1
|
Xie X, Zhong M, Huang X, Yuan X, Mahna N, Mussagy CU, Ren M. Astaxanthin biosynthesis for functional food development and space missions. Crit Rev Biotechnol 2024:1-15. [PMID: 39428346 DOI: 10.1080/07388551.2024.2410364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/21/2024] [Accepted: 09/11/2024] [Indexed: 10/22/2024]
Abstract
Astaxanthin (AXT), a natural carotenoid, has strong antioxidant and anti-ageing effects and can reduce ultraviolet light-induced damage to cells and DNA, stimulate the immune system, and improve cardiovascular disease prognosis. Despite its wide applications in the: nutraceutical, cosmetic, aquaculture, and pharmaceutical industries, AXT industrial production and application are hindered by natural source scarcity, low production efficiency, and high requirements. This review compares the qualitative differences of AXT derived from different natural sources, evaluates the upstream procedures for AXT expression in different chassis organisms, and investigates synthetic biology- and cell factory-based strategies for the industrial production of natural AXT. Synthetic biology is a promising novel strategy for reprogramming plants or microorganisms to produce AXT. Additionally, genetic engineering using cell factories extends beyond terrestrial applications, as it may contribute to the long-term sustainability of human health during space exploration and migration endeavors. This review provides a theoretical basis for the efficient and accurate genetic engineering of AXT from the microalga Haematococcuspluvialis, providing a valuable reference for future research on the biomanufacturing of AXT and other biological metabolites.
Collapse
Affiliation(s)
- Xiulan Xie
- Laboratory of Space Biology, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Moyu Zhong
- Laboratory of Space Biology, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Xinxin Huang
- Laboratory of Space Biology, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Xinrui Yuan
- Laboratory of Space Biology, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Nasser Mahna
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Cassamo Ussemane Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota, Chile
| | - Maozhi Ren
- Laboratory of Space Biology, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Carreño-Campos C, Villegas E, Villarreal ML, Morales-Aguilar M, Govea-Alonso D, Romero-Maldonado A, Jimenez-Capdeville ME, Rosales-Mendoza S, Ortiz-Caltempa A. Statistical Experimental Designs for cLTB-Syn Vaccine Production Using Daucus carota Cell Suspension Cultures. PLANTA MEDICA 2024; 90:744-756. [PMID: 38698590 DOI: 10.1055/a-2307-0400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
The carrot-made LTB-Syn antigen (cLTB-Syn) is a vaccine candidate against synucleinopathies based on carrot cells expressing the target antigen LTB and syn epitopes. Therefore, the development of an efficient production process is required with media culture optimization to increase the production yields as the main goal. In this study, the effect of two nitrogen sources (urea and glutamate) on callus cultures producing cLTB-Syn was studied, observing that the addition of 17 mM urea to MS medium favored the biomass yield. To optimize the MS media composition, the influence of seven medium components on biomass and cLTB-Syn production was first evaluated by a Plackett-Burman design (PBD). Then, three factors were further analyzed using a central composite design (CCD) and response surface methodology (RSM). The results showed a 1.2-fold improvement in biomass, and a 4.5-fold improvement in cLTB-Syn production was achieved at the shake-flask scale. At the bioreactor scale, there was a 1.5-fold increase in biomass and a 2.8-fold increase in cLTB-Syn yield compared with the standard MS medium. Moreover, the cLTB-Syn vaccine induced humoral responses in BALB/c mice subjected to either oral or subcutaneous immunization. Therefore, cLTB-Syn is a promising vaccine candidate that will aid in developing immunotherapeutic strategies to combat PD and other neurodegenerative diseases without the need for cold storage, making it a financially viable option for massive immunization.
Collapse
Affiliation(s)
- Christian Carreño-Campos
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Elba Villegas
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - María Luisa Villarreal
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Mónica Morales-Aguilar
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Dania Govea-Alonso
- Laboratorio de Biofarmacéuticos Recombinantes, Universidad Autónoma de San Luis Potosí, SLP, México
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina (CICSaB), Universidad Autónoma de San Luis Potosí, SLP, México
| | - Andrea Romero-Maldonado
- Laboratorio de Biofarmacéuticos Recombinantes, Universidad Autónoma de San Luis Potosí, SLP, México
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina (CICSaB), Universidad Autónoma de San Luis Potosí, SLP, México
| | | | - Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Universidad Autónoma de San Luis Potosí, SLP, México
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina (CICSaB), Universidad Autónoma de San Luis Potosí, SLP, México
| | - Anabel Ortiz-Caltempa
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| |
Collapse
|
3
|
Tanwar N, Arya SS, Rookes JE, Cahill DM, Lenka SK, Bansal KC. Prospects of chloroplast metabolic engineering for developing nutrient-dense food crops. Crit Rev Biotechnol 2023; 43:1001-1018. [PMID: 35815847 DOI: 10.1080/07388551.2022.2092717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/29/2022] [Indexed: 11/03/2022]
Abstract
Addressing nutritional deficiencies in food crops through biofortification is a sustainable approach to tackling malnutrition. Biofortification is continuously being attempted through conventional breeding as well as through various plant biotechnological interventions, ranging from molecular breeding to genetic engineering and genome editing for enriching crops with various health-promoting metabolites. Genetic engineering is used for the rational incorporation of desired nutritional traits in food crops and predominantly operates through nuclear and chloroplast genome engineering. In the recent past, chloroplast engineering has been deployed as a strategic tool to develop model plants with enhanced nutritional traits due to the various advantages it offers over nuclear genome engineering. However, this approach needs to be extended for the nutritional enhancement of major food crops. Further, this platform could be combined with strategies, such as synthetic biology, chloroplast editing, nanoparticle-mediated rapid chloroplast transformation, and horizontal gene transfer through grafting for targeting endogenous metabolic pathways for overproducing native nutraceuticals, production of biopharmaceuticals, and biosynthesis of designer nutritional compounds. This review focuses on exploring various features of chloroplast genome engineering for nutritional enhancement of food crops by enhancing the levels of existing metabolites, restoring the metabolites lost during crop domestication, and introducing novel metabolites and phytonutrients needed for a healthy daily diet.
Collapse
Affiliation(s)
- Neha Tanwar
- TERI-Deakin Nano-Biotechnology Centre, The Energy Resources Institute (TERI), New Delhi, India
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, Australia
| | - Sagar S Arya
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, Australia
| | - James E Rookes
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, Australia
| | - David M Cahill
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, Australia
| | - Sangram K Lenka
- TERI-Deakin Nano-Biotechnology Centre, The Energy Resources Institute (TERI), New Delhi, India
- Gujarat Biotechnology University, Gujarat, India
| | | |
Collapse
|
4
|
Tanwar N, Rookes JE, Cahill DM, Lenka SK. Carotenoid Pathway Engineering in Tobacco Chloroplast Using a Synthetic Operon. Mol Biotechnol 2023; 65:1923-1934. [PMID: 36884112 DOI: 10.1007/s12033-023-00693-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/09/2023] [Indexed: 03/09/2023]
Abstract
The carotenoid pathway in plants has been altered through metabolic engineering to enhance their nutritional value and generate keto-carotenoids, which are widely sought after in the food, feed, and human health industries. In this study, the aim was to produce keto-carotenoids by manipulating the native carotenoid pathway in tobacco plants through chloroplast engineering. Transplastomic tobacco plants were generated that express a synthetic multigene operon composed of three heterologous genes, with Intercistronic Expression Elements (IEEs) for effective mRNA splicing. The metabolic changes observed in the transplastomic plants showed a significant shift towards the xanthophyll cycle, with only a minor production of keto-lutein. The use of a ketolase gene in combination with the lycopene cyclase and hydroxylase genes was a novel approach and demonstrated a successful redirection of the carotenoid pathway towards the xanthophyll cycle and the production of keto-lutein. This study presents a scalable molecular genetic platform for the development of novel keto-carotenoids in tobacco using the Design-Build-Test-Learn (DBTL) approach. This study corroborates chloroplast metabolic engineering using a synthetic biology approach for producing novel metabolites belonging to carotenoid class in industrially important tobacco plant. The synthetic multigene construct resulted in producing a novel metabolite, keto-lutein with high accumulation of xanthophyll metabolites. This figure was drawn using BioRender ( https://www.biorender.com ).
Collapse
Affiliation(s)
- Neha Tanwar
- TERI-Deakin Nano-Biotechnology Centre, The Energy Resources Institute (TERI), New Delhi, 110003, India
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, 3216, Australia
| | - James E Rookes
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, 3216, Australia
| | - David M Cahill
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, 3216, Australia
| | - Sangram K Lenka
- TERI-Deakin Nano-Biotechnology Centre, The Energy Resources Institute (TERI), New Delhi, 110003, India.
- Department of Plant Biotechnology, Gujarat Biotechnology University, Gandhinagar, 382355, India.
| |
Collapse
|
5
|
Mussagy CU, Ribeiro HF, Pereira JFB. Rhodotorula sp. as a cell factory for production of valuable biomolecules. ADVANCES IN APPLIED MICROBIOLOGY 2023; 123:133-156. [PMID: 37400173 DOI: 10.1016/bs.aambs.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Rhodotorula sp. are well-known for their ability to biosynthesize a diverse range of valuable biomolecules, including carotenoids, lipids, enzymes, and polysaccharides. Despite the high number of studies conducted using Rhodotorula sp. at the laboratory scale, most of these do not address all processual aspects necessary for scaling up these processes for industrial applications. This chapter explores the potential of Rhodotorula sp. as a cell factory for the production of distinct biomolecules, with a particular emphasis on exploring their use from a biorefinery perspective. Through in-depth discussions of the latest research and insights into non-conventional applications, we aim to provide a comprehensive understanding of Rhodotorula sp.'s ability to produce biofuels, bioplastics, pharmaceuticals, and other valuable biochemicals. This book chapter also examines the fundamentals and challenges associated with the optimizing upstream and downstream processing of Rhodotorula sp-based processes. We believe that through this chapter, readers with different levels of expertise will gain insights into strategies for enhancing the sustainability, efficiency, and effectiveness of producing biomolecules using Rhodotorula sp.
Collapse
Affiliation(s)
- Cassamo U Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota, Chile.
| | - Helena F Ribeiro
- Department of Chemical Engineering, University of Coimbra, CIEPQPF, Coimbra, Portugal
| | - Jorge F B Pereira
- Department of Chemical Engineering, University of Coimbra, CIEPQPF, Coimbra, Portugal
| |
Collapse
|
6
|
Naz T, Ullah S, Nazir Y, Li S, Iqbal B, Liu Q, Mohamed H, Song Y. Industrially Important Fungal Carotenoids: Advancements in Biotechnological Production and Extraction. J Fungi (Basel) 2023; 9:jof9050578. [PMID: 37233289 DOI: 10.3390/jof9050578] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Carotenoids are lipid-soluble compounds that are present in nature, including plants and microorganisms such as fungi, certain bacteria, and algae. In fungi, they are widely present in almost all taxonomic classifications. Fungal carotenoids have gained special attention due to their biochemistry and the genetics of their synthetic pathway. The antioxidant potential of carotenoids may help fungi survive longer in their natural environment. Carotenoids may be produced in greater quantities using biotechnological methods than by chemical synthesis or plant extraction. The initial focus of this review is on industrially important carotenoids in the most advanced fungal and yeast strains, with a brief description of their taxonomic classification. Biotechnology has long been regarded as the most suitable alternative way of producing natural pigment from microbes due to their immense capacity to accumulate these pigments. So, this review mainly presents the recent progress in the genetic modification of native and non-native producers to modify the carotenoid biosynthetic pathway for enhanced carotenoid production, as well as factors affecting carotenoid biosynthesis in fungal strains and yeast, and proposes various extraction methods to obtain high yields of carotenoids in an attempt to find suitable greener extraction methods. Finally, a brief description of the challenges regarding the commercialization of these fungal carotenoids and the solution is also given.
