molecule for the pharmacotherapy of major depressive disorder.
Collapse
Affiliation(s)
- Alexandre Augusto Barros Lataliza
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá, Brazil
- Post-Graduate Program of Neuroscience, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Pollyana Mendonça de Assis
- Center for Research and Innovation in Health Sciences (NUPICS), Faculty of Pharmacy, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Larissa da Rocha Laurindo
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá, Brazil
| | - Elaine Cristina Dalazen Gonçalves
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá, Brazil
- Post-Graduate Program of Neuroscience, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Nádia Rezende Barbosa Raposo
- Center for Research and Innovation in Health Sciences (NUPICS), Faculty of Pharmacy, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Rafael Cypriano Dutra
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá, Brazil
- Post-Graduate Program of Neuroscience, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
26
|
Dembitsky VM. In Silico Prediction of Steroids and Triterpenoids as Potential Regulators of Lipid Metabolism. Mar Drugs 2021; 19:650. [PMID: 34822521 PMCID: PMC8618826 DOI: 10.3390/md19110650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
This review focuses on a rare group of steroids and triterpenoids that share common properties as regulators of lipid metabolism. This group of compounds is divided by the type of chemical structure, and they represent: aromatic steroids, steroid phosphate esters, highly oxygenated steroids such as steroid endoperoxides and hydroperoxides, α,β-epoxy steroids, and secosteroids. In addition, subgroups of carbon-bridged steroids, neo steroids, miscellaneous steroids, as well as synthetic steroids containing heteroatoms S (epithio steroids), Se (selena steroids), Te (tellura steroids), and At (astatosteroids) were presented. Natural steroids and triterpenoids have been found and identified from various sources such as marine sponges, soft corals, starfish, and other marine invertebrates. In addition, this group of rare lipids is found in fungi, fungal endophytes, and plants. The pharmacological profile of the presented steroids and triterpenoids was determined using the well-known computer program PASS, which is currently available online for all interested scientists and pharmacologists and is currently used by research teams from more than 130 countries of the world. Our attention has been focused on the biological activities of steroids and triterpenoids associated with the regulation of cholesterol metabolism and related processes such as anti-hyperlipoproteinemic activity, as well as the treatment of atherosclerosis, lipoprotein disorders, or inhibitors of cholesterol synthesis. In addition, individual steroids and triterpenoids were identified that demonstrated rare or unique biological activities such as treating neurodegenerative diseases, Alzheimer's, and Parkinson's diseases with a high degree of certainty over 95 percent. For individual steroids or triterpenoids or a group of compounds, 3D drawings of their predicted biological activities are presented.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada
| |
Collapse
|
27
|
Yeh YC, Lawal B, Hsiao M, Huang TH, Huang CYF. Identification of NSP3 ( SH2D3C) as a Prognostic Biomarker of Tumor Progression and Immune Evasion for Lung Cancer and Evaluation of Organosulfur Compounds from Allium sativum L. as Therapeutic Candidates. Biomedicines 2021; 9:1582. [PMID: 34829812 PMCID: PMC8615911 DOI: 10.3390/biomedicines9111582] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022] Open
Abstract
The multi-domain non-structural protein 3 (NSP3) is an oncogenic molecule that has been concomitantly implicated in the progression of coronavirus infection. However, its oncological role in lung cancer and whether it plays a role in modulating the tumor immune microenvironment is not properly understood. In the present in silico study, we demonstrated that NSP3 (SH2D3C) is associated with advanced stage and poor prognoses of lung cancer cohorts. Genetic alterations of NSP3 (SH2D3C) co-occurred inversely with Epidermal Growth Factor Receptor (EGFR) alterations and elicited its pathological role via modulation of various components of the immune and inflammatory pathways in lung cancer. Our correlation analysis suggested that NSP3 (SH2D3C) promotes tumor immune evasion via dysfunctional T-cell phenotypes and T-cell exclusion mechanisms in lung cancer patients. NSP3 (SH2D3C) demonstrated a high predictive value and association with therapy resistance in lung cancer, hence serving as an attractive target for therapy exploration. We evaluated the in silico drug-likeness and NSP3 (SH2D3C) target efficacy of six organosulfur small molecules from Allium sativum using a molecular docking study. We found that the six organosulfur compounds demonstrated selective cytotoxic potential against cancer cell lines and good predictions for ADMET properties, drug-likeness, and safety profile. E-ajoene, alliin, diallyl sulfide, 2-vinyl-4H-1,3-dithiin, allicin, and S-allyl-cysteine docked well into the NSP3 (SH2D3C)-binding cavity with binding affinities ranging from -4.3~-6.70 Ă and random forest (RF) scores ranging from 4.31~5.26 pKd. However, S-allyl-cysteine interaction with NSP3 (SH2D3C) is unfavorable and hence less susceptible to NSP3 ligandability. In conclusion, our study revealed that NSP3 is an important onco-immunological biomarker encompassing the tumor microenvironment, disease staging and prognosis in lung cancer and could serve as an attractive target for cancer therapy. The organosulfur compounds from A. sativum have molecular properties to efficiently interact with the binding site of NSP3 and are currently under vigorous preclinical study in our laboratory.
