1
|
Gabriel ANA, Wang XY, Zu GY, Zhen PY, Jamil L, Shen SJ, Li C, Theoneste N, Zhao L, Cao WC. Geospatial and modelling analyses reveal diverse tick and tick-associated microbes in the East African Community. Infect Dis Poverty 2025; 14:39. [PMID: 40405314 PMCID: PMC12096497 DOI: 10.1186/s40249-025-01310-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 04/27/2025] [Indexed: 05/24/2025] Open
Abstract
BACKGROUND The continuous geographic expansion of ticks and the emergence of tick-borne diseases have raised tremendous global public health concerns, particularly in the East African Community (EAC). This study aimed to investigate the distribution of ticks and tick-associated microbes and to predict the potential extension of dominant tick species in the EAC. METHODS Data were collected from literature reviews and related websites and analyzed using ArcGIS to generate maps showing the geographical distribution of ticks and associated microbes. Meta-analyses were conducted to estimate the positive rates of microbes. Ecological niche modelling was used to project the potential expansion of predominant tick species. RESULTS A total of 138 tick species were recorded in the seven EAC countries, including five genera of the Argasidae family, eight of the Ixodidae family, and monospecific Nuttalliellidae. Overall, 64 tick-associated microbes, including 22 viruses, 26 bacteria, and 16 protists, were identified, of which 43 (11 viruses, 21 bacteria, and 11 protists) were pathogenic to humans or animals. Among them, 5 (2 viruses and 3 bacteria) have been reported in humans, while 10 pathogens (1 virus, 4 bacteria, and 5 protists) have been reported in animals. The predictive model identified suitable habitats for four dominant tick species, with certain species flourishing under ideal conditions, such as elevation, temperature, and vegetation. Our study revealed that ticks might affect broader areas where they have never been previously reported. CONCLUSIONS Ticks are widely prevalent in the EAC, and some ticks harbor a variety of microbial agents that can have significant pathogenetic implications for human and animal health. Therefore, EAC authorities and medical personnel should acknowledge the potential threat posed by ticks and tick-associated pathogens to the well-being of people and animals. Surveillance and etiological diagnosis should be enhanced to control ticks and prevent tick-borne infections.
Collapse
Affiliation(s)
- Abakundana Nsenga Ariston Gabriel
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Xiao-Yang Wang
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Guo-Yao Zu
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Pei-Yu Zhen
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Laila Jamil
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Shi-Jing Shen
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Cheng Li
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Ntakirutimana Theoneste
- School of Public Health, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Lin Zhao
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China.
| | - Wu-Chun Cao
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China.
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China.
| |
Collapse
|
2
|
Haji I, Simuunza M. Molecular detection of Ehrlichia ruminantium and Coxiella burnetii among apparently healthy sheep and goats in eastern Tanzania. Trop Anim Health Prod 2025; 57:193. [PMID: 40289207 DOI: 10.1007/s11250-025-04454-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025]
Abstract
Heartwater and Coxiellosis caused by Ehrlichia ruminantium and Coxiella burnetii, respectively are among the common tick-borne diseases (TBDs) of small ruminants in many regions of the world. Coxiella burnetii is also zoonotic, presenting a concern for public health. Despite their economic importance in the livestock sector in Sub-Saharan Africa, little attention has been given to these pathogens of sheep and goats. This cross-sectional study aimed at establishing the infection rates of Coxiella burnetii and Ehrlichia ruminantium in clinically healthy sheep and goats from Chalinze and Muheza districts in Tanzania. The PCR results revealed that of 223 animals sampled, (31.8%, n = 71) were positive for at least one pathogen. The most frequently observed pathogen was C. burnetii (16.1%, n = 36), followed by E. ruminantium (12.6%, n = 28) and their co-infections (3.1%, n = 7). The prevalence of these TBPs differed significantly (p = 0.020) among sheep (27.9%, n = 17) and goats (34.1%, n = 57). The prevalence of C. burnetii was (11.5%, n = 7) in sheep and (17.9%, n = 29) in goats. On the other hand, the prevalence of E. ruminantium was (9.8%, n = 6) for sheep and (13.2%, n = 22) for goats. The co-infection of C. burnetii and E. ruminantium differed significantly (p < 0.001) among small ruminants. Only the prevalence of C. burnetii increased significantly (p = 0.038) with increasing age. The observation of DNAs of TBPs in apparently healthy sheep/goats suggests that these animals have either established a state of enzootic stability against the pathogen or infection was by non-pathogenic variants of the pathogen. Such animals continuously act as sources of infection for ticks and other hosts, including humans, hence facilitating the transmission and maintenance of the pathogen in an area. It is thus essential to continue monitoring these pathogens regardless of the clinical status of the small ruminants.
Collapse
Affiliation(s)
- Isihaka Haji
- Department of Veterinary Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O. Box 3019, Morogoro, Tanzania.
| | - Martin Simuunza
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, P. O. Box 32379, Lusaka, Zambia
- Africa Centre of Excellence for Infectious Diseases of Humans and Animals, University of Zambia, P. O. Box 32379, Lusaka, Zambia
| |
Collapse
|
3
|
Liu J, Zhou A, Liu Q, Gao Y, Xu S, Lu Y. Genomic Insights into Vector-Pathogen Adaptation in Haemaphysalis longicornis and Rhipicephalus microplus. Pathogens 2025; 14:306. [PMID: 40333071 PMCID: PMC12030188 DOI: 10.3390/pathogens14040306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/07/2025] [Accepted: 03/19/2025] [Indexed: 05/09/2025] Open
Abstract
As crucial vectors that transmit pathogens to humans and livestock, ticks pose substantial global health threats and economic burdens. We analyzed 328 tick genomes to explore the population's genetic structure and the adaptive evolution of H. longicornis and R. microplus, two tick species with distinct life cycle characteristics. We observed distinct genetic structures in H. longicornis and R. microplus. Gene flow estimation revealed a closer genetic connection in R. microplus than H. longicornis, which was facilitated by geographical proximity. Notably, we identified a set of candidate genes associated with possible adaptations. Specifically, the immune-related gene DUOX and the iron transport gene ACO1 showed significant signals of natural selection in R. microplus. Similarly, H. longicornis exhibited selection in pyridoxal-phosphate-dependent enzyme genes associated with heme synthesis. Moreover, we observed significant correlations between the abundance of pathogens, such as Rickettsia and Francisella, and specific tick genotypes, which highlights the role of R. microplus in maintaining these pathogens and its adaptations that influence immune responses and iron metabolism, suggesting potential coevolution between vectors and pathogens. Our study highlights the vital genes involved in tick blood feeding and immunity, and it provides insights into the coevolution of ticks and tick-borne pathogens.
Collapse
Affiliation(s)
- Jin Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China; (J.L.); (Y.G.); (S.X.)
| | - An Zhou
- Center for Evolutionary Biology, Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 200438, China;
| | - Qi Liu
- Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 201203, China;
| | - Yang Gao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China; (J.L.); (Y.G.); (S.X.)
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China; (J.L.); (Y.G.); (S.X.)
- Center for Evolutionary Biology, Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 200438, China;
- Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 201203, China;
| | - Yan Lu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China; (J.L.); (Y.G.); (S.X.)
- Center for Evolutionary Biology, Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 200438, China;
| |
Collapse
|
4
|
Haque MS, Kim B, You MJ. Comprehensive antigen identification and comparative analysis: significant approaches for controlling Haemaphysalis longicornis ticks. J Vet Sci 2025; 26:e16. [PMID: 40183904 PMCID: PMC11972946 DOI: 10.4142/jvs.24250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 04/05/2025] Open
Abstract
IMPORTANCE Ticks transmit severe human and animal diseases, posing global health and economic risks. Haemaphysalis longicornis spreads infections like Rickettsia, Theileria, and Anaplasma, exacerbating concerns. Conventional tick control, including chemical acaricides, faces challenges like toxicity, non-target effects, and resistance. Innovative, sustainable strategies are essential. Advances in tick antigen research have identified molecular targets, paving the way for anti-tick vaccines as a promising, eco-friendly alternative to manage H. longicornis infestations and reduce tick-borne disease transmission. This review explores recent discoveries in tick antigens, the development of recombinant proteins, and their knockdown effects on H. longicornis infestations. OBSERVATIONS Several novel antigens target essential physiological processes for tick survival. Reproductive and developmental antigens, such as subolesin and subolesin+cystatin, regulate immunity and reproduction, reducing blood feeding, oviposition, egg mass, and hatching rates. Knockdown of recombinant P27/30 impairs embryogenesis, significantly reducing larval survival. Chitinase inhibition disrupts molting, impairing nymph development. Metabolic enzymes like enolase and GSK-3β regulate homeostasis and energy production; their inhibition reduces feeding efficiency and survivability. Additionally, ribosomal protein S27 and troponin I-like protein, essential for protein synthesis and muscle contraction, respectively, impact tick growth and mobility. These antigens may serve as valuable vaccine targets for controlling H. longicornis. CONCLUSIONS AND RELEVANCE Anti-tick vaccines offer a cost-effective, sustainable alternative to chemical controls. Advances in transcriptomics, genomics, and proteomics have identified promising antigens, with subolesin, chitinase, troponin I-like protein, GSK-3β, and enolase demonstrating strong potential. Enolase, affecting immunity, reproduction, and pathogen transmission, emerges as the most effective target for reducing H. longicornis infestations.
Collapse
Affiliation(s)
- Md Samiul Haque
- Laboratory of Veterinary Parasitology, College of Veterinary Medicine and Bio-Safety Research Centre, Jeonbuk National University, Iksan 54596, Korea
| | - Bumseok Kim
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea
| | - Myung-Jo You
- Laboratory of Veterinary Parasitology, College of Veterinary Medicine and Bio-Safety Research Centre, Jeonbuk National University, Iksan 54596, Korea.
| |
Collapse
|
5
|
Nyangiwe N, Matthee S. Ticks (Acari: Ixodidae) and tick-borne diseases affecting communal cattle and the control methods practiced by farmers in the Eastern Cape Province of South Africa. Vet World 2025; 18:746-754. [PMID: 40342746 PMCID: PMC12056896 DOI: 10.14202/vetworld.2025.746-754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 02/27/2025] [Indexed: 05/11/2025] Open
Abstract
Background and Aim Ticks and tick-borne diseases (TBDs) pose significant threats to cattle farming, impacting livestock health, productivity, and economic sustainability. In communal farming systems, the challenges of tick control are exacerbated by limited resources, acaricide resistance, and climate change. This study assesses communal cattle farmers' knowledge, attitudes, and practices regarding ticks, TBDs, and the control measures implemented in the Eastern Cape Province (ECP) of South Africa. Materials and Methods A cross-sectional survey was conducted using structured questionnaires administered to 100 cattle farmers across 20 communities in four vegetation types: Albany coastal belt (ACB), Amathole montane grassland (AMG), Bhisho thornveld (BT), and Great fish thicket (GFT). Data were analyzed using descriptive statistics, Pearson's Chi-square tests, and Kruskal-Wallis tests to determine associations between farmer demographics, livestock management practices, and the prevalence of TBDs. Results Most respondents (85%) were male, with an average age of 60 years, and 65% had only primary education. Livestock ownership varied across vegetation types, with cattle numbers ranging between 12.8 ± 1.17 and 15.6 ± 1.35 per farmer. Tick infestation was perceived as a major constraint, with adult cattle more affected than calves (χ2 = 15.98, p < 0.001). The most commonly reported TBDs were redwater (100%), gallsickness (90%), and heartwater (43%), with heartwater absent in AMG. Tick control methods included plunge dipping (90%) and the use of alternative treatments such as used motor oil (54%) and Jeyes fluid (35%). Acaricide inefficacy, poor mixing practices, and the uncontrolled movement of cattle were identified as major constraints to effective tick management. Conclusion Communal cattle farmers in the ECP recognize ticks and TBDs as critical challenges, with variations in TBD prevalence linked to vegetation type. Ineffective acaricide use and resistance are growing concerns, necessitating improved extension services and farmer education. Sustainable tick management strategies should integrate scientific knowledge with indigenous practices to enhance livestock health and productivity in communal farming systems.
Collapse
Affiliation(s)
- N. Nyangiwe
- Department of Agriculture and Animal Health, University of South Africa, Florida, 1710, South Africa
- Department of Agriculture, Döhne Agricultural Development Institute, Private Bag X15, Sutterheim 4930, South Africa
| | - S. Matthee
- Department of Conservation Ecology and Entomology, University of Stellenbosch, Stellenbosch, 6201, South Africa
| |
Collapse
|
6
|
Aziz MU, Zeb J, Lontsi-Demano M, Almendros A, de la Fuente J, Sparagano OA, Butaye P. Unveiling Tick Diversity in Cattle in Cameroon: Emergence of Rhipicephalus microplus, Replacing the Original Rhipicephalus spp. Vet Sci 2025; 12:123. [PMID: 40005883 PMCID: PMC11860473 DOI: 10.3390/vetsci12020123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025] Open
Abstract
Ticks are well-known vectors of pathogens, posing considerable risks to livestock health and productivity. In Cameroon, where livestock production is vital, established tick species such as Amblyomma variegatum and Hyalomma truncatum are prevalent in key cattle-rearing areas. The recent introduction of the invasive, acaricide-resistant Rhipicephalus microplus further complicates control efforts. In this study, we deliver baseline data on the composition of tick species and their shifts within agroecological zone I (AEZ I) and agroecological zone III (AEZ III) of Cameroon, providing a foundation for targeted vector control strategies to ultimately reduce the risk of pathogen transmission. From 1100 ticks collected across two Cameroonian agroecological zones, H. truncatum (39.9%), A. variegatum (31%), and R. microplus (10.64%) were the most prevalent species, along with Rhipicephalus lunulatus (4.45%), Hyalomma rufipes (1.45%), Hyalomma marginatum (1.09%), Hyalomma dromedarii (0.45%), and Rhipicephalus sanguineus (0.9%). Molecular identification using cytochrome C oxidase subunit 1 (cox1) and 16s led to the identification of five additional species, Hyalomma nitidum (0.73%), Rhipicephalus simus (3.54%), Rhipicephalus sulcatus (2.64%), Rhipicephalus praetextatus (2.1%), and Rhipicephalus pusillus (1.1%). R. microplus emerged as the most dominant Rhipicephalus spp. in AEZ I, comprising 67.5% of the total Rhipicephalus ticks. In conclusion, we demonstrate the further spread of R. microplus, which represents a major source of vector-borne diseases, affecting both humans and animals.
Collapse
Affiliation(s)
- Muhammad Umair Aziz
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong 999077, China; (M.U.A.); (O.A.S.)
| | - Jehan Zeb
- Center for Immunology and Infection Limited, Hong Kong Science and Technology Park, Hong Kong, China;
| | - Michel Lontsi-Demano
- International Institute of Tropical Agriculture (IITA), Cotonou P.O. Box 0932, Benin;
| | - Angel Almendros
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, China;
| | - José de la Fuente
- Health and Biotechnology (SaBio), Instituto de Investigación en Recursos Cinegéticos (IREC)-Spanish National Research Council (CSIC)-University of Castille La Mancha (UCLM)-Castilla La Mancha Regional Council (JCCM), Ronda de Toldo 12, 13005 Ciudad Real, Spain;
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Olivier Andre Sparagano
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong 999077, China; (M.U.A.); (O.A.S.)
