1
|
Krueger CJ, Dai Z, Zhu C, Zhang B. Heritable CRISPR Mutagenesis of Essential Maternal Effect Genes as a Simple Tool for Sustained Population Suppression of Invasive Species in a Zebrafish Model. Zebrafish 2024; 21:279-286. [PMID: 38512221 DOI: 10.1089/zeb.2023.0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Invasive species control is important for ecological and agricultural management. Genetic methods can provide species specificity for population control. We developed heritable maternal effect embryo lethality (HMEL), a novel strategy allowing negative population pressure from HMEL individuals to be transmitted within a population across generations. We demonstrate the HMEL technique in zebrafish through genome-integrated CRISPR/Cas targeted mutagenic disruption of nucleoplasmin 2b (npm2b), a female-specific essential maternal effect gene, causing heritable sex-limited disruption of reproduction. HMEL-induced high-efficiency mutation of npm2b in females suppresses population, while males transmit the HMEL allele across generations. HMEL could be easily modified to target other genes causing sex-specific sterility, or generalized to control invasive fish or other vertebrate species for environmental conservation or agricultural protection.
Collapse
Affiliation(s)
- Christopher J Krueger
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Cheng Zhu
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Bo Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
2
|
Freudenblum J, Meyer D, Kimmel RA. Mitochondrial network expansion and dynamic redistribution during islet morphogenesis in zebrafish larvae. FEBS Lett 2023; 597:262-275. [PMID: 36217213 PMCID: PMC10092693 DOI: 10.1002/1873-3468.14508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 01/26/2023]
Abstract
Mitochondria, organelles critical for energy production, modify their shape and location in response to developmental state and metabolic demands. Mitochondria are altered in diabetes, but the mechanistic basis is poorly defined, due to difficulties in assessing mitochondria within an intact organism. Here, we use in vivo imaging in transparent zebrafish larvae to demonstrate filamentous, interconnected mitochondrial networks within islet cells. Mitochondrial movements highly resemble what has been reported for human islet cells in vitro, showing conservation in behaviour across species and cellular context. During islet development, mitochondrial content increases with emergence of cell motility, and mitochondria disperse within fine protrusions. Overall, this work presents quantitative analysis of mitochondria within their native environment and provides insights into mitochondrial behaviour during organogenesis.
Collapse
Affiliation(s)
| | - Dirk Meyer
- Institute of Molecular Biology/CMBIUniversity of InnsbruckAustria
| | - Robin A. Kimmel
- Institute of Molecular Biology/CMBIUniversity of InnsbruckAustria
| |
Collapse
|
3
|
Fraint E, Lv P, Liu F, Bowman TV, Tamplin OJ. Hematopoietic Stem and Progenitor Cell Identification and Transplantation in Zebrafish. Methods Mol Biol 2023; 2567:233-249. [PMID: 36255705 DOI: 10.1007/978-1-0716-2679-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The zebrafish as a model organism is well known for its versatile genetics, rapid development, and straightforward live imaging. It is an excellent model to study hematopoiesis because of its highly conserved ontogeny and gene regulatory networks. Recently developed highly specific transgenic reporter lines have allowed direct imaging and tracking of hematopoietic stem and progenitor cells (HSPCs) in live zebrafish. These reporter lines can also be used for fluorescence-activated cell sorting (FACS) of HSPCs. Similar to mammalian models, HSPCs can be transplanted to reconstitute the entire hematopoietic system of zebrafish recipients. However, the zebrafish provides unique advantages to study HSPC biology, such as transplants into embryos and high-throughput chemical screening. This chapter will outline the methods needed to identify, isolate, and transplant HSPCs in zebrafish.
Collapse
Affiliation(s)
- Ellen Fraint
- Department of Pediatrics (Pediatric Hematology/Oncology and Cellular Therapy) and Department of Developmental and Molecular Biology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Peng Lv
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Science, Beijing, China
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Science, Beijing, China
| | - Teresa V Bowman
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Department of Developmental and Molecular Biology, and Department of Medicine (Oncology), Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Owen J Tamplin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
4
|
Pattipeiluhu R, Arias-Alpizar G, Basha G, Chan KYT, Bussmann J, Sharp TH, Moradi MA, Sommerdijk N, Harris EN, Cullis PR, Kros A, Witzigmann D, Campbell F. Anionic Lipid Nanoparticles Preferentially Deliver mRNA to the Hepatic Reticuloendothelial System. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201095. [PMID: 35218106 PMCID: PMC9461706 DOI: 10.1002/adma.202201095] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Indexed: 05/04/2023]
Abstract
Lipid nanoparticles (LNPs) are the leading nonviral technologies for the delivery of exogenous RNA to target cells in vivo. As systemic delivery platforms, these technologies are exemplified by Onpattro, an approved LNP-based RNA interference therapy, administered intravenously and targeted to parenchymal liver cells. The discovery of systemically administered LNP technologies capable of preferential RNA delivery beyond hepatocytes has, however, proven more challenging. Here, preceded by comprehensive mechanistic understanding of in vivo nanoparticle biodistribution and bodily clearance, an LNP-based messenger RNA (mRNA) delivery platform is rationally designed to preferentially target the hepatic reticuloendothelial system (RES). Evaluated in embryonic zebrafish, validated in mice, and directly compared to LNP-mRNA systems based on the lipid composition of Onpattro, RES-targeted LNPs significantly enhance mRNA expression both globally within the liver and specifically within hepatic RES cell types. Hepatic RES targeting requires just a single lipid change within the formulation of Onpattro to switch LNP surface charge from neutral to anionic. This technology not only provides new opportunities to treat liver-specific and systemic diseases in which RES cell types play a key role but, more importantly, exemplifies that rational design of advanced RNA therapies must be preceded by a robust understanding of the dominant nano-biointeractions involved.
