1
|
Kotsampasi B, Karatzia MA, Tsiokos D, Chadio S. Nutritional Strategies to Alleviate Stress and Improve Welfare in Dairy Ruminants. Animals (Basel) 2024; 14:2573. [PMID: 39272358 PMCID: PMC11394234 DOI: 10.3390/ani14172573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/18/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Dairy ruminants provide a major part of the livestock and agriculture sectors. Due to the increase in world population and the subsequent increase in dairy product demands, the dairy sector has been intensified. Dairy farming intensification and the subsequent increase in animal nutritional demands and the increase in the average global temperature as well have subjected animals to various stress conditions that impact their health and welfare. Various management practices and nutritional strategies have been proposed and studied to alleviate these impacts, especially under heat stress, as well as during critical periods, like the transition period. Some of the nutritional interventions to cope with stress factors and ensure optimal health and production are the inclusion of functional fatty acids and amino acids and feed additives (minerals, prebiotics, probiotics, essential oils and herbs, phytobiotics, enzymes, etc.) that have been proven to regulate animals' metabolism and improve their antioxidant status and immune function. Thus, these nutritional strategies could be the key to ensuring optimum growth, milk production, and reproduction efficiency. This review summarizes and highlights key nutritional approaches to support the remarkable metabolic adaptations ruminants are facing during the transition period and to reduce heat stress effects and evaluate their beneficial effects on animal physiology, performance, health, as well as welfare.
Collapse
Affiliation(s)
- Basiliki Kotsampasi
- Research Institute of Animal Science, Directorate General of Agricultural Research, Hellenic Agricultural Organization-DIMITRA, 58100 Giannitsa, Greece
| | - Maria Anastasia Karatzia
- Research Institute of Animal Science, Directorate General of Agricultural Research, Hellenic Agricultural Organization-DIMITRA, 58100 Giannitsa, Greece
| | - Dimitrios Tsiokos
- Research Institute of Animal Science, Directorate General of Agricultural Research, Hellenic Agricultural Organization-DIMITRA, 58100 Giannitsa, Greece
| | - Stella Chadio
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| |
Collapse
|
2
|
Upadhyay VR, Ashutosh, Shashank CG, Singh NP. Deciphering the immune responses in late gestation Sahiwal cows under different microclimate and its carryover effect on progenies. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:1885-1895. [PMID: 38861181 DOI: 10.1007/s00484-024-02716-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/12/2024] [Accepted: 05/27/2024] [Indexed: 06/12/2024]
Abstract
The current investigation aimed to comprehend the inflammatory and related immune responses in intrauterine calves subjected to heat stress (HS) during late gestation. For this purpose, 48 Sahiwal cows in late gestation were chosen and categorized into four equal groups: naturally heat stressed (NHS), cooling-treated (CLT), spring, and winter, and likewise their neonate calves born in summer (IUHS - intrauterine heat stressed and IUCL - intrauterine cooled), spring, and winter seasons. Environmental parameters were recorded, and the temperature-humidity index (THI) was calculated daily throughout the study period. The average THI values ranged between 84.18 (summer-NHS), 73.88 (summer-CLT), 78.92 (spring), and 64.91 (winter). NHS and spring groups exhibited thermal stress based on THI (> 76.00). Various treatments significantly (P < 0.01) impacted parameters like rectal temperature (RT), respiratory rate (RR), pulse rate (PR), and skin temperature (ST) in Sahiwal cows and their calves during the study, except for heart rate (HR). Blood samples collected during different seasons and from cows housed in a climatic chamber were used to extract plasma. Plasma cortisol, interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α), and thiobarbituric acid reactive substances (TBARS) levels were notably higher (P < 0.05) in the NHS compared to the CLT group. Conversely, total antioxidant capacity (TAC) and immunoglobulin G (IgG) levels were higher (P < 0.05) in the CLT and winter groups. IUHS calves exhibited significantly (P < 0.05) lower overall mean plasma TAC and IgG levels but higher inflammatory and oxidative biomarkers, such as IL-6, TNF-α, and TBARS. Additionally, significant impacts on body weight were observed for factors such as interval (P < 0.01) and the interaction between treatment and interval (P < 0.05), exhibiting consistently lower body weight in IUHS calves throughout the study period. These findings suggest that late gestation heat stress may lead to physiological alterations in future calves. Strategies aimed at mitigating heat stress during late gestation should be considered not only for the productivity and well-being of the pregnant dam but also for the development and future performance of the calf.