- UK Management College, Manchester M11 1AA, UK
| | - Patrick Butaye
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong 999077, China; (M.U.A.); (O.A.S.)
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| |
Collapse
|
7
|
Makwarela TG, Seoraj-Pillai N, Nangammbi TC. Tick Control Strategies: Critical Insights into Chemical, Biological, Physical, and Integrated Approaches for Effective Hard Tick Management. Vet Sci 2025; 12:114. [PMID: 40005873 PMCID: PMC11860501 DOI: 10.3390/vetsci12020114] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Ticks and tick-borne diseases significantly impact animal health, public health, and economic productivity globally, particularly in areas where the wildlife-livestock interface complicates management. This review critically examines the current control strategies, focusing on chemical, biological, physical, and integrated pest management (IPM) approaches. Chemical acaricides, while effective, are increasingly challenged by resistance development and environmental concerns. Biological approaches, including natural predators and entomopathogenic fungi, and physical interventions, such as habitat modification, provide sustainable alternatives but require further optimization. IPM stands out as the most promising long-term solution, integrating multiple approaches to enhance efficacy while reducing environmental risks. Emerging innovations, such as nanotechnology-enhanced acaricides and next-generation vaccines, offer promising avenues for improved tick control. Addressing the complex challenges of tick management requires tailored strategies, interdisciplinary collaboration, and sustained research investment in both veterinary and public health contexts.
Collapse
Affiliation(s)
- Tsireledzo Goodwill Makwarela
- Department of Nature Conservation, Faculty of Science, Tshwane University of Technology, Staatsartillerie Rd, Pretoria West, Pretoria 0183, South Africa; (N.S.-P.); (T.C.N.)
| | | | | |
Collapse
|
8
|
Ku JY, Jung Y, Kim Y, Choi KS, Park J. Prevalence of Anaplasma spp. and Theileria spp. Antigens and Antibodies in Housed and Grazing Korean Indigenous Cattle. Vector Borne Zoonotic Dis 2025; 25:92-99. [PMID: 39291322 DOI: 10.1089/vbz.2024.0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Background: Infection with tick-borne pathogens (TBPs) causes anemia, jaundice, and growth retardation in cattle. Many studies have conducted antigen (Ag) tests for major TBPs, such as Anaplasma spp. and Theileria spp., in Korean indigenous cattle (KIC); however, few studies have analyzed antibodies (Ab) against these pathogens. Materials and Methods: This study simultaneously tested 15 housed cattle raised indoor for over a year and 67 grazing cattle for Anaplasma spp. and Theileria spp. Ag using polymerase chain reaction analysis and Ab using enzyme-linked immunosorbent assay. Results: The A. phagocytophilum was detected in 3 housed cattle (20.0%) and 30 grazing cattle (44.8%), whereas the T. orientalis was detected in 3 housed cattle (20.0%) and 54 grazing cattle (80.6%). The positivity rates for Anaplasma spp. Ab did not differ significantly between housed and grazing cattle (4 out of 15 [93.3%] and 55 out of 67 [80.0%], respectively). The positivity rates for Theileria spp. Ab were higher in grazing cattle than in housed cattle (21 of 67 [31.3%] and 0 out of 15 [0.0%], respectively) (P < 0.01). No difference was observed between the frequency of grazing and the abundance of Ab against either pathogen. Meanwhile, as a result of comparing the detection of pathogen Ag and Ab, Anaplasma spp. showed the highest proportions of 73.3% and 47.8% in Ag (-)/Ab (+) for housed cattle and grazing cattle, respectively. Theileria spp. showed the highest rates of 80.0% in Ag (-)/Ab (-) for housed cattle and 52.2% in Ag (+)/Ab (-) for grazing cattle. Conclusions: This is the first study to determine the impact of antibody abundance against Anaplasma spp. and Theileria spp. on antigen prevalence in KIC.
Collapse
Affiliation(s)
- Ji-Yeong Ku
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Jeonbuk University, Iksan, Republic of Korea
| | - Youngwoo Jung
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Jeonbuk University, Iksan, Republic of Korea
| | - Youngjun Kim
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Jeonbuk University, Iksan, Republic of Korea
| | - Kyoung-Seong Choi
- Department of Animal Science and Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju, Republic of Korea
| | - Jinho Park
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Jeonbuk University, Iksan, Republic of Korea
| |
Collapse
|
9
|
Koka H, Langat S, Mulwa F, Mutisya J, Owaka S, Sifuna M, Ongus JR, Lutomiah J, Sang R. Combining Morphological and Molecular Tools Can Enhance Tick Species Identification for Improved Tick-Borne Disease Surveillance Among Pastoral Communities in Kenya. Vector Borne Zoonotic Dis 2025; 25:107-117. [PMID: 39479757 DOI: 10.1089/vbz.2024.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2025] Open
Abstract
Background: Ticks are ecto-parasites of domestic animals, rodents, and wildlife living for periods at a time on one or more vertebrate hosts. They are important vectors of viral, bacterial, or parasitic diseases in livestock and humans. Crimean-Congo haemorrhagic fever virus and the spotted fever rickettsiae are some of the tick-borne diseases of public health importance reported in Kenya. Their distribution and public health risks among communities, especially pastoralists, remain poorly characterized due to limited surveillance, affected partly by inadequate capacity for tick identification arising from a limited number of skilled taxonomists. Materials and Methods: The aim of this survey was to identify tick species currently circulating in different livestock hosts in northern Kenya. Ticks were sampled from cattle, sheep, goats, and camels in Turkana, Isiolo, Baringo, and West Pokot counties, and differential identification was carried out using morphological identification keys followed by molecular characterization based on the cytochrome c oxidase I gene (cox1). Haplotypes were determined using the DnaSP v6 software and phylogenetic relationships inferred using the maximum likelihood algorithm. Results: A total of 12,206 ticks were collected, from Turkana (45.4%), Isiolo (23.1%), Baringo (22.7%), and West Pokot (8.8%) counties in Kenya. Ten species were confirmed by molecular analysis; H. rufipes, H. impeltatum, H. dromedarii, R. pravus, R. camicasi, R. pulchellus, R. evertsi evertsi, A. variegatum, A. gemma, and A. lepidum. There was no disparity in the morphological and molecular identification of Amblyomma species. However, molecular analysis provided insight into the complexity of morphological identification especially among Hyalomma and Rhipicephalus species. High haplotype diversities (0.857-1.000) and low nucleotide diversities (0.00719-0.06319) were observed in all the tick samples tested. Conclusion: The findings highlight the diversity of tick species in dry pastoral ecologies in Kenya and the importance of confirming morphological identification by molecular analysis thus contributing to accurate mapping of tick-borne disease distribution and risk.
Collapse
Affiliation(s)
- Hellen Koka
- Kenya Medical Research Institute, Centre for Virus Research, Nairobi, Kenya
- Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Solomon Langat
- Kenya Medical Research Institute, Centre for Virus Research, Nairobi, Kenya
| | - Francis Mulwa
- Kenya Medical Research Institute, Centre for Virus Research, Nairobi, Kenya
| | - James Mutisya
- Kenya Medical Research Institute, Centre for Virus Research, Nairobi, Kenya
| | - Samuel Owaka
- Kenya Medical Research Institute, Centre for Virus Research, Nairobi, Kenya
| | - Millicent Sifuna
- Department of biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Juliette R Ongus
- Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Joel Lutomiah
- Kenya Medical Research Institute, Centre for Virus Research, Nairobi, Kenya
| | - Rosemary Sang
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| |
Collapse
|
10
|
Rojas CES, Sivakumar T, Mumbi NNM, Ahedor B, Valinotti MFR, Acosta TJ, Yokoyama N. Molecular epidemiological survey of Babesia species infecting cattle in Paraguay. Vet Parasitol Reg Stud Reports 2025; 57:101162. [PMID: 39855850 DOI: 10.1016/j.vprsr.2024.101162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 01/27/2025]
Abstract
Paraguay, an agricultural country in South America, has a high prevalence of tick infestations in its cattle population due to warm temperatures, high humidity, and extensive grazing management practices. Consequently, Babesia infections, which are transmitted by ticks, might have a wide distribution in Paraguay, but the current status of these infections remains uncertain. Therefore, we aimed to assess the infection status of three clinically significant Babesia species, including Babesia bovis, Babesia bigemina, and Babesia naoakii, among cattle populations in Paraguay. Blood samples were collected from a total of 326 cattle across nine departments in Paraguay, and their DNAs were screened with species-specific PCR assays. Of the surveyed cattle, single infections of B. bovis and B. bigemina were detected in 24 (7.4 %) and 127 (39.0 %), respectively, while co-infection with both the parasite species was detected in 38 (11.7 %). In contrast, all of the surveyed cattle were negative for B. naoakii infection. The prevalence of B. bigemina-single infection was higher in the Eastern region (49.0 %) compared to the Western region (34.6 %), in cattle under extensive management (51.3 %) compared to those under semi-intensive management (34.6 %), and in Bos indicus cattle (50.3 %) compared to Bos taurus (15.8 %). Our findings demonstrated a wide distribution of B. bovis and B. bigemina infections among cattle in Paraguay, underscoring the importance of implementing effective control measures to reduce the potential economic losses associated with bovine babesiosis.
Collapse
Affiliation(s)
- Claudia Esther Silvera Rojas
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan; National Service for Quality and Animal Health (SENACSA), San Lorenzo, Paraguay
| | - Thillaiampalam Sivakumar
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Ngigi Noel Muthoni Mumbi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Believe Ahedor
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | | | - Tomás Javier Acosta
- Field Center of Animal Science and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Naoaki Yokoyama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan; WOAH Reference Laboratory for bovine babesiosis, National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan.
| |
Collapse
|
11
|
Khamassi Khbou M, Rekik S, Romdhane R, Sassi L, Bergmann F, Groschup MH, Rekik M, Gharbi M. Assessment of the Knowledge, Attitude, and Perception (KAP) of Sheep Farmers Regarding Ticks and Tick-Borne Pathogens in Tunisia, North Africa. Vet Sci 2024; 12:2. [PMID: 39852877 PMCID: PMC11769336 DOI: 10.3390/vetsci12010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025] Open
Abstract
Ticks and tick-borne pathogens (TBPs) are a threat to human and animal health worldwide. A structured questionnaire was used to assess the knowledge, attitudes/practices, and perceptions (KAP) of 86 farmers of extensive sheep farming systems across different agro-ecological areas in Tunisia. The response rate was about 91.3%. Overall, 68.5% of the questions referring to knowledge and perceptions were answered correctly. Indeed, about half of the respondents were aware that ticks infest animals, with weight loss given as the major consequence. However, more than half of the farmers were unaware of the transmission and vectorial role of ticks. Those who knew that ticks are vectors cited microbes and icterus as the main concerns. A broad majority of farmers (70.9%) stated that they removed the attached ticks manually and 45.3% crushed them. As acaricides were perceived to be efficient for fighting ticks, according to 97.7% of the sheep farmers, they were used for both the animals and their sleeping areas. Although the toxicity of acaricides is known, 59.3% of the respondents did not use personal protection equipment when applying these products. Taken together, gaps in KAP among sheep farmers were identified. It can be used to better design awareness communication tools for TBPs.
Collapse
Affiliation(s)
- Médiha Khamassi Khbou
- Laboratory of Infectious Animal Diseases, Zoonoses, and Sanitary Regulation, Institution of Agricultural Research and Higher Education, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Sidi Thabet 2020, Tunisia
| | - Syrine Rekik
- Laboratory of Parasitology, Zoonoses, and Sanitary Regulation, Institution of Agricultural Research and Higher Education, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Sidi Thabet 2020, Tunisia; (S.R.); (R.R.); (L.S.); (M.G.)
| | - Rihab Romdhane
- Laboratory of Parasitology, Zoonoses, and Sanitary Regulation, Institution of Agricultural Research and Higher Education, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Sidi Thabet 2020, Tunisia; (S.R.); (R.R.); (L.S.); (M.G.)
| | - Limam Sassi
- Laboratory of Parasitology, Zoonoses, and Sanitary Regulation, Institution of Agricultural Research and Higher Education, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Sidi Thabet 2020, Tunisia; (S.R.); (R.R.); (L.S.); (M.G.)
| | - Felicitas Bergmann
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Südufer 10, 17493 Greifswald, Insel Riems, Germany; (F.B.); (M.H.G.)
| | - Martin H. Groschup
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Südufer 10, 17493 Greifswald, Insel Riems, Germany; (F.B.); (M.H.G.)
| | - Mourad Rekik
- International Center for Agricultural Research in the Dry Areas (ICARDA), Avenue Hédi Karray, Ariana 2049, Tunisia;
| | - Mohamed Gharbi
- Laboratory of Parasitology, Zoonoses, and Sanitary Regulation, Institution of Agricultural Research and Higher Education, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Sidi Thabet 2020, Tunisia; (S.R.); (R.R.); (L.S.); (M.G.)
| |
Collapse
|
12
|
Malgwi SA, Adeleke VT, Adeleke MA, Okpeku M. Multi-epitope Based Peptide Vaccine Candidate Against Babesia Infection From Rhoptry-Associated Protein 1 (RAP-1) Antigen Using Immuno-Informatics: An In Silico Approach. Bioinform Biol Insights 2024; 18:11779322241287114. [PMID: 39691583 PMCID: PMC11650595 DOI: 10.1177/11779322241287114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/05/2024] [Indexed: 12/19/2024] Open
Abstract
Objective Babesiosis is a significant haemoparasitic infection caused by apicomplexan parasites of the genus Babesia. This infection has continuously threatened cattle farmers owing to its devastating effects on productivity and severe economic implications. Failure to curb the increase of the infection has been attributed to largely ineffective vaccines. This study was designed to develop a potential vaccine candidate. Method Rhoptry-associated protein-1 (RAP-1) was used to identify and design a potential multi-epitope vaccine candidate due to its immunogenic properties through an immunoinformatics approach. Results and conclusions A multi-epitope vaccine comprising 11 CD8+, 17 CD4+, and 3 B-cell epitopes was constructed using the AAY, GPGPG, and KK linkers. Beta-defensin-3 was added as an adjuvant to potentiate the immune response using the EAAK linker. The designed vaccine was computationally predicted to be antigenic (antigenicity scores: 0.6), soluble (solubility index: 0.730), and non-allergenic. The vaccine construct comprises 595 amino acids with a molecular weight of 64 152 kDa, an instability and aliphatic index of 13.89 and 65.82, which confers stability with a Grand average of hydropathicity (GRAVY) value of 0.122, indicating the hydrophobicity of the construct. Europe has the highest combined class population coverage, with a percentage of 96.07%, while Central America has the lowest population coverage, with a value of 22.94%. The DNA sequence of the vaccine construct was optimized and successfully cloned into a pET-28a (+) plasmid vector. Analysis of binding interactions indicated the stability of the complex when docked with Toll-like receptor-2 (TLR-2). The subunit vaccine construct was predicted to induce and boost sufficient host cellular and humoral responses in silico. However, further experimental research and analysis is required to validate the findings. Limitation This study is purely computational, and further experimental validation of these findings through in vivo and in vitro conditions is required.