Collapse
Affiliation(s)
- Roy Pattipeiluhu
- Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, 2333 CC, The Netherlands
- BioNanoPatterning, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, 2333 RC, The Netherlands
| | - Gabriela Arias-Alpizar
- Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, 2333 CC, The Netherlands
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, 2333 CC, The Netherlands
| | - Genc Basha
- NanoMedicines Research Group, Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Karen Y T Chan
- NanoMedicines Research Group, Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Jeroen Bussmann
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, 2333 CC, The Netherlands
| | - Thomas H Sharp
- BioNanoPatterning, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, 2333 RC, The Netherlands
| | - Mohammad-Amin Moradi
- Materials and Interface Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Nico Sommerdijk
- Department of Biochemistry, Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
| | - Edward N Harris
- Department of Biochemistry, University of Nebraska, Lincoln, NE, 68588, USA
| | - Pieter R Cullis
- NanoMedicines Research Group, Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, V6T 1Z3, Canada
- NanoMedicines Innovation Network (NMIN), University of British Columbia, Vancouver, V6T 1Z3, Canada
- NanoVation Therapeutics Inc., 2405 Wesbrook Mall 4th Floor, Vancouver, V6T 1Z3, Canada
| | - Alexander Kros
- Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, 2333 CC, The Netherlands
| | - Dominik Witzigmann
- NanoMedicines Research Group, Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, V6T 1Z3, Canada
- NanoMedicines Innovation Network (NMIN), University of British Columbia, Vancouver, V6T 1Z3, Canada
- NanoVation Therapeutics Inc., 2405 Wesbrook Mall 4th Floor, Vancouver, V6T 1Z3, Canada
| | - Frederick Campbell
- Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, 2333 CC, The Netherlands
| |
Collapse
|
5
|
Seleit A, Aulehla A, Paix A. Endogenous protein tagging in medaka using a simplified CRISPR/Cas9 knock-in approach. eLife 2021; 10:75050. [PMID: 34870593 PMCID: PMC8691840 DOI: 10.7554/elife.75050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/05/2021] [Indexed: 12/19/2022] Open
Abstract
The CRISPR/Cas9 system has been used to generate fluorescently labelled fusion proteins by homology-directed repair in a variety of species. Despite its revolutionary success, there remains an urgent need for increased simplicity and efficiency of genome editing in research organisms. Here, we establish a simplified, highly efficient, and precise strategy for CRISPR/Cas9-mediated endogenous protein tagging in medaka (Oryzias latipes). We use a cloning-free approach that relies on PCR-amplified donor fragments containing the fluorescent reporter sequences flanked by short homology arms (30–40 bp), a synthetic single-guide RNA and Cas9 mRNA. We generate eight novel knock-in lines with high efficiency of F0 targeting and germline transmission. Whole genome sequencing results reveal single-copy integration events only at the targeted loci. We provide an initial characterization of these fusion protein lines, significantly expanding the repertoire of genetic tools available in medaka. In particular, we show that the mScarlet-pcna line has the potential to serve as an organismal-wide label for proliferative zones and an endogenous cell cycle reporter.
Collapse
Affiliation(s)
- Ali Seleit
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Alexander Aulehla
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Alexandre Paix
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
6
|
Simora RMC, Xing D, Bangs MR, Wang W, Ma X, Su B, Khan MGQ, Qin Z, Lu C, Alston V, Hettiarachchi D, Johnson A, Li S, Coogan M, Gurbatow J, Terhune JS, Wang X, Dunham RA. CRISPR/Cas9-mediated knock-in of alligator cathelicidin gene in a non-coding region of channel catfish genome. Sci Rep 2020; 10:22271. [PMID: 33335280 PMCID: PMC7746764 DOI: 10.1038/s41598-020-79409-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022] Open
Abstract
CRISPR/Cas9-based gene knockout in animal cells, particularly in teleosts, has proven to be very efficient with regards to mutation rates, but the precise insertion of exogenous DNA or gene knock-in via the homology-directed repair (HDR) pathway has seldom been achieved outside of the model organisms. Here, we succeeded in integrating with high efficiency an exogenous alligator cathelicidin gene into a targeted non-coding region of channel catfish (Ictalurus punctatus) chromosome 1 using two different donor templates (synthesized linear dsDNA and cloned plasmid DNA constructs). We also tested two different promoters for driving the gene, zebrafish ubiquitin promoter and common carp β-actin promoter, harboring a 250-bp homologous region flanking both sides of the genomic target locus. Integration rates were found higher in dead fry than in live fingerlings, indicating either off-target effects or pleiotropic effects. Furthermore, low levels of mosaicism were detected in the tissues of P1 individuals harboring the transgene, and high transgene expression was observed in the blood of some P1 fish. This can be an indication of the localization of cathelicidin in neutrophils and macrophage granules as also observed in most antimicrobial peptides. This study marks the first use of CRISPR/Cas9 HDR for gene integration in channel catfish and may contribute to the generation of a more efficient system for precise gene integration in catfish and other aquaculture species, and the development of gene-edited, disease-resistant fish.
Collapse
Affiliation(s)
- Rhoda Mae C Simora
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
- College of Fisheries and Ocean Sciences, University of the Philippines Visayas, 5023, Miagao, Iloilo, Philippines.
| | - De Xing
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Max R Bangs
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Department of Biological Science, Florida State University, Tallahassee, FL, 32304, USA
| | - Wenwen Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Xiaoli Ma
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Baofeng Su
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Mohd G Q Khan
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Department of Fisheries Biology and Genetics, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Zhenkui Qin
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Cuiyu Lu
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Veronica Alston
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Darshika Hettiarachchi
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Andrew Johnson
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Shangjia Li
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Michael Coogan
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Jeremy Gurbatow
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Jeffery S Terhune
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Xu Wang
- Department of Pathobiology, Auburn University, Auburn, AL, 36849, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Rex A Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
7
|
Gou Y, Sun W, Liu L, Zhang M, Du J, Wang R, Xu X. Construction of irf4a Transgenic Zebrafish Using Tol2 System and Its Potential Application. Dose Response 2020; 18:1559325820926733. [PMID: 32489338 PMCID: PMC7241208 DOI: 10.1177/1559325820926733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/05/2020] [Accepted: 04/10/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose: Interferon regulatory factor 4 (IRF4) is identified as a transcriptional factor and plays an important role in the immune response in mammals; however, there are few reports about the function of zebrafish IRF4. Methods: We first amplified the coding sequence of irf4a from the testis of zebrafish. Besides, the fragments of irf4a, P2A, EGFP, and Tol2 vector were added for homologous recombination. By sequencing, we can get the Tol2-ef1α-irf4a-EGFP recombinant plasmid and it was microinjected into zebrafish embryos. Fluorescence observation was proceeded at days 3 post fertilization; F0 generations expressing green fluorescence in multiple tissues throughout the body were screened as the founder and raised them to sexual maturity. After mating with WT zebrafish to generate F1 offspring, polymerase chain reaction was used to identify whether irf4a was integrated into the zebrafish genome. Conclusion: We obtained the systematic overexpressed irf4a transgenic zebrafish with green fluorescence labeled in spine, eyes, heart, brain, and other tissues. The transgenic zebrafish will be used as a tool for the role of IRF4a in the immune response to the inflammation preconditioning in the future study.