Collapse
Affiliation(s)
- Tahira Naz
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Samee Ullah
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
- Faculty of Allied Health Sciences, University Institute of Food Science and Technology, The University of Lahore, Lahore 54000, Pakistan
| | - Yusuf Nazir
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Shaoqi Li
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Bushra Iqbal
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Qing Liu
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Hassan Mohamed
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| |
Collapse
|
7
|
Hao DL, Zhou JY, Huang YN, Wang HR, Li XH, Guo HL, Liu JX. Roles of plastid-located phosphate transporters in carotenoid accumulation. FRONTIERS IN PLANT SCIENCE 2022; 13:1059536. [PMID: 36589064 PMCID: PMC9798012 DOI: 10.3389/fpls.2022.1059536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Enhanced carotenoid accumulation in plants is crucial for the nutritional and health demands of the human body since these beneficial substances are acquired through dietary intake. Plastids are the major organelles to accumulate carotenoids in plants and it is reported that manipulation of a single plastid phosphate transporter gene enhances carotenoid accumulation. Amongst all phosphate transport proteins including phosphate transporters (PHTs), plastidial phosphate translocators (pPTs), PHOSPHATE1 (PHO1), vacuolar phosphate efflux transporter (VPE), and Sulfate transporter [SULTR]-like phosphorus distribution transporter (SPDT) in plants, plastidic PHTs (PHT2 & PHT4) are found as the only clade that is plastid located, and manipulation of which affects carotenoid accumulation. Manipulation of a single chromoplast PHT (PHT4;2) enhances carotenoid accumulation, whereas manipulation of a single chloroplast PHT has no impact on carotenoid accumulation. The underlying mechanism is mainly attributed to their different effects on plastid orthophosphate (Pi) concentration. PHT4;2 is the only chromoplast Pi efflux transporter, and manipulating this single chromoplast PHT significantly regulates chromoplast Pi concentration. This variation subsequently modulates the carotenoid accumulation by affecting the supply of glyceraldehyde 3-phosphate, a substrate for carotenoid biosynthesis, by modulating the transcript abundances of carotenoid biosynthesis limited enzyme genes, and by regulating chromoplast biogenesis (facilitating carotenoid storage). However, at least five orthophosphate influx PHTs are identified in the chloroplast, and manipulating one of the five does not substantially modulate the chloroplast Pi concentration in a long term due to their functional redundancy. This stable chloroplast Pi concentration upon one chloroplast PHT absence, therefore, is unable to modulate Pi-involved carotenoid accumulation processes and finally does affect carotenoid accumulation in photosynthetic tissues. Despite these advances, several cases including the precise location of plastid PHTs, the phosphate transport direction mediated by these plastid PHTs, the plastid PHTs participating in carotenoid accumulation signal pathway, the potential roles of these plastid PHTs in leaf carotenoid accumulation, and the roles of these plastid PHTs in other secondary metabolites are waiting for further research. The clarification of the above-mentioned cases is beneficial for breeding high-carotenoid accumulation plants (either in photosynthetic or non-photosynthetic edible parts of plants) through the gene engineering of these transporters.
Collapse
Affiliation(s)
- Dong-Li Hao
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Jin-Yan Zhou
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forest, Jurong, China
| | - Ya-Nan Huang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Hao-Ran Wang
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Xiao-Hui Li
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Hai-Lin Guo
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Jian-Xiu Liu
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| |
Collapse
|
8
|
Li Y, Wang X, Zhang Q, Shen Y, Wang J, Qi S, Zhao P, Muhammad T, Islam MM, Zhan X, Liang Y. A mutation in SlCHLH encoding a magnesium chelatase H subunit is involved in the formation of yellow stigma in tomato (Solanum lycopersicum L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111466. [PMID: 36174799 DOI: 10.1016/j.plantsci.2022.111466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Chlorophylls are ubiquitous pigments responsible for the green color in plants. Changes in the chlorophyll content have a significant impact on photosynthesis, plant growth and development. In this study, we used a yellow stigma mutant (ys) generated from a green stigma tomato WT by using ethylmethylsulfone (EMS)-induced mutagenesis. Compared with WT, the stigma of ys shows low chlorophyll content and impaired chloroplast ultrastructure. Through map-based cloning, the ys gene is localized to a 100 kb region on chromosome 4 between dCAPS596 and dCAPS606. Gene expression analysis and nonsynonymous SNP determination identified the Solyc04g015750, as the potential candidate gene, which encodes a magnesium chelatase H subunit (CHLH). In ys mutant, a single base C to T substitution in the SlCHLH gene results in the conversion of Serine into Leucine (Ser92Leu) at the N-terminal region. The functional complementation test shows that the SlCHLH from WT can rescue the green stigma phenotype of ys. In contrast, knockdown of SlCHLH in green stigma tomato AC, observed the yellow stigma phenotype at the stigma development stage. Overexpression of the mutant gene Slys in green stigma tomato AC results in the light green stigma. These results indicate that the mutation of the N-terminal S92 to Leu in SlCHLH is the main reason for the formation of the yellow stigma phenotype. Characterization of the ys mutant enriches the current knowledge of the tomato chlorophyll mutant library and provides a novel and effective tool for understanding the function of CHLH in tomato.
Collapse
Affiliation(s)
- Yushun Li
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China; State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China.
| | - Xinyu Wang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China; State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China.
| | - Qinghua Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China; State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China
| | - Yuanbo Shen
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China; State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China.
| | - Jin Wang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China; State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China.
| | - Shiming Qi
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China; State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China.
| | - Pan Zhao
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China; State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China.
| | - Tayeb Muhammad
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China; State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China; Directorate of Agriculture Extension, Merged Areas, Peshawar 25000, Khyber Pakhtunkhwa, Pakistan.
| | - Md Monirul Islam
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China; State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China.
| | - Xiangqiang Zhan
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China.
| | - Yan Liang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China; State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China.
| |
Collapse
|
9
|
Metibemu DS, Ogungbe IV. Carotenoids in Drug Discovery and Medicine: Pathways and Molecular Targets Implicated in Human Diseases. Molecules 2022; 27:6005. [PMID: 36144741 PMCID: PMC9503763 DOI: 10.3390/molecules27186005] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/01/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
Carotenoids are isoprenoid-derived natural products produced in plants, algae, fungi, and photosynthetic bacteria. Most animals cannot synthesize carotenoids because the biosynthetic machinery to create carotenoids de novo is absent in animals, except arthropods. Carotenoids are biosynthesized from two C20 geranylgeranyl pyrophosphate (GGPP) molecules made from isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) via the methylerythritol 4-phosphate (MEP) route. Carotenoids can be extracted by a variety of methods, including maceration, Soxhlet extraction, supercritical fluid extraction (SFE), microwave-assisted extraction (MAE), accelerated solvent extraction (ASE), ultrasound-assisted extraction (UAE), pulsed electric field (PEF)-assisted extraction, and enzyme-assisted extraction (EAE). Carotenoids have been reported to exert various biochemical actions, including the inhibition of the Akt/mTOR, Bcl-2, SAPK/JNK, JAK/STAT, MAPK, Nrf2/Keap1, and NF-κB signaling pathways and the ability to increase cholesterol efflux to HDL. Carotenoids are absorbed in the intestine. A handful of carotenoids and carotenoid-based compounds are in clinical trials, while some are currently used as medicines. The application of metabolic engineering techniques for carotenoid production, whole-genome sequencing, and the use of plants as cell factories to produce specialty carotenoids presents a promising future for carotenoid research. In this review, we discussed the biosynthesis and extraction of carotenoids, the roles of carotenoids in human health, the metabolism of carotenoids, and carotenoids as a source of drugs and supplements.
Collapse
Affiliation(s)
| | - Ifedayo Victor Ogungbe
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, MS 39217-0095, USA
| |
Collapse
|
10
|
Grujić VJ, Todorović B, Kranvogl R, Ciringer T, Ambrožič-Dolinšek J. Diversity and Content of Carotenoids and Other Pigments in the Transition from the Green to the Red Stage of Haematococcus pluvialis Microalgae Identified by HPLC-DAD and LC-QTOF-MS. PLANTS 2022; 11:plants11081026. [PMID: 35448754 PMCID: PMC9030915 DOI: 10.3390/plants11081026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/03/2022] [Accepted: 04/07/2022] [Indexed: 11/25/2022]
Abstract
H. pluvialis is a unicellular freshwater alga containing many bioactive compounds, especially carotenoids, which are the strongest antioxidants among the pigments. This study evaluates the composition and content of carotenoids and other pigments in both stages of algae life cycle, especially in the green vegetative stage, less studied in comparison to the red stage. To determine the composition and content of carotenoids, a combination of HPLC-DAD and LC-QTOF-MS was used. The content of carotenoids in the green vegetative stage was significantly lower than in the red vegetative stage. In the green vegetative stage, 16 different carotenoids and other pigments were identified. Among the total 8.86 mg g−1 DW of pigments, 5.24 mg g−1 DW or 59% of them were chlorophyll a with its derivatives, and 3.62 mg g−1 DW or 41% of them were free carotenoids. After the transition from the green to the red stage, the carotenoid composition was replaced by secondary carotenoids, astaxanthin and its esters, which predominated in the whole carotenoid composition. In addition to free astaxanthin, 12 astaxanthin monoesters, 6 diesters and 13 other carotenoids were determined. The majority of 37.86 mg g−1 DW pigments were monoesters. They represented 82% of all pigments, and their content was about 5 times higher than both, diesters (5.91 mg g−1 DW or 12% of all) and free carotenoids (2.4 mg g−1 DW or 6% of all). The results of the study contribute to the data on the overall pigment composition and content of H. pluvialis algae and provide the basis for further improvement of cultivation of the H. pluvialis algae.
Collapse
Affiliation(s)
- Veno Jaša Grujić
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška 160, 2000 Maribor, Slovenia; (V.J.G.); (T.C.)
- Department of Elementary Education, Faculty of Education, University of Maribor, Koroška 160, 2000 Maribor, Slovenia
| | - Biljana Todorović
- Department of Botany and Plant Physiology, Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia;
| | - Roman Kranvogl
- Centre for Chemical Analysis of Food, Water and Other Environmental Samples, National Laboratory of Health, Environment and Food, Prvomajska 1, 2000 Maribor, Slovenia;
| | - Terezija Ciringer
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška 160, 2000 Maribor, Slovenia; (V.J.G.); (T.C.)
| | - Jana Ambrožič-Dolinšek
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška 160, 2000 Maribor, Slovenia; (V.J.G.); (T.C.)