Collapse
Affiliation(s)
- Samson Anjikwi Malgwi
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Victoria T Adeleke
- Discipline of Chemical Engineering, Mangosuthu University of Technology, Durban, South Africa
| | - Matthew Adekunle Adeleke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
13
|
Pasquarelli RR, Quan JJ, Cheng ES, Yang V, Britton TA, Sha J, Wohlschlegel JA, Bradley PJ. Characterization and functional analysis of Toxoplasma Golgi-associated proteins identified by proximity labeling. mBio 2024; 15:e0238024. [PMID: 39345210 PMCID: PMC11559087 DOI: 10.1128/mbio.02380-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
Toxoplasma gondii possesses a highly polarized secretory pathway that contains both broadly conserved eukaryotic organelles and unique apicomplexan organelles, which play essential roles in the parasite's lytic cycle. As in other eukaryotes, the T. gondii Golgi apparatus sorts and modifies proteins prior to their distribution to downstream organelles. Many of the typical trafficking factors found involved in these processes are missing from apicomplexan genomes, suggesting that these parasites have evolved unique proteins to fill these roles. Here, we identify a Golgi-localizing protein (ULP1), which is structurally similar to the eukaryotic trafficking factor p115/Uso1. We demonstrate that depletion of ULP1 leads to a dramatic reduction in parasite fitness that is the result of defects in microneme secretion, invasion, replication, and egress. Using ULP1 as bait for TurboID proximity labeling and immunoprecipitation, we identify 11 more Golgi-associated proteins and demonstrate that ULP1 interacts with the T. gondii-conserved oligomeric Golgi (COG) complex. These proteins include both conserved trafficking factors and parasite-specific proteins. Using a conditional knockdown approach, we assess the effect of each of these 11 proteins on parasite fitness. Together, this work reveals a diverse set of T. gondii Golgi-associated proteins that play distinct roles in the secretory pathway. As several of these proteins are absent outside of the Apicomplexa, they represent potential targets for the development of novel therapeutics against these parasites. IMPORTANCE Apicomplexan parasites such as Toxoplasma gondii infect a large percentage of the world's population and cause substantial human disease. These widespread pathogens use specialized secretory organelles to infect their host cells, modulate host cell functions, and cause disease. While the functions of the secretory organelles are now better understood, the Golgi apparatus of the parasite remains largely unexplored, particularly regarding parasite-specific innovations that may help direct traffic intracellularly. In this work, we characterize ULP1, a protein that is unique to parasites but shares structural similarity to the eukaryotic trafficking factor p115/Uso1. We show that ULP1 plays an important role in parasite fitness and demonstrate that it interacts with the conserved oligomeric Golgi (COG) complex. We then use ULP1 proximity labeling to identify 11 additional Golgi-associated proteins, which we functionally analyze via conditional knockdown. This work expands our knowledge of the Toxoplasma Golgi apparatus and identifies potential targets for therapeutic intervention.
Collapse
Affiliation(s)
| | - Justin J. Quan
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Emily S. Cheng
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Vivian Yang
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Timmie A. Britton
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Jihui Sha
- Department of Biological Chemistry and Institute of Genomics and Proteomics, University of California, Los Angeles, California, USA
| | - James A. Wohlschlegel
- Department of Biological Chemistry and Institute of Genomics and Proteomics, University of California, Los Angeles, California, USA
| | - Peter J. Bradley
- Molecular Biology Institute, University of California, Los Angeles, California, USA
- Department of Biological Chemistry and Institute of Genomics and Proteomics, University of California, Los Angeles, California, USA
| |
Collapse
|
14
|
Alale TY, Sormunen JJ, Nzeh J, Agjei RO, Vesterinen EJ, Klemola T. Public knowledge and awareness of tick-borne pathogens and diseases: A cross-sectional study in Ghana. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2024; 6:100228. [PMID: 39559253 PMCID: PMC11570981 DOI: 10.1016/j.crpvbd.2024.100228] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/08/2024] [Accepted: 11/02/2024] [Indexed: 11/20/2024]
Abstract
Tick-borne diseases (TBDs) pose a significant and increasing health threat globally. About 45 tick species have been described from Ghana, located in sub-Saharan Africa, but it is unknown how well-informed local citizens are regarding the risks posed by ticks and TBDs. Utilizing a cross-sectional design with questionnaires, this study assessed the public knowledge and awareness of ticks, tick-borne pathogens (TBPs) and TBDs in Ghana. With demographic background data, we received knowledge responses from 537 respondents across all 16 regions of Ghana through an electronic survey and structured interview questionnaire. Descriptive table statistics were used to tabulate frequencies and percentages of all categorical responses and more closely tested for associations between certain variable pairs. Our results showed that 88% of respondents kept at least one animal species irrespective of being a farmer or not. Of all respondents, over 70% (n = 352) were not aware of TBDs in humans while over 50% (n = 289) indicated their awareness of TBDs in animals. Interestingly, we found a significant association between age group and awareness of TBDs in animals. Furthermore, the results highlighted the association between domestic animal ownership and increased human-tick encounters. These findings suggest a need for targeted public education on TBDs in Ghana. As Ghana imports livestock, the risk of TBD spread demands attention. Overall, the survey contributes essential insights for veterinary and public health interventions, stressing the urgency of raising awareness and understanding among the public regarding the risks associated with ticks and TBDs.
Collapse
Affiliation(s)
- Theophilus Yaw Alale
- Department of Biology, University of Turku, FI-20014, Turku, Finland
- Biodiversity Unit, University of Turku, FI-20014, Turku, Finland
| | - Jani J. Sormunen
- Department of Biology, University of Turku, FI-20014, Turku, Finland
- Biodiversity Unit, University of Turku, FI-20014, Turku, Finland
| | - Joseph Nzeh
- Department of Food Science and Technology, Kasetsart University, Bangkok, Thailand
| | - Richard Osei Agjei
- Department of Health Administration and Education, University of Education, P.O.Box 25, South Campus, Winneba, Ghana
| | | | - Tero Klemola
- Department of Biology, University of Turku, FI-20014, Turku, Finland
| |
Collapse
|
15
|
Pasquarelli RR, Sha J, Wohlschlegel JA, Bradley PJ. BCC0 collaborates with IMC32 and IMC43 to form the Toxoplasma gondii essential daughter bud assembly complex. PLoS Pathog 2024; 20:e1012411. [PMID: 39024411 PMCID: PMC11288415 DOI: 10.1371/journal.ppat.1012411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/30/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
Toxoplasma gondii divides by endodyogeny, in which two daughter buds are formed within the cytoplasm of the maternal cell using the inner membrane complex (IMC) as a scaffold. During endodyogeny, components of the IMC are synthesized and added sequentially to the nascent daughter buds in a tightly regulated manner. We previously showed that the early recruiting proteins IMC32 and IMC43 form an essential daughter bud assembly complex which lays the foundation of the daughter cell scaffold in T. gondii. In this study, we identify the essential, early recruiting IMC protein BCC0 as a third member of this complex by using IMC32 as bait in both proximity labeling and yeast two-hybrid screens. We demonstrate that BCC0's localization to daughter buds depends on the presence of both IMC32 and IMC43. Deletion analyses and functional complementation studies reveal that residues 701-877 of BCC0 are essential for both its localization and function and that residues 1-899 are sufficient for function despite minor mislocalization. Pairwise yeast two-hybrid assays additionally demonstrate that BCC0's essential domain binds to the coiled-coil region of IMC32 and that BCC0 and IMC43 do not directly interact. This data supports a model for complex assembly in which an IMC32-BCC0 subcomplex initially recruits to nascent buds via palmitoylation of IMC32 and is locked into the scaffold once bud elongation begins by IMC32 binding to IMC43. Together, this study dissects the organization and function of a complex of three early recruiting daughter proteins which are essential for the proper assembly of the IMC during endodyogeny.
Collapse
Affiliation(s)
- Rebecca R. Pasquarelli
- Molecular Biology Institute, University of California, Los Angeles, California, United States of America
| | - Jihui Sha
- Department of Biological Chemistry and Institute of Genomics and Proteomics, University of California, Los Angeles, California, United States of America
| | - James A. Wohlschlegel
- Department of Biological Chemistry and Institute of Genomics and Proteomics, University of California, Los Angeles, California, United States of America
| | - Peter J. Bradley
- Molecular Biology Institute, University of California, Los Angeles, California, United States of America
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, United States of America
| |
Collapse
|
16
|
Pasquarelli RR, Quan JJ, Cheng ES, Yang V, Britton TA, Sha J, Wohlschlegel JA, Bradley PJ. Characterization and functional analysis of Toxoplasma Golgi-associated proteins identified by proximity labelling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578703. [PMID: 38352341 PMCID: PMC10862792 DOI: 10.1101/2024.02.02.578703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Toxoplasma gondii possesses a highly polarized secretory pathway that contains both broadly conserved eukaryotic organelles and unique apicomplexan organelles which play essential roles in the parasite's lytic cycle. As in other eukaryotes, the T. gondii Golgi apparatus sorts and modifies proteins prior to their distribution to downstream organelles. Many of the typical trafficking factors found involved in these processes are missing from apicomplexan genomes, suggesting that these parasites have evolved unique proteins to fill these roles. Here we identify a novel Golgi-localizing protein (ULP1) which contains structural homology to the eukaryotic trafficking factor p115/Uso1. We demonstrate that depletion of ULP1 leads to a dramatic reduction in parasite fitness and replicative ability. Using ULP1 as bait for TurboID proximity labelling and immunoprecipitation, we identify eleven more novel Golgi-associated proteins and demonstrate that ULP1 interacts with the T. gondii COG complex. These proteins include both conserved trafficking factors and parasite-specific proteins. Using a conditional knockdown approach, we assess the effect of each of these eleven proteins on parasite fitness. Together, this work reveals a diverse set of novel T. gondii Golgi-associated proteins that play distinct roles in the secretory pathway. As several of these proteins are absent outside of the Apicomplexa, they represent potential targets for the development of novel therapeutics against these parasites. Importance Apicomplexan parasites such as Toxoplasma gondii infect a large percentage of the world's population and cause substantial human disease. These widespread pathogens use specialized secretory organelles to infect their host cells, modulate host cell functions, and cause disease. While the functions of the secretory organelles are now better understood, the Golgi apparatus of the parasite remains largely unexplored, particularly regarding parasite-specific innovations that may help direct traffic intracellularly. In this work, we characterize ULP1, a protein that is unique to parasites but shares structural similarity to the eukaryotic trafficking factor p115/Uso1. We show that ULP1 plays an important role in parasite replication and demonstrate that it interacts with the conserved oligomeric Golgi (COG) complex. We then use ULP1 proximity labelling to identify eleven additional Golgi-associated proteins which we functionally analyze via conditional knockdown. This work expands our knowledge of the Toxoplasma Golgi apparatus and identifies potential targets for therapeutic intervention.
Collapse
|
17
|
Matos CA, Nomboro CF, Gonçalves LR, Cala AC, Sitoe CF, Vinte APR, Mondlane CM, André MR, do Carmo Carrilho M. Molecular diagnosis and characterization of Anaplasma marginale and Ehrlichia ruminantium infecting beef cattle of Maputo Province, Mozambique. BMC Vet Res 2024; 20:185. [PMID: 38730389 PMCID: PMC11084066 DOI: 10.1186/s12917-024-04045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Members of the Anaplasmataceae family, such as the Anaplasma and Ehrlichia species, cause economic losses and public health risks. However, the exact economic impact has not been comprehensively assessed in Mozambique due to limited data available on its basic epidemiology. Therefore, we investigated the molecular occurrence and identity of Anaplasma and Ehrlichia spp. infecting beef cattle in Maputo province, Mozambique. METHODS A total of 200 whole blood samples were collected from apparently healthy beef cattle. Whole blood DNA was extracted and tested for presence of Anaplasma spp. and Ehrlichia ruminantium DNA through amplification of the 16S rRNA and map1 genes. Positive samples to Anaplasma spp. were subject to PCR assay targeting the A. marginale-msp5 gene. Amplicons obtained were purified, sequenced and subject to phylogenetic analyses. RESULTS Anaplasma spp., A. marginale and E. ruminantium were detected in 153 (76.5%), 142 (71%) and 19 (9.5%) of all the samples analyzed, respectively. On this same sample group, 19 (9.5%) were co-infected with A. marginale and E. ruminantium. The 16S rRNA sequences of Anaplasma spp. obtained were phylogenetically related to A. marginale, A. centrale and A. platys. Phylogenetic analysis revealed that A. marginale-msp5 nucleotide sequences were grouped with sequences from Asia, Africa and Latin America, whereas E. ruminantium-map1 DNA nucleotide sequences were positioned in multiple clusters. CONCLUSION Cattle in Maputo Province are reservoirs for multiple Anaplasma species. A high positivity rate of infection by A. marginale was observed, as well as high genetic diversity of E. ruminantium. Furthermore, five new genotypes of E. ruminantium-map1 were identified.