Collapse
Affiliation(s)
- Yawei Gou
- China-Japan Union Hospital, Jilin University, Changchun, Jilin, China.,Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Wei Sun
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Lingling Liu
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Mingming Zhang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jianan Du
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Ruonan Wang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xuesong Xu
- China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| |
Collapse
|
8
|
Ng XW, Sampath K, Wohland T. Fluorescence Correlation and Cross-Correlation Spectroscopy in Zebrafish. Methods Mol Biol 2019; 1863:67-105. [PMID: 30324593 DOI: 10.1007/978-1-4939-8772-6_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
There has been increasing interest in biophysical studies on live organisms to gain better insights into physiologically relevant biological events at the molecular level. Zebrafish (Danio rerio) is a viable vertebrate model to study such events due to its genetic and evolutionary similarities to humans, amenability to less invasive fluorescence techniques owing to its transparency and well-characterized genetic manipulation techniques. Fluorescence techniques used to probe biomolecular dynamics and interactions of molecules in live zebrafish embryos are therefore highly sought-after to bridge molecular and developmental events. Fluorescence correlation and cross-correlation spectroscopy (FCS and FCCS) are two robust techniques that provide molecular level information on dynamics and interactions respectively. Here, we detail the steps for applying confocal FCS and FCCS, in particular single-wavelength FCCS (SW-FCCS), in live zebrafish embryos, beginning with sample preparation, instrumentation, calibration, and measurements on the FCS/FCCS instrument and ending with data analysis.
Collapse
Affiliation(s)
- Xue Wen Ng
- Department of Chemistry and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Karuna Sampath
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Thorsten Wohland
- Department of Chemistry and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore. .,Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
9
|
A Zebrafish Acromegaly Model Elevates DNA Damage and Impairs DNA Repair Pathways. BIOLOGY 2018; 7:biology7040047. [PMID: 30336646 PMCID: PMC6315448 DOI: 10.3390/biology7040047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/15/2018] [Accepted: 10/15/2018] [Indexed: 01/09/2023]
Abstract
Acromegaly is a pathological condition due to excess growth hormone (GH) secretion. Acromegaly patients exhibit a deterioration of health and many associated complications, such as cardiovascular issues, arthritis, kidney diseases, muscular weakness, and colon cancer. Since these complications are generalized throughout the body, we investigated the effect of GH excess on cellular integrity. Here, we established stable acromegaly model zebrafish lines that overexpress tilapia GH and the red fluorescence protein (RFP) reporter gene for tracking GH gene expression throughout generations, and performed RNA-Seq data analysis from different organs. Intriguingly, heatmap and Expression2Kinases (X2K) analysis revealed the enrichment of DNA damage markers in various organs. Moreover, H2A.X immunostaining analysis in acromegaly zebrafish larvae and the adult acromegaly model brain and muscle showed a robust increase in the number of DNA-damaged cells. Using Gene Set Enrichment Analysis (GSEA), we found that the acromegaly zebrafish model had impaired DNA repair pathways in the liver, such as double-strand break (DSB), homologous recombination repair (HRR), non-homologous end joining (NHEJ), nucleotide excision repair (NER), and translesion synthesis (TLS). Interestingly, the impairment of DNA repair was even more prominent in acromegaly model than in aged zebrafish (three years old). Thus, our study demonstrates that affection of cellular integrity is characteristic of acromegaly.
Collapse
|
10
|
Yang Z, Chen S, Xue S, Li X, Sun Z, Yang Y, Hu X, Geng T, Cui H. Generation of Cas9 transgenic zebrafish and their application in establishing an ERV-deficient animal model. Biotechnol Lett 2018; 40:1507-1518. [PMID: 30244429 PMCID: PMC6223727 DOI: 10.1007/s10529-018-2605-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/11/2018] [Indexed: 02/02/2023]
Abstract
Objectives To investigate the effect of endogenous Cas9 on genome editing efficiency in transgenic zebrafish. Results Here we have constructed a transgenic zebrafish strain that can be screened by pigment deficiency. Compared with the traditional CRISPR injection method, the transgenic zebrafish can improve the efficiency of genome editing significantly. At the same time, we first observed that the phenotype of vertebral malformation in early embryonic development of zebrafish after ZFERV knockout. Conclusions The transgenic zebrafish with expressed Cas9, is more efficient in genome editing. And the results of ZFERV knockout indicated that ERV may affect the vertebral development by Notch1/Delta D signal pathway. Electronic supplementary material The online version of this article (10.1007/s10529-018-2605-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhe Yang
- Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Shihao Chen
- Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Songlei Xue
- Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xinxiu Li
- Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Zhen Sun
- Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yu Yang
- Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xuming Hu
- Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Tuoyu Geng
- Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225000, China
| | - Hengmi Cui
- Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou, Jiangsu, 225009, China. .,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China. .,Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, China. .,Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
11
|
Carney TJ, Mosimann C. Switch and Trace: Recombinase Genetics in Zebrafish. Trends Genet 2018; 34:362-378. [PMID: 29429760 DOI: 10.1016/j.tig.2018.01.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/04/2018] [Accepted: 01/08/2018] [Indexed: 01/04/2023]
Abstract
Transgenic approaches are instrumental for labeling and manipulating cells and cellular machineries in vivo. Transgenes have traditionally been static entities that remained unaltered following genome integration, limiting their versatility. The development of DNA recombinase-based methods to modify, excise, or rearrange transgene cassettes has introduced versatile control of transgene activity and function. In particular, recombinase-controlled transgenes enable regulation of exogenous gene expression, conditional mutagenesis, and genetic lineage tracing. In zebrafish, transgenesis-based recombinase genetics using Cre/lox, Flp/FRT, and ΦC31 are increasingly applied to study development and homeostasis, and to generate disease models. Intersected with the versatile imaging capacity of the zebrafish model and recent breakthroughs in genome editing, we review and discuss past, current, and potential future approaches and resources for recombinase-based techniques in zebrafish.
Collapse
Affiliation(s)
- Tom J Carney
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A*STAR), Singapore.
| | - Christian Mosimann
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
12
|
Babu A, Kamaraj M, Basu M, Mukherjee D, Kapoor S, Ranjan S, Swamy MM, Kaypee S, Scaria V, Kundu TK, Sachidanandan C. Chemical and genetic rescue of an ep300 knockdown model for Rubinstein Taybi Syndrome in zebrafish. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1203-1215. [PMID: 29409755 DOI: 10.1016/j.bbadis.2018.01.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/08/2018] [Accepted: 01/27/2018] [Indexed: 10/18/2022]
Abstract
EP300 is a member of the EP300/CBP family of lysine acetyltransferases (KATs) with multiple roles in development and physiology. Loss of EP300/CBP activity in humans causes a very rare congenital disorder called Rubinstein Taybi Syndrome (RSTS). The zebrafish genome has two co-orthologs of lysine acetyltransferase EP300 (KAT3B) in zebrafish viz. ep300a and ep300b. Chemical inhibition of Ep300 with C646, a competitive inhibitor and morpholino-based genetic knockdown of ep300a and ep300b cause defects in embryonic development reminiscent of the human RSTS syndrome. Remarkably, overexpression of Ep300a KAT domain results in near complete rescue of the jaw development defects, a characteristic feature of RSTS in human suggesting the dispensability of the protein-interaction and DNA-binding domains for at least some developmental roles of Ep300. We also perform a chemical screen and identify two inhibitors of deacetylases, CHIC35 and HDACi III, that can partially rescue the RSTS-like phenotypes. Thus, modeling rare human genetic disorders in zebrafish allows for functional understanding of the genes involved and can also yield small molecule candidates towards therapeutic goals.