- Department of Elementary Education, Faculty of Education, University of Maribor, Koroška 160, 2000 Maribor, Slovenia
- Department of Botany and Plant Physiology, Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia;
- Correspondence:
| |
Collapse
|
11
|
Liu X, Ma X, Wang H, Li S, Yang W, Nugroho RD, Luo L, Zhou X, Tang C, Fan Y, Zhao Q, Zhang J, Chen R. Metabolic engineering of astaxanthin-rich maize and its use in the production of biofortified eggs. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1812-1823. [PMID: 33780119 PMCID: PMC8428828 DOI: 10.1111/pbi.13593] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Production of the high-value carotenoid astaxanthin, which is widely used in food and feed due to its strong antioxidant activity and colour, is less efficient in cereals than in model plants. Here, we report a new strategy for expressing β-carotene ketolase and hydroxylase genes from algae, yeasts and flowering plants in the whole seed using a seed-specific bidirectional promoter. Engineered maize events were backcrossed to inbred maize lines with yellow endosperm to generate progenies that accumulate astaxanthin from 47.76 to 111.82 mg/kg DW in seeds, and the maximum level is approximately sixfold higher than those in previous reports (16.2-16.8 mg/kg DW) in cereals. A feeding trial with laying hens indicated that they could take up astaxanthin from the maize and accumulate it in egg yolks (12.10-14.15 mg/kg) without affecting egg production and quality, as observed using astaxanthin from Haematococcus pluvialis. Storage stability evaluation analysis showed that the optimal conditions for long-term storage of astaxanthin-rich maize are at 4 °C in the dark. This study shows that co-expressing of functional genes driven by seed-specific bidirectional promoter could dramatically boost astaxanthin biosynthesis in every parts of kernel including embryo, aleurone layer and starch endosperm other than previous reports in the starch endosperm only. And the staple crop maize could serve as a cost-effective plant factory for reliably producing astaxanthin.
Collapse
Affiliation(s)
- Xiaoqing Liu
- Crop Functional Genome Research CenterBiotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
| | - Xuhui Ma
- Crop Functional Genome Research CenterBiotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
| | - Hao Wang
- State Key Laboratory of Animal NutritionInstitute of Animal SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Suzhen Li
- Crop Functional Genome Research CenterBiotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
| | - Wenzhu Yang
- Crop Functional Genome Research CenterBiotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
| | - Ramdhan Dwi Nugroho
- State Key Laboratory of Animal NutritionInstitute of Animal SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Lili Luo
- Crop Functional Genome Research CenterBiotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
| | - Xiaojin Zhou
- Crop Functional Genome Research CenterBiotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
| | - Chaohua Tang
- State Key Laboratory of Animal NutritionInstitute of Animal SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yunliu Fan
- Crop Functional Genome Research CenterBiotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
| | - Qingyu Zhao
- State Key Laboratory of Animal NutritionInstitute of Animal SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Junmin Zhang
- State Key Laboratory of Animal NutritionInstitute of Animal SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Rumei Chen
- Crop Functional Genome Research CenterBiotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
12
|
Arias D, Arenas-M A, Flores-Ortiz C, Peirano C, Handford M, Stange C. Daucus carota DcPSY2 and DcLCYB1 as Tools for Carotenoid Metabolic Engineering to Improve the Nutritional Value of Fruits. FRONTIERS IN PLANT SCIENCE 2021; 12:677553. [PMID: 34512681 PMCID: PMC8427143 DOI: 10.3389/fpls.2021.677553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
Carotenoids are pigments with important nutritional value in the human diet. As antioxidant molecules, they act as scavengers of free radicals enhancing immunity and preventing cancer and cardiovascular diseases. Moreover, α-carotene and β-carotene, the main carotenoids of carrots (Daucus carota) are precursors of vitamin A, whose deficiency in the diet can trigger night blindness and macular degeneration. With the aim of increasing the carotenoid content in fruit flesh, three key genes of the carotenoid pathway, phytoene synthase (DcPSY2) and lycopene cyclase (DcLCYB1) from carrots, and carotene desaturase (XdCrtI) from the yeast Xanthophyllomyces dendrorhous, were optimized for expression in apple and cloned under the Solanum chilense (tomatillo) polygalacturonase (PG) fruit specific promoter. A biotechnological platform was generated and functionally tested by subcellular localization, and single, double and triple combinations were both stably transformed in tomatoes (Solanum lycopersicum var. Microtom) and transiently transformed in Fuji apple fruit flesh (Malus domestica). We demonstrated the functionality of the S. chilense PG promoter by directing the expression of the transgenes specifically to fruits. Transgenic tomato fruits expressing DcPSY2, DcLCYB1, and DcPSY2-XdCRTI, produced 1.34, 2.0, and 1.99-fold more total carotenoids than wild-type fruits, respectively. Furthermore, transgenic tomatoes expressing DcLCYB1, DcPSY2-XdCRTI, and DcPSY2-XdCRTI-DcLCYB1 exhibited an increment in β-carotene levels of 2.5, 3.0, and 2.57-fold in comparison with wild-type fruits, respectively. Additionally, Fuji apple flesh agroinfiltrated with DcPSY2 and DcLCYB1 constructs showed a significant increase of 2.75 and 3.11-fold in total carotenoids and 5.11 and 5.84-fold in β-carotene, respectively whereas the expression of DcPSY2-XdCRTI and DcPSY2-XdCRTI-DcLCYB1 generated lower, but significant changes in the carotenoid profile of infiltrated apple flesh. The results in apple demonstrate that DcPSY2 and DcLCYB1 are suitable biotechnological genes to increase the carotenoid content in fruits of species with reduced amounts of these pigments.
Collapse
Affiliation(s)
- Daniela Arias
- Centro de Biología Molecular Vegetal, Facultad de Ciencias, Universidad de Chile, Ñuñoa, Chile
| | - Anita Arenas-M
- Laboratorio de Nutrición y Genómica de Plantas, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Carlos Flores-Ortiz
- Centro de Biología Molecular Vegetal, Facultad de Ciencias, Universidad de Chile, Ñuñoa, Chile
| | - Clio Peirano
- Centro de Biología Molecular Vegetal, Facultad de Ciencias, Universidad de Chile, Ñuñoa, Chile
| | - Michael Handford
- Centro de Biología Molecular Vegetal, Facultad de Ciencias, Universidad de Chile, Ñuñoa, Chile
| | - Claudia Stange
- Centro de Biología Molecular Vegetal, Facultad de Ciencias, Universidad de Chile, Ñuñoa, Chile
| |
Collapse
|
13
|
Perozeni F, Cazzaniga S, Baier T, Zanoni F, Zoccatelli G, Lauersen KJ, Wobbe L, Ballottari M. Turning a green alga red: engineering astaxanthin biosynthesis by intragenic pseudogene revival in Chlamydomonas reinhardtii. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2053-2067. [PMID: 32096597 PMCID: PMC7540493 DOI: 10.1111/pbi.13364] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/11/2020] [Accepted: 02/21/2020] [Indexed: 05/03/2023]
Abstract
The green alga Chlamydomonas reinhardtii does not synthesize high-value ketocarotenoids like canthaxanthin and astaxanthin; however, a β-carotene ketolase (CrBKT) can be found in its genome. CrBKT is poorly expressed, contains a long C-terminal extension not found in homologues and likely represents a pseudogene in this alga. Here, we used synthetic redesign of this gene to enable its constitutive overexpression from the nuclear genome of C. reinhardtii. Overexpression of the optimized CrBKT extended native carotenoid biosynthesis to generate ketocarotenoids in the algal host causing noticeable changes the green algal colour to reddish-brown. We found that up to 50% of native carotenoids could be converted into astaxanthin and more than 70% into other ketocarotenoids by robust CrBKT overexpression. Modification of the carotenoid metabolism did not impair growth or biomass productivity of C. reinhardtii, even at high light intensities. Under different growth conditions, the best performing CrBKT overexpression strain was found to reach ketocarotenoid productivities up to 4.3 mg/L/day. Astaxanthin productivity in engineered C. reinhardtii shown here might be competitive with that reported for Haematococcus lacustris (formerly pluvialis) which is currently the main organism cultivated for industrial astaxanthin production. In addition, the extractability and bio-accessibility of these pigments were much higher in cell wall-deficient C. reinhardtii than the resting cysts of H. lacustris. Engineered C. reinhardtii strains could thus be a promising alternative to natural astaxanthin producing algal strains and may open the possibility of other tailor-made pigments from this host.
Collapse
Affiliation(s)
| | | | - Thomas Baier
- Faculty of BiologyCenter for Biotechnology (CeBiTec)Bielefeld UniversityBielefeldGermany
| | | | | | - Kyle J. Lauersen
- Faculty of BiologyCenter for Biotechnology (CeBiTec)Bielefeld UniversityBielefeldGermany
| | - Lutz Wobbe
- Faculty of BiologyCenter for Biotechnology (CeBiTec)Bielefeld UniversityBielefeldGermany
| | | |
Collapse
|
14
|
Rebelo BA, Farrona S, Ventura MR, Abranches R. Canthaxanthin, a Red-Hot Carotenoid: Applications, Synthesis, and Biosynthetic Evolution. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1039. [PMID: 32824217 PMCID: PMC7463686 DOI: 10.3390/plants9081039] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 01/21/2023]
Abstract
Carotenoids are a class of pigments with a biological role in light capture and antioxidant activities. High value ketocarotenoids, such as astaxanthin and canthaxanthin, are highly appealing for applications in human nutraceutical, cosmetic, and animal feed industries due to their color- and health-related properties. In this review, recent advances in metabolic engineering and synthetic biology towards the production of ketocarotenoids, in particular the red-orange canthaxanthin, are highlighted. Also reviewed and discussed are the properties of canthaxanthin, its natural producers, and various strategies for its chemical synthesis. We review the de novo synthesis of canthaxanthin and the functional β-carotene ketolase enzyme across organisms, supported by a protein-sequence-based phylogenetic analysis. Various possible modifications of the carotenoid biosynthesis pathway and the present sustainable cost-effective alternative platforms for ketocarotenoids biosynthesis are also discussed.
Collapse
Affiliation(s)
- Bárbara A. Rebelo
- Plant Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal;
- Bioorganic Chemistry Laboratory, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal;
| | - Sara Farrona
- Plant and AgriBiosciences Centre, Ryan Institute, NUI Galway, H19 TK33 Galway, Ireland;
| | - M. Rita Ventura
- Bioorganic Chemistry Laboratory, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal;
| | - Rita Abranches
- Plant Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal;
| |
Collapse
|
15
|
Zheng X, Giuliano G, Al-Babili S. Carotenoid biofortification in crop plants: citius, altius, fortius. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158664. [PMID: 32068105 DOI: 10.1016/j.bbalip.2020.158664] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/24/2022]
Abstract
Carotenoids are indispensable for human health, required as precursors of vitamin A and efficient antioxidants. However, these plant pigments that play a vital role in photosynthesis are represented at insufficient levels in edible parts of several crops, which creates a need for increasing their content or optimizing their composition through biofortification. In particular, vitamin A deficiency, a severe health problem affecting the lives of millions in developing countries, has triggered the development of a series of high-provitamin A crops, including Golden Rice as the best-known example. Further carotenoid-biofortified crops have been generated by using genetic engineering approaches or through classical breeding. In this review, we depict carotenoid metabolism in plants and provide an update on the development of carotenoid-biofortified plants and their potential to meet needs and expectations. Furthermore, we discuss the possibility of using natural variation for carotenoid biofortification and the potential of gene editing tools. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Xiongjie Zheng
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Science and Engineering, Center for Desert Agriculture, the BioActives Lab, Thuwal 23955-6900, Saudi Arabia
| | - Giovanni Giuliano
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Center, Via Anguillarese 301, Roma 00123, Italy
| | - Salim Al-Babili
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Science and Engineering, Center for Desert Agriculture, the BioActives Lab, Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
16
|
Gonzalez-Calquin C, Stange C. Agrobacterium tumefaciens-Mediated Stable Transformation of Daucus carota. Methods Mol Biol 2020; 2083:313-320. [PMID: 31745932 DOI: 10.1007/978-1-4939-9952-1_24] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Daucus carota L. (carrot) is one of the ten most important vegetables cultivated and consumed worldwide and is a main source of provitamin A. Carrot storage root is rich in dietary fiber, antioxidants, and other nutrients but especially in carotenoids. It has been also used as plant model for studding embryogenesis, as well as the genetic and genomic evolution of carrots and for carotenoid synthesis regulation, among others. Research in carrot often needs genetic transformation. Here we describe a step-by-step protocol on the nuclear and stable transformation of carrot through Agrobacterium tumefaciens and somatic embryogenesis in vitro culture. Somatic embryos, induced by supplementation of Murashige-Skoog medium with the 2,4D hormone, develop into seedlings after 6 months approximately when plants are ready to be transferred to a greenhouse. The protocol has over 85% of transformation efficiency.