Collapse
Affiliation(s)
- Carlos António Matos
- Laboratório de Parasitologia, Direcção de Ciências Animais, Avenida de Moçambique, km 1.5, Bairro do Jardim, Cidade de Maputo, C.P. 1922 , Moçambique.
| | | | | | - Aida Cristina Cala
- Laboratório de Parasitologia, Direcção de Ciências Animais, Avenida de Moçambique, km 1.5, Bairro do Jardim, Cidade de Maputo, C.P. 1922 , Moçambique
| | - Carlos Francisco Sitoe
- Laboratório de Parasitologia, Direcção de Ciências Animais, Avenida de Moçambique, km 1.5, Bairro do Jardim, Cidade de Maputo, C.P. 1922 , Moçambique
| | - Ana Paula Rúpia Vinte
- Laboratório de Parasitologia, Direcção de Ciências Animais, Avenida de Moçambique, km 1.5, Bairro do Jardim, Cidade de Maputo, C.P. 1922 , Moçambique
| | - Cristovão Mario Mondlane
- Laboratório de Parasitologia, Direcção de Ciências Animais, Avenida de Moçambique, km 1.5, Bairro do Jardim, Cidade de Maputo, C.P. 1922 , Moçambique
| | - Marcos Rogério André
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única, São Paulo State University (UNESP), School of Agricultural and Veterinary Sciences, Jaboticabal, Jaboticabal, SP, Brasil
| | - Maria do Carmo Carrilho
- Laboratório de Parasitologia, Direcção de Ciências Animais, Avenida de Moçambique, km 1.5, Bairro do Jardim, Cidade de Maputo, C.P. 1922 , Moçambique
| |
Collapse
|
18
|
Fathi A, Nabavi R, Noaman V, Sarani A, Saadati D, Ben Said M, Ghafar A, Jabbar A, Sazmand A. Molecular identification, risk factor assessment, and phylogenetic analysis of tick-borne pathogens in symptomatic and asymptomatic cattle from South-Eastern Iran. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 92:479-506. [PMID: 38457048 DOI: 10.1007/s10493-023-00886-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 12/29/2023] [Indexed: 03/09/2024]
Abstract
Tick-borne pathogens (TBPs) represent a substantial threat to cattle globally, exerting adverse impacts on production, health, and economic viability. This study delves into the prevalence and implications of TTBPs in cattle sourced from resource-limited smallholder livestock farms situated in southeastern Iran, proximate to Afghanistan and Pakistan. Blood and tick specimens were systematically collected from a cohort of 230 cattle, comprising 150 asymptomatic and 80 symptomatic individuals. Genomic DNA isolated from blood samples underwent rigorous examination for the presence of key TBPs, including Anaplasma marginale, A. phagocytophilum, A. bovis, A. centrale, Babesia bigemina, and Theileria annulata, utilizing multiple genetic markers. Nucleotide sequence analysis facilitated the reconstruction of phylogenetic relationships. The study also evaluated various potential risk factors, such as clinical status, gender, age, breed, tick infestation, and management practices, to elucidate their associations with TTBPs. Among the cattle cohort, a staggering 87.8% (202/230) tested positive for at least one pathogen. Prevalence statistics encompassed A. marginale (72.2%), T. annulata (68.3%), A. phagocytophilum/A. platys-like complex (66.1%), A. centrale (16.7%), B. bigemina (10.0%), and A. bovis (6.1%). Remarkably, mixed infections involving two, three, and four pathogens were detected in 23%, 52.1%, and 2.2% of animals, respectively. Notably, all asymptomatic cattle were positive for at least one TBP. Tick infestation was observed in 62.2% (143/230) of cattle, predominantly caused by Hyalomma anatolicum (82.5%), Rhipicephalus (Boophilus) annulatus (13.1%), and R. sanguineus sensu lato (4.4%). Risk factors linked to TBPs encompassed tick infestation, older age, and crossbred animals. Clinical presentations among symptomatic cattle encompassed fever, anemia, weight loss, anorexia, jaundice, and enlarged superficial lymph nodes. This study underscores the pivotal role of asymptomatic carriers in the propagation of TTBPs within endemic regions. Furthermore, it emphasizes the potential for the implementation of molecular diagnostics to unmask subclinical infections, thereby affording the opportunity for targeted interventions aimed at ameliorating the burden of TTBPs in resource-constrained smallholder dairy farms.
Collapse
Affiliation(s)
- Atefeh Fathi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Zabol, Zabol, Iran
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Reza Nabavi
- Department of Pathobiology, Faculty of Veterinary Medicine, Bu-Ali Sina University, Hamedan, 6517658978, Iran.
| | - Vahid Noaman
- Department of Parasitic Disease Research, Agricultural Research, Education and Extension Organization (AREEO), Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Ali Sarani
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Zabol, Bonjar Road, Zabol, 9861335856, Iran
| | - Dariush Saadati
- Department of Food Hygiene, Faculty of Veterinary Medicine, University of Zabol, Bonjar Road, Zabol, 9861335856, Iran
| | - Mourad Ben Said
- Department of Basic Sciences, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, 2010, Manouba, Tunisia
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, 2010, Manouba, Tunisia
| | - Abdul Ghafar
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Werribee, VIC, 3030, Australia
| | - Abdul Jabbar
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Werribee, VIC, 3030, Australia
| | - Alireza Sazmand
- Department of Pathobiology, Faculty of Veterinary Medicine, Bu-Ali Sina University, Hamedan, 6517658978, Iran
| |
Collapse
|
19
|
Keroack CD, Elsworth B, Tennessen JA, Paul AS, Hua R, Ramirez-Ramirez L, Ye S, Moreira CK, Meyers MJ, Zarringhalam K, Duraisingh MT. Comparative chemical genomics in Babesia species identifies the alkaline phosphatase PhoD as a determinant of antiparasitic resistance. Proc Natl Acad Sci U S A 2024; 121:e2312987121. [PMID: 38377214 PMCID: PMC10907312 DOI: 10.1073/pnas.2312987121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/09/2024] [Indexed: 02/22/2024] Open
Abstract
Babesiosis is an emerging zoonosis and widely distributed veterinary infection caused by 100+ species of Babesia parasites. The diversity of Babesia parasites and the lack of specific drugs necessitate the discovery of broadly effective antibabesials. Here, we describe a comparative chemogenomics (CCG) pipeline for the identification of conserved targets. CCG relies on parallel in vitro evolution of resistance in independent populations of Babesia spp. (B. bovis and B. divergens). We identified a potent antibabesial, MMV019266, from the Malaria Box, and selected for resistance in two species of Babesia. After sequencing of multiple independently derived lines in the two species, we identified mutations in a membrane-bound metallodependent phosphatase (phoD). In both species, the mutations were found in the phoD-like phosphatase domain. Using reverse genetics, we validated that mutations in bdphoD confer resistance to MMV019266 in B. divergens. We have also demonstrated that BdPhoD localizes to the endomembrane system and partially with the apicoplast. Finally, conditional knockdown and constitutive overexpression of BdPhoD alter the sensitivity to MMV019266 in the parasite. Overexpression of BdPhoD results in increased sensitivity to the compound, while knockdown increases resistance, suggesting BdPhoD is a pro-susceptibility factor. Together, we have generated a robust pipeline for identification of resistance loci and identified BdPhoD as a resistance mechanism in Babesia species.
Collapse
Affiliation(s)
- Caroline D. Keroack
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA02115
| | - Brendan Elsworth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA02115
| | - Jacob A. Tennessen
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA02115
| | - Aditya S. Paul
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA02115
| | - Renee Hua
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA02115
| | - Luz Ramirez-Ramirez
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA02115
| | - Sida Ye
- Department of Mathematics, University of Massachusetts, Boston, MA02125
- Center for Personalized Cancer Therapy, University of Massachusetts, Boston, MA02125
| | - Cristina K. Moreira
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA02115
| | - Marvin J. Meyers
- Department of Chemistry, Saint Louis University, St. Louis, MO63103
| | - Kourosh Zarringhalam
- Department of Mathematics, University of Massachusetts, Boston, MA02125
- Center for Personalized Cancer Therapy, University of Massachusetts, Boston, MA02125
| | - Manoj T. Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA02115
| |
Collapse
|
20
|
Shiri A, Kheirandish F, Sazmand A, Kayedi MH, Hosseini-Chegeni A. Molecular identification of hemoparasites in ixodid ticks in Iran. Vet Parasitol Reg Stud Reports 2024; 47:100967. [PMID: 38199703 DOI: 10.1016/j.vprsr.2023.100967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 01/12/2024]
Abstract
A total of 386 ticks were processed in order to investigate the occurrence of selected tick transmitted pathogens (i.e., Theileria, Babesia, Hepatozoon and Cytauxzoon) in ixodid ticks in six provinces of Iran (East Azerbaijan, Gilan, Kermanshah, Khuzestan, Sistan & Baluchestan and Tehran). Ticks identified as Dermacentor marginatus, Hyalomma aegyptium, Hy. anatolicum, Hy. asiaticum, Hy. marginatum, Ixodes ricinus, Rhipicephalus annulatus and R. sanguineus sensu lato were collected from sheep and cattle. Conventional PCR and sequencing results revealed DNA of Theileria ovis in three R. sanguineus sensu lato pools and one D. marginatus pool from sheep in Kermanshah and East Azerbaijan, T. annulata in one Hy. asiaticum pool from cattle in Kermanshah, and He. canis in an individual female Hy. aegyptium in Kermanshah. Data herein indicate the role of R. sanguineus complex and D. marginatus in the epidemiology of ovine theileriosis in western and northwestern Iran. Potential role of Hyalomma aegyptium in the transmission of He. canis is discussed. Considering non-principled movement of livestock across the country and increasing reports about the resistance of ticks to common acaricides, test-and-treatment of infected livestock, vaccination of the livestock against endemic tick-borne pathogens, and the use of non-chemical tick management strategies are recommended.
Collapse
Affiliation(s)
- Aioub Shiri
- Department of Parasitology and Mycology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran; Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Farnaz Kheirandish
- Department of Parasitology and Mycology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran; Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Alireza Sazmand
- Department of Pathobiology, Faculty of Veterinary Medicine, Bu-Ali Sina University, Hamedan, Iran
| | - Mohammad Hassan Kayedi
- Department of Parasitology and Mycology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran; Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | | |
Collapse
|
21
|
Prudhomme J, Depaquit J, Fite J, Quillery E, Bouhsira E, Liénard E. Systematic review of hematophagous arthropods present in cattle in France. Parasite 2023; 30:56. [PMID: 38084937 PMCID: PMC10714678 DOI: 10.1051/parasite/2023059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
The arrival of pathogens, whether zoonotic or not, can have a lasting effect on commercial livestock farms, with dramatic health, social and economic consequences. However, available data concerning the arthropod vectors present and circulating on livestock farms in France are still very imprecise, fragmentary, and scattered. In this context, we conducted a systematic review of the hematophagous arthropod species recorded on different types of cattle farms in mainland France (including Corsica). The used vector "groups" studied were biting flies, biting midges, black flies, fleas, horse flies, lice, louse flies, mosquitoes, sand flies, and ticks. A large number of documents were selected (N = 9,225), read (N = 1,047) and analyzed (N = 290), allowing us to provide distribution and abundance maps of different species of medical and veterinary interest according to literature data. Despite the large number of documents collected and analyzed, there are few data provided on cattle farm characteristics. Moreover, data on all arthropod groups lack numerical detail and are based on limited data in time and/or space. Therefore, they are not generalizable nor comparable. There is still little information on many vectors (and their pathogens) and still many unknowns for most studied groups. It appears necessary to provide new, updated and standardized data, collected in different geographical and climatological areas. Finally, this work highlights the lack of entomologists, funding, training and government support, leading to an increased risk of uncontrolled disease emergence in cattle herds.
Collapse
Affiliation(s)
- Jorian Prudhomme
-
InTheres, University of Toulouse, INRAE, ENVT 31300 Toulouse France
| | - Jérôme Depaquit
-
Université de Reims Champagne-Ardenne, Faculté de Pharmacie, EA7510 EpidémioSurveillance et Circulation de Parasites dans les Environnements, and ANSES, USC Pathogènes-Environnement-Toxoplasme-Arthropodes-Réservoirs-bioDiversité Reims France
-
Centre Hospitalo-Universitaire, Laboratoire de Parasitologie-Mycologie 51092 Reims France
| | - Johanna Fite
-
French Agency for Food, Environmental and Occupational Health & Safety, Risk Assessment Department Maisons-Alfort Cedex France
| | - Elsa Quillery
-
French Agency for Food, Environmental and Occupational Health & Safety, Risk Assessment Department Maisons-Alfort Cedex France
| | - Emilie Bouhsira
-
InTheres, University of Toulouse, INRAE, ENVT 31300 Toulouse France
| | - Emmanuel Liénard
-
InTheres, University of Toulouse, INRAE, ENVT 31300 Toulouse France
| |
Collapse
|
22
|
Kaur R, Ahlawat S, Choudhary V, Kumari A, Kumar A, Kaur M, Arora R, Sharma R, Vijh RK. Expression profiling of cytokine genes in peripheral blood mononuclear cells from Anaplasma marginale infected and healthy cattle. Anim Biotechnol 2023; 34:4281-4290. [PMID: 36409691 DOI: 10.1080/10495398.2022.2146589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this study, changes in expression profiles of genes encoding 14 cytokines (IL1A, IL1B, IL2, IL4, IL6, IL8, IL10, IL12A, IL12B, IL16, IFNA, IFNB, TGFB1, and TNFA) were investigated amongst six Anaplasma marginale infected and six healthy crossbred cattle. Health status of the animals was determined based on clinical signs, blood smear examination and molecular detection using A. marginale-specific primers. Total RNA was isolated from the peripheral blood mononuclear cells of the infected animals as well as the healthy controls, which was further reverse transcribed to cDNA. Primers for real time PCR were designed using Primer3 software and the results were analyzed by the 2-ΔΔCt method with RPS15 and GAPDH as the reference genes. The expression levels of IL1A, IL1B, IL6, IL10, IL12A, IL12B, and TNFA varied significantly between the two groups, with higher expression in the infected cattle. The transcript abundance of IL4, IL16, and TGFB1 did not vary between the diseased and healthy animals. The expression of IL2 and IL8 was higher in the healthy animals, but the results were non-significant. Taken together, this study provides evidence for difference in expression of cytokine genes in response to anaplasmosis in crossbred cattle.
Collapse
Affiliation(s)
- Rashmeet Kaur
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
- ICAR-National Dairy Research Institute, Karnal, India
| | - Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Vikas Choudhary
- Department of Animal Husbandry and Dairying, District Disease Diagnostic Laboratory, Karnal, India
| | - Anisha Kumari
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Ashish Kumar
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Mandeep Kaur
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Rekha Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | | |
Collapse
|
23
|
Pasquarelli RR, Back PS, Sha J, Wohlschlegel JA, Bradley PJ. Identification of IMC43, a novel IMC protein that collaborates with IMC32 to form an essential daughter bud assembly complex in Toxoplasma gondii. PLoS Pathog 2023; 19:e1011707. [PMID: 37782662 PMCID: PMC10569561 DOI: 10.1371/journal.ppat.1011707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/12/2023] [Accepted: 09/23/2023] [Indexed: 10/04/2023] Open
Abstract
The inner membrane complex (IMC) of Toxoplasma gondii is essential for all phases of the parasite's life cycle. One of its most critical roles is to act as a scaffold for the assembly of daughter buds during replication by endodyogeny. While many daughter IMC proteins have been identified, most are recruited after bud initiation and are not essential for parasite fitness. Here, we report the identification of IMC43, a novel daughter IMC protein that is recruited at the earliest stages of daughter bud initiation. Using an auxin-inducible degron system we show that depletion of IMC43 results in aberrant morphology, dysregulation of endodyogeny, and an extreme defect in replication. Deletion analyses reveal a region of IMC43 that plays a role in localization and a C-terminal domain that is essential for the protein's function. TurboID proximity labelling and a yeast two-hybrid screen using IMC43 as bait identify 30 candidate IMC43 binding partners. We investigate two of these: the essential daughter protein IMC32 and a novel daughter IMC protein we named IMC44. We show that IMC43 is responsible for regulating the localization of both IMC32 and IMC44 at specific stages of endodyogeny and that this regulation is dependent on the essential C-terminal domain of IMC43. Using pairwise yeast two-hybrid assays, we determine that this region is also sufficient for binding to both IMC32 and IMC44. As IMC43 and IMC32 are both essential proteins, this work reveals the existence of a bud assembly complex that forms the foundation of the daughter IMC during endodyogeny.