Collapse
Affiliation(s)
- Aswini Babu
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
| | - Mageshi Kamaraj
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi 110025, India
| | - Moumita Basu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru 560064, India
| | - Debanjan Mukherjee
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru 560064, India
| | - Shruti Kapoor
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
| | - Shashi Ranjan
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi 110025, India
| | - Mahadeva M Swamy
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru 560064, India
| | - Stephanie Kaypee
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru 560064, India
| | - Vinod Scaria
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru 560064, India.
| | - Chetana Sachidanandan
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India.
| |
Collapse
|
13
|
Lopez A, Lee SE, Wojta K, Ramos EM, Klein E, Chen J, Boxer AL, Gorno-Tempini ML, Geschwind DH, Schlotawa L, Ogryzko NV, Bigio EH, Rogalski E, Weintraub S, Mesulam MM, Fleming A, Coppola G, Miller BL, Rubinsztein DC. A152T tau allele causes neurodegeneration that can be ameliorated in a zebrafish model by autophagy induction. Brain 2017; 140:1128-1146. [PMID: 28334843 PMCID: PMC5382950 DOI: 10.1093/brain/awx005] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 12/05/2016] [Indexed: 11/28/2022] Open
Abstract
Mutations in the gene encoding tau (MAPT) cause frontotemporal dementia spectrum disorders. A rare tau variant p.A152T was reported as a risk factor for frontotemporal dementia spectrum and Alzheimer’s disease in an initial case-control study. Such findings need replication in an independent cohort. We analysed an independent multinational cohort comprising 3100 patients with neurodegenerative disease and 4351 healthy control subjects and found p.A152T associated with significantly higher risk for clinically defined frontotemporal dementia and progressive supranuclear palsy syndrome. To assess the functional and biochemical consequences of this variant, we generated transgenic zebrafish models expressing wild-type or A152T-tau, where A152T caused neurodegeneration and proteasome compromise. Impaired proteasome activity may also enhance accumulation of other proteins associated with this variant. We increased A152T clearance kinetics by both pharmacological and genetic upregulation of autophagy and ameliorated the disease pathology observed in A152T-tau fish. Thus, autophagy-upregulating therapies may be a strategy for the treatment for tauopathies.
Collapse
Affiliation(s)
- Ana Lopez
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Suzee E Lee
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Kevin Wojta
- Department of Psychiatry and Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Eliana Marisa Ramos
- Department of Psychiatry and Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Eric Klein
- Department of Psychiatry and Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jason Chen
- Department of Psychiatry and Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Adam L Boxer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | | | - Daniel H Geschwind
- Department of Psychiatry and Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Lars Schlotawa
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Nikolay V Ogryzko
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Eileen H Bigio
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, Chicago, IL 60611, USA
| | - Emily Rogalski
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, Chicago, IL 60611, USA
| | - Sandra Weintraub
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, Chicago, IL 60611, USA
| | - Marsel M Mesulam
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, Chicago, IL 60611, USA
| | | | - Angeleen Fleming
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Giovanni Coppola
- Department of Psychiatry and Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - David C Rubinsztein
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK
| |
Collapse
|
14
|
Lv F, Zhu C, Yan X, Wang X, Liu D. Generation of a mef2aa:EGFP transgenic zebrafish line that expresses EGFP in muscle cells. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:287-294. [PMID: 27632017 DOI: 10.1007/s10695-016-0286-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 09/02/2016] [Indexed: 06/06/2023]
Abstract
Transgenesis is an important tool for exploring gene expression and function. The myocyte enhancer factor 2a (mef2a) gene encodes a member of the Mef2 protein family that is involved in vertebrate skeletal, cardiac, and smooth muscle development and differentiation during myogenesis. According to studies on human and animal models, mef2a is highly expressed in the heart and somites. To explore the potential of mef2a as a tool for selective labeling of muscle cells in living zebrafish embryos, we constructed a transgene mef2aa:EGFP to induce the expression of green fluorescent protein (GFP) under the control of mef2a promoter. A ~2-kb DNA fragment, upstream of the translational start site of mef2aa, was identified to drive muscle-specific expression of EGFP in zebrafish embryos. Interestingly, the cranial muscles, abductor muscle, and adductor muscle were clearly labeled with EGFP in the established line Tg(mef2aa:EGFP) ntu803 . In addition, we showed that mef2aa mRNA was highly present in adult zebrafish heart, but not the skeleton muscle, whereas it was expressed in both embryonic heart and myotome, suggesting that mef2a is vital to the function of adult heart in vertebrates.
Collapse
Affiliation(s)
- Feng Lv
- College of Fisheries and Life Science, Shanghai Ocean University, 999 Huchenghuan Road, Lingang New City, Shanghai, 201306, China
- Nantong Science and Technology College, Qingnian Middle Road 136, Nantong, 226006, China
| | - Chenwen Zhu
- Co-Innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Qixiu Road 19, Nantong, 226001, China
| | - Xinghong Yan
- College of Fisheries and Life Science, Shanghai Ocean University, 999 Huchenghuan Road, Lingang New City, Shanghai, 201306, China.
| | - Xin Wang
- Co-Innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Qixiu Road 19, Nantong, 226001, China
| | - Dong Liu
- Co-Innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Qixiu Road 19, Nantong, 226001, China.
| |
Collapse
|
15
|
Wang W, Lee SJ, Scott PA, Lu X, Emery D, Liu Y, Ezashi T, Roberts MR, Ross JW, Kaplan HJ, Dean DC. Two-Step Reactivation of Dormant Cones in Retinitis Pigmentosa. Cell Rep 2016; 15:372-85. [PMID: 27050517 DOI: 10.1016/j.celrep.2016.03.022] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/02/2016] [Accepted: 03/04/2016] [Indexed: 01/01/2023] Open
Abstract
Most retinitis pigmentosa (RP) mutations arise in rod photoreceptor genes, leading to diminished peripheral and nighttime vision. Using a pig model of autosomal-dominant RP, we show glucose becomes sequestered in the retinal pigment epithelium (RPE) and, thus, is not transported to photoreceptors. The resulting starvation for glucose metabolites impairs synthesis of cone visual pigment-rich outer segments (OSs), and then their mitochondrial-rich inner segments dissociate. Loss of these functional structures diminishes cone-dependent high-resolution central vision, which is utilized for most daily tasks. By transplanting wild-type rods, to restore glucose transport, or directly replacing glucose in the subretinal space, to bypass its retention in the RPE, we can regenerate cone functional structures, reactivating the dormant cells. Beyond providing metabolic building blocks for cone functional structures, we show glucose induces thioredoxin-interacting protein (Txnip) to regulate Akt signaling, thereby shunting metabolites toward aerobic glucose metabolism and regenerating cone OS synthesis.