Collapse
Affiliation(s)
- Christian Gonzalez-Calquin
- Centro de Biología Molecular Vegetal, Departamento de Biología, Facultad de Cienicas, Universidad de Chile, Avenida Las Palmeras, Ñuñoa, Santiago, Chile
| | - Claudia Stange
- Centro de Biología Molecular Vegetal, Departamento de Biología, Facultad de Cienicas, Universidad de Chile, Avenida Las Palmeras, Ñuñoa, Santiago, Chile.
| |
Collapse
|
17
|
Zhang M, Jing L, Wu Q, Zhu K, Ke F, Xu J, Zhao S, Wang G, Zhang C. Metabolite profile comparison of a graft chimera 'Hongrou Huyou' (Citrus changshan-huyou + Citrus unshiu) and its two donor plants. BMC PLANT BIOLOGY 2019; 19:582. [PMID: 31878871 PMCID: PMC6933880 DOI: 10.1186/s12870-019-2173-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Chimeras synthesized artificially by grafting are crucial to the breeding of perennial woody plants. 'Hongrou Huyou' (Citrus changshan-huyou + Citrus unshiu) is a new graft chimera originating from the junction where a Citrus changshan-huyou ("C") scion was top-grafted onto a stock Satsuma mandarin 'Owari' (C. unshiu, "O"). The chimera was named OCC because the cell layer constitutions were O for Layer 1(L1) and C for L2 and L3. In this study, profiles of primary metabolites, volatiles and carotenoids derived from different tissues in OCC and the two donors were investigated, with the aim of determining the relationship between the layer donors and metabolites. RESULTS The comparison of the metabolite profiles showed that the amount and composition of metabolites were different between the peels and the juice sacs, as well as between OCC and each of the two donors. The absence or presence of specific metabolites (such as the carotenoids violaxanthin and β-cryptoxanthin, the volatile hydrocarbon germacrene D, and the primary metabolites citric acid and sorbose) in each tissue was identified in the three phenotypes. According to principal component analysis (PCA), overall, the metabolites in the peel of the chimera were derived from donor C, whereas those in the juice sac of the chimera came from donor O. CONCLUSION The profiles of primary metabolites, volatiles and carotenoids derived from the peels and juice sacs of OCC and the two donors were systematically compared. The content and composition of metabolites were different between the tissues and between OCC and the each of the two donors. A clear donor dominant pattern of metabolite inheritance was observed in the different tissues of OCC and was basically consistent with the layer origin; the peel of the chimera was derived from C, and the juice sacs of the chimera came from O. These profiles provide potential chemical markers for genotype differentiation, citrus breeding assessment, and donor selection during artificial chimera synthesis.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A& F University, Hangzhou, 311300 China
| | - Luyang Jing
- State Key Laboratory of Subtropical Silviculture, Zhejiang A& F University, Hangzhou, 311300 China
| | - Qun Wu
- Quzhou Technical Extension Station for Cash Crops, Quzhou, 324000 China
| | - Kaijie Zhu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070 China
| | - Fuzhi Ke
- Citrus Research Institute of Zhejiang Province, Huangyan, 318020 China
| | - Jianguo Xu
- Citrus Research Institute of Zhejiang Province, Huangyan, 318020 China
| | - Siqing Zhao
- Changshan Huyou Research Institute, Quzhou, 324000 China
| | - Gang Wang
- Changshan Huyou Research Institute, Quzhou, 324000 China
| | - Chi Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A& F University, Hangzhou, 311300 China
| |
Collapse
|
18
|
Yu L, Chen Q, Peng Y, Xie L, Liu D, Han M, Chen F, Xiao S, Huang J, Li J. Arabidopsis thaliana Plants Engineered To Produce Astaxanthin Show Enhanced Oxidative Stress Tolerance and Bacterial Pathogen Resistance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12590-12598. [PMID: 31639305 DOI: 10.1021/acs.jafc.9b04589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Carotenoids play key roles in photosynthesis and photoprotection. Few multicellular plants produce the ketocarotenoid astaxanthin, a strong antioxidant; however, Arabidopsis thaliana lines overexpressing the Chlamydomonas reinhardtii β-carotene ketolase (CrBKT) accumulated high amounts of astaxanthin in the leaves. In this study, we investigated the changed regulation of key metabolic pathways and the tolerance of the engineered plants to biotic and abiotic stresses resulting from the heterologous expression of CrBKT. Transcriptome analysis identified 1633 and 1722 genes that were differentially expressed in the leaves and siliques, respectively, of CrBKT-overexpressing plants (line CR5) as compared to wild-type Arabidopsis. These genes were enriched in the carotenoid biosynthetic pathways, and plant hormone biosynthesis and signaling pathways. In particular, metabolic profiling showed that, as compared to the wild-type leaves and siliques, overexpression of CrBKT increased the levels of most amino acids, but decreased the contents of sugars and carbohydrates. Furthermore, CR5 plants had lower sensitivity to abscisic acid (ABA) and increased tolerance to oxidative stress. CR5 plants also exhibited enhanced resistance to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000. Our study provides insight into the regulation of carotenoids and the related pathways, which may be involved in plant response to oxidative stress and pathogen infection.
Collapse
Affiliation(s)
- Lujun Yu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences , Sun Yat-sen University , Guangzhou 510275 , China
| | - Qinfang Chen
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences , Sun Yat-sen University , Guangzhou 510275 , China
| | - Yujun Peng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences , Sun Yat-sen University , Guangzhou 510275 , China
| | - Lijuan Xie
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences , Sun Yat-sen University , Guangzhou 510275 , China
| | - Di Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences , Sun Yat-sen University , Guangzhou 510275 , China
| | - Muqian Han
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences , Sun Yat-sen University , Guangzhou 510275 , China
- College of Agronomy , Hunan Agricultural University , Changsha 410128 China
| | - Feng Chen
- Institute for Advanced Study , Shenzhen University , Shenzhen 518000 , China
| | - Shi Xiao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences , Sun Yat-sen University , Guangzhou 510275 , China
| | - Junchao Huang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201 , China
| | - Juan Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences , Sun Yat-sen University , Guangzhou 510275 , China
- College of Agronomy , Hunan Agricultural University , Changsha 410128 China
| |
Collapse
|
19
|
Xie L, Cahoon E, Zhang Y, Ciftci ON. Extraction of astaxanthin from engineered Camelina sativa seed using ethanol-modified supercritical carbon dioxide. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2018.08.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Fang C, Luo J, Wang S. The Diversity of Nutritional Metabolites: Origin, Dissection, and Application in Crop Breeding. FRONTIERS IN PLANT SCIENCE 2019; 10:1028. [PMID: 31475024 PMCID: PMC6706459 DOI: 10.3389/fpls.2019.01028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/23/2019] [Indexed: 05/21/2023]
Abstract
The chemical diversity of plants is very high, and plant-based foods provide almost all the nutrients necessary for human health, either directly or indirectly. With advancements in plant metabolomics studies, the concept of nutritional metabolites has been expanded and updated. Because the concentration of many nutrients is usually low in plant-based foods, especially those from crops, metabolome-assisted breeding techniques using molecular markers associated with the synthesis of nutritional metabolites have been developed and used to improve nutritional quality of crops. Here, we review the origins of the diversity of nutrient metabolites from a genomic perspective and the role of gene duplication and divergence. In addition, we systematically review recent advances in the metabolomic and genetic basis of metabolite production in major crops. With the development of genome sequencing and metabolic detection technologies, multi-omic integrative analysis of genomes, transcriptomes, and metabolomes has greatly facilitated the deciphering of the genetic basis of metabolic pathways and the diversity of nutrient metabolites. Finally, we summarize the application of nutrient diversity in crop breeding and discuss the future development of a viable alternative to metabolome-assisted breeding techniques that can be used to improve crop nutrient quality.
Collapse
Affiliation(s)
- Chuanying Fang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| | - Jie Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Shouchuang Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
- *Correspondence: Shouchuang Wang,
| |
Collapse
|
21
|
Mussagy CU, Winterburn J, Santos-Ebinuma VC, Pereira JFB. Production and extraction of carotenoids produced by microorganisms. Appl Microbiol Biotechnol 2018; 103:1095-1114. [PMID: 30560452 DOI: 10.1007/s00253-018-9557-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 02/07/2023]
Abstract
Carotenoids are a group of isoprenoid pigments naturally synthesized by plants and microorganisms, which are applied industrially in food, cosmetic, and pharmaceutical product formulations. In addition to their use as coloring agents, carotenoids have been proposed as health additives, being able to prevent cancer, macular degradation, and cataracts. Moreover, carotenoids may also protect cells against oxidative damage, acting as an antioxidant agent. Considering the interest in greener and sustainable industrial processing, the search for natural carotenoids has increased over the last few decades. In particular, it has been suggested that the use of bioprocessing technologies can improve carotenoid production yields or, as a minimum, increase the efficiency of currently used production processes. Thus, this review provides a short but comprehensive overview of the recent biotechnological developments in carotenoid production using microorganisms. The hot topics in the field are properly addressed, from carotenoid biosynthesis to the current technologies involved in their extraction, and even highlighting the recent advances in the marketing and application of "microbial" carotenoids. It is expected that this review will improve the knowledge and understanding of the most appropriate and economic strategies for a biotechnological production of carotenoids.