Collapse
Affiliation(s)
- Yuan-Chieh Yeh
- Program in Molecular Medicine, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Bashir Lawal
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115201, Taiwan;
| | - Tse-Hung Huang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
- School of Traditional Chinese Medicine, Chang Gung University, Kweishan, Taoyuan 333, Taiwan
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan
- Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Department & Graduate Institute of Chemical Engineering & Graduate Institute of Biochemical Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan
| | - Chi-Ying F. Huang
- Program in Molecular Medicine, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Biochemistry, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
28
|
Multiomics Identification of Potential Targets for Alzheimer Disease and Antrocin as a Therapeutic Candidate. Pharmaceutics 2021; 13:pharmaceutics13101555. [PMID: 34683848 PMCID: PMC8539161 DOI: 10.3390/pharmaceutics13101555] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 12/27/2022] Open
Abstract
Alzheimer’s disease (AD) is the most frequent cause of neurodegenerative dementia and affects nearly 50 million people worldwide. Early stage diagnosis of AD is challenging, and there is presently no effective treatment for AD. The specific genetic alterations and pathological mechanisms of the development and progression of dementia remain poorly understood. Therefore, identifying essential genes and molecular pathways that are associated with this disease’s pathogenesis will help uncover potential treatments. In an attempt to achieve a more comprehensive understanding of the molecular pathogenesis of AD, we integrated the differentially expressed genes (DEGs) from six microarray datasets of AD patients and controls. We identified ATPase H+ transporting V1 subunit A (ATP6V1A), BCL2 interacting protein 3 (BNIP3), calmodulin-dependent protein kinase IV (CAMK4), TOR signaling pathway regulator-like (TIPRL), and the translocase of outer mitochondrial membrane 70 (TOMM70) as upregulated DEGs common to the five datasets. Our analyses revealed that these genes exhibited brain-specific gene co-expression clustering with OPA1, ITFG1, OXCT1, ATP2A2, MAPK1, CDK14, MAP2K4, YWHAB, PARK2, CMAS, HSPA12A, and RGS17. Taking the mean relative expression levels of this geneset in different brain regions into account, we found that the frontal cortex (BA9) exhibited significantly (p < 0.05) higher expression levels of these DEGs, while the hippocampus exhibited the lowest levels. These DEGs are associated with mitochondrial dysfunction, inflammation processes, and various pathways involved in the pathogenesis of AD. Finally, our blood–brain barrier (BBB) predictions using the support vector machine (SVM) and LiCABEDS algorithm and molecular docking analysis suggested that antrocin is permeable to the BBB and exhibits robust ligand–receptor interactions with high binding affinities to CAMK4, TOMM70, and T1PRL. Our results also revealed good predictions for ADMET properties, drug-likeness, adherence to Lipinskís rules, and no alerts for pan-assay interference compounds (PAINS) Conclusions: These results suggest a new molecular signature for AD parthenogenesis and antrocin as a potential therapeutic agent. Further investigation is warranted.
Collapse
|
29
|
Madugula SS, John L, Nagamani S, Gaur AS, Poroikov VV, Sastry GN. Molecular descriptor analysis of approved drugs using unsupervised learning for drug repurposing. Comput Biol Med 2021; 138:104856. [PMID: 34555571 DOI: 10.1016/j.compbiomed.2021.104856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/24/2021] [Accepted: 09/06/2021] [Indexed: 12/27/2022]
Abstract
Machine learning and data-driven approaches are currently being widely used in drug discovery and development due to their potential advantages in decision-making based on the data leveraged from existing sources. Applying these approaches to drug repurposing (DR) studies can identify new relationships between drug molecules, therapeutic targets and diseases that will eventually help in generating new insights for developing novel therapeutics. In the current study, a dataset of 1671 approved drugs is analyzed using a combined approach involving unsupervised Machine Learning (ML) techniques (Principal Component Analysis (PCA) followed by k-means clustering) and Structure-Activity Relationships (SAR) predictions for DR. PCA is applied on all the two dimensional (2D) molecular descriptors of the dataset and the first five Principal Components (PC) were subsequently used to cluster the drugs into nine well separated clusters using k-means algorithm. We further predicted the biological activities for the drug-dataset using the PASS (Predicted Activities Spectra of Substances) tool. These predicted activity values are analyzed systematically to identify repurposable drugs for various diseases. Clustering patterns obtained from k-means showed that every cluster contains subgroups of structurally similar drugs that may or may not have similar therapeutic indications. We hypothesized that such structurally similar but therapeutically different drugs can be repurposed for the native indications of other drugs of the same cluster based on their high predicted biological activities obtained from PASS analysis. In line with this, we identified 66 drugs from the nine clusters which are structurally similar but have different therapeutic uses and can therefore be repurposed for one or more native indications of other drugs of the same cluster. Some of these drugs not only share a common substructure but also bind to the same target and may have a similar mechanism of action, further supporting our hypothesis. Furthermore, based on the analysis of predicted biological activities, we identified 1423 drugs that can be repurposed for 366 new indications against several diseases. In this study, an integrated approach of unsupervised ML and SAR analysis have been used to identify new indications for approved drugs and the study provides novel insights into clustering patterns generated through descriptor level analysis of approved drugs.
Collapse
Affiliation(s)
- Sita Sirisha Madugula
- Centre for Molecular Modeling, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Lijo John
- Centre for Molecular Modeling, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Selvaraman Nagamani
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Advanced Computation and Data Sciences Division, CSIR - North East Institute of Science and Technology, Jorhat, Assam, 785 006, India
| | - Anamika Singh Gaur
- Centre for Molecular Modeling, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Advanced Computation and Data Sciences Division, CSIR - North East Institute of Science and Technology, Jorhat, Assam, 785 006, India
| | - Vladimir V Poroikov
- Laboratory for Structure-Function Drug Design, Institute of Biomedical Chemistry, Moscow, 119121, Russia
| | - G Narahari Sastry
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Advanced Computation and Data Sciences Division, CSIR - North East Institute of Science and Technology, Jorhat, Assam, 785 006, India.