Collapse
Affiliation(s)
- Wei Wang
- Department of Ophthalmology & Visual Sciences, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | - Sang Joon Lee
- Department of Ophthalmology & Visual Sciences, University of Louisville Health Sciences Center, Louisville, KY 40202, USA; Department of Ophthalmology, College of Medicine, Kosin University, Busan, South Korea
| | - Patrick A Scott
- Department of Ophthalmology & Visual Sciences, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | - Xiaoqin Lu
- Department of Ophthalmology & Visual Sciences, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | - Douglas Emery
- Department of Ophthalmology & Visual Sciences, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | - Yongqin Liu
- Department of Ophthalmology & Visual Sciences, University of Louisville Health Sciences Center, Louisville, KY 40202, USA; Birth Defects Center, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | - Toshihiko Ezashi
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Michael R Roberts
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Jason W Ross
- Department of Animal Sciences, Iowa State University, Ames, IA 50011, USA
| | - Henry J Kaplan
- Department of Ophthalmology & Visual Sciences, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | - Douglas C Dean
- Department of Ophthalmology & Visual Sciences, University of Louisville Health Sciences Center, Louisville, KY 40202, USA; Molecular Targets Program, James Graham Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202, USA; Birth Defects Center, University of Louisville Health Sciences Center, Louisville, KY 40202, USA.
| |
Collapse
|
16
|
Mayrhofer M, Mione M. The Toolbox for Conditional Zebrafish Cancer Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 916:21-59. [PMID: 27165348 DOI: 10.1007/978-3-319-30654-4_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Here we describe the conditional zebrafish cancer toolbox, which allows for fine control of the expression of oncogenes or downregulation of tumor suppressors at the spatial and temporal level. Methods such as the Gal4/UAS or the Cre/lox systems paved the way to the development of elegant tumor models, which are now being used to study cancer cell biology, clonal evolution, identification of cancer stem cells and anti-cancer drug screening. Combination of these tools, as well as novel developments such as the promising genome editing system through CRISPR/Cas9 and clever application of light reactive proteins will enable the development of even more sophisticated zebrafish cancer models. Here, we introduce this growing toolbox of conditional transgenic approaches, discuss its current application in zebrafish cancer models and provide an outlook on future perspectives.
Collapse
Affiliation(s)
- Marie Mayrhofer
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Marina Mione
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
17
|
Kong Q, Hai T, Ma J, Huang T, Jiang D, Xie B, Wu M, Wang J, Song Y, Wang Y, He Y, Sun J, Hu K, Guo R, Wang L, Zhou Q, Mu Y, Liu Z. Rosa26 locus supports tissue-specific promoter driving transgene expression specifically in pig. PLoS One 2014; 9:e107945. [PMID: 25232950 PMCID: PMC4169413 DOI: 10.1371/journal.pone.0107945] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/17/2014] [Indexed: 11/19/2022] Open
Abstract
Genetically modified pigs have become a popular model system in fundamental research, agricultural and biomedical applications. However, random integration often result in unstable expression of transgene and unpredictable phenotypes. The Rosa26 locus has been widely used to produce genetic modified animals with high and consistent expressing of transgene in mouse, human and rat, as it can be targeted efficiently and is not subject to gene-silencing effects. Recently, the first case of reporter gene targeting pigs in porcine Rosa26 (pRosa26) locus was reported. In the study, full sequence of pRosa26 locus was further characterized, and the pRosa26 promoter (pR26) was cloned and we evidenced that the new porcine endogenous promoter is suitable for driving transgene expression in a high and stable manner by avoiding DNA methylation. Furthermore, elongation factor 1a promoter (EF1a) -driven GFP reporter and Myostatin promoter (MyoP)-driven Follistatin (Fst) were successfully targeted into the pRosa26 locusby traditional homologous recombination (HR) strategy. EF1a showed high activity and hypomethylation at the locus. And, muscle-specific promoter MyoP was activated strictly in muscle of the pRosa26 targeted pigs, indicating Rosa26 locus supports tissue-specific promoter driving transgene expression in its own manner. The study provided further demonstration on biomedical and agricultural applications of porcine Rosa26 promoter and locus.
Collapse
Affiliation(s)
- Qingran Kong
- Laboratory of Embryo Biotechnology, College of life science, Northeast Agricultural University, Harbin, China
| | - Tang Hai
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jing Ma
- Laboratory of Embryo Biotechnology, College of life science, Northeast Agricultural University, Harbin, China
| | - Tianqing Huang
- Laboratory of Embryo Biotechnology, College of life science, Northeast Agricultural University, Harbin, China
| | - Dandan Jiang
- Laboratory of Embryo Biotechnology, College of life science, Northeast Agricultural University, Harbin, China
| | - Bingteng Xie
- Laboratory of Embryo Biotechnology, College of life science, Northeast Agricultural University, Harbin, China
| | - Meiling Wu
- Laboratory of Embryo Biotechnology, College of life science, Northeast Agricultural University, Harbin, China
| | - Jiaqiang Wang
- Laboratory of Embryo Biotechnology, College of life science, Northeast Agricultural University, Harbin, China
| | - Yuran Song
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Ying Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yilong He
- Laboratory of Embryo Biotechnology, College of life science, Northeast Agricultural University, Harbin, China
| | - Jialu Sun
- Laboratory of Embryo Biotechnology, College of life science, Northeast Agricultural University, Harbin, China
| | - Kui Hu
- Laboratory of Embryo Biotechnology, College of life science, Northeast Agricultural University, Harbin, China
| | - Runfa Guo
- Laboratory of Embryo Biotechnology, College of life science, Northeast Agricultural University, Harbin, China
| | - Liu Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qi Zhou
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yanshuang Mu
- Laboratory of Embryo Biotechnology, College of life science, Northeast Agricultural University, Harbin, China
| | - Zhonghua Liu
- Laboratory of Embryo Biotechnology, College of life science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
18
|
Pickart MA, Klee EW. Zebrafish approaches enhance the translational research tackle box. Transl Res 2014; 163:65-78. [PMID: 24269745 DOI: 10.1016/j.trsl.2013.10.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 10/24/2013] [Accepted: 10/28/2013] [Indexed: 01/08/2023]
Abstract
During the past few decades, zebrafish (Danio rerio) have been a workhorse for developmental biology and genetics. Concurrently, zebrafish have proved highly accessible and effective for translational research by providing a vertebrate animal model useful for gene discovery, disease modeling, chemical genetic screening, and other medically relevant studies. Key resources such as an annotated and complete genome sequence, and diverse tools for genetic manipulation continue to spur broad use of zebrafish. Thus, the purpose of this introductory review is to provide a window into the unique characteristics and diverse uses of zebrafish and to highlight in particular the increasing relevance of zebrafish as a translational animal model. This is accomplished by reviewing broad considerations of anatomic and physiological conservation, approaches for disease modeling and creation, general laboratory methods, genetic tools, genome conservation, and diverse opportunities for functional validation. Additional commentary throughout the review also guides the reader to the 4 new reviews found elsewhere in this special issue that showcase the many unique ways the zebrafish is improving understanding of renal regeneration, mitochondrial disease, dyslipidemia, and aging, for example. With many other possible approaches and a rapidly increasing number of medically relevant reports, zebrafish approaches enhance significantly the tools available for translational research and are actively improving the understanding of human disease.