Collapse
Affiliation(s)
- Vishwa Ranjan Upadhyay
- ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
- ICAR-National Research Centre on Camel, Bikaner, Rajasthan, 334001, India.
| | - Ashutosh
- ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - C G Shashank
- ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - N P Singh
- ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| |
Collapse
|
3
|
Lang LI, Wang ZZ, Liu B, Chang-Qing SHEN, Jing-Yi TU, Shi-Cheng WANG, Rui-Ling LEI, Si-Qi PENG, Xiong XIAO, Yong-Ju ZHAO, Qiu XY. The effects and mechanisms of heat stress on mammalian oocyte and embryo development. J Therm Biol 2024; 124:103927. [PMID: 39153259 DOI: 10.1016/j.jtherbio.2024.103927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 08/19/2024]
Abstract
The sum of nonspecific physiological responses exhibited by mammals in response to the disruption of thermal balance caused by high-temperature environments is referred to as heat stress (HS). HS affects the normal development of mammalian oocyte and embryos and leads to significant economic losses. Therefore, it is of great importance to gain a deep understanding of the mechanisms underlying the effects of HS on oocyte and embryonic development and to explore strategies for mitigating or preventing its detrimental impacts in the livestock industry. This article provides an overview of the negative effects of HS on mammalian oocyte growth, granulosa cell maturation and function, and embryonic development. It summarizes the mechanisms by which HS affects embryonic development, including generation of reactive oxygen species (ROS), endocrine disruption, the heat shock system, mitochondrial autophagy, and molecular-level alterations. Furthermore, it discusses various measures to ameliorate the effects of HS, such as antioxidant use, enhancement of mitochondrial function, gene editing, cultivating varieties possessing heat-resistant genes, and optimizing the animals'rearing environment. This article serves as a valuable reference for better understanding the relationship between HS and mammalian embryonic development as well as for improving the development of mammalian embryos and economic benefits under HS conditions in livestock production.
Collapse
Affiliation(s)
- L I Lang
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - Zhen-Zhen Wang
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - Bin Liu
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - S H E N Chang-Qing
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - T U Jing-Yi
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - W A N G Shi-Cheng
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - L E I Rui-Ling
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - P E N G Si-Qi
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - X I A O Xiong
- College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Z H A O Yong-Ju
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - Xiao-Yan Qiu
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China.