Collapse
Affiliation(s)
- Rebecca R. Pasquarelli
- Molecular Biology Institute, University of California, Los Angeles, California, United States of America
| | - Peter S. Back
- Molecular Biology Institute, University of California, Los Angeles, California, United States of America
| | - Jihui Sha
- Department of Biological Chemistry and Institute of Genomics and Proteomics, University of California, Los Angeles, California, United States of America
| | - James A. Wohlschlegel
- Department of Biological Chemistry and Institute of Genomics and Proteomics, University of California, Los Angeles, California, United States of America
| | - Peter J. Bradley
- Molecular Biology Institute, University of California, Los Angeles, California, United States of America
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, United States of America
| |
Collapse
|
24
|
Surve AA, Hwang JY, Manian S, Onono JO, Yoder J. Economics of East Coast fever: a literature review. Front Vet Sci 2023; 10:1239110. [PMID: 37771945 PMCID: PMC10526366 DOI: 10.3389/fvets.2023.1239110] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/22/2023] [Indexed: 09/30/2023] Open
Abstract
East Coast fever (ECF) is a cattle disease caused by a protozoan parasite called Theileria parva (T. parva). Theileria parva is transmitted among cattle by ticks. It is endemic in parts of central, eastern, and southern Africa and imposes an economic burden through illness and death of approximately a half of a billion U.S. dollars annually. This paper reviews existing science on the economics of ECF. We utilize a conceptual model that defines primary categories of economic costs due to ECF and use it to organize a synthesis of the literature on aggregate and micro level direct costs of the disease and the costs and benefits related to various ECF management strategies. We then identify knowledge gaps to motivate for future research.
Collapse
Affiliation(s)
- Aditi A. Surve
- School of Economic Sciences, Washington State University, Pullman, WA, United States
| | - Jae Young Hwang
- School of Economic Sciences, Washington State University, Pullman, WA, United States
| | - Shanthi Manian
- School of Economic Sciences, Washington State University, Pullman, WA, United States
- School for Global Health, Washington State University, Pullman, WA, United States
| | - Joshua Orungo Onono
- Department of Public Health Pharmacology and Toxicology, University of Nairobi, Nairobi, Kenya
| | - Jonathan Yoder
- School of Economic Sciences, Washington State University, Pullman, WA, United States
- School for Global Health, Washington State University, Pullman, WA, United States
| |
Collapse
|
25
|
Riggio V, Madder M, Labuschagne M, Callaby R, Zhao R, Djikeng A, Fourie J, Prendergast JGD, Morrison LJ. Meta-analysis of heritability estimates and genome-wide association for tick-borne haemoparasites in African cattle. Front Genet 2023; 14:1197160. [PMID: 37576560 PMCID: PMC10417722 DOI: 10.3389/fgene.2023.1197160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/05/2023] [Indexed: 08/15/2023] Open
Abstract
The control of tick-borne haemoparasites in cattle largely relies on the use of acaricide drugs against the tick vectors, with some vaccination also being used against selected pathogens. These interventions can be difficult in Africa, where accessibility and cost of vaccines can be issues, and the increasing resistance of tick vectors to the widely used acaricides is a complication to disease control. A potential complementary control strategy could be the exploitation of any natural host genetic resistance to the pathogens. However, there are currently very few estimates of the extent of host resistance to tick-borne haemoparasites, and a significant contributing factor to this knowledge gap is likely to be the difficulty of collecting appropriate samples and data in the smallholder systems that predominate livestock production in low- and middle-income countries, particularly at scale. In this study, we have estimated the heritability for the presence/absence of several important haemoparasite species (including Anaplasma marginale, Babesia bigemina, Babesia bovis, and Ehrlichia ruminantium), as well as for relevant traits such as body weight and body condition score (BCS), in 1,694 cattle from four African countries (Burkina Faso, Ghana, Nigeria, and Tanzania). Heritability estimates within countries were mostly not significant, ranging from 0.05 to 0.84 across traits and countries, with standard errors between 0.07 and 0.91. However, the weighted mean of heritability estimates was moderate and significant for body weight and BCS (0.40 and 0.49, respectively), with significant heritabilities also observed for the presence of A. marginale (0.16) and E. ruminantium (0.19). In a meta-analysis of genome-wide association studies (GWAS) for these traits, two peaks were identified as reaching the suggestive significance threshold (p < 1.91 × 10-7 and p < 1.89 × 10-7, respectively): one on chromosome 24 for BCS and one on chromosome 8 for the E. ruminantium infection status. These findings indicate that there is likely to be a genetic basis that contributes to pathogen presence/absence for tick-borne haemoparasite species, which could potentially be exploited to improve cattle resistance in Africa to the economically important diseases caused by these pathogens.
Collapse
Affiliation(s)
- Valentina Riggio
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | - Rebecca Callaby
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Rongrong Zhao
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Appolinaire Djikeng
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | | | - James G. D. Prendergast
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Liam J. Morrison
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
26
|
Mohseni N, Chang M, Garcia K, Weakley M, Do T, Mir S. Development of a Syndromic Molecular Diagnostic Assay for Tick-Borne Pathogens Using Barcoded Magnetic Bead Technology. Microbiol Spectr 2023; 11:e0439522. [PMID: 37166314 PMCID: PMC10269837 DOI: 10.1128/spectrum.04395-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/22/2023] [Indexed: 05/12/2023] Open
Abstract
Infectious disease diagnostics often depend on costly serological testing with poor sensitivity, low specificity, and long turnaround time. Here, we demonstrate proof of the principle for simultaneous detection of two tick-borne pathogens from a single test sample using barcoded magnetic bead technology on the BioCode 2500 system. Specific primer sets complementary to the conserved genes of Anaplasma phagocytophilum and Borrelia burgdorferi were used in PCR amplification of the target, followed by the hybridization of the resulting biotinylated PCR products with specific probes tethered to the barcoded magnetic beads for simultaneous detection, using a fluorophore with high quantum yield. The assay has an extremely high signal to background ratio, with a limit of detection (LOD) of 2.81 50% tissue culture infection dose (TCID50)/mL and 1 CFU/mL for A. phagocytophilum and B. burgdorferi, respectively. The observed LOD for gene blocks was 1.8 copies/reaction for both the pathogens. The assay demonstrated 100% positive and negative agreement on performance evaluation using patient specimens and blood samples spiked with 1 × LOD of pathogen stock. No cross-reactivity was observed with other related tick-borne pathogens and genomic DNA of human, cattle, and canine origin. The assay can be upgraded to a sensitive and cost-effective multiplex diagnostic approach that can simultaneously detect multiple clinically important tick-borne pathogens in a single sample with a short turnaround time. IMPORTANCE The low pathogen load in the tick-borne disease test samples and the lack of highly sensitive multiplex diagnostic approaches have impacted diagnosis during clinical testing and limited surveillance studies to gauge prior insight about the prevalence of tick-borne infections in a geographical area. This article demonstrates proof of the principle for simultaneous detection of two important tick-borne pathogens from a single test sample using digital barcoded magnetic bead technology. Using a fluorophore of high quantum yield, the diagnostic approach showed high sensitivity and specificity. The LOD was 1.8 genome copies per reaction for both A. phagocytophilum and B. burgdorferi. The assay can be upgraded for the detection of all clinically important tick-borne pathogens from a single patient sample with high sensitivity and specificity. The assay can provide a diagnostic answer to the clinician in a short turnaround time to facilitate speedy therapeutic intervention to infected patients and implement public health measures to prevent community spread.
Collapse
Affiliation(s)
- Nazleeen Mohseni
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Mariann Chang
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Kathryn Garcia
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Mina Weakley
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Tram Do
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Sheema Mir
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| |
Collapse
|
27
|
Keroack CD, Elsworth B, Tennessen JA, Paul AS, Hua R, Ramirez-Ramirez L, Ye S, Moreira CM, Meyers MJ, Zarringhalam K, Duraisingh MT. Comparative chemical genomics in Babesia species identifies the alkaline phosphatase phoD as a novel determinant of resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.13.544849. [PMID: 37398106 PMCID: PMC10312741 DOI: 10.1101/2023.06.13.544849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Babesiosis is an emerging zoonosis and widely distributed veterinary infection caused by 100+ species of Babesia parasites. The diversity of Babesia parasites, coupled with the lack of potent inhibitors necessitates the discovery of novel conserved druggable targets for the generation of broadly effective antibabesials. Here, we describe a comparative chemogenomics (CCG) pipeline for the identification of novel and conserved targets. CCG relies on parallel in vitro evolution of resistance in independent populations of evolutionarily-related Babesia spp. ( B. bovis and B. divergens ). We identified a potent antibabesial inhibitor from the Malaria Box, MMV019266. We were able to select for resistance to this compound in two species of Babesia, achieving 10-fold or greater resistance after ten weeks of intermittent selection. After sequencing of multiple independently derived lines in the two species, we identified mutations in a single conserved gene in both species: a membrane-bound metallodependent phosphatase (putatively named PhoD). In both species, the mutations were found in the phoD-like phosphatase domain, proximal to the predicted ligand binding site. Using reverse genetics, we validated that mutations in PhoD confer resistance to MMV019266. We have also demonstrated that PhoD localizes to the endomembrane system and partially with the apicoplast. Finally, conditional knockdown and constitutive overexpression of PhoD alter the sensitivity to MMV019266 in the parasite: overexpression of PhoD results in increased sensitivity to the compound, while knockdown increases resistance, suggesting PhoD is a resistance mechanism. Together, we have generated a robust pipeline for identification of resistance loci, and identified PhoD as a novel determinant of resistance in Babesia species. Highlights Use of two species for in vitro evolution identifies a high confidence locus associated with resistance Resistance mutation in phoD was validated using reverse genetics in B. divergens Perturbation of phoD using function genetics results in changes in the level of resistance to MMV019266Epitope tagging reveals localization to the ER/apicoplast, a conserved localization with a similar protein in diatoms Together, phoD is a novel resistance determinant in multiple Babesia spp .
Collapse
|
28
|
Rajput M, Sajid MS, Imran M, Javed MT, Sparagano OA. A Participatory Approach in Assessing the Knowledge, Attitude, and Practices (KAP) of Stakeholders and Livestock Owners about Ticks and Tick-Borne Diseases from Sindh, Pakistan. Pathogens 2023; 12:800. [PMID: 37375490 DOI: 10.3390/pathogens12060800] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Ticks and tick-borne diseases (TTBDs) are responsible for significant losses in terms of treatment costs, decreased productivity (such as milk and meat), reduced reproductive ability, and financial crisis to livestock owners. In Pakistan, it is crucial to periodically assess the risk of TTBDs and ecological factors, potential causes of acaricidal resistance in tick fauna, and the intensive increase in the spread of TTBDs. Participatory epidemiological approaches are key to assessing the livestock owners' and stakeholders' knowledge, attitude, and practices (KAP) about TTBDs. The current study determined the KAP about ticks and tick-borne diseases of respondents from Sindh, Pakistan. A total of 240 respondents were interviewed from different ecological zones: among them, 42.5% (n = 102) of the respondents practiced the manual removal of ticks from animals, while acaricide usage was indicated by 137 respondents (57.0%) as occurring sometimes, 50 (20.8%) monthly, 41 (17.0%) fortnightly, and 12 (5%) weekly, during the peak infestation season. Ticks were 2.6 times [OR = 2.5 (95% Cl = 1.47-4.06)] and viruses were 1.89 times [OR = 188 (95% Cl = 1.09-2.9)] more likely to cause the development of disease in animals than any other pathogen. Despite the appropriate usage of acaricides, the knowledge of participants was inadequate. The findings of this study emphasize the need to take into account identified knowledge gaps and to take the initiative in carrying out appropriate education activities and extension programs to enhance the adoption of effective tick prevention and control strategies.
Collapse
Affiliation(s)
- Mahvish Rajput
- Department of Parasitology, University of Agriculture, Faisalabad 38040, Pakistan
| | | | - Muhammad Imran
- Department of Parasitology, University of Agriculture, Faisalabad 38040, Pakistan
| | | | - Olivier Andre Sparagano
- Department of Infectious Diseases and Public health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| |
Collapse
|
29
|
Shah T, Li Q, Wang B, Baloch Z, Xia X. Geographical distribution and pathogenesis of ticks and tick-borne viral diseases. Front Microbiol 2023; 14:1185829. [PMID: 37293222 PMCID: PMC10244671 DOI: 10.3389/fmicb.2023.1185829] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/04/2023] [Indexed: 06/10/2023] Open
Abstract
Ticks are obligatory hematophagous arthropods that harbor and transmit infectious pathogens to humans and animals. Tick species belonging to Amblyomma, Ixodes, Dermacentor, and Hyalomma genera may transmit certain viruses such as Bourbon virus (BRBV), Dhori virus (DHOV), Powassan virus (POWV), Omsk hemorrhagic fever virus (OHFV), Colorado tick fever virus (CTFV), Crimean-Congo hemorrhagic fever virus (CCHFV), Heartland virus (HRTV), Kyasanur forest disease virus (KFDV), etc. that affect humans and certain wildlife. The tick vectors may become infected through feeding on viraemic hosts before transmitting the pathogen to humans and animals. Therefore, it is vital to understand the eco-epidemiology of tick-borne viruses and their pathogenesis to optimize preventive measures. Thus this review summarizes knowledge on some medically important ticks and tick-borne viruses, including BRBV, POWV, OHFV, CTFV, CCHFV, HRTV, and KFDV. Further, we discuss these viruses' epidemiology, pathogenesis, and disease manifestations during infection.
Collapse
Affiliation(s)
- Taif Shah
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Provincial Center for Molecular Medicine, Kunming, China
| | - Qian Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Provincial Center for Molecular Medicine, Kunming, China
| | - Binghui Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Provincial Center for Molecular Medicine, Kunming, China
| | - Zulqarnain Baloch
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Provincial Center for Molecular Medicine, Kunming, China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Provincial Center for Molecular Medicine, Kunming, China
| |
Collapse
|
30
|
Strydom T, Lavan RP, Torres S, Heaney K. The Economic Impact of Parasitism from Nematodes, Trematodes and Ticks on Beef Cattle Production. Animals (Basel) 2023; 13:1599. [PMID: 37238028 PMCID: PMC10215612 DOI: 10.3390/ani13101599] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Global human population growth requires the consumption of more meat such as beef to meet human needs for protein intake. Cattle parasites are a constant and serious threat to the development of the beef cattle industry. Studies have shown that parasites not only reduce the performance of beef cattle, but also negatively affect the profitability of beef agriculture and have many other impacts, including contributing to the production of greenhouse gases. In addition, some zoonotic parasitic diseases may also threaten human health. Therefore, ongoing cattle parasite research is crucial for continual parasite control and the development of the beef cattle industry. Parasitism challenges profitable beef production by reducing feed efficiency, immune function, reproductive efficiency, liveweight, milk yield, calf yield and carcass weight, and leads to liver condemnations and disease transmission. Globally, beef cattle producers incur billions (US$) in losses due to parasitism annually, with gastrointestinal nematodes (GIN) and cattle ticks causing the greatest economic impact. The enormity of losses justifies parasitic control measures to protect profits and improve animal welfare. Geographical differences in production environment, management practices, climate, cattle age and genotype, parasite epidemiology and susceptibility to chemotherapies necessitate control methods customized for each farm. Appropriate use of anthelmintics, endectocides and acaricides have widely been shown to result in net positive return on investment. Implementing strategic parasite control measures, with thorough knowledge of parasite risk, prevalence, parasiticide resistance profiles and prices can result in positive economic returns for beef cattle farmers in all sectors.