Collapse
Affiliation(s)
- Cassamo Ussemane Mussagy
- Department of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara-Jaú/Km 01, Campos Ville, Araraquara, SP, 14800-903, Brazil
| | - James Winterburn
- School of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, UK
| | - Valéria Carvalho Santos-Ebinuma
- Department of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara-Jaú/Km 01, Campos Ville, Araraquara, SP, 14800-903, Brazil.
| | - Jorge Fernando Brandão Pereira
- Department of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara-Jaú/Km 01, Campos Ville, Araraquara, SP, 14800-903, Brazil
| |
Collapse
|
22
|
Zhu Q, Zeng D, Yu S, Cui C, Li J, Li H, Chen J, Zhang R, Zhao X, Chen L, Liu YG. From Golden Rice to aSTARice: Bioengineering Astaxanthin Biosynthesis in Rice Endosperm. MOLECULAR PLANT 2018; 11:1440-1448. [PMID: 30296601 DOI: 10.1016/j.molp.2018.09.007] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 09/11/2018] [Accepted: 09/27/2018] [Indexed: 05/20/2023]
Abstract
Carotenoids are important phytonutrients with antioxidant properties, and are widely used in foods and feedstuffs as supplements. Astaxanthin, a red-colored ketocarotenoid, has strong antioxidant activity and thus can benefit human health. However, astaxanthin is not produced in most higher plants. Here we report the bioengineering of astaxanthin biosynthesis in rice endosperm by introducing four synthetic genes, sZmPSY1, sPaCrtI, sCrBKT, and sHpBHY, which encode the enzymes phytoene synthase, phytoene desaturase, β-carotene ketolase, and β-carotene hydroxylase, respectively. Transgneic overexpression of two (sZmPSY1 and sPaCrtI), three (sZmPSY1, sPaCrtI and sCrBKT), and all these four genes driven by rice endosperm-specific promoters established the carotenoid/ketocarotenoid/astaxanthin biosynthetic pathways in the endosperm and thus resulted in various types of germplasm, from the yellow-grained β-carotene-enriched Golden Rice to orange-red-grained Canthaxanthin Rice and Astaxanthin Rice, respectively. Grains of Astaxanthin Rice were enriched with astaxanthin in the endosperm and had higher antioxidant activity. These results proved that introduction of a minimal set of four transgenes enables de novo biosynthesis of astaxanthin in the rice endosperm. This work provides a successful example for synthetic biology in plants and biofortification in crops; the biofortified rice products generated by this study could be consumed as health-promoting foods and processed to produce dietary supplements.
Collapse
Affiliation(s)
- Qinlong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Dongchang Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Suize Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chaojun Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jiamin Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Heying Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Junyu Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Runzhao Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiucai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
23
|
Ha SH, Kim JK, Jeong YS, You MK, Lim SH, Kim JK. Stepwise pathway engineering to the biosynthesis of zeaxanthin, astaxanthin and capsanthin in rice endosperm. Metab Eng 2018; 52:178-189. [PMID: 30503392 DOI: 10.1016/j.ymben.2018.11.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 11/24/2018] [Accepted: 11/28/2018] [Indexed: 11/29/2022]
Abstract
Carotenoid pigments are valuable components of the human diet. A notable example is β-carotene, or provitamin A, which is converted into the derivatives astaxanthin and capsanthin, via the common intermediate zeaxanthin. To generate rice varieties producing diverse carotenoids beyond β-carotene, we specifically used a Capsicum β-carotene hydroxylase gene, B (CaBch) and a codon optimized version of the same gene, stB (stBch) to increase zeaxanthin synthesis. We also used a recombinant BAK gene (CaBch-2A-HpBkt), consisting of the CaBch sequence and a Haematococcus β-carotene ketolase gene (HpBkt) linked by a bicistronic 2 A sequence, as well as a codon optimized recombinant stBAK gene (stBch-2A-stBkt) to create astaxanthin synthesis. The four cassettes to seed-specifically express the B, stB, BAK and stBAK genes were individually combined with a PAC gene (CaPsy-2A-PaCrtI) cassette to previously impart β-carotene-enriched trait in rice endosperm. The single T-DNA vectors of B-PAC, stB-PAC, BAK-PAC and stBAK-PAC resulted in the accumulation of zeaxanthin and astaxanthin in the endosperm of the transgenic rice seeds. In addition, an extended version on the carotenoid pathway was introduced into rice to allow the production of capsanthin, by intercrossing a B-PAC rice line with a Ccs rice line, which harbors a Capsicum capsanthin-capsorubin synthase gene. Ultimately, we developed three functional rice varieties: B-PAC (0.8 μg/g zeaxanthin, deep yellow), stBAK-PAC (1.4 μg/g ketocarotenoids, including astaxanthin, pinkish red) and B-PAC x Ccs (0.4 μg/g of ketoxanthophylls, including capsanthin, orange-red) with the similar levels of total carotenoids to PAC rice, suggesting the capacity was dependent on β-carotene levels. Collectively, a combination of genetic engineering and conventional breeding is effective for multi-step metabolic engineering and biochemical pathway extension.
Collapse
Affiliation(s)
- Sun-Hwa Ha
- Department of Genetic Engineering and Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea.
| | - Jae Kwang Kim
- Division of Life Sciences and Bio-Resource and Environmental Center, Incheon National University, Incheon 22012, Republic of Korea
| | - Ye Sol Jeong
- Department of Genetic Engineering and Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Min-Kyoung You
- Department of Genetic Engineering and Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Sun-Hyung Lim
- National Academy of Agricultural Science, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Ju-Kon Kim
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| |
Collapse
|
24
|
Rodriguez-Concepcion M, Avalos J, Bonet ML, Boronat A, Gomez-Gomez L, Hornero-Mendez D, Limon MC, Meléndez-Martínez AJ, Olmedilla-Alonso B, Palou A, Ribot J, Rodrigo MJ, Zacarias L, Zhu C. A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Prog Lipid Res 2018; 70:62-93. [PMID: 29679619 DOI: 10.1016/j.plipres.2018.04.004] [Citation(s) in RCA: 478] [Impact Index Per Article: 79.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 12/22/2022]
Abstract
Carotenoids are lipophilic isoprenoid compounds synthesized by all photosynthetic organisms and some non-photosynthetic prokaryotes and fungi. With some notable exceptions, animals (including humans) do not produce carotenoids de novo but take them in their diets. In photosynthetic systems carotenoids are essential for photoprotection against excess light and contribute to light harvesting, but perhaps they are best known for their properties as natural pigments in the yellow to red range. Carotenoids can be associated to fatty acids, sugars, proteins, or other compounds that can change their physical and chemical properties and influence their biological roles. Furthermore, oxidative cleavage of carotenoids produces smaller molecules such as apocarotenoids, some of which are important pigments and volatile (aroma) compounds. Enzymatic breakage of carotenoids can also produce biologically active molecules in both plants (hormones, retrograde signals) and animals (retinoids). Both carotenoids and their enzymatic cleavage products are associated with other processes positively impacting human health. Carotenoids are widely used in the industry as food ingredients, feed additives, and supplements. This review, contributed by scientists of complementary disciplines related to carotenoid research, covers recent advances and provides a perspective on future directions on the subjects of carotenoid metabolism, biotechnology, and nutritional and health benefits.
Collapse
Affiliation(s)
| | - Javier Avalos
- Department of Genetics, Universidad de Sevilla, 41012 Seville, Spain
| | - M Luisa Bonet
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, 07120 Palma de Mallorca, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 07120 Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Albert Boronat
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Lourdes Gomez-Gomez
- Instituto Botánico, Universidad de Castilla-La Mancha, 02071 Albacete, Spain
| | - Damaso Hornero-Mendez
- Department of Food Phytochemistry, Instituto de la Grasa (IG-CSIC), 41013 Seville, Spain
| | - M Carmen Limon
- Department of Genetics, Universidad de Sevilla, 41012 Seville, Spain
| | - Antonio J Meléndez-Martínez
- Food Color & Quality Laboratory, Area of Nutrition & Food Science, Universidad de Sevilla, 41012 Seville, Spain
| | | | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, 07120 Palma de Mallorca, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 07120 Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Joan Ribot
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, 07120 Palma de Mallorca, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 07120 Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Maria J Rodrigo
- Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Valencia, Spain
| | - Lorenzo Zacarias
- Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Valencia, Spain
| | - Changfu Zhu
- Department of Plant Production and Forestry Science, Universitat de Lleida-Agrotecnio, 25198 Lleida, Spain
| |
Collapse
|
25
|
Berman J, Zorrilla-López U, Medina V, Farré G, Sandmann G, Capell T, Christou P, Zhu C. The Arabidopsis ORANGE (AtOR) gene promotes carotenoid accumulation in transgenic corn hybrids derived from parental lines with limited carotenoid pools. PLANT CELL REPORTS 2017; 36:933-945. [PMID: 28314904 DOI: 10.1007/s00299-017-2126-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 02/28/2017] [Indexed: 05/21/2023]
Abstract
The AtOR gene enhances carotenoid levels in corn by promoting the formation of plastoglobuli when the carotenoid pool is limited, but has no further effect when carotenoids are already abundant. The cauliflower orange (or) gene mutation influences carotenoid accumulation in plants by promoting the transition of proplastids into chromoplasts, thus creating intracellular storage compartments that act as metabolic sink. We overexpressed the Arabidopsis OR gene under the control of the endosperm-specific wheat LMW glutenin promoter in a white corn variety that normally accumulates only trace amounts of carotenoids. The total endosperm carotenoid content in the best-performing AtOR transgenic corn line was 32-fold higher than wild-type controls (~25 µg/g DW at 30 days after pollination) but the principal carotenoids remained the same, suggesting that AtOR increases the abundance of existing carotenoids without changing the metabolic composition. We analyzed the expression of endogenous genes representing the carotenoid biosynthesis and MEP pathways, as well as the plastid fusion/translocation factor required for chromoplast formation, but only the DXS1 gene was upregulated in the transgenic corn plants. The line expressing AtOR at the highest level was crossed with four transgenic corn lines expressing different carotenogenic genes and accumulating different carotenoids. The introgression of AtOR increased the carotenoid content of the hybrids when there was a limited carotenoid pool in the parental line, but had no effect when carotenoids were already abundant in the parent. The AtOR gene therefore appears to enhance carotenoid levels by promoting the formation of carotenoid-sequestering plastoglobuli when the carotenoid pool is limited, but has no further effect when carotenoids are already abundant because high levels of carotenoids can induce the formation of carotenoid-sequestering plastoglobuli even in the absence of AtOR.
Collapse
Affiliation(s)
- Judit Berman
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198, Lleida, Spain
| | - Uxue Zorrilla-López
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198, Lleida, Spain
| | - Vicente Medina
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198, Lleida, Spain
| | - Gemma Farré
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198, Lleida, Spain
| | - Gerhard Sandmann
- Biosynthesis Group, Molecular Biosciences, Johann Wolfgang Goethe Universität, 60054, Frankfurt, Germany
| | - Teresa Capell
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198, Lleida, Spain
| | - Paul Christou
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198, Lleida, Spain
- ICREA, Catalan Institute for Research and Advanced Studies, Passeig Lluís Companys 23, 08010, Barcelona, Spain
| | - Changfu Zhu
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198, Lleida, Spain.
| |
Collapse
|
26
|
Park H, Weier S, Razvi F, Peña PA, Sims NA, Lowell J, Hungate C, Kissinger K, Key G, Fraser P, Napier JA, Cahoon EB, Clemente TE. Towards the development of a sustainable soya bean-based feedstock for aquaculture. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:227-236. [PMID: 27496594 PMCID: PMC5258864 DOI: 10.1111/pbi.12608] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 07/27/2016] [Accepted: 08/02/2016] [Indexed: 05/19/2023]
Abstract
Soya bean (Glycine max (L.) Merr.) is sought after for both its oil and protein components. Genetic approaches to add value to either component are ongoing efforts in soya bean breeding and molecular biology programmes. The former is the primary vegetable oil consumed in the world. Hence, its primary usage is in direct human consumption. As a means to increase its utility in feed applications, thereby expanding the market of soya bean coproducts, we investigated the simultaneous displacement of marine ingredients in aquafeeds with soya bean-based protein and a high Omega-3 fatty acid soya bean oil, enriched with alpha-linolenic and stearidonic acids, in both steelhead trout (Oncorhynchus mykiss) and Kampachi (Seriola rivoliana). Communicated herein are aquafeed formulations with major reduction in marine ingredients that translates to more total Omega-3 fatty acids in harvested flesh. Building off of these findings, subsequent efforts were directed towards a genetic strategy that would translate to a prototype design of an optimal identity-preserved soya bean-based feedstock for aquaculture, whereby a multigene stack approach for the targeted synthesis of two value-added output traits, eicosapentaenoic acid and the ketocarotenoid, astaxanthin, were introduced into the crop. To this end, the systematic introduction of seven transgenic cassettes into soya bean, and the molecular and phenotypic evaluation of the derived novel events are described.