Collapse
Affiliation(s)
| | - Eric W Klee
- Mayo Clinic, College of Medicine, Rochester, Minn
| |
Collapse
|
19
|
Abstract
By combining the strength of previously described in vivo cell tracking methodologies, we have recently generated a set of transgenic zebrafish lines, called "PhOTO (photoconvertible optical tracking of…)" zebrafish. PhOTO zebrafish lines are suitable for cell tracking during highly dynamic events, including gastrulation, tissue regeneration, tumorigenesis, and cancer/disease progression. Global monitoring of cell shape, cell interactions, e.g., cell intercalations, coordinated division, and cell dynamics are accomplished by using fluorescence imaging of nuclear and plasma membrane fluorescent protein labeling. The irreversible green-to-red photoconversion property of Dendra2 fusions enables noninvasive, specific and high-contrast selection of targeted cells of interest, which greatly simplifies cell tracking and segmentation in time and space. Here we demonstrate photoconversion and in vivo cell tracking using PhOTO zebrafish.
Collapse
Affiliation(s)
- William P Dempsey
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland
| | | | | |
Collapse
|
20
|
Juntti SA, Hu CK, Fernald RD. Tol2-mediated generation of a transgenic haplochromine cichlid, Astatotilapia burtoni. PLoS One 2013; 8:e77647. [PMID: 24204902 PMCID: PMC3808393 DOI: 10.1371/journal.pone.0077647] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 09/12/2013] [Indexed: 12/14/2022] Open
Abstract
Cichlid fishes represent one of the most species-rich and rapid radiations of a vertebrate family. These ~2200 species, predominantly found in the East African Great Lakes, exhibit dramatic differences in anatomy, physiology, and behavior. However, the genetic bases for this radiation, and for the control of their divergent traits, are unknown. A flood of genomic and transcriptomic data promises to suggest mechanisms underlying the diversity, but transgenic technology will be needed to rigorously test the hypotheses generated. Here we demonstrate the successful use of the Tol2 transposon system to generate transgenic Astatotilapia burtoni, a haplochromine cichlid from Lake Tanganyika, carrying the GFP transgene under the control of the ubiquitous EF1α promoter. The transgene integrates into the genome, is successfully passed through the germline, and the widespread GFP expression pattern is stable across siblings and multiple generations. The stable inheritance and expression patterns indicate that the Tol2 system can be applied to generate A. burtoni transgenic lines. Transgenesis has proven to be a powerful technology for manipulating genes and cells in other model organisms and we anticipate that transgenic A. burtoni and other cichlids will be used to test the mechanisms underlying behavior and speciation.
Collapse
Affiliation(s)
- Scott A. Juntti
- Department of Biology, Stanford University, Stanford, California, United States of America
- * E-mail:
| | - Caroline K. Hu
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Russell D. Fernald
- Department of Biology, Stanford University, Stanford, California, United States of America
| |
Collapse
|
21
|
Basu S, Sachidanandan C. Zebrafish: a multifaceted tool for chemical biologists. Chem Rev 2013; 113:7952-80. [PMID: 23819893 DOI: 10.1021/cr4000013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sandeep Basu
- Council of Scientific and Industrial Research-Institute of Genomics & Integrative Biology (CSIR-IGIB) , South Campus, New Delhi 110025, India
| | | |
Collapse
|
22
|
Sugano Y, Neuhauss SCF. Reverse genetics tools in zebrafish: a forward dive into endocrinology. Gen Comp Endocrinol 2013; 188:303-8. [PMID: 23454670 DOI: 10.1016/j.ygcen.2013.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/05/2013] [Indexed: 01/01/2023]
Abstract
The zebrafish is a powerful genetic model organism. In recent years, zebrafish has been increasingly used to model human diseases. Due to a number of recent technological advancements, the genetic tool box is now also stocked with sophisticated transgenic and reverse genetic tools. Here, we focus on both commonly used and recently established reverse genetic and transgenic tools available in zebrafish. These new developments make the zebrafish an even more attractive animal model in comparative endocrinology.
Collapse
Affiliation(s)
- Yuya Sugano
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | |
Collapse
|
23
|
Yoshinari N, Ando K, Kudo A, Kinoshita M, Kawakami A. Colored medaka and zebrafish: transgenics with ubiquitous and strong transgene expression driven by the medaka β-actin promoter. Dev Growth Differ 2012; 54:818-28. [PMID: 23157381 DOI: 10.1111/dgd.12013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 09/28/2012] [Accepted: 09/30/2012] [Indexed: 11/29/2022]
Abstract
Conditional cell labeling, cell tracing, and genetic manipulation approaches are becoming increasingly important in developmental and regenerative biology. Such approaches in zebrafish research are hampered by the lack of an ubiquitous transgene driver element that is active at all developmental stages. Here, we report the isolation and characterization of the medaka fish (Oryzias latipes) β-actin (Olactb) promoter, which drives constitutive transgene expression during all developmental stages, and the analysis of adult organs except blood cell types. Taking advantage of the compact medaka promoter, we succeeded in generating a zebrafish transgenic (Tg) line with unprecedentedly strong and widespread transgene expression from embryonic to adult stages. Moreover, the Tg carries a pair of loxP sites, which enables the reporter fluorophore to switch from DsRed2 to enhanced green fluorescent protein (EGFP). We induced Cre/loxP recombination with Tg(hsp70l: mCherry-t2a-Cre(ERt2) ) in the double Tg embryo and generated a Tg line that constitutively expresses EGFP. We further demonstrate the powerful application of Olactb-driven Tgs for cell lineage tracing using transplantation experiments with embryonic cells at the shield stage and adult cells of regenerating fin. Thus, the use of promoter elements from medaka is an alternative approach to generate Tgs with stronger and even novel expression patterns in zebrafish. The Olactb promoter and the Tg lines presented here represent an important advancement for the broader use of Cre/loxP-based Tg applications in zebrafish.