| |
Collapse
|
30
|
Lawal B, Wang YC, Wu ATH, Huang HS. Pro-Oncogenic c-Met/EGFR, Biomarker Signatures of the Tumor Microenvironment are Clinical and Therapy Response Prognosticators in Colorectal Cancer, and Therapeutic Targets of 3-Phenyl-2H-benzo[e][1,3]-Oxazine-2,4(3H)-Dione Derivatives. Front Pharmacol 2021; 12:691234. [PMID: 34512327 PMCID: PMC8429938 DOI: 10.3389/fphar.2021.691234] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022] Open
Abstract
Genetic and environmental factors play important roles in cancer progression, metastasis, and drug resistance. Herein, we used a multiomics data analysis to evaluate the predictive and prognostic roles of genetic and epigenetic modulation of c-MET (hepatocyte growth factor receptor)/epidermal growth factor receptor (EGFR) in colorectal cancer (CRC). First, we found that overexpressions of c-MET/EGFR were associated with the infiltration of tumor immune cells and cancer-associated fibroblasts, and were of prognostic relevance in CRC cohorts. We also observed that genetic alterations of c-MET/EGFR in CRC co-occurred with other gene alterations and were associated with overexpression of messenger (m)RNA of some cancer hallmark proteins. More specifically, DNA-methylation and somatic copy number alterations of c-MET/EGFR were associated with immune infiltration, dysfunctional T-cell phenotypes, and poor prognoses of the cohorts. Moreover, we describe two novel gefitinib-inspired small molecules derivatives of 3-phenyl-2H-benzo[e] [1,3]-oxazine-2,4(3H)-dione, NSC777205 and NSC777207, which exhibited wide-spectrum antiproliferative activities and selective cytotoxic preference for drug-sensitive and multidrug-resistant melanoma, renal, central nervous system, colon, and non-small cell lung cancer cell lines. We further provided in silico mechanistic evidence implicating c-MET/EGFR/phosphatidylinositol 3-kinase (PI3K)-mammalian target of rapamycin (mTOR) inhibition in anticancer activities of those compounds. Our overall structure-activity relationship study revealed that the addition of an –OCH3 group to salicylic core of NSC777207 was not favorable, as the added moiety led to overall less-favorable drug properties as well as weaker anticancer activities compared to the properties and activities demonstrated by NSC777205 that has no –OCH3 substituent group. Further in vitro and in vivo analyses in tumor-bearing mice are ongoing in our lab to support this claim and to unravel the full therapeutic efficacies of NSC777205 and NSC777207 in CRC.
Collapse
Affiliation(s)
- Bashir Lawal
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan.,Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chi Wang
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Alexander T H Wu
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.,The PhD Program of Translational Medicine, College of Science and Technology, Taipei Medical University, Taipei, Taiwan.,Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Hsu-Shan Huang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan.,Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,School of Pharmacy, National Defense Medical Center, Taipei, Taiwan.,PhD Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
31
|
Titov IY, Stroylov VS, Rusina P, Svitanko IV. Preliminary modelling as the first stage of targeted organic synthesis. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The review aims to present a classification and applicability analysis of methods for preliminary molecular modelling for targeted organic, catalytic and biocatalytic synthesis. The following three main approaches are considered as a primary classification of the methods: modelling of the target – ligand coordination without structural information on both the target and the resulting complex; calculations based on experimentally obtained structural information about the target; and dynamic simulation of the target – ligand complex and the reaction mechanism with calculation of the free energy of the reaction. The review is meant for synthetic chemists to be used as a guide for building an algorithm for preliminary modelling and synthesis of structures with specified properties.
The bibliography includes 353 references.
Collapse
|
32
|
Dembitsky VM, Gloriozova TA, Poroikov VV. Antitumor Profile of Carbon-Bridged Steroids (CBS) and Triterpenoids. Mar Drugs 2021; 19:324. [PMID: 34205074 PMCID: PMC8228860 DOI: 10.3390/md19060324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
This review focuses on the rare group of carbon-bridged steroids (CBS) and triterpenoids found in various natural sources such as green, yellow-green, and red algae, marine sponges, soft corals, ascidians, starfish, and other marine invertebrates. In addition, this group of rare lipids is found in amoebas, fungi, fungal endophytes, and plants. For convenience, the presented CBS and triterpenoids are divided into four groups, which include: (a) CBS and triterpenoids containing a cyclopropane group; (b) CBS and triterpenoids with cyclopropane ring in the side chain; (c) CBS and triterpenoids containing a cyclobutane group; (d) CBS and triterpenoids containing cyclopentane, cyclohexane or cycloheptane moieties. For the comparative characterization of the antitumor profile, we have added several semi- and synthetic CBS and triterpenoids, with various additional rings, to identify possible promising sources for pharmacologists and the pharmaceutical industry. About 300 CBS and triterpenoids are presented in this review, which demonstrate a wide range of biological activities, but the most pronounced antitumor profile. The review summarizes biological activities both determined experimentally and estimated using the well-known PASS software. According to the data obtained, two-thirds of CBS and triterpenoids show moderate activity levels with a confidence level of 70 to 90%; however, one third of these lipids demonstrate strong antitumor activity with a confidence level exceeding 90%. Several CBS and triterpenoids, from different lipid groups, demonstrate selective action on different types of tumor cells such as renal cancer, sarcoma, pancreatic cancer, prostate cancer, lymphocytic leukemia, myeloid leukemia, liver cancer, and genitourinary cancer with varying degrees of confidence. In addition, the review presents graphical images of the antitumor profile of both individual CBS and triterpenoids groups and individual compounds.