Collapse
Affiliation(s)
- Hyunwoo Park
- Department of Agronomy & HorticultureUniversity of Nebraska‐LincolnLincolnNEUSA
- Center for Plant Science InnovationUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Steven Weier
- Department of Food Science and TechnologyThe Food Processing CenterUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Fareha Razvi
- Center for Plant Science InnovationUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Pamela A. Peña
- Department of Agronomy & HorticultureUniversity of Nebraska‐LincolnLincolnNEUSA
- Center for Plant Science InnovationUniversity of Nebraska‐LincolnLincolnNEUSA
| | | | | | | | | | | | - Paul Fraser
- Centre for Systems and Synthetic BiologySchool of Biological SciencesRoyal Holloway, University of LondonEghamSurreyUK
| | | | - Edgar B. Cahoon
- Center for Plant Science InnovationUniversity of Nebraska‐LincolnLincolnNEUSA
- Department of BiochemistryUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Tom E. Clemente
- Department of Agronomy & HorticultureUniversity of Nebraska‐LincolnLincolnNEUSA
- Center for Plant Science InnovationUniversity of Nebraska‐LincolnLincolnNEUSA
| |
Collapse
|
27
|
Chitchumroonchokchai C, Failla ML. Bioaccessibility and intestinal cell uptake of astaxanthin from salmon and commercial supplements. Food Res Int 2016; 99:936-943. [PMID: 28847430 DOI: 10.1016/j.foodres.2016.10.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/10/2016] [Accepted: 10/10/2016] [Indexed: 12/25/2022]
Abstract
Although the keto-carotenoid astaxanthin (Ast) is not typically present in human plasma due to its relative scarcity in the typical diet, global consumption of salmon, the primary source of Ast in food, and Ast supplements continues to increase. The first objective of the present study was to investigate the bioaccessibility of Ast from uncooked and cooked fillets of wild and aquacultured salmon, Ast-supplements and krill oil, during simulated gastric and small intestinal digestion. Uptake of E-Ast from micelles generated during digestion of wild salmon by monolayers of Caco-2 was also monitored. Both wild and aquacultured salmon flesh contained E-Ast and Z-isomers of unesterified Ast, whereas Ast esters were the predominant form of the carotenoid in commercial supplements and krill oil. Flesh from wild salmon contained approximately 10 times more Ast than aquacultured salmon. Common styles of cooking flesh from wild and aquacultured salmon decreased Ast content by 48-57% and 35-47%, respectively. Ast in salmon flesh, supplements and krill oil was relatively stable (>80% recovery) during in vitro digestion. The efficiency of transfer of Ast into mixed micelles during digestion of uncooked wild salmon was 43%, but only 12% for uncooked acquacultured salmon. Cooking wild salmon significantly decreased Ast bioaccessibility. The relative bioaccessibility of Ast (41-67%) after digestion of oil vehicle in commercial supplements was inversely proportional to carotenoid content (3-10mg/capsule), whereas bioaccessibility of endogenous Ast in phospholipid-rich krill oil supplement was 68%. >95% of Ast in mixed micelles generated during digestion of supplements and krill oil was unesterified. Caco-2 intestinal cells accumulated 11-14% of E-Ast delivered in mixed micelles generated from digested wild salmon. Apical uptake and basolateral secretion of E-Ast by Caco-2 cells grown on inserts were greater after digestion of Ast-enriched krill oil compared to uncooked wild salmon. These data suggest that the bioacessibility of Ast in wild salmon and soft-gel capsules is greater than that in aquacultured salmon, and that uptake and basolateral secretion of the carotenoid by enterocyte-like cells is enhanced by the digestion products of phospholipid-rich krill oil.
Collapse
Affiliation(s)
- Chureeporn Chitchumroonchokchai
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, 325 Campbell Hall, 1787 Neil Avenue, Columbus, OH 43210, USA
| | - Mark L Failla
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, 325 Campbell Hall, 1787 Neil Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
28
|
Simon DP, Anila N, Gayathri K, Sarada R. Heterologous expression of β-carotene hydroxylase in Dunaliella salina by Agrobacterium -mediated genetic transformation. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.06.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
29
|
Bai C, Berman J, Farre G, Capell T, Sandmann G, Christou P, Zhu C. Reconstruction of the astaxanthin biosynthesis pathway in rice endosperm reveals a metabolic bottleneck at the level of endogenous β-carotene hydroxylase activity. Transgenic Res 2016; 26:13-23. [DOI: 10.1007/s11248-016-9977-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 08/14/2016] [Indexed: 10/21/2022]
|
30
|
Engineered maize as a source of astaxanthin: processing and application as fish feed. Transgenic Res 2016; 25:785-793. [DOI: 10.1007/s11248-016-9971-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/25/2016] [Indexed: 10/21/2022]
|
31
|
Rivera Vélez SM. Guide for Carotenoid Identification in Biological Samples. JOURNAL OF NATURAL PRODUCTS 2016; 79:1473-1484. [PMID: 27158746 DOI: 10.1021/acs.jnatprod.5b00756] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In recent years there has been considerable interest in carotenoids with respect to their biological roles in animals, microorganisms, and plants, in addition to their use in the chemical, cosmetics, food, pharmaceutical, poultry, and other industries. However, the structural diversity, the different range of concentration, and the presence of cis/trans-isomers complicate the identification of carotenoids. This review provides updated information on their physical and chemical properties as well as spectroscopic and chromatographic data for the unambiguous determination of carotenoids in biological samples.
Collapse
Affiliation(s)
- Sol Maiam Rivera Vélez
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University , Pullman, Washington 99164, United States
| |
Collapse
|
32
|
Herman EM, Schmidt MA. The Potential for Engineering Enhanced Functional-Feed Soybeans for Sustainable Aquaculture Feed. FRONTIERS IN PLANT SCIENCE 2016; 7:440. [PMID: 27092158 PMCID: PMC4820450 DOI: 10.3389/fpls.2016.00440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 03/21/2016] [Indexed: 05/07/2023]
Abstract
Aquaculture is the most rapidly growing segment of global animal production that now surpasses wild-capture fisheries production and is continuing to grow 10% annually. Sustainable aquaculture needs to diminish, and progressively eliminate, its dependence on fishmeal-sourced feed from over-harvested fisheries. Sustainable aquafeed sources will need to be primarily of plant-origin. Soybean is currently the primary global vegetable-origin protein source for aquaculture. Direct exchange of soybean meal for fishmeal in aquafeed has resulted in reduced growth rates due in part to soybean's anti-nutritional proteins. To produce soybeans for use in aquaculture feeds a new conventional line has been bred termed Triple Null by stacking null alleles for the feed-relevant proteins Kunitz Trypsin Inhibitor, lectin, and P34 allergen. Triple Null is now being further enhanced as a platform to build additional transgene traits for vaccines, altered protein composition, and to produce high levels of β-carotene an intrinsic orange-colored aquafeed marker to distinguish the seeds from commodity beans and as the metabolic feedstock precursor of highly valued astaxanthin.
Collapse
Affiliation(s)
- Eliot M. Herman
- School of Plant Sciences, University of ArizonaTucson, AZ, USA
| | | |
Collapse
|
33
|
Anila N, Simon DP, Chandrashekar A, Ravishankar GA, Sarada R. Metabolic engineering of Dunaliella salina for production of ketocarotenoids. PHOTOSYNTHESIS RESEARCH 2016; 127:321-33. [PMID: 26334599 DOI: 10.1007/s11120-015-0188-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 08/25/2015] [Indexed: 05/09/2023]
Abstract
Dunaliella is a commercially important marine alga producing high amount of β-carotene. The use of Dunaliella as a potential transgenic system for the production of recombinant proteins has been recently recognized. The present study reports for the first time the metabolic engineering of carotenoid biosynthesis in Dunaliella salina for ketocarotenoid production. The pathway modification included the introduction of a bkt gene from H. pluvialis encoding β-carotene ketolase (4,4'β-oxygenase) along with chloroplast targeting for the production of ketocarotenoids. The bkt under the control of Dunaliella Rubisco smaller subunit promoter along with its transit peptide sequence was introduced into the alga through standardized Agrobacterium-mediated transformation procedure. The selected transformants were confirmed using GFP and GUS expression, PCR and southern blot analysis. A notable upregulation of the endogenous hydroxylase level of transformants was observed where the BKT expression was higher in nutrient-limiting conditions. Carotenoid analysis of the transformants through HPLC and MS analysis showed the presence of astaxanthin and canthaxanthin with maximum content of 3.5 and 1.9 µg/g DW, respectively. The present study reports the feasibility of using D. salina for the production of ketocarotenoids including astaxanthin.
Collapse
Affiliation(s)
- N Anila
- Department of Botany, St. Xavier's College For Women (Affiliated to Mahatma Gandhi University), Aluva, 683101, India
| | - Daris P Simon
- Plant Cell Biotechnology Department, Central Food Technological Research Institute (A Constituent Laboratory of the Council of Scientific and Industrial Research, CSIR), Mysore, Karnataka, 570 020, India
| | - Arun Chandrashekar
- Bhat Bio-Tech India (P) Ltd., 11-A, 4th Cross Veerasandra Industrial Area Electronics City, Bangalore, 561221, India
| | - G A Ravishankar
- Dr. C. D. Sagar Center for Life Sciences, Dayanada Sagar Institutions, Bangalore, 560008, India
| | - R Sarada
- Plant Cell Biotechnology Department, Central Food Technological Research Institute (A Constituent Laboratory of the Council of Scientific and Industrial Research, CSIR), Mysore, Karnataka, 570 020, India.
| |
Collapse
|
34
|
Alós E, Rodrigo MJ, Zacarias L. Manipulation of Carotenoid Content in Plants to Improve Human Health. Subcell Biochem 2016; 79:311-43. [PMID: 27485228 DOI: 10.1007/978-3-319-39126-7_12] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Carotenoids are essential components for human nutrition and health, mainly due to their antioxidant and pro-vitamin A activity. Foods with enhanced carotenoid content and composition are essential to ensure carotenoid feasibility in malnourished population of many countries around the world, which is critical to alleviate vitamin A deficiency and other health-related disorders. The pathway of carotenoid biosynthesis is currently well understood, key steps of the pathways in different plant species have been characterized and the corresponding genes identified, as well as other regulatory elements. This enables the manipulation and improvement of carotenoid content and composition in order to control the nutritional value of a number of agronomical important staple crops. Biotechnological and genetic engineering-based strategies to manipulate carotenoid metabolism have been successfully implemented in many crops, with Golden rice as the most relevant example of β-carotene improvement in one of the more widely consumed foods. Conventional breeding strategies have been also adopted in the bio-fortification of carotenoid in staple foods that are highly consumed in developing countries, including maize, cassava and sweet potatoes, to alleviate nutrition-related problems. The objective of the chapter is to summarize major breakthroughs and advances in the enhancement of carotenoid content and composition in agronomical and nutritional important crops, with special emphasis to their potential impact and benefits in human nutrition and health.