Collapse
Affiliation(s)
- Nozomi Yoshinari
- Department of Biological Information, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
| | | | | | | | | |
Collapse
|
24
|
Hartmann N, Englert C. A microinjection protocol for the generation of transgenic killifish (Species: Nothobranchius furzeri). Dev Dyn 2012; 241:1133-41. [DOI: 10.1002/dvdy.23789] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2012] [Indexed: 01/10/2023] Open
|
25
|
Cho YS, Lee SY, Kim YK, Kim DS, Nam YK. Functional ability of cytoskeletal β-actin regulator to drive constitutive and ubiquitous expression of a fluorescent reporter throughout the life cycle of transgenic marine medaka Oryzias dancena. Transgenic Res 2011; 20:1333-55. [PMID: 21437716 DOI: 10.1007/s11248-011-9501-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Accepted: 02/20/2011] [Indexed: 01/16/2023]
Abstract
Marine medaka Oryzias dancena, a candidate model organism, represents many attractive merits as a material for experimental transgenesis and/or heterologous expression assay particularly in the field of ecotoxicology and developmental biology. In this study, cytoskeletal β-actin gene was characterized from O. dancena and the functional capability of its promoter to drive constitutive expression of foreign reporter protein was evaluated. The O. dancena β-actin gene possessed a conserved genomic organization of vertebrate major cytoplasmic actin genes and the bioinformatic analysis of its 5'-upstream regulatory region predicted various transcription factor binding motifs. Heterologous expression assay using a red fluorescent protein (RFP) reporter construct driven by the O. dancena β-actin regulator resulted in stunningly bright expression of red fluorescence signals in not only microinjected embryos but also grown-up transgenic adults. Although founder transgenics exhibited mosaic patterns of RFP expression, transgenic offspring in subsequent generations displayed a vivid and uniform expression of RFP continually from embryos to adults. Based on the blot hybridization assays, two transgenic lines established in this study were proven to possess high copy numbers of transgene integrants (approximately 240 and 34 copies, respectively), and the transgenic genotype in both lines could successfully be passed stably up to three generations, although the rate of transgene transmission in one of the two transgenic lines was significantly lower than expected Mendelian ratio. Significant red fluorescence color could be ubiquitously observable in all the tissues or organs of the transgenics. Quantitative real-time RT-PCR represented that the expression pattern of transgene under the regulation of β-actin promoter would resemble, in overall, the regulation of endogenous β-actin gene in adult tissues, although putative mechanism for competitive or independent regulation between transgene and endogenous gene could also be found in several tissues. Results from this study undoubtedly indicate that the O. dancena β-actin promoter would be powerful enough to fluorescently visualize most cell types in vivo throughout its whole lifespan. This study could be a useful start point for a variety of transgenic experiments with this species concerning the constitutive expression of living fluorescent color reporters and other foreign proteins.
Collapse
MESH Headings
- Actins/genetics
- Actins/metabolism
- Animal Structures/cytology
- Animal Structures/metabolism
- Animals
- Animals, Genetically Modified/genetics
- Animals, Genetically Modified/metabolism
- Blotting, Southern
- Cloning, Molecular
- Computational Biology
- Cytoskeleton/genetics
- Cytoskeleton/metabolism
- Embryo, Nonmammalian/cytology
- Embryo, Nonmammalian/embryology
- Embryo, Nonmammalian/metabolism
- Embryonic Development
- Female
- Fish Proteins/genetics
- Fish Proteins/metabolism
- Gene Dosage
- Gene Expression Regulation, Developmental
- Gene Library
- Genes, Reporter
- Genetic Vectors/genetics
- Genetic Vectors/metabolism
- Inheritance Patterns
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Male
- Microinjections
- Microscopy, Fluorescence
- Oryzias/embryology
- Oryzias/genetics
- Oryzias/metabolism
- Promoter Regions, Genetic
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transgenes
- Red Fluorescent Protein
Collapse
Affiliation(s)
- Young Sun Cho
- Institute of Marine Living Modified Organisms, Pukyong National University, Busan 608-737, Korea
| | | | | | | | | |
Collapse
|
26
|
Kizil C, Brand M. Cerebroventricular microinjection (CVMI) into adult zebrafish brain is an efficient misexpression method for forebrain ventricular cells. PLoS One 2011; 6:e27395. [PMID: 22076157 PMCID: PMC3208640 DOI: 10.1371/journal.pone.0027395] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 10/16/2011] [Indexed: 11/19/2022] Open
Abstract
The teleost fish Danio rerio (zebrafish) has a remarkable ability to generate newborn neurons in its brain at adult stages of its lifespan-a process called adult neurogenesis. This ability relies on proliferating ventricular progenitors and is in striking contrast to mammalian brains that have rather restricted capacity for adult neurogenesis. Therefore, investigating the zebrafish brain can help not only to elucidate the molecular mechanisms of widespread adult neurogenesis in a vertebrate species, but also to design therapies in humans with what we learn from this teleost. Yet, understanding the cellular behavior and molecular programs underlying different biological processes in the adult zebrafish brain requires techniques that allow manipulation of gene function. As a complementary method to the currently used misexpression techniques in zebrafish, such as transgenic approaches or electroporation-based delivery of DNA, we devised a cerebroventricular microinjection (CVMI)-assisted knockdown protocol that relies on vivo morpholino oligonucleotides, which do not require electroporation for cellular uptake. This rapid method allows uniform and efficient knockdown of genes in the ventricular cells of the zebrafish brain, which contain the neurogenic progenitors. We also provide data on the use of CVMI for growth factor administration to the brain – in our case FGF8, which modulates the proliferation rate of the ventricular cells. In this paper, we describe the CVMI method and discuss its potential uses in zebrafish.
Collapse
Affiliation(s)
- Caghan Kizil
- DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence (CRTD), and Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Michael Brand
- DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence (CRTD), and Biotechnology Center, Technische Universität Dresden, Dresden, Germany
- * E-mail:
| |
Collapse
|
27
|
Yoshinari N, Kawakami A. Mature and juvenile tissue models of regeneration in small fish species. THE BIOLOGICAL BULLETIN 2011; 221:62-78. [PMID: 21876111 DOI: 10.1086/bblv221n1p62] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The multitude of cells constituting organisms are fragile and easily damaged day by day. Therefore, maintenance of tissue morphology and function is fundamental for multicellular organisms to attain long life. For proper maintenance of tissue integrity, organisms must have mechanisms that detect the loss of tissue mass, activate the de novo production of cells, and organize those cells into functional tissues. However, these processes are only poorly understood. Here we give an overview of adult and juvenile tissue regeneration models in small fish species, such as zebrafish and medaka, and highlight recent advances at the molecular level. From these advances, we have come to realize that the epidermal and mesenchymal parts of the regenerating fish fin-that is, the wound epidermis and blastema, respectively-comprise heterogeneous populations of cells with different molecular identities that can be termed "compartments." These compartments and their mutual interactions are thought to play important roles in promoting the proper progression of tissue regeneration. We further describe the current understanding of these compartments and discuss the possible approaches to affording a better understanding of their roles and interactions during regeneration.