Collapse
Affiliation(s)
- Valery M. Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada
| | - Tatyana A. Gloriozova
- Institute of Biomedical Chemistry, Bldg. 8, 10 Pogodinskaya Str., 119121 Moscow, Russia; (T.A.G.); (V.V.P.)
| | - Vladimir V. Poroikov
- Institute of Biomedical Chemistry, Bldg. 8, 10 Pogodinskaya Str., 119121 Moscow, Russia; (T.A.G.); (V.V.P.)
| |
Collapse
|
33
|
Costa RPO, Lucena LF, Silva LMA, Zocolo GJ, Herrera-Acevedo C, Scotti L, Da-Costa FB, Ionov N, Poroikov V, Muratov EN, Scotti MT. The SistematX Web Portal of Natural Products: An Update. J Chem Inf Model 2021; 61:2516-2522. [PMID: 34014674 DOI: 10.1021/acs.jcim.1c00083] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Natural products and their secondary metabolites are promising starting points for the development of drug prototypes and new drugs, as many current treatments for numerous diseases are directly or indirectly related to such compounds. State-of-the-art, curated, integrated, and frequently updated databases of secondary metabolites are thus highly relevant to drug discovery. The SistematX Web Portal, introduced in 2018, is undergoing development to address this need and documents crucial information about plant secondary metabolites, including the exact location of the species from which the compounds were isolated. SistematX also allows registered users to log in to the data management area and gain access to administrative pages. This study reports recent updates and modifications to the SistematX Web Portal, including a batch download option, the generation and visualization of 1H and 13C nuclear magnetic resonance spectra, and the calculation of physicochemical (drug-like and lead-like) properties and biological activity profiles. The SistematX Web Portal is freely available at http://sistematx.ufpb.br.
Collapse
Affiliation(s)
- Renan P O Costa
- Laboratory of Cheminformatics, Instituto de Pesquisa em Fármacos e Medicamentos (IPeFarM), Universidade Federal da Paraíba, Campus I, Cidade Universitária, João Pessoa 58051-900, PB, Brazil
| | - Lucas F Lucena
- Laboratory of Cheminformatics, Instituto de Pesquisa em Fármacos e Medicamentos (IPeFarM), Universidade Federal da Paraíba, Campus I, Cidade Universitária, João Pessoa 58051-900, PB, Brazil
| | - Lorena Mara A Silva
- Laboratório Multiusuário de Química de Produtos Naturais, Embrapa Agroindústria Tropical, Rua Doutora Sara Mesquita 2270, Planalto do Pici, Fortaleza 60511110, CE, Brazil
| | - Guilherme Julião Zocolo
- Laboratório Multiusuário de Química de Produtos Naturais, Embrapa Agroindústria Tropical, Rua Doutora Sara Mesquita 2270, Planalto do Pici, Fortaleza 60511110, CE, Brazil
| | - Chonny Herrera-Acevedo
- Laboratory of Cheminformatics, Instituto de Pesquisa em Fármacos e Medicamentos (IPeFarM), Universidade Federal da Paraíba, Campus I, Cidade Universitária, João Pessoa 58051-900, PB, Brazil
| | - Luciana Scotti
- Laboratory of Cheminformatics, Instituto de Pesquisa em Fármacos e Medicamentos (IPeFarM), Universidade Federal da Paraíba, Campus I, Cidade Universitária, João Pessoa 58051-900, PB, Brazil
| | - Fernando Batista Da-Costa
- AsterBioChem Research Team, Laboratory of Pharmacognosy, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av do café s/n, Ribeirão Preto 14040-903, SP, Brazil
| | - Nikita Ionov
- Laboratory of Structure-Function Based Drug Design, Department of Bioinformatics, Institute of Biomedical Chemistry, Pogodinskaya Str. 10, bldg. 8, Moscow 119121, Russia
| | - Vladimir Poroikov
- Laboratory of Structure-Function Based Drug Design, Department of Bioinformatics, Institute of Biomedical Chemistry, Pogodinskaya Str. 10, bldg. 8, Moscow 119121, Russia
| | - Eugene N Muratov
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Marcus T Scotti
- Laboratory of Cheminformatics, Instituto de Pesquisa em Fármacos e Medicamentos (IPeFarM), Universidade Federal da Paraíba, Campus I, Cidade Universitária, João Pessoa 58051-900, PB, Brazil
| |
Collapse
|
34
|
Lawal B, Lee CY, Mokgautsi N, Sumitra MR, Khedkar H, Wu ATH, Huang HS. mTOR/EGFR/iNOS/MAP2K1/FGFR/TGFB1 Are Druggable Candidates for N-(2,4-Difluorophenyl)-2',4'-Difluoro-4-Hydroxybiphenyl-3-Carboxamide (NSC765598), With Consequent Anticancer Implications. Front Oncol 2021; 11:656738. [PMID: 33842373 PMCID: PMC8034425 DOI: 10.3389/fonc.2021.656738] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/08/2021] [Indexed: 12/24/2022] Open
Abstract
Background The application of computational and multi-omics approaches has aided our understanding of carcinogenesis and the development of therapeutic strategies. NSC765598 is a novel small molecule derivative of salicylanilide. This study aims to investigate the ligand-protein interactions of NSC765598 with its potential targets and to evaluate its anticancer activities in vitro. Methods We used multi-computational tools and clinical databases, respectively, to identify the potential drug target for NSC765598 and analyze the genetic profile and prognostic relevance of the targets in multiple cancers. We evaluated the in vitro anticancer activities against the National Cancer Institute 60 (NCI60) human tumor cell lines and used molecular docking to study the ligand-protein interactions. Finally, we used the DTP-COMPARE algorithm to compare the NSC765598 anticancer fingerprints with NCI standard agents. Results We identified mammalian target of rapamycin (mTOR)/epidermal growth factor receptor (EGFR)/inducible nitric oxide synthase (iNOS)/mitogen-activated protein 2 kinase 1 (MAP2K1)/fibroblast growth factor receptor (FGFR)/transforming growth factor-β1 (TGFB1) as potential targets for NSC765598. The targets were enriched in cancer-associated pathways, were overexpressed and were of prognostic relevance in multiple cancers. Among the identified targets, genetic alterations occurred most frequently in EGFR (7%), particularly in glioblastoma, esophageal squamous cell cancer, head and neck squamous cell cancer, and non–small-cell lung cancer, and were associated with poor prognoses and survival of patients, while other targets were less frequently altered. NSC765598 displayed selective antiproliferative and cytotoxic preferences for NSCLC (50% growth inhibition (GI50) = 1.12–3.95 µM; total growth inhibition (TGI) = 3.72–16.60 μM), leukemia (GI50 = 1.20–3.10 µM; TGI = 3.90–12.70 μM), melanoma (GI50 = 1.45–3.59 µM), and renal cancer (GI50 = 1.38–3.40 µM; TGI = 4.84–13.70 μM) cell lines, while panels of colon, breast, ovarian, prostate, and central nervous system (CNS) cancer cell lines were less sensitive to NSC765598. Interestingly, NSC765598 docked well into the binding cavity of the targets by conventional H-bonds, van der Waal forces, and a variety of π-interactions, with higher preferences for EGFR (ΔG = −11.0 kcal/mol), NOS2 (ΔG = −11.0 kcal/mol), and mTOR (ΔG = −8.8 kcal/mol). NSC765598 shares similar anti-cancer fingerprints with NCI standard agents displayed acceptable physicochemical values and met the criteria of drug-likeness. Conclusion NSC765598 displayed significant anticancer and potential multi-target properties, thus serve as a novel candidate worthy of further preclinical studies.