Collapse
Affiliation(s)
- Enriqueta Alós
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Avenida Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| | - Maria Jesús Rodrigo
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Avenida Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| | - Lorenzo Zacarias
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Avenida Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| |
Collapse
|
35
|
Strategies and Methodologies for the Co-expression of Multiple Proteins in Plants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 896:263-85. [DOI: 10.1007/978-3-319-27216-0_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
36
|
Saini RK, Nile SH, Park SW. Carotenoids from fruits and vegetables: Chemistry, analysis, occurrence, bioavailability and biological activities. Food Res Int 2015; 76:735-750. [DOI: 10.1016/j.foodres.2015.07.047] [Citation(s) in RCA: 403] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/23/2015] [Accepted: 07/31/2015] [Indexed: 11/30/2022]
|
37
|
Pierce EC, LaFayette PR, Ortega MA, Joyce BL, Kopsell DA, Parrott WA. Ketocarotenoid Production in Soybean Seeds through Metabolic Engineering. PLoS One 2015; 10:e0138196. [PMID: 26376481 PMCID: PMC4574205 DOI: 10.1371/journal.pone.0138196] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 08/26/2015] [Indexed: 11/19/2022] Open
Abstract
The pink or red ketocarotenoids, canthaxanthin and astaxanthin, are used as feed additives in the poultry and aquaculture industries as a source of egg yolk and flesh pigmentation, as farmed animals do not have access to the carotenoid sources of their wild counterparts. Because soybean is already an important component in animal feed, production of these carotenoids in soybean could be a cost-effective means of delivery. In order to characterize the ability of soybean seed to produce carotenoids, soybean cv. Jack was transformed with the crtB gene from Pantoea ananatis, which codes for phytoene synthase, an enzyme which catalyzes the first committed step in the carotenoid pathway. The crtB gene was engineered together in combinations with ketolase genes (crtW from Brevundimonas sp. strain SD212 and bkt1 from Haematococcus pluvialis) to produce ketocarotenoids; all genes were placed under the control of seed-specific promoters. HPLC results showed that canthaxanthin is present in the transgenic seeds at levels up to 52 μg/g dry weight. Transgenic seeds also accumulated other compounds in the carotenoid pathway, such as astaxanthin, lutein, β-carotene, phytoene, α-carotene, lycopene, and β-cryptoxanthin, whereas lutein was the only one of these detected in non-transgenic seeds. The accumulation of astaxanthin, which requires a β-carotene hydroxylase in addition to a β-carotene ketolase, in the transgenic seeds suggests that an endogenous soybean enzyme is able to work in combination with the ketolase transgene. Soybean seeds that accumulate ketocarotenoids could potentially be used in animal feed to reduce or eliminate the need for the costly addition of these compounds.
Collapse
Affiliation(s)
- Emily C. Pierce
- Center for Applied Genetic Technologies and the Institute of Plant Breeding, Genetics, and Genomics, The University of Georgia, Athens, Georgia, United States of America
| | - Peter R. LaFayette
- Center for Applied Genetic Technologies and the Institute of Plant Breeding, Genetics, and Genomics, The University of Georgia, Athens, Georgia, United States of America
| | - María A. Ortega
- Center for Applied Genetic Technologies and the Institute of Plant Breeding, Genetics, and Genomics, The University of Georgia, Athens, Georgia, United States of America
| | - Blake L. Joyce
- The School of Plant Sciences, BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Dean A. Kopsell
- Plant Sciences Department, The University of Tennessee, Knoxville, Tennessee, United States of America
| | - Wayne A. Parrott
- Center for Applied Genetic Technologies and the Institute of Plant Breeding, Genetics, and Genomics, The University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
38
|
Dedicova B, Bermudez C, Prias M, Zuniga E, Brondani C. High-throughput transformation pipeline for a Brazilian japonica rice with bar gene selection. PROTOPLASMA 2015; 252:1071-83. [PMID: 25488347 PMCID: PMC4491359 DOI: 10.1007/s00709-014-0741-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 11/27/2014] [Indexed: 06/04/2023]
Abstract
The goal of this work was to establish a transformation pipeline for upland Curinga rice (Oryza sativa L. ssp. japonica) with bar gene selection employing bialaphos and phosphinothricin as selection agents. The following genes of interest: AtNCED3, Lsi1, GLU2, LEW2, PLD-alpha, DA1, TOR, AVP1, and Rubisco were cloned into the binary vector p7i2x-Ubi and were transferred into Agrobacterium strain EHA 105. Embryogenic calli derived from the mature embryos were transformed, and transgenic cells and shoots were selected on the medium supplemented with bialaphos or phosphinothricin (PPT) using a stepwise selection scheme. Molecular analyses were established using polymerase chain reaction and Southern blot for the bar gene and the NOS terminator. Overall, 273 putative transgenic plants were analyzed by Southern blot with 134 events identified. In total, 77 events had a single copy of the transgene integrated in the plant genome while 29 events had two copies. We tested backbone integration in 101 transgenic plants from all constructs and found 60 transgenic plants having no additional sequence integrated in the plant genome. The bar gene activity was evaluated by the chlorophenol red test and the leaf painting test using phosphinothricin with several transgenic plants. The majority of T0 plants carrying the single copy of transgene produced T1 seeds in the screen house.
Collapse
Affiliation(s)
- B Dedicova
- International Center for Tropical Agriculture A.A. 6713, Cali, Colombia,
| | | | | | | | | |
Collapse
|
39
|
Campbell R, Morris WL, Mortimer CL, Misawa N, Ducreux LJM, Morris JA, Hedley PE, Fraser PD, Taylor MA. Optimising ketocarotenoid production in potato tubers: effect of genetic background, transgene combinations and environment. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 234:27-37. [PMID: 25804807 DOI: 10.1016/j.plantsci.2015.01.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/20/2015] [Accepted: 01/23/2015] [Indexed: 05/07/2023]
Abstract
Astaxanthin is a high value carotenoid produced by some bacteria, a few green algae, several fungi but only a limited number of plants from the genus Adonis. Astaxanthin has been industrially exploited as a feed supplement in poultry farming and aquaculture. Consumption of ketocarotenoids, most notably astaxanthin, is also increasingly associated with a wide range of health benefits, as demonstrated in numerous clinical studies. Currently astaxanthin is produced commercially by chemical synthesis or from algal production systems. Several studies have used a metabolic engineering approach to produce astaxanthin in transgenic plants. Previous attempts to produce transgenic potato tubers biofortified with astaxanthin have met with limited success. In this study we have investigated approaches to optimising tuber astaxanthin content. It is demonstrated that the selection of appropriate parental genotype for transgenic approaches and stacking carotenoid biosynthetic pathway genes with the cauliflower Or gene result in enhanced astaxanthin content, to give six-fold higher tuber astaxanthin content than has been achieved previously. Additionally we demonstrate the effects of growth environment on tuber carotenoid content in both wild type and astaxanthin-producing transgenic lines and describe the associated transcriptome and metabolome restructuring.
Collapse
Affiliation(s)
- Raymond Campbell
- Cellular and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Wayne L Morris
- Cellular and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Cara L Mortimer
- School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Egham, Surrey TW20 OEX, UK
| | - Norihiko Misawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Suematsu, Nonoichi-machi, Iskhikawa 921-8836, Japan
| | - Laurence J M Ducreux
- Cellular and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Jenny A Morris
- Cellular and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Pete E Hedley
- Cellular and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Paul D Fraser
- School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Egham, Surrey TW20 OEX, UK
| | - Mark A Taylor
- Cellular and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK.
| |
Collapse
|
40
|
Liu J, Sun Z, Gerken H, Liu Z, Jiang Y, Chen F. Chlorella zofingiensis as an alternative microalgal producer of astaxanthin: biology and industrial potential. Mar Drugs 2014; 12:3487-515. [PMID: 24918452 PMCID: PMC4071588 DOI: 10.3390/md12063487] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/18/2014] [Accepted: 05/20/2014] [Indexed: 01/01/2023] Open
Abstract
Astaxanthin (3,3'-dihydroxy-β,β-carotene-4,4'-dione), a high-value ketocarotenoid with a broad range of applications in food, feed, nutraceutical, and pharmaceutical industries, has been gaining great attention from science and the public in recent years. The green microalgae Haematococcus pluvialis and Chlorella zofingiensis represent the most promising producers of natural astaxanthin. Although H. pluvialis possesses the highest intracellular astaxanthin content and is now believed to be a good producer of astaxanthin, it has intrinsic shortcomings such as slow growth rate, low biomass yield, and a high light requirement. In contrast, C. zofingiensis grows fast phototrophically, heterotrophically and mixtrophically, is easy to be cultured and scaled up both indoors and outdoors, and can achieve ultrahigh cell densities. These robust biotechnological traits provide C. zofingiensis with high potential to be a better organism than H. pluvialis for mass astaxanthin production. This review aims to provide an overview of the biology and industrial potential of C. zofingiensis as an alternative astaxanthin producer. The path forward for further expansion of the astaxanthin production from C. zofingiensis with respect to both challenges and opportunities is also discussed.
Collapse
Affiliation(s)
- Jin Liu
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China.
| | - Zheng Sun
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China.
| | - Henri Gerken
- Department of Applied Sciences and Mathematics, Arizona State University Polytechnic campus, Mesa, AZ 85212, USA.
| | - Zheng Liu
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| | - Yue Jiang
- School of Food Science, Jiangnan University, Wuxi 214122, China.
| | - Feng Chen
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
41
|
Giuliano G. Plant carotenoids: genomics meets multi-gene engineering. CURRENT OPINION IN PLANT BIOLOGY 2014; 19:111-7. [PMID: 24912125 DOI: 10.1016/j.pbi.2014.05.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/30/2014] [Accepted: 05/08/2014] [Indexed: 05/03/2023]
Abstract
Carotenoids are present in plant photosynthetic tissues, where they have essential roles in photoreception and photoprotection, as well as in non-photosynthetic tissues, where they act as colorants, precursors for plant isoprenoid volatiles and signaling molecules (abscisic acid and strigolactones), nutritional antioxidants and vitamin A precursors. This review presents the recent advances in our understanding of their biosynthesis, the key metabolic steps controlling their accumulation in plant non-photosynthetic tissues and their metabolic engineering using multi-gene approaches.
Collapse
Affiliation(s)
- Giovanni Giuliano
- Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Casaccia Research Center, Via Anguillarese 301, Roma 00123, Italy.
| |
Collapse
|
42
|
Mulders KJM, Lamers PP, Martens DE, Wijffels RH. Phototrophic pigment production with microalgae: biological constraints and opportunities. JOURNAL OF PHYCOLOGY 2014; 50:229-42. [PMID: 26988181 DOI: 10.1111/jpy.12173] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 10/22/2013] [Indexed: 05/10/2023]
Abstract
There is increasing interest in naturally produced colorants, and microalgae represent a bio-technologically interesting source due to their wide range of colored pigments, including chlorophylls (green), carotenoids (red, orange and yellow), and phycobiliproteins (red and blue). However, the concentration of these pigments, under optimal growth conditions, is often too low to make microalgal-based pigment production economically feasible. In some Chlorophyta (green algae), specific process conditions such as oversaturating light intensities or a high salt concentration induce the overproduction of secondary carotenoids (β-carotene in Dunaliella salina (Dunal) Teodoresco and astaxanthin in Haematococcus pluvialis (Flotow)). Overproduction of all other pigments (including lutein, fucoxanthin, and phycocyanin) requires modification in gene expression or enzyme activity, most likely combined with the creation of storage space outside of the photosystems. The success of such modification strategies depends on an adequate understanding of the metabolic pathways and the functional roles of all the pigments involved. In this review, the distribution of commercially interesting pigments across the most common microalgal groups, the roles of these pigments in vivo and their biosynthesis routes are reviewed, and constraints and opportunities for overproduction of both primary and secondary pigments are presented.