Collapse
Affiliation(s)
- Tom Strydom
- MSD Animal Health, 20 Spartan Road, Isando, Kempton Park 1619, South Africa;
| | - Robert P. Lavan
- Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, NJ 07065, USA
| | - Siddhartha Torres
- Merck Animal Health, 2 Giralda Farms, Madison, NJ 07940, USA; (S.T.); (K.H.)
| | - Kathleen Heaney
- Merck Animal Health, 2 Giralda Farms, Madison, NJ 07940, USA; (S.T.); (K.H.)
- Heaney Veterinary Consulting, 303 Fletcher Lake Avenue, Bradley Beach, NJ 07720, USA
| |
Collapse
|
31
|
Mwale R, Mulavu M, Khumalo CS, Mukubesa A, Nalubamba K, Mubemba B, Changula K, Simulundu E, Chitanga S, Namangala B, Mataa L, Zulu VC, Munyeme M, Muleya W. Molecular detection and characterization of Anaplasma spp. in cattle and sable antelope from Lusaka and North-Western provinces of Zambia. Vet Parasitol Reg Stud Reports 2023; 39:100847. [PMID: 36878632 DOI: 10.1016/j.vprsr.2023.100847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 01/29/2023] [Accepted: 02/11/2023] [Indexed: 02/15/2023]
Abstract
Rickettsiales of the genus Anaplasma are globally distributed tick-borne pathogens of animals and humans with complex epidemiological cycles. Anaplasmosis is an important livestock disease in Zambia but its epidemiological information is inadequate. This study aimed to detect and characterize the species of Anaplasma present in domestic and wild ruminants in Zambia with a focus on the infection risk posed by the translocation of sable antelope (Hippotragus niger) from North-Western Province to Lusaka Province. Archived DNA samples (n = 100) extracted from whole blood (sable n = 47, cattle n = 53) were screened for Anaplasmataceae using 16S rRNA partial gene amplification followed by species confirmation using phylogenetic analysis. Out of the 100 samples, Anaplasma species were detected in 7% (4/57) of the cattle and 24% (10/43) of the sable antelope samples. Of the 14 positive samples, five were determined to be A. marginale (four from cattle and one from sable), seven were A. ovis (sable) and two were A. platys (sable). Phylogenetic analysis of the 16S rRNA partial gene sequences revealed genetic proximity between A. ovis and A. marginale, regardless of host. The detection of Anaplasma in wildlife in Zambia shows the risk of transmission of Anaplasma species associated with wildlife translocation.
Collapse
Affiliation(s)
- Rhodasi Mwale
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Zambia, P.O Box 32379, Lusaka, Zambia
| | - Malala Mulavu
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, P.O Box 32379, Lusaka 10101, Zambia
| | - Cynthia Sipho Khumalo
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Zambia, P.O Box 32379, Lusaka, Zambia
| | - Andrew Mukubesa
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, P.O Box 32379, Lusaka, Zambia
| | - King Nalubamba
- Department of Clinical Studies, School of Veterinary Medicine, University of Zambia, P.O Box 32379, Lusaka, Zambia
| | - Benjamin Mubemba
- Department of Wildlife Sciences, School of Natural Resources, Copperbelt University, P.O Box 21692, Kitwe, Zambia
| | - Katendi Changula
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia
| | - Edgar Simulundu
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, P.O Box 32379, Lusaka, Zambia; Macha Research Trust, P.O. Box 630166, Choma, Zambia
| | - Simbarashe Chitanga
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, P.O Box 32379, Lusaka 10101, Zambia; Department of Preclinical Studies, School of Veterinary Medicine, Faculty of Health Sciences & Veterinary Medicine, University of Namibia, Namibia; School of Life Sciences, College of Agriculture, Engineering & Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Boniface Namangala
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia
| | - Liywali Mataa
- Department of Veterinary Services, Ministry of Fisheries and Livestock, Lusaka 50060, Zambia
| | - Victor Chisha Zulu
- Department of Clinical Studies, School of Veterinary Medicine, University of Zambia, P.O Box 32379, Lusaka, Zambia
| | - Musso Munyeme
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, P.O Box 32379, Lusaka, Zambia
| | - Walter Muleya
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Zambia, P.O Box 32379, Lusaka, Zambia.
| |
Collapse
|
32
|
El-Alfy ES, Abbas I, Elseadawy R, Saleh S, Elmishmishy B, El-Sayed SAES, Rizk MA. Global prevalence and species diversity of tick-borne pathogens in buffaloes worldwide: a systematic review and meta-analysis. Parasit Vectors 2023; 16:115. [PMID: 36998029 PMCID: PMC10061416 DOI: 10.1186/s13071-023-05727-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/03/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND Buffaloes are important contributors to the livestock economy in many countries, particularly in Asia, and tick-borne pathogens (TBPs) commonly infect buffaloes, giving rise to serious pathologies other than their zoonotic potential. METHODS The present investigation focuses on the prevalence of TBPs infecting buffaloes worldwide. All published global data on TBPs in buffaloes were collected from different databases (e.g., PubMed, Scopus, ScienceDirect, and Google Scholar) and subjected to various meta-analyses using OpenMeta[Analyst] software, and all analyses were conducted based on a 95% confidence interval. RESULTS Over 100 articles discussing the prevalence and species diversity of TBPs in buffaloes were retrieved. Most of these reports focused on water buffaloes (Bubalus bubalis), whereas a few reports on TBPs in African buffaloes (Syncerus caffer) had been published. The pooled global prevalence of the apicomplexan parasites Babesia and Theileria, as well as the bacterial pathogens Anaplasma, Coxiella burnetii, Borrelia, Bartonella, and Ehrlichia in addition to Crimean-Congo hemorrhagic fever virus, were all evaluated based on the detection methods and 95% confidence intervals. Interestingly, no Rickettsia spp. were detected in buffaloes with scarce data. TBPs of buffaloes displayed a fairly high species diversity, which underlines the high infection risk to other animals, especially cattle. Babesia bovis, B. bigemina, B. orientalis, B. occultans and B. naoakii, Theileria annulata, T. orientalis complex (orientalis/sergenti/buffeli), T. parva, T. mutans, T. sinensis, T. velifera, T. lestoquardi-like, T. taurotragi, T. sp. (buffalo) and T. ovis, and Anaplasma marginale, A. centrale, A. platys, A. platys-like and "Candidatus Anaplasma boleense" were all were identified from naturally infected buffaloes. CONCLUSIONS Several important aspects were highlighted for the status of TBPs, which have serious economic implications for the buffalo as well as cattle industries, particularly in Asian and African countries, which should aid in the development and implementation of prevention and control methods for veterinary care practitioners, and animal owners.
Collapse
Affiliation(s)
- El-Sayed El-Alfy
- grid.10251.370000000103426662Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516 Egypt
| | - Ibrahim Abbas
- grid.10251.370000000103426662Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516 Egypt
| | - Rana Elseadawy
- grid.10251.370000000103426662Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516 Egypt
| | - Somaya Saleh
- grid.10251.370000000103426662Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516 Egypt
| | - Bassem Elmishmishy
- grid.10251.370000000103426662Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516 Egypt
| | - Shimaa Abd El-Salam El-Sayed
- grid.10251.370000000103426662Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516 Egypt
| | - Mohamed Abdo Rizk
- grid.10251.370000000103426662Department of Internal Medicine, Infectious and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516 Egypt
| |
Collapse
|
33
|
Developing Anti-Babesia bovis Blood Stage Vaccines: A New Perspective Regarding Synthetic Vaccines. Int J Mol Sci 2023; 24:ijms24065219. [PMID: 36982294 PMCID: PMC10049154 DOI: 10.3390/ijms24065219] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/22/2022] [Accepted: 01/13/2023] [Indexed: 03/12/2023] Open
Abstract
Bovine babesiosis is caused by the Apicomplexa parasites from the genus Babesia. It is one of the most important tick-borne veterinary diseases worldwide; Babesia bovis being the species associated with the most severe clinical signs of the disease and causing the greatest economic losses. Many limitations related to chemoprophylaxis and the acaricides control of transmitting vectors have led to the adoption of live attenuated vaccine immunisation against B. bovis as an alternative control strategy. However, whilst this strategy has been effective, several drawbacks related to its production have prompted research into alternative methodologies for producing vaccines. Classical approaches for developing anti-B. bovis vaccines are thus discussed in this review and are compared to a recent functional approach to highlight the latter’s advantages when designing an effective synthetic vaccine targeting this parasite.
Collapse
|
34
|
Back PS, Moon AS, Pasquarelli RR, Bell HN, Torres JA, Chen AL, Sha J, Vashisht AA, Wohlschlegel JA, Bradley PJ. IMC29 Plays an Important Role in Toxoplasma Endodyogeny and Reveals New Components of the Daughter-Enriched IMC Proteome. mBio 2023; 14:e0304222. [PMID: 36622147 PMCID: PMC9973257 DOI: 10.1128/mbio.03042-22] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/07/2022] [Indexed: 01/10/2023] Open
Abstract
The Toxoplasma inner membrane complex (IMC) is a unique organelle that plays critical roles in parasite motility, invasion, egress, and replication. The IMC is delineated into the apical, body, and basal regions, defined by proteins that localize to these distinct subcompartments. The IMC can be further segregated by proteins that localize specifically to the maternal IMC, the daughter bud IMC, or both. While the function of the maternal IMC has been better characterized, the precise roles of most daughter IMC components remain poorly understood. Here, we demonstrate that the daughter protein IMC29 plays an important role in parasite replication. We show that Δimc29 parasites exhibit severe replication defects, resulting in substantial growth defects and loss of virulence. Deletion analyses revealed that IMC29 localization is largely dependent on the N-terminal half of the protein containing four predicted coiled-coil domains while IMC29 function requires a short C-terminal helical region. Using proximity labeling, we identify eight novel IMC proteins enriched in daughter buds, significantly expanding the daughter IMC proteome. We additionally report four novel proteins with unique localizations to the interface between two parasites or to the outer face of the IMC, exposing new subregions of the organelle. Together, this work establishes IMC29 as an important early daughter bud component of replication and uncovers an array of new IMC proteins that provides important insights into this organelle. IMPORTANCE The inner membrane complex (IMC) is a conserved structure across the Apicomplexa phylum, which includes obligate intracellular parasites that cause toxoplasmosis, malaria, and cryptosporidiosis. The IMC is critical for the parasite to maintain its intracellular lifestyle, particularly in providing a scaffold for daughter bud formation during parasite replication. While many IMC proteins in the later stages of division have been identified, components of the early stages of division remain unknown. Here, we focus on the early daughter protein IMC29, demonstrating that it is crucial for faithful parasite replication and identifying specific regions of the protein that are important for its localization and function. We additionally use proximity labeling to reveal a suite of daughter-enriched IMC proteins, which represent promising candidates to further explore this IMC subcompartment.
Collapse
Affiliation(s)
- Peter S. Back
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Andy S. Moon
- Department of Molecular Microbiology and Immunology, University of California, Los Angeles, California, USA
| | | | - Hannah N. Bell
- Department of Molecular Microbiology and Immunology, University of California, Los Angeles, California, USA
| | - Juan A. Torres
- Department of Molecular Microbiology and Immunology, University of California, Los Angeles, California, USA
| | - Allan L. Chen
- Department of Molecular Microbiology and Immunology, University of California, Los Angeles, California, USA
| | - Jihui Sha
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Ajay A. Vashisht
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - James A. Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Peter J. Bradley
- Department of Molecular Microbiology and Immunology, University of California, Los Angeles, California, USA
| |
Collapse
|
35
|
East Coast Fever Carrier Status and Theileria parva Breakthrough Strains in Recently ITM Vaccinated and Non-Vaccinated Cattle in Iganga District, Eastern Uganda. Pathogens 2023; 12:pathogens12020295. [PMID: 36839567 PMCID: PMC9965312 DOI: 10.3390/pathogens12020295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/20/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
East Coast fever (ECF) is a tick-borne disease of cattle that hinders the development of the livestock industry in eastern, central and southern Africa. The 'Muguga cocktail' live vaccine, delivered by an infection and treatment method (ITM), remains the only immunisation strategy of controlling ECF. However, there are challenges of the live vaccine inducing ECF carrier status in immunised animals and the possibility of lack of protection from parasite strains that are antigenically different from the vaccine strains. In Uganda, there are insufficient data regarding the ECF carrier status and T. parva genetic diversity in vaccinated and associated non-vaccinated cattle to assess the effectiveness of ITM vaccination. Blood was collected from recently ECF vaccinated (98) and non-vaccinated (73) cattle from Iganga district in Eastern Uganda at 120 days post-vaccination. The p104 gene nested PCR was used to screen for T. parva DNA, 11 minisatellite and 3 microsatellite markers (SSR) were used for genotyping. Two minisatellite markers (MS7 and MS19) were used to determine whether ECF carrier status was due to the T. parva vaccine or local strains. The prevalence of T. parva based on p104 nPCR was 61.2% (60/98) (RR 2.234, 95% CI 1.49-3.35, p-value < 0.001) among recently vaccinated cattle and 27.4% (20/73) (RR 1.00) among associated non-vaccinated cattle. The Muguga cocktail vaccine strains were responsible for carrier status in 10 (58.8%) by MS7 and 11 (64.7%) by MS19 in vaccinated cattle. Genotypes of T. parva with different-sized alleles to the vaccine strains that could be potential 'breakthroughs' were detected in 2 (11.8%)) and 4 (23.5%) isolates from vaccinated cattle based on MS7 and MS19 minisatellite markers, respectively. Using 14 SSR markers, T. parva diversity was higher in vaccinated (Na = 2.214, Ne = 1.978, He = 0.465) than associated non-vaccinated (Na = 1.071, Ne = 1.048, He = 0.259) cattle. The principal component analysis (PCA) showed isolates from vaccinated cattle were closely related to those from non-vaccinated cattle. The analysis of molecular variance (AMOVA) revealed high genetic variation (96%) within T. parva isolates from vaccinated and non-vaccinated cattle but low variation (4%) between vaccinated and non-vaccinated cattle. This study reveals the role of ITM in inducing the carrier status and higher T. parva genetic diversity in vaccinated cattle. The low genetic variation between T. parva isolates in both vaccinated and non-vaccinated cattle may be suggestive of the protective role of vaccine strains against genetically related local strains in the study area.