Collapse
Affiliation(s)
- Bashir Lawal
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan.,Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ching-Yu Lee
- Department of Orthopedics, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ntlotlang Mokgautsi
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan.,Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Maryam Rachmawati Sumitra
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan.,Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Harshita Khedkar
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan.,Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Alexander T H Wu
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.,The PhD Program of Translational Medicine, College of Science and Technology, Taipei Medical University, Taipei, Taiwan.,Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Hsu-Shan Huang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan.,Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,School of Pharmacy, National Defense Medical Center, Taipei, Taiwan.,PhD Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
35
|
Adamovich SN, Sadykov EK, Ushakov IA, Oborina EN, Belovezhets LA. Antibacterial activity of new silatrane pyrrole-2-carboxamide hybrids. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.03.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Dembitsky VM, Ermolenko E, Savidov N, Gloriozova TA, Poroikov VV. Antiprotozoal and Antitumor Activity of Natural Polycyclic Endoperoxides: Origin, Structures and Biological Activity. Molecules 2021; 26:686. [PMID: 33525706 PMCID: PMC7865715 DOI: 10.3390/molecules26030686] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 02/08/2023] Open
Abstract
Polycyclic endoperoxides are rare natural metabolites found and isolated in plants, fungi, and marine invertebrates. The purpose of this review is a comparative analysis of the pharmacological potential of these natural products. According to PASS (Prediction of Activity Spectra for Substances) estimates, they are more likely to exhibit antiprotozoal and antitumor properties. Some of them are now widely used in clinical medicine. All polycyclic endoperoxides presented in this article demonstrate antiprotozoal activity and can be divided into three groups. The third group includes endoperoxides, which show weak antiprotozoal activity with a reliability of up to 70%, and this group includes only 1.1% of metabolites. The second group includes the largest number of endoperoxides, which are 65% and show average antiprotozoal activity with a confidence level of 70 to 90%. Lastly, the third group includes endoperoxides, which are 33.9% and show strong antiprotozoal activity with a confidence level of 90 to 99.6%. Interestingly, artemisinin and its analogs show strong antiprotozoal activity with 79 to 99.6% confidence against obligate intracellular parasites which belong to the genera Plasmodium, Toxoplasma, Leishmania, and Coccidia. In addition to antiprotozoal activities, polycyclic endoperoxides show antitumor activity in the proportion: 4.6% show weak activity with a reliability of up to 70%, 65.6% show an average activity with a reliability of 70 to 90%, and 29.8% show strong activity with a reliability of 90 to 98.3%. It should also be noted that some polycyclic endoperoxides, in addition to antiprotozoal and antitumor properties, show other strong activities with a confidence level of 90 to 97%. These include antifungal activity against the genera Aspergillus, Candida, and Cryptococcus, as well as anti-inflammatory activity. This review provides insights on further utilization of polycyclic endoperoxides by medicinal chemists, pharmacologists, and the pharmaceutical industry.
Collapse
Affiliation(s)
- Valery M. Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada;
- A.V. Zhirmunsky National Scientific Center of Marine Biology, 17 Palchevsky Str., 690041 Vladivostok, Russia;
| | - Ekaterina Ermolenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, 17 Palchevsky Str., 690041 Vladivostok, Russia;
| | - Nick Savidov
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada;
| | - Tatyana A. Gloriozova
- Institute of Biomedical Chemistry, 10 Pogodinskaya Str., 119121 Moscow, Russia; (T.A.G.); (V.V.P.)
| | - Vladimir V. Poroikov
- Institute of Biomedical Chemistry, 10 Pogodinskaya Str., 119121 Moscow, Russia; (T.A.G.); (V.V.P.)