Collapse
Affiliation(s)
- Kim J M Mulders
- Bioprocess Engineering, AlgaePARC, Wageningen University, P.O. Box 8129, Wageningen, 6700 EV, The Netherlands
- FeyeCon Development & Implementation, Rijnkade 17a, Weesp, 1382 GS, The Netherlands
| | - Packo P Lamers
- Department of Agrotechnology and Food Sciences, Bioprocess Engineering, Wageningen University, P.O. Box 8129, Wageningen, 6700 EV, The Netherlands
| | - Dirk E Martens
- Department of Agrotechnology and Food Sciences, Bioprocess Engineering, Wageningen University, P.O. Box 8129, Wageningen, 6700 EV, The Netherlands
| | - René H Wijffels
- Department of Agrotechnology and Food Sciences, Bioprocess Engineering, Wageningen University, P.O. Box 8129, Wageningen, 6700 EV, The Netherlands
| |
Collapse
|
43
|
Harada H, Maoka T, Osawa A, Hattan JI, Kanamoto H, Shindo K, Otomatsu T, Misawa N. Construction of transplastomic lettuce (Lactuca sativa) dominantly producing astaxanthin fatty acid esters and detailed chemical analysis of generated carotenoids. Transgenic Res 2014; 23:303-15. [PMID: 24287848 DOI: 10.1007/s11248-013-9750-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 09/05/2013] [Indexed: 12/27/2022]
Abstract
The plastid genome of lettuce (Lactuca sativa L.) cv. Berkeley was site-specifically modified with the addition of three transgenes, which encoded β,β-carotenoid 3,3'-hydroxylase (CrtZ) and β,β-carotenoid 4,4'-ketolase (4,4'-oxygenase; CrtW) from a marine bacterium Brevundimonas sp. strain SD212, and isopentenyl diphosphate isomerase from a marine bacterium Paracoccus sp. strain N81106. Constructed transplastomic lettuce plants were able to grow on soil at a growth rate similar to that of non-transformed lettuce cv. Berkeley and generate flowers and seeds. The germination ratio of the lettuce transformants (T0) (98.8%) was higher than that of non-transformed lettuce (93.1 %). The transplastomic lettuce (T1) leaves produced the astaxanthin fatty acid (myristate or palmitate) diester (49.2% of total carotenoids), astaxanthin monoester (18.2%), and the free forms of astaxanthin (10.0%) and the other ketocarotenoids (17.5%), which indicated that artificial ketocarotenoids corresponded to 94.9% of total carotenoids (230 μg/g fresh weight). Native carotenoids were there lactucaxanthin (3.8%) and lutein (1.3 %) only. This is the first report to structurally identify the astaxanthin esters biosynthesized in transgenic or transplastomic plants producing astaxanthin. The singlet oxygen-quenching activity of the total carotenoids extracted from the transplastomic leaves was similar to that of astaxanthin (mostly esterified) from the green algae Haematococcus pluvialis.
Collapse
Affiliation(s)
- Hisashi Harada
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi-shi, Ishikawa, 921-8836, Japan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Genetic engineering of the green alga Chlorella zofingiensis: a modified norflurazon-resistant phytoene desaturase gene as a dominant selectable marker. Appl Microbiol Biotechnol 2014; 98:5069-79. [PMID: 24584513 DOI: 10.1007/s00253-014-5593-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/13/2014] [Accepted: 02/04/2014] [Indexed: 12/19/2022]
Abstract
The unicellular green alga Chlorella zofingiensis has been proposed as a promising producer of natural astaxanthin, a commercially important ketocarotenoid. But the genetic toolbox for this alga is not available. In the present study, an efficient transformation system was established for C. zofingiensis. The transformation system utilized a modified norflurazon-resistant phytoene desaturase (PDS-L516F, with an leucine-phenylalanine change at position 516) as the selectable marker. Three promoters from endogenous PDS, nitrate reductase (NIT), and ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit (RBCS) genes were tested, with the RBCS promoter demonstrating the highest transformation efficiency. Inclusion of the first intron of the PDS gene further enhanced the efficiency by 91 %. Both particle bombardment and electroporation methods were examined, and the latter gave a fourfold higher transformation efficiency. The introduction of PDS-L516F, which exhibited a 33 % higher desaturation activity than the unaltered enzyme, enabled C. zofingiensis to produce 32.1 % more total carotenoids (TCs) and 54.1 % more astaxanthin. The enhanced accumulation of astaxanthin in transformants was revealed to be related to the increase in the transcripts of PDS, β-carotenoid ketolase (BKT), and hydroxylase (CHYb) genes. Our study clearly shows that the modified PDS gene is a dominant selectable marker for the transformation of C. zofingiensis and possibly for the genetic engineering of the carotenoid biosynthetic pathway. In addition, the engineered C. zofingiensis might serve as an improved source of natural astaxanthin.
Collapse
|
45
|
Farré G, Blancquaert D, Capell T, Van Der Straeten D, Christou P, Zhu C. Engineering complex metabolic pathways in plants. ANNUAL REVIEW OF PLANT BIOLOGY 2014; 65:187-223. [PMID: 24579989 DOI: 10.1146/annurev-arplant-050213-035825] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Metabolic engineering can be used to modulate endogenous metabolic pathways in plants or introduce new metabolic capabilities in order to increase the production of a desirable compound or reduce the accumulation of an undesirable one. In practice, there are several major challenges that need to be overcome, such as gaining enough knowledge about the endogenous pathways to understand the best intervention points, identifying and sourcing the most suitable metabolic genes, expressing those genes in such a way as to produce a functional enzyme in a heterologous background, and, finally, achieving the accumulation of target compounds without harming the host plant. This article discusses the strategies that have been developed to engineer complex metabolic pathways in plants, focusing on recent technological developments that allow the most significant bottlenecks to be overcome.
Collapse
Affiliation(s)
- Gemma Farré
- Departament de Producció Vegetal i Ciència Forestal, Universitat de Lleida, Agrotecnio Center, 25198 Lleida, Spain;
| | | | | | | | | | | |
Collapse
|
46
|
Sandmann G. Carotenoids of biotechnological importance. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 148:449-67. [PMID: 25326165 DOI: 10.1007/10_2014_277] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Carotenoids are natural pigments with antioxidative functions that protect against oxidative stress. They are essential for humans and must be supplied through the diet. Carotenoids are the precursors for the visual pigment rhodopsin, and lutein and zeaxanthin must be accumulated in the yellow eye spot to protect the retina from excess light and ultraviolet damage. There is a global market for carotenoids as food colorants, animal feed, and nutraceuticals. Some carotenoids are chemically synthesized, whereas others are from natural sources. Microbial mass production systems of industrial interest for carotenoids are in use, and new ones are being developed by metabolic pathway engineering of bacteria, fungi, and plants. Several examples will be highlighted in this chapter.
Collapse
Affiliation(s)
- Gerhard Sandmann
- Biosynthesis Group, Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt, Germany,
| |
Collapse
|
47
|
A question of balance: achieving appropriate nutrient levels in biofortified staple crops. Nutr Res Rev 2013; 26:235-45. [PMID: 24134863 DOI: 10.1017/s0954422413000176] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The biofortification of staple crops with vitamins is an attractive strategy to increase the nutritional quality of human food, particularly in areas where the population subsists on a cereal-based diet. Unlike other approaches, biofortification is sustainable and does not require anything more than a standard food-distribution infrastructure. The health-promoting effects of vitamins depend on overall intake and bioavailability, the latter influenced by food processing, absorption efficiency and the utilisation or retention of the vitamin in the body. The bioavailability of vitamins in nutritionally enriched foods should ideally be adjusted to achieve the dietary reference intake in a reasonable portion. Current vitamin biofortification programmes focus on the fat-soluble vitamins A and E, and the water-soluble vitamins C and B9 (folate), but the control of dosage and bioavailability has been largely overlooked. In the present review, we discuss the vitamin content of nutritionally enhanced foods developed by conventional breeding and genetic engineering, focusing on dosage and bioavailability. Although the biofortification of staple crops could potentially address micronutrient deficiency on a global scale, further research is required to develop effective strategies that match the bioavailability of vitamins to the requirements of the human diet.
Collapse
|
48
|
Farré G, Maiam Rivera S, Alves R, Vilaprinyo E, Sorribas A, Canela R, Naqvi S, Sandmann G, Capell T, Zhu C, Christou P. Targeted transcriptomic and metabolic profiling reveals temporal bottlenecks in the maize carotenoid pathway that may be addressed by multigene engineering. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:441-455. [PMID: 23607313 DOI: 10.1111/tpj.12214] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/02/2013] [Accepted: 04/12/2013] [Indexed: 06/02/2023]
Abstract
Carotenoids are a diverse group of tetraterpenoid pigments found in plants, fungi, bacteria and some animals. They play vital roles in plants and provide important health benefits to mammals, including humans. We previously reported the creation of a diverse population of transgenic maize plants expressing various carotenogenic gene combinations and exhibiting distinct metabolic phenotypes. Here we performed an in-depth targeted mRNA and metabolomic analysis of the pathway to characterize the specific impact of five carotenogenic transgenes and their interactions with 12 endogenous genes in four transgenic lines representing distinct genotypes and phenotypes. We reconstructed the temporal profile of the carotenoid pathway during endosperm development at the mRNA and metabolic levels (for total and individual carotenoids), and investigated the impact of transgene expression on the endogenous pathway. These studies enabled us to investigate the extent of any interactions between the introduced transgenic and native partial carotenoid pathways during maize endosperm development. Importantly, we developed a theoretical model that explains these interactions, and our results suggest genetic intervention points that may allow the maize endosperm carotenoid pathway to be engineered in a more effective and predictable manner.
Collapse
Affiliation(s)
- Gemma Farré
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering-ETSEA, University of Lleida/Agrotecnio Center, Avenida Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Gharibzahedi SMT, Razavi SH, Mousavi SM. Microbial canthaxanthin: Perspectives on biochemistry and biotechnological production. Eng Life Sci 2013. [DOI: 10.1002/elsc.201200153] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Seyed Mohammad Taghi Gharibzahedi
- Bioprocess Engineering Laboratory (BPEL); Department of Food Science, Engineering and Technology; Faculty of Agricultural Engineering and Technology, University of Tehran; Karaj Iran
| | - Seyed Hadi Razavi
- Bioprocess Engineering Laboratory (BPEL); Department of Food Science, Engineering and Technology; Faculty of Agricultural Engineering and Technology, University of Tehran; Karaj Iran
| | - Seyed Mohammad Mousavi
- Bioprocess Engineering Laboratory (BPEL); Department of Food Science, Engineering and Technology; Faculty of Agricultural Engineering and Technology, University of Tehran; Karaj Iran
| |
Collapse
|
50
|
Huang JC, Zhong YJ, Liu J, Sandmann G, Chen F. Metabolic engineering of tomato for high-yield production of astaxanthin. Metab Eng 2013; 17:59-67. [DOI: 10.1016/j.ymben.2013.02.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 02/16/2013] [Accepted: 02/20/2013] [Indexed: 10/27/2022]
|