Collapse
|
36
|
Addo SO, Bentil RE, Yartey KN, Ansah-Owusu J, Behene E, Opoku-Agyeman P, Bruku S, Asoala V, Mate S, Larbi JA, Baidoo PK, Wilson MD, Diclaro JW, Dadzie SK. First molecular identification of multiple tick-borne pathogens in livestock within Kassena-Nankana, Ghana. ANIMAL DISEASES 2023. [DOI: 10.1186/s44149-022-00064-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
AbstractThe risk of pathogen transmission continues to increase significantly in the presence of tick vectors due to the trade of livestock across countries. In Ghana, there is a lack of data on the incidence of tick-borne pathogens that are of zoonotic and veterinary importance. This study, therefore, aimed to determine the prevalence of such pathogens in livestock using molecular approaches. A total of 276 dry blood spots were collected from cattle (100), sheep (95) and goats (81) in the Kassena-Nankana Districts. The samples were analyzed using Polymerase Chain Reaction (qPCR) and conventional assays and Sanger sequencing that targeted pathogens including Rickettsia, Coxiella, Babesia, Theileria, Ehrlichia and Anaplasma. An overall prevalence of 36.96% was recorded from the livestock DBS, with mixed infections seen in 7.97% samples. Furthermore, the prevalence of infections in livestock was recorded to be 19.21% in sheep, 14.13% in cattle, and 3.62% in goats. The pathogens identified were Rickettsia spp. (3.26%), Babesia sp. Lintan (8.70%), Theileria orientalis (2.17%), Theileria parva (0.36%), Anaplasma capra (18.48%), Anaplasma phagocytophilum (1.81%), Anaplasma marginale (3.26%) and Anaplasma ovis (7.25%). This study reports the first molecular identification of the above-mentioned pathogens in livestock in Ghana and highlights the use of dry blood spots in resource-limited settings. In addition, this research provides an update on tick-borne pathogens in Ghana, suggesting risks to livestock production and human health. Further studies will be essential to establish the distribution and epidemiology of these pathogens in Ghana.
Collapse
|
37
|
Thinnabut K, Rodpai R, Sanpool O, Maleewong W, Tangkawanit U. Genetic diversity of tick (Acari: Ixodidae) populations and molecular detection of Anaplasma and Ehrlichia infesting beef cattle from upper-northeastern Thailand. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 107:105394. [PMID: 36502740 DOI: 10.1016/j.meegid.2022.105394] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Genetic diversity, genetic structure and demographic history of the ticks infesting beef cattle in Thailand were examined based on mitochondrial cytochrome c oxidase I (cox1) sequences. Tick samples were collected in 12 provinces in upper-northeastern Thailand. Three species were found; Rhipicephalus microplus, R. sanguineus, and Haemaphysalis bispinosa. Of these, R. microplus was by far the most abundant species in beef cattle and was widely distributed throughout the area. No cox1 sequence variation was found in the R. sanguineus or H. bispinosa specimens collected. Low nucleotide diversity but high haplotype diversity was observed in R. microplus. All collected R. microplus specimens belonged to lineage A. Mismatch-distribution analysis, as well as Tajima's D and Fu's Fs tests, provided evidence of recent demographic expansion. A subsample of tick specimens was investigated for presence of Anaplasma and Ehrlichia using a fragment of the 16S rRNA gene. Three species of Anaplasma were detected from R. microplus; Anaplasma marginale (19.08%), Anaplasma platys (1.97%) and unidentified Anaplasma strain (0.66%). The infection rate of Ehrlichia was 7.24% (two ticks were infected with E. minasensis (1.97%) and eight with an unidentified Ehrlichia strain (5.26%). No infections were found in R. sanguineus or H. bispinosa. This is the first report of A. platys and E. minasensis in cattle ticks in Thailand, providing information for future epidemiological surveys and control strategies in this region.
Collapse
Affiliation(s)
- Kanchana Thinnabut
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Rutchanee Rodpai
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Oranuch Sanpool
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wanchai Maleewong
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ubon Tangkawanit
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
38
|
Ringo AE, Nonga HE, Galon EM, Ji S, Rizk MA, El-Sayed SAES, Mohanta UK, Ma Z, Chikufenji B, Do TT, Xuan X. Molecular Investigation of Tick-Borne Haemoparasites Isolated from Indigenous Zebu Cattle in the Tanga Region, Tanzania. Animals (Basel) 2022; 12:ani12223171. [PMID: 36428398 PMCID: PMC9686548 DOI: 10.3390/ani12223171] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Tick-borne diseases (TBDs) are a major hindrance to livestock production in pastoral communities of Africa. Although information on tick-borne infections is necessary for setting up control measures, this information is limited in the pastoral communities of Tanzania. Therefore, this study aimed to provide an overview of the tick-borne infections in the indigenous cattle of Tanzania. A total of 250 blood samples were collected from the indigenous zebu cattle in the Tanga region, Tanzania. Then, we conducted a molecular survey using the polymerase chain reaction (PCR) and gene sequencing to detect and identify the selected tick-borne pathogens. The PCR was conducted using assays, based on Theileria spp. (18S rRNA), Theileria parva (p104), Theileria mutans and T. taurotragi (V4 region of the 18S rRNA), Babesia bigemina (RAP-1a), B. bovis (SBP-2), Anaplasma marginale (heat shock protein groEL) and Ehrlichia ruminantium (pCS20). The PCR screening revealed an overall infection rate of (120/250, 48%) for T. mutans, (64/250, 25.6%) for T. parva, (52/250, 20.8%) for T. taurotragi, (33/250, 13.2%) for B. bigemina and (81/250, 32.4%) for A. marginale. Co-infections of up to four pathogens were revealed in 44.8% of the cattle samples. A sequence analysis indicated that T. parva p104 and A. marginale groEL genes were conserved among the sampled animals with sequence identity values of 98.92−100% and 99.88−100%, respectively. Moreover, the B. bigemina RAP-1a gene and the V4 region of the 18S rRNA of T. mutans genes were diverse among the sampled cattle, indicating the sequence identity values of 99.27−100% and 22.45−60.77%, respectively. The phylogenetic analyses revealed that the T. parva (p104) and A. marginale (groEL) gene sequences of this study were clustered in the same clade. In contrast, the B. bigemina (RAP-1a) and the T. mutans V4 region of the 18S rRNA gene sequences appeared in the different clades. This study provides important basement data for understanding the epidemiology of tick-borne diseases and will serve as a scientific basis for planning future control strategies in the study area.
Collapse
Affiliation(s)
- Aaron Edmond Ringo
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
- Zanzibar Livestock Research Institute, Ministry of Agriculture, Irrigation, Natural Resources and Livestock, Zanzibar P.O. Box 159, Tanzania
| | - Hezron Emanuel Nonga
- Ministry of Livestock and Fisheries, Government City Mtumba, Dodoma P.O. Box 2870, Tanzania
| | - Eloiza May Galon
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
| | - Shengwei Ji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
| | - Mohamed Abdo Rizk
- Department of Internal medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Shimaa Abd El-Salam El-Sayed
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura 35516, Egypt
| | - Uday Kumar Mohanta
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
| | - Zhuowei Ma
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
| | - Boniface Chikufenji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
| | - Thanh Thom Do
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
- Correspondence: ; Tel.: +81-(155)-495-648
| |
Collapse
|
39
|
Transmission Cycle of Tick-Borne Infections and Co-Infections, Animal Models and Diseases. Pathogens 2022; 11:pathogens11111309. [PMID: 36365060 PMCID: PMC9696261 DOI: 10.3390/pathogens11111309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Tick-borne pathogens such as species of Borrelia, Babesia, Anaplasma, Rickettsia, and Ehrlichia are widespread in the United States and Europe among wildlife, in passerines as well as in domestic and farm animals. Transmission of these pathogens occurs by infected ticks during their blood meal, carnivorism, and through animal bites in wildlife, whereas humans can become infected either by an infected tick bite, through blood transfusion and in some cases, congenitally. The reservoir hosts play an important role in maintaining pathogens in nature and facilitate transmission of individual pathogens or of multiple pathogens simultaneously to humans through ticks. Tick-borne co-infections were first reported in the 1980s in white-footed mice, the most prominent reservoir host for causative organisms in the United States, and they are becoming a major concern for public health now. Various animal infection models have been used extensively to better understand pathogenesis of tick-borne pathogens and to reveal the interaction among pathogens co-existing in the same host. In this review, we focus on the prevalence of these pathogens in different reservoir hosts, animal models used to investigate their pathogenesis and host responses they trigger to understand diseases in humans. We also documented the prevalence of these pathogens as correlating with the infected ticks’ surveillance studies. The association of tick-borne co-infections with other topics such as pathogens virulence factors, host immune responses as they relate to diseases severity, identification of vaccine candidates, and disease economic impact are also briefly addressed here.
Collapse
|
40
|
Singh K, Kumar S, Sharma AK, Jacob S, RamVerma M, Singh NK, Shakya M, Sankar M, Ghosh S. Economic impact of predominant ticks and tick-borne diseases on Indian dairy production systems. Exp Parasitol 2022; 243:108408. [DOI: 10.1016/j.exppara.2022.108408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/27/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
|
41
|
Kamaraj C, Gandhi PR, Chandra Satish Kumar R, Balasubramani G, Malafaia G. Biosynthesis and extrinsic toxicity of copper oxide nanoparticles against cattle parasites: An eco-friendly approach. ENVIRONMENTAL RESEARCH 2022; 214:114009. [PMID: 36027957 DOI: 10.1016/j.envres.2022.114009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Plant extracts' ability to collect metals and decrease metal ions makes them a superior candidate for the biosynthesis of nanoparticles; hence, they are referred to as bio-nano factories since both living and dead dried biomass are employed to produce metallic nanoparticles. The antiparasitic activity of biosynthesized copper oxide nanoparticles (CuO NPs) was examined against cow tick larvae (Rhipicephalus microplus, Haemaphysalis bispinosa, and Hippobosca maculata). These parasitic larvae were treated with various concentrations of methanolic leaf extract of A. marmelos (MLE-AM) and biosynthesized CuO NPs for 24 h. CuO NPs were synthesized quickly using A. marmelos leaf extract, and nanoparticle synthesis was identified within 15 min. The results from characteristic XRD, FTIR, SEM, EDX, and TEM analyses confirmed the biosynthesis of CuO NPs. The presence of 26-Hydroxycholesterol was discovered as the predominant chemical present in the GC-MS analysis of MLE-AM. The maximum efficacy was observed in biosynthesized CuO NPs against R. microplus larvae, H. bispinosa adults, and Hip. maculata larvae (LC50 = 4.30, 9.50, and 11.13 mg/L; and LC90 = 8.30, 19.57, and 21.65 mg/L; and 6.219, 6.547, and 2.587). Overall, the bio-fabrication of CuO NPs has the potential to develop better and safer antiparasitic control techniques.
Collapse
Affiliation(s)
- Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research and Virtual Education, SRM Institute of Science and Technology (SRMIST), Kattankulathur, 603203, Tamil Nadu, India.
| | - Pachiyappan Rajiv Gandhi
- Division of Nano-biotechnology, Department of Zoology, Auxilium College (Autonomous), Gandhi Nagar, 632 006, Vellore District, Tamil Nadu, India.
| | - Rajappan Chandra Satish Kumar
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Head - Drug Testing Laboratory (Indian Medicine), S.R.M. Institute of Science & Technology, Chengalpattu, 603 203, Tamil Nadu, India.
| | - Govindasamy Balasubramani
- Department of Research and Innovation, Saveetha School of Engineering (SSE), Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 602105, Tamil Nadu, India.
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
42
|
Pathak A, Chakraborty S, Oyen K, Rosendale AJ, Benoit JB. Dual assessment of transcriptional and metabolomic responses in the American dog tick following exposure to different pesticides and repellents. Ticks Tick Borne Dis 2022; 13:102033. [PMID: 36099731 PMCID: PMC9971363 DOI: 10.1016/j.ttbdis.2022.102033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 08/15/2022] [Accepted: 08/15/2022] [Indexed: 02/03/2023]
Abstract
The American dog tick, Dermacentor variabilis, is a major pest to humans and animals, serving as a vector to Rickettsia rickettsii, a bacterium responsible for Rocky Mountain spotted fever, and Francisella tularensis, which is responsible for tularemia. Although several tactics for management have been deployed, very little is known about the molecular response following pesticidal treatments in ticks. In this study, we used a combined approach utilizing transcriptomics and metabolomics to understand the response of the American dog tick to five common pesticides (amitraz, chlorpyrifos, fipronil, permethrin, and propoxur), and analyzed previous experimental data utilizing DEET repellent. Exposure to different chemicals led to significant differential expression of a varying number of transcripts, where 42 were downregulated and only one was upregulated across all treatments. A metabolomic analysis identified significant changes in acetate and aspartate levels following exposure to chlorpyrifos and propoxur, which was attributed to reduced cholinesterase activity. Integrating the metabolomics study with RNA-seq analysis, we found the physiological manifestations of the combined metabolic and transcriptional differences, revealing several novel biomolecular pathways. In particular, we discovered the downregulation of amino sugar metabolism and methylhistidine metabolism after permethrin exposure, as well as an upregulation of glutamate metabolism in amitraz treated samples. Understanding these altered biochemical pathways following pesticide and repellent exposure can help us formulate more effective chemical treatments to reduce the burden of ticks.
Collapse
Affiliation(s)
- Atit Pathak
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45211
| | - Souvik Chakraborty
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45211
| | - Kennan Oyen
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45211
| | - Andrew J Rosendale
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45211; Biology Department, Mount St. Joseph University, Cincinnati, OH, 45233
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45211.
| |
Collapse
|
43
|
Espinosa-Muñoz DY, López-López L, Ríos-Osorio LA, Gutiérrez-Builes LA. Detection of Babesia and the associated factors in cattle and humans from Magdalena Medio region, Colombia. Comp Immunol Microbiol Infect Dis 2022; 90-91:101900. [DOI: 10.1016/j.cimid.2022.101900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/08/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
|
44
|
Rezvani Y, Keroack CD, Elsworth B, Arriojas A, Gubbels MJ, Duraisingh MT, Zarringhalam K. Comparative single-cell transcriptional atlases of Babesia species reveal conserved and species-specific expression profiles. PLoS Biol 2022; 20:e3001816. [PMID: 36137068 PMCID: PMC9531838 DOI: 10.1371/journal.pbio.3001816] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 10/04/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
Babesia is a genus of apicomplexan parasites that infect red blood cells in vertebrate hosts. Pathology occurs during rapid replication cycles in the asexual blood stage of infection. Current knowledge of Babesia replication cycle progression and regulation is limited and relies mostly on comparative studies with related parasites. Due to limitations in synchronizing Babesia parasites, fine-scale time-course transcriptomic resources are not readily available. Single-cell transcriptomics provides a powerful unbiased alternative for profiling asynchronous cell populations. Here, we applied single-cell RNA sequencing to 3 Babesia species (B. divergens, B. bovis, and B. bigemina). We used analytical approaches and algorithms to map the replication cycle and construct pseudo-synchronized time-course gene expression profiles. We identify clusters of co-expressed genes showing "just-in-time" expression profiles, with gradually cascading peaks throughout asexual development. Moreover, clustering analysis of reconstructed gene curves reveals coordinated timing of peak expression in epigenetic markers and transcription factors. Using a regularized Gaussian graphical model, we reconstructed co-expression networks and identified conserved and species-specific nodes. Motif analysis of a co-expression interactome of AP2 transcription factors identified specific motifs previously reported to play a role in DNA replication in Plasmodium species. Finally, we present an interactive web application to visualize and interactively explore the datasets.