| |
Collapse
|
37
|
Lawal B, Liu YL, Mokgautsi N, Khedkar H, Sumitra MR, Wu ATH, Huang HS. Pharmacoinformatics and Preclinical Studies of NSC765690 and NSC765599, Potential STAT3/CDK2/4/6 Inhibitors with Antitumor Activities against NCI60 Human Tumor Cell Lines. Biomedicines 2021; 9:biomedicines9010092. [PMID: 33477856 PMCID: PMC7832910 DOI: 10.3390/biomedicines9010092] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 12/11/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a transcriptional regulator of a number of biological processes including cell differentiation, proliferation, survival, and angiogenesis, while cyclin-dependent kinases (CDKs) are a critical regulator of cell cycle progression. These proteins appear to play central roles in angiogenesis and cell survival and are widely implicated in tumor progression. In this study, we used the well-characterized US National Cancer Institute 60 (NCI60) human tumor cell lines to screen the in vitro anti-cancer activities of our novel small molecule derivatives (NSC765690 and NSC765599) of salicylanilide. Furthermore, we used the DTP-COMPARE algorithm and in silico drug target prediction to identify the potential molecular targets, and finally, we used molecular docking to assess the interaction between the compounds and prominent potential targets. We found that NSC765690 and NSC765599 exhibited an anti-proliferative effect against the 60 panels of NCI human cancer cell lines, and dose-dependent cytotoxic preference for NSCLC, melanoma, renal, and breast cancer cell lines. Protein–ligand interactions studies revealed that NSC765690 and NSC765599 were favored ligands for STAT3/CDK2/4/6. Moreover, cyclization of the salicylanilide core scaffold of NSC765690 mediated its higher anti-cancer activities and had greater potential to interact with STAT3/CDK2/4/6 than did NSC765599 with an open-ring structure. NSC765690 and NSC765599 met the required safety and criteria of a good drug candidate, and are thus worthy of further in-vitro and in-vivo investigations in tumor-bearing mice to assess their full therapeutic efficacy.
Collapse
Affiliation(s)
- Bashir Lawal
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (B.L.); (N.M.); (H.K.); (M.R.S.)
- Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Yen-Lin Liu
- Department of Pediatrics, Taipei Medical University Hospital, Taipei 11031, Taiwan;
- Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan
- Department of Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ntlotlang Mokgautsi
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (B.L.); (N.M.); (H.K.); (M.R.S.)
- Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Harshita Khedkar
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (B.L.); (N.M.); (H.K.); (M.R.S.)
- Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Maryam Rachmawati Sumitra
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (B.L.); (N.M.); (H.K.); (M.R.S.)
- Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Alexander T. H. Wu
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- The PhD Program of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
- Correspondence: (A.T.H.W.); (H.-S.H.)
| | - Hsu-Shan Huang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (B.L.); (N.M.); (H.K.); (M.R.S.)
- Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
- School of Pharmacy, National Defense Medical Center, Taipei 11490, Taiwan
- PhD Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (A.T.H.W.); (H.-S.H.)
| |
Collapse
|
38
|
Radan M, Bošković J, Dobričić V, Čudina O, Nikolić K. Current computer-aided drug design methodologies in discovery of novel drug candidates for neuropsychiatric and inflammatory diseases. ARHIV ZA FARMACIJU 2021. [DOI: 10.5937/arhfarm71-32523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Drug discovery and development is a very challenging, expensive and time-consuming process. Impressive technological advances in computer sciences and molecular biology have made it possible to use computer-aided drug design (CADD) methods in various stages of the drug discovery and development pipeline. Nowadays, CADD presents an efficacious and indispensable tool, widely used in medicinal chemistry, to lead rational drug design and synthesis of novel compounds. In this article, an overview of commonly used CADD approaches from hit identification to lead optimization was presented. Moreover, different aspects of design of multitarget ligands for neuropsychiatric and anti-inflammatory diseases were summarized. Apparently, designing multi-target directed ligands for treatment of various complex diseases may offer better efficacy, and fewer side effects. Antipsychotics that act through aminergic G protein-coupled receptors (GPCRs), especially Dopamine D2 and serotonin 5-HT2A receptors, are the best option for treatment of various symptoms associated with neuropsychiatric disorders. Furthermore, multi-target directed cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) inhibitors are also a successful approach to aid the discovery of new anti-inflammatory drugs with fewer side effects. Overall, employing CADD approaches in the process of rational drug design provides a great opportunity for future development, allowing rapid identification of compounds with the optimal polypharmacological profile.
Collapse
|
39
|
Ermolenko EV, Imbs AB, Gloriozova TA, Poroikov VV, Sikorskaya TV, Dembitsky VM. Chemical Diversity of Soft Coral Steroids and Their Pharmacological Activities. Mar Drugs 2020; 18:E613. [PMID: 33276570 PMCID: PMC7761492 DOI: 10.3390/md18120613] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/21/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023] Open
Abstract
The review is devoted to the chemical diversity of steroids produced by soft corals and their determined and potential activities. There are about 200 steroids that belong to different types of steroids such as secosteroids, spirosteroids, epoxy- and peroxy-steroids, steroid glycosides, halogenated steroids, polyoxygenated steroids and steroids containing sulfur or nitrogen heteroatoms. Of greatest interest is the pharmacological activity of these steroids. More than 40 steroids exhibit antitumor and related activity with a confidence level of over 90 percent. A group of 32 steroids shows anti-hypercholesterolemic activity with over 90 percent confidence. Ten steroids exhibit anti-inflammatory activity and 20 steroids can be classified as respiratory analeptic drugs. Several steroids exhibit rather rare and very specific activities. Steroids exhibit anti-osteoporotic properties and can be used to treat osteoporosis, as well as have strong anti-eczemic and anti-psoriatic properties and antispasmodic properties. Thus, this review is probably the first and exclusive to present the known as well as the potential pharmacological activities of 200 marine steroids.