Collapse
Affiliation(s)
- Nozomi Yoshinari
- Department of Biological Information, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | | |
Collapse
|
28
|
Tu S, Johnson SL. Fate restriction in the growing and regenerating zebrafish fin. Dev Cell 2011; 20:725-32. [PMID: 21571228 DOI: 10.1016/j.devcel.2011.04.013] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 04/24/2011] [Accepted: 04/26/2011] [Indexed: 10/18/2022]
Abstract
We use transposon-based clonal analysis to identify the lineage classes that make the adult zebrafish caudal fin. We identify nine distinct lineage classes, including epidermis, melanocyte/xanthophore, iridophore, intraray glia, lateral line, osteoblast, dermal fibroblast, vascular endothelium, and resident blood. These lineage classes argue for distinct progenitors, or organ founding stem cells (FSCs), for each lineage, which retain fate restriction throughout growth of the fin. Thus, distinct FSCs exist for the four neuroectoderm lineages, and dermal fibroblasts are not progenitors for fin ray osteoblasts; however, artery and vein cells derive from a shared lineage in the fin. Transdifferentiation of cells or lineages in the regeneration blastema is often postulated. However, our studies of single progenitors or FSCs reveal no transfating or transdifferentiation between these lineages in the regenerating fin. This result shows that, the same as in growth, lineages retain fate restriction when passed through the regeneration blastema.
Collapse
Affiliation(s)
- Shu Tu
- Department of Genetics, Washington University Medical School, St Louis, MO 63110, USA
| | | |
Collapse
|
29
|
Mosimann C, Kaufman CK, Li P, Pugach EK, Tamplin OJ, Zon LI. Ubiquitous transgene expression and Cre-based recombination driven by the ubiquitin promoter in zebrafish. Development 2011; 138:169-77. [PMID: 21138979 DOI: 10.1242/dev.059345] [Citation(s) in RCA: 311] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Molecular genetics approaches in zebrafish research are hampered by the lack of a ubiquitous transgene driver element that is active at all developmental stages. Here, we report the isolation and characterization of the zebrafish ubiquitin (ubi) promoter, which drives constitutive transgene expression during all developmental stages and analyzed adult organs. Notably, ubi expresses in all blood cell lineages, and we demonstrate the application of ubi-driven fluorophore transgenics in hematopoietic transplantation experiments to assess true multilineage potential of engrafted cells. We further generated transgenic zebrafish that express ubiquitous 4-hydroxytamoxifen-controlled Cre recombinase activity from a ubi:cre(ERt2) transgene, as well as ubi:loxP-EGFP-loxP-mCherry (ubi:Switch) transgenics and show their use as a constitutive fluorescent lineage tracing reagent. The ubi promoter and the transgenic lines presented here thus provide a broad resource and important advancement for transgenic applications in zebrafish.
Collapse
|
30
|
van Ham TJ, Mapes J, Kokel D, Peterson RT. Live imaging of apoptotic cells in zebrafish. FASEB J 2010; 24:4336-42. [PMID: 20601526 DOI: 10.1096/fj.10-161018] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Many debilitating diseases, including neurodegenerative diseases, involve apoptosis. Several methods have been developed for visualizing apoptotic cells in vitro or in fixed tissues, but few tools are available for visualizing apoptotic cells in live animals. Here we describe a genetically encoded fluorescent reporter protein that labels apoptotic cells in live zebrafish embryos. During apoptosis, the phospholipid phosphatidylserine (PS) is exposed on the outer leaflet of the plasma membrane. The calcium-dependent protein Annexin V (A5) binds PS with high affinity, and biochemically purified, fluorescently labeled A5 probes have been widely used to detect apoptosis in vitro. Here we show that secreted A5 fused to yellow fluorescent protein specifically labels apoptotic cells in living zebrafish. We use this fluorescent probe to characterize patterns of apoptosis in living zebrafish larvae and to visualize neuronal cell death at single-cell resolution in vivo.
Collapse
Affiliation(s)
- Tjakko J van Ham
- Cardiovascular Research Center, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | |
Collapse
|
31
|
The Application of Transgenic Animals in MicroRNA Research. PROG BIOCHEM BIOPHYS 2010. [DOI: 10.3724/sp.j.1206.2009.00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Epigenetic regulatory mechanisms in vertebrate eye development and disease. Heredity (Edinb) 2010; 105:135-51. [PMID: 20179734 DOI: 10.1038/hdy.2010.16] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Eukaryotic DNA is organized as a nucleoprotein polymer termed chromatin with nucleosomes serving as its repetitive architectural units. Cellular differentiation is a dynamic process driven by activation and repression of specific sets of genes, partitioning the genome into transcriptionally active and inactive chromatin domains. Chromatin architecture at individual genes/loci may remain stable through cell divisions, from a single mother cell to its progeny during mitosis, and represents an example of epigenetic phenomena. Epigenetics refers to heritable changes caused by mechanisms distinct from the primary DNA sequence. Recent studies have shown a number of links between chromatin structure, gene expression, extracellular signaling, and cellular differentiation during eye development. This review summarizes recent advances in this field, and the relationship between sequence-specific DNA-binding transcription factors and their roles in recruitment of chromatin remodeling enzymes. In addition, lens and retinal differentiation is accompanied by specific changes in the nucleolar organization, expression of non-coding RNAs, and DNA methylation. Epigenetic regulatory mechanisms in ocular tissues represent exciting areas of research that have opened new avenues for understanding normal eye development, inherited eye diseases and eye diseases related to aging and the environment.
Collapse
|
33
|
Abstract
The Cre/loxP site-specific recombination system has been widely used to manipulate DNA in vivo and to study gene function in the mouse by inducible transgenic and conditional gene targeting. To fully use this powerful genetic tool in a relatively new animal model, zebrafish, we generated reporter transgenic lines for easy detection of Cre recombinase activity in vivo. The transgenic fish lines, designated G2R, express two fluorescent protein genes, GFP and RFP, under the control of the ubiquitous promoter of the Xenopus EF1 alpha gene. The G2R animals change their color from green to red (G2R) after Cre-mediated recombination and are useful for development of cell type specific Cre transgenic lines and for cell lineage and fate mapping studies in zebrafish.
Collapse
Affiliation(s)
- Shunichi Yoshikawa
- Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | | | | |
Collapse
|