Collapse
Affiliation(s)
- Yasaman Rezvani
- Department of Mathematics, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Caroline D. Keroack
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Brendan Elsworth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Argenis Arriojas
- Department of Mathematics, University of Massachusetts Boston, Boston, Massachusetts, United States of America
- Department of Physics, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Marc-Jan Gubbels
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Manoj T. Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Kourosh Zarringhalam
- Department of Mathematics, University of Massachusetts Boston, Boston, Massachusetts, United States of America
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| |
Collapse
|
45
|
Haji I, Simuunza M, Kerario II, Jiang N, Chen Q. Epidemiology of tick-borne pathogens of cattle and tick control practices among mixed farming and pastoral communities in Gairo and Monduli districts, Tanzania. Vet Parasitol Reg Stud Reports 2022; 32:100738. [PMID: 35725102 DOI: 10.1016/j.vprsr.2022.100738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
Tick-borne diseases including East Coast fever, anaplasmosis and babesiosis constitute a major constraint to improving livestock production worldwide, including Tanzania. Determination of the prevalence and factors associated with the occurrence of pathogens in cattle is important for informed decision making on the control and prevention of these diseases. However, little is known about the epidemiology of these pathogens in cattle in some regions of Tanzania. Therefore, this study aimed at establishing the prevalence of Anaplasma marginale, Babesia bigemina, Babesia bovis and Theileria parva in cattle, determine the risk factors associated with infection with these pathogens and also to assess tick control practices in Gairo and Monduli districts of Tanzania. Out of the 520 cattle sampled, the majority (82.9%) were infested with ticks of different species, predominated by Rhipicephalus decoloratus (42.7%), Amblyomma variegatum (31.3%), Rhipicephalus pulchellus (23.1%) and Rhipicephalus appendiculatus (17.7%). Other ticks that were found on cattle included Rhipicephalus microplus (15.8%), Amblyomma gema (13.8%), Rhipicephalus evertsi (12.9%), Amblyomma lepidum (8.1%), Hyalomma truncatum (2.9%) and Hyalomma albiparmatum (2.1%). On microscopy 23 (4.4%) of 520 cattle were positive for hemoparasites. Of the 23 positive cattle, 13 (2.5%), 6 (1.2%) and 3 (0.6%) were monolithically infected with A. marginale, T. parva, and B. bovis respectively, while one (0.2% %) had co-infections of T. parva and A. marginale. The number of positive cattle increased to 184 (35.4%), when they were subjected to detection with PCR. This included the 23 samples that were positive on microscopy. Based on PCR, the overall prevalence of the pathogens from the two districts was 11.5%, 11.2%, 6.2% and 2.5% for B. bigemina, A. marginale, T. parva and B. bovis, respectively. Hemoparasite co-infection occurred in 6.9% of the cattle examined. The prevalence of co-infections was 2.7%, 4%, and 0.02% for T. parva/A. marginale, B. bigemina/A. marginale and B. bigemina/A. marginale/T. parva, respectively. Cattle with co-infections had significantly lower (p < 0.005) mean packed cell volume as compared to cattle with mono-infections. The majority (96%) of cattle examined were subjected to different methods of tick control. A number of risk factors were shown to be associated with the occurrence of tick-borne pathogens in cattle. Higher prevalence of A. marginale may be due to its wide range of biological and mechanical transmission. These findings could be used to strengthen future control programs for ticks and tick-borne diseases in the study areas.
Collapse
Affiliation(s)
- Isihaka Haji
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang 110866, China
| | - Martin Simuunza
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, P. O. Box 32379, Lusaka, Zambia
| | - Isack Ibrahim Kerario
- Department of Animal, Aquaculture and Range Sciences, College of Agriculture, Sokoine University of Agriculture, P.O. Box 3004, Morogoro, Tanzania
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang 110866, China; Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang 110866, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang 110866, China; Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang 110866, China.
| |
Collapse
|
46
|
THE ECONOMIC IMPACT OF HEARTWATER ON THE SOUTH AFRICAN LIVESTOCK INDUSTRY AND THE NEED FOR A NEW VACCINE. Prev Vet Med 2022; 203:105634. [DOI: 10.1016/j.prevetmed.2022.105634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 11/22/2022]
|
47
|
Whittle L, Chapman R, van Diepen M, Rybicki EP, Williamson AL. Characterization of a Novel Chimeric Theileria parva p67 Antigen Which Incorporates into Virus-like Particles and Is Highly Immunogenic in Mice. Vaccines (Basel) 2022; 10:vaccines10020210. [PMID: 35214669 PMCID: PMC8880696 DOI: 10.3390/vaccines10020210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 11/16/2022] Open
Abstract
The current method to protect cattle against East Coast Fever (ECF) involves the use of live Theileria parva sporozoites. Although this provides immunity, using live parasites has many disadvantages, such as contributing to the spread of ECF. Subunit vaccines based on the sporozoite surface protein p67 have been investigated as a replacement for the current method. In this study, two DNA vaccines expressing recombinant forms of p67 designed to display on retrovirus-like particles were constructed with the aim of improving immunogenicity. The native leader sequence was replaced with the human tissue plasminogen activator leader in both vaccines. The full-length p67 gene was included in the first DNA vaccine (p67); in the second, the transmembrane domain and cytoplasmic tail were replaced with those of an influenza A virus hemagglutinin 5 (p67HA). Immunofluorescent staining of fixed and live transfected mammalian cells showed that both p67 and p67HA were successfully expressed, and p67HA localised on the cell surface. Furthermore, p67HA was displayed on the surface of both bovine leukaemia virus (BLV) Gag and HIV-1 Gag virus-like particles (VLPs) made in the same cells. Mice vaccinated with DNA vaccines expressing p67 and p67HA alone, or p67HA with BLV or HIV-1 Gag, developed high titres of p67 and BLV Gag-binding antibodies. Here we show that it is possible to integrate a form of p67 containing all known antigenic domains into VLPs. This p67HA–VLP combination has the potential to be incorporated into a vaccine against ECF, as a DNA vaccine or as other vaccine platforms.
Collapse
Affiliation(s)
- Leah Whittle
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa; (L.W.); (M.v.D.); (E.P.R.); (A.-L.W.)
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Ros Chapman
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa; (L.W.); (M.v.D.); (E.P.R.); (A.-L.W.)
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Correspondence:
| | - Michiel van Diepen
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa; (L.W.); (M.v.D.); (E.P.R.); (A.-L.W.)
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Edward P. Rybicki
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa; (L.W.); (M.v.D.); (E.P.R.); (A.-L.W.)
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town 7925, South Africa
| | - Anna-Lise Williamson
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa; (L.W.); (M.v.D.); (E.P.R.); (A.-L.W.)
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
48
|
Zannou OM, Da Re D, Ouedraogo AS, Biguezoton AS, Abatih E, Yao KP, Farougou S, Lempereur L, Vanwambeke SO, Saegerman C. Modelling habitat suitability of the invasive tick Rhipicephalus microplus in West Africa. Transbound Emerg Dis 2022; 69:2938-2951. [PMID: 34985810 DOI: 10.1111/tbed.14449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/25/2021] [Accepted: 12/31/2021] [Indexed: 11/30/2022]
Abstract
Ticks have medical and economic importance due to their ability to transmit pathogens to humans and animals. In tropical and sub-tropical countries, tick-borne diseases (TBD) are among the most important diseases affecting livestock and humans. The fast spread of ticks and TBD requires a quick development and application of efficient prevention and/or control programs. Therefore, prior investigations on TBD and related vectors epidemiology, for instance, through accurate epidemiological models, are mandatory. This study aims to develop models to forecast suitable habitat for Rhipicephalus microplus distribution in West Africa. Tick occurrences were assembled from 10 different studies carried out in six West African countries in the past decade. Six statistical models (maximum entropy in a single model and generalised linear model, generalised additive model, random forest, boosted regression tree and support vector machine model in an ensemble model) were applied and compared to predict the habitat suitability of R. microplus distribution in West Africa. Each model was evaluated with the area under the receiver operating characteristic curve (AUC), the true skill statistic (TSS) and the Boyce index (BI). The selected models had good performance according to their AUC (above .8), TSS (above .7) and BI (above .8). Temperature played a key role in MaxEnt model, whereas normalised difference vegetation index (NDVI) was the most important variable in the ensemble model. The model predictions showed coastal countries of West Africa as more suitable for R. microplus. However, some Sahelian areas seems also favourable. We stress the importance of vector surveillance and control in countries that have not yet detected R. microplus but are in the areas predicted to host suitable habitat. Indeed, awareness-raising and training of different stakeholders must be reinforced for better prevention and control of this tick in these different countries according to their status.
Collapse
Affiliation(s)
- Olivier M Zannou
- Research Unit in Epidemiology and Risk Analysis applied to veterinary sciences (UREAR-ULiège), Fundamental and Applied Research for Animal and Health (FARAH) Center, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, Liege, Belgium.,Vector-borne Diseases and Biodiversity Unit (UMaVeB), International Research and Development Center on Livestock in Sub-humid Areas (CIRDES), Bobo-Dioulasso, Burkina Faso
| | - Daniele Da Re
- Georges Lemaître Center for Earth and Climate Research, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
| | - Achille S Ouedraogo
- Vector-borne Diseases and Biodiversity Unit (UMaVeB), International Research and Development Center on Livestock in Sub-humid Areas (CIRDES), Bobo-Dioulasso, Burkina Faso.,Laboratory of Parasitology and Parasitic Diseases, Fundamental and Applied Research for Animal and Health (FARAH) Center, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Abel S Biguezoton
- Vector-borne Diseases and Biodiversity Unit (UMaVeB), International Research and Development Center on Livestock in Sub-humid Areas (CIRDES), Bobo-Dioulasso, Burkina Faso
| | - Emmanuel Abatih
- Department of Applied Mathematics, Computer Sciences and Statistics, Ghent University, Gent, Belgium
| | | | - Souaïbou Farougou
- Communicable Diseases Research Unit (URMaT), Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Cotonou, Republic of Benin
| | - Laetitia Lempereur
- Laboratory of Parasitology and Parasitic Diseases, Fundamental and Applied Research for Animal and Health (FARAH) Center, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Sophie O Vanwambeke
- Georges Lemaître Center for Earth and Climate Research, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
| | - Claude Saegerman
- Research Unit in Epidemiology and Risk Analysis applied to veterinary sciences (UREAR-ULiège), Fundamental and Applied Research for Animal and Health (FARAH) Center, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, Liege, Belgium
| |
Collapse
|
49
|
A Survey of Tick Infestation and Tick-Borne Piroplasm Infection of Cattle in Oudalan and Séno Provinces, Northern Burkina Faso. Pathogens 2021; 11:pathogens11010031. [PMID: 35055979 PMCID: PMC8777743 DOI: 10.3390/pathogens11010031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/19/2021] [Accepted: 12/24/2021] [Indexed: 12/01/2022] Open
Abstract
In this study, cattle farms located in Oudalan and Séno, two provinces in the Sahel region, northern Burkina Faso, were surveyed. Cattle owners were interviewed, cattle were examined for tick infestation, and ticks as well as blood samples were collected during the dry season (October). Blood DNA samples were tested for Babesia and Theileria infections using nested PCRs and sequencing. A total of 22 herds, 174 Zebu cattle were investigated at 6 different sites. Overall, 76 cattle (43.7 %) from 18 farms (81.8%) were found infested with ticks. Cattle in Séno, adult cattle (>5 years) and those owned by the Fulani ethnic group were significantly (p < 0.05) more likely to be tick-infested. A total of 144 adult ticks belonging to five species namely: Hyalomma impeltatum, Hyalomma impressum, Hyalomma rufipes, Rhipicephalus evertsi evertsi, and Rhipicephalus guilhoni were collected from the animals. Piroplasms were detected in the blood DNA of 23 (13.2%) cattle. The cattle in Séno and adult cattle were significantly more likely to be piroplasm-positive. Five pathogens diversely distributed were identified. Theileria mutans (12/174), Babesia bigemina (5/174), Theileria annulata (3/174), and Theileria velifera (3/174) were detected for the first time in northern Burkina Faso, whereas Babesia occultans (1/174) was found for the first time in cattle in West Africa. The analysis of the sequences, including B. bigemina RAP-1a, T. annulata Tams1 genes, and the 18S rRNA genes of all the five protozoa, revealed identities ranging from 98.4 to 100% with previously published sequences. Phylogenetic analysis based on the 18S rRNA gene sequences located north Burkina Faso piroplasms in the same clade as isolates from Africa and other regions of the world. Notably, T. mutans sequences were distributed in two clades: the T. mutans Intona strain clade and the Theileria sp. (strain MSD)/ Theileria sp. B15a clade, suggesting the presence of at least two strains in the area. These findings indicate that the control of ticks and tick-borne diseases should be taken into account in strategies to improve animal health in the Sahel region.
Collapse
|
50
|
Molecular survey of cattle ticks in Burundi: First report on the presence of the invasive Rhipicephalus microplus tick. PLoS One 2021; 16:e0261218. [PMID: 34890445 PMCID: PMC8664164 DOI: 10.1371/journal.pone.0261218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/27/2021] [Indexed: 12/04/2022] Open
Abstract
A recent research study on prevalence of tick-borne pathogens in Burundi reported high prevalence and endemicity of Theileria parva, Anaplasma marginale and Babesia bigemina infections in cattle. Detailed information about tick species infesting animals, their distribution and genetic diversity in Burundi is outdated and limited. This study therefore assessed the prevalence and genetic diversity of tick species infesting cattle across agroecological zones (AEZs) in Burundi. A cross-sectional study on the occurrence of tick species was conducted in 24 districts of Burundi between October and December 2017. Differential identification and characterization of ticks collected was conducted using tick morphological keys and molecular tools (cox1 and 12S rRNA gene). Chi-square test was used to test for association between agroecological zones and the prevalence of tick species. Phylogenetic relationships were inferred using bayesian and maximum likelihood algorithms. A total of 483 ticks were collected from the five AEZs sampled. Six tick species comprising of Rhipicephalus appendiculatus, R. sanguineus, R. evertsi evertsi, R. microplus, R. decoloratus and Amblyomma variegatum were observed. Rhipicephalus appendiculatus were the most prevalent ticks (~45%). A total of 138 specimens (28%) were found to be Rhipicephalus microplus, suggesting an emerging threat for cattle farmers. Twelve R. appendiculatus cox1 haplotypes were obtained from 106 specimens that were sequenced. Two cox1 haplotypes of R. microplus which clustered into previously reported Clade A were observed. Rhipicephalus sanguineus and R. evertsi evertsi ticks, the vectors of numerous zoonotic pathogens, were collected from cattle, which constitute a high risk for public health. These findings reveal an overlapping distribution of tick vectors in Burundi. The design of ticks and tick-borne diseases control strategies should consider the distribution of different vectors across the AEZs particularly the presence of the highly invasive R. microplus tick in Burundi and the potential risk of introducing the pathogenic Babesia bovis.
Collapse
|