Collapse
Affiliation(s)
- Ekaterina V. Ermolenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, 17 Palchevsky Str., 690041 Vladivostok, Russia; (E.V.E.); (A.B.I.); (T.V.S.)
| | - Andrey B. Imbs
- A.V. Zhirmunsky National Scientific Center of Marine Biology, 17 Palchevsky Str., 690041 Vladivostok, Russia; (E.V.E.); (A.B.I.); (T.V.S.)
| | - Tatyana A. Gloriozova
- Institute of Biomedical Chemistry, bldg. 8, 10 Pogodinskaya Str., 119121 Moscow, Russia; (T.A.G.); (V.V.P.)
| | - Vladimir V. Poroikov
- Institute of Biomedical Chemistry, bldg. 8, 10 Pogodinskaya Str., 119121 Moscow, Russia; (T.A.G.); (V.V.P.)
| | - Tatyana V. Sikorskaya
- A.V. Zhirmunsky National Scientific Center of Marine Biology, 17 Palchevsky Str., 690041 Vladivostok, Russia; (E.V.E.); (A.B.I.); (T.V.S.)
| | - Valery M. Dembitsky
- A.V. Zhirmunsky National Scientific Center of Marine Biology, 17 Palchevsky Str., 690041 Vladivostok, Russia; (E.V.E.); (A.B.I.); (T.V.S.)
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada
| |
Collapse
|
40
|
Computer-Aided Estimation of Biological Activity Profiles of Drug-Like Compounds Taking into Account Their Metabolism in Human Body. Int J Mol Sci 2020; 21:ijms21207492. [PMID: 33050610 PMCID: PMC7593915 DOI: 10.3390/ijms21207492] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/06/2020] [Accepted: 10/10/2020] [Indexed: 12/25/2022] Open
Abstract
Most pharmaceutical substances interact with several or even many molecular targets in the organism, determining the complex profiles of their biological activity. Moreover, due to biotransformation in the human body, they form one or several metabolites with different biological activity profiles. Therefore, the development and rational use of novel drugs requires the analysis of their biological activity profiles, taking into account metabolism in the human body. In silico methods are currently widely used for estimating new drug-like compounds' interactions with pharmacological targets and predicting their metabolic transformations. In this study, we consider the estimation of the biological activity profiles of organic compounds, taking into account the action of both the parent molecule and its metabolites in the human body. We used an external dataset that consists of 864 parent compounds with known metabolites. It is shown that the complex assessment of active pharmaceutical ingredients' interactions with the human organism increases the quality of computer-aided estimates. The toxic and adverse effects showed the most significant difference: reaching 0.16 for recall and 0.14 for precision.
Collapse
|
41
|
Horishny V, Kartsev V, Matiychuk V, Geronikaki A, Anthi P, Pogodin P, Poroikov V, Ivanov M, Kostic M, Soković MD, Eleftheriou P. 3-Amino-5-(indol-3-yl)methylene-4-oxo-2-thioxothiazolidine Derivatives as Antimicrobial Agents: Synthesis, Computational and Biological Evaluation. Pharmaceuticals (Basel) 2020; 13:ph13090229. [PMID: 32883028 PMCID: PMC7559366 DOI: 10.3390/ph13090229] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 11/26/2022] Open
Abstract
Herein we report the design, synthesis, computational, and experimental evaluation of the antimicrobial activity of fourteen new 3-amino-5-(indol-3-yl) methylene-4-oxo-2-thioxothiazolidine derivatives. The structures were designed, and their antimicrobial activity and toxicity were predicted in silico. All synthesized compounds exhibited antibacterial activity against eight Gram-positive and Gram-negative bacteria. Their activity exceeded those of ampicillin and (for the majority of compounds) streptomycin. The most sensitive bacterium was S. aureus (American Type Culture Collection ATCC 6538), while L. monocytogenes (NCTC 7973) was the most resistant. The best antibacterial activity was observed for compound 5d (Z)-N-(5-((1H-indol-3-yl)methylene)-4-oxo-2-thioxothiazolidin-3-yl)-4-hydroxybenzamide (Minimal inhibitory concentration, MIC at 37.9–113.8 μM, and Minimal bactericidal concentration MBC at 57.8–118.3 μM). Three most active compounds 5d, 5g, and 5k being evaluated against three resistant strains, Methicillin resistant Staphilococcus aureus (MRSA), P. aeruginosa, and E. coli, were more potent against MRSA than ampicillin (MIC at 248–372 μM, MBC at 372–1240 μM). At the same time, streptomycin (MIC at 43–172 μM, MBC at 86–344 μM) did not show bactericidal activity at all. The compound 5d was also more active than ampicillin towards resistant P. aeruginosa strain. Antifungal activity of all compounds exceeded those of the reference antifungal agents bifonazole (MIC at 480–640 μM, and MFC at 640–800 μM) and ketoconazole (MIC 285–475 μM and MFC 380–950 μM). The best activity was exhibited by compound 5g. The most sensitive fungal was T. viride (IAM 5061), while A. fumigatus (human isolate) was the most resistant. Low cytotoxicity against HEK-293 human embryonic kidney cell line and reasonable selectivity indices were shown for the most active compounds 5d, 5g, 5k, 7c using thiazolyl blue tetrazolium bromide MTT assay. The docking studies indicated a probable involvement of E. coli Mur B inhibition in the antibacterial action, while CYP51 inhibition is likely responsible for the antifungal activity of the tested compounds.
Collapse
Affiliation(s)
- Volodymyr Horishny
- Department of Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine;
| | - Victor Kartsev
- InterBioScreen, 142432 Chernogolovka, Moscow Region, Russia;
| | - Vasyl Matiychuk
- Department of Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodia 6, 79005 Lviv, Ukraine;
| | - Athina Geronikaki
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Correspondence: ; Tel.: +30-23-1099-7616
| | - Petrou Anthi
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Pavel Pogodin
- Institute of Biomedical Chemistry, Pogodinskaya Street 10 Bldg.8, 119121 Moscow, Russia; (P.P.); (V.P.)
| | - Vladimir Poroikov
- Institute of Biomedical Chemistry, Pogodinskaya Street 10 Bldg.8, 119121 Moscow, Russia; (P.P.); (V.P.)
| | - Marija Ivanov
- Mycological Laboratory, Department of Plant Physiology, Institute for Biological Research, Siniša, Stanković-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (M.I.); (M.K.); (M.D.S.)
| | - Marina Kostic
- Mycological Laboratory, Department of Plant Physiology, Institute for Biological Research, Siniša, Stanković-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (M.I.); (M.K.); (M.D.S.)
| | - Marina D. Soković
- Mycological Laboratory, Department of Plant Physiology, Institute for Biological Research, Siniša, Stanković-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (M.I.); (M.K.); (M.D.S.)
| | - Phaedra Eleftheriou
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, Sindos, 57400 Thessaloniki, Greece;
| |
Collapse
|
42
|
Poroikov VV. Computer-Aided Drug Design: from Discovery of Novel Pharmaceutical Agents to Systems Pharmacology. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2020. [DOI: 10.1134/s1990750820030117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
43
|
Adamovich SN, Kondrashov EV, Ushakov IA, Shatokhina NS, Oborina EN, Vashchenko AV, Belovezhets LA, Rozentsveig IB, Verpoort F. Isoxazole derivatives of silatrane: synthesis, characterization, in silico ADME profile, prediction of potential pharmacological activity and evaluation of antimicrobial action. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5976] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Sergey N. Adamovich
- A. E. Favorsky Irkutsk Institute of Chemistry, SB RAS 1 Favorsky Street Irkutsk 664033 Russian Federation
| | - Evgeniy V. Kondrashov
- A. E. Favorsky Irkutsk Institute of Chemistry, SB RAS 1 Favorsky Street Irkutsk 664033 Russian Federation
| | - Igor A. Ushakov
- A. E. Favorsky Irkutsk Institute of Chemistry, SB RAS 1 Favorsky Street Irkutsk 664033 Russian Federation
| | - Nina S. Shatokhina
- A. E. Favorsky Irkutsk Institute of Chemistry, SB RAS 1 Favorsky Street Irkutsk 664033 Russian Federation
| | - Elizaveta N. Oborina
- A. E. Favorsky Irkutsk Institute of Chemistry, SB RAS 1 Favorsky Street Irkutsk 664033 Russian Federation
| | - Alexander V. Vashchenko
- A. E. Favorsky Irkutsk Institute of Chemistry, SB RAS 1 Favorsky Street Irkutsk 664033 Russian Federation
| | - Lydmila A. Belovezhets
- A. E. Favorsky Irkutsk Institute of Chemistry, SB RAS 1 Favorsky Street Irkutsk 664033 Russian Federation
| | - Igor B. Rozentsveig
- A. E. Favorsky Irkutsk Institute of Chemistry, SB RAS 1 Favorsky Street Irkutsk 664033 Russian Federation
| | - Francis Verpoort
- Laboratory of Organometallics, Catalysis and Ordered Materials, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan China
| |
Collapse
|
44
|
Pharmacological profile of natural and synthetic compounds with rigid adamantane-based scaffolds as potential agents for the treatment of neurodegenerative diseases. Biochem Biophys Res Commun 2020; 529:1225-1241. [PMID: 32819589 DOI: 10.1016/j.bbrc.2020.06.123] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 12/22/2022]
Abstract
This review is dedicated to the comparative analysis of structure-activity relationships for more than 75 natural and synthetic derivatives of adamantane. Some of these compounds, such as amantadine and memantine, are currently used to treat dementia, Alzheimer's and Parkinson's diseases and other neurodegenerative diseases. The data presented show that the pharmacological potential of 1-fluoro- and 1-phosphonic acid adamantane derivatives against Alzheimer's and Parkinson's diseases and other neurodegenerative diseases exceeds those of well-known amantadine and memantine. The information presented in this review highlights the promising directions of studies for biochemists, pharmacologists, medicinal chemists, physiologists, and neurologists, as well as to the pharmaceutical industry.
Collapse
|
45
|
Poroikov VV. [Computer-aided drug design: from discovery of novel pharmaceutical agents to systems pharmacology]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2020; 66:30-41. [PMID: 32116224 DOI: 10.18097/pbmc20206601030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
New drug discovery is based on the analysis of public information about the mechanisms of the disease, molecular targets, and ligands, which interaction with the target could lead to the normalization of the pathological process. The available data on diseases, drugs, pharmacological effects, molecular targets, and drug-like substances, taking into account the combinatorics of the associative relations between them, correspond to the Big Data. To analyze such data, the application of computer-aided drug design methods is necessary. An overview of the studies in this area performed by the Laboratory for Structure-Function Based Drug Design of IBMC is presented. We have developed the approaches to identifying promising pharmacological targets, predicting several thousand types of biological activity based on the structural formula of the compound, analyzing protein-ligand interactions based on assessing local similarity of amino acid sequences, identifying likely molecular mechanisms of side effects of drugs, calculating the integral toxicity of drugs taking into account their metabolism, have been developed in the human body, predicting sustainable and sensitive options strains and evaluating the effectiveness of combinations of antiretroviral drugs in patients, taking into account the molecular genetic characteristics of the clinical isolates of HIV-1. Our computer programs are implemented as the web-services freely available on the Internet, which are used by thousands of researchers from many countries of the world to select the most promising substances for the synthesis and determine the priority areas for experimental testing of their biological activity.
Collapse
Affiliation(s)
- V V Poroikov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|