| |
Collapse
|
4
|
Ceciliani F, Maggiolino A, Biscarini F, Dadi Y, De Matos L, Cremonesi P, Landi V, De Palo P, Lecchi C. Heat stress has divergent effects on the milk microbiota of Holstein and Brown Swiss cows. J Dairy Sci 2024:S0022-0302(24)00957-3. [PMID: 38908697 DOI: 10.3168/jds.2024-24976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/25/2024] [Indexed: 06/24/2024]
Abstract
Heat stress (HS) is one of the pivotal causes of economic losses in dairy industries and affects welfare and performance, but its effect on milk microbiota remains elusive. It is also unclear if and how different breeds may cope with HS in sustaining productive performance. The objectives of this study were to compare a) the performance of 2 dairy breeds, namely Holstein and Brown Swiss, subjected to HS and b) the different effects of HS on the milk microbiota of the 2 breeds in thermal comfort conditions and HS. The study was carried out on 36 dairy cows, 18 per breed. The HS was induced by switching off the cooling system during a natural heat wave for 4 d. Besides the Temperature Humidity Index (THI), the animal stress was confirmed by measuring respiratory frequency and rectal temperature twice daily at 4 a.m. and 3 p.m. The HS differently impacted the 2 breeds. Rectal temperatures were higher in Holstein cows, while no changes in rectal temperature were found in Brown Swiss. Milk yield recording and sampling were performed during the morning milking of d 1 (at 4.00 a.m.) and afternoon milking of d 4 (at 5.00 p.m.). Productive parameters were also different: milk yield, fat-corrected milk, energy-corrected milk, protein and casein content, and renneting parameters were decreased in Holstein but remained unaffected in Brown Swiss. The HS also modified the milk microbiota of the 2 breeds differently. During HS, the Brown Swiss milk microbiota was richer (α diversity) than the Holstein one. Comparing the time points before and during HS within breeds showed that Brown Swiss milk microbiota was less affected by HS than Holstein's. Under the same thermal comfort condition, milk microbiota did not discriminate between Brown Swiss and Holstein. Consistently with α and β diversity, the number of operational taxonomic units (OTUs) at the genus level that changed their abundance during HS was higher in Holstein (74 OTUs) than in Brown Swiss (only 20 OTUs). The most significant changes in abundance affected Acinetobacter, Chryseobacterium, Cutibacterium, Enterococcus, Lactococcus, Prevotella-9, Serratia, and Streptococcus. In conclusion, the present report confirms and extends previous studies by demonstrating that Brown Swiss cows regulate their body temperature better than the Holstein breed. The relative thermal tolerance to HS compared with Holstein is also confirmed by changes in milk uncultured microbiota, which were more evident in Holstein than in Brown Swiss.
Collapse
Affiliation(s)
- F Ceciliani
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, via dell'Università 6, 26900 Lodi, Italy
| | - A Maggiolino
- Department of Veterinary Medicine, Università degli Studi di Bari A. Moro, SP per Casamassima, km 3, 70010 - Valenzano BA
| | - F Biscarini
- Institute of Agricultural Biology and Biotechnology, National Research Council (CNR), Milan, Italy
| | - Y Dadi
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, via dell'Università 6, 26900 Lodi, Italy
| | - L De Matos
- Institute of Agricultural Biology and Biotechnology, National Research Council (CNR), Milan, Italy
| | - P Cremonesi
- Institute of Agricultural Biology and Biotechnology, National Research Council (CNR), Milan, Italy
| | - V Landi
- Department of Veterinary Medicine, Università degli Studi di Bari A. Moro, SP per Casamassima, km 3, 70010 - Valenzano BA
| | - P De Palo
- Department of Veterinary Medicine, Università degli Studi di Bari A. Moro, SP per Casamassima, km 3, 70010 - Valenzano BA
| | - C Lecchi
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, via dell'Università 6, 26900 Lodi, Italy.
| |
Collapse
|
5
|
Xiao J, Han Z, Li X, Phillips CJC, Shi B. Effects of Transport Duration and Pre-Transport Fasting on Blood Biochemistry in Dorper × Mongolian Sheep. Animals (Basel) 2024; 14:1482. [PMID: 38791699 PMCID: PMC11117301 DOI: 10.3390/ani14101482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Transport is a high-risk time for sheep, especially if the distances are long and sheep are fasted for a long time beforehand. Two experiments were conducted to compare transport durations of 1 hour (1 h) and 3 hours (3 h) and the effects of feeding before transport using Dorper × Mongolian sheep, which are typical of the region and may be tolerant of the high temperatures in the Inner Mongolian summer. Thirty 4-month-old male sheep were randomly divided into two treatment groups, with 15 sheep/treatment in each experiment, to evaluate the effects on blood biochemical indicators, stress hormone levels, rectal temperatures, and antioxidant status of lambs in summer. In Experiment 1, the levels of triglycerides and free fatty acids after 3 h transport were significantly lower than after 1 h transport (p < 0.05). The levels of thyroxine and malondialdehyde in blood were greater after 3 h transport than 1 h transport (p < 0.05). Creatine kinase levels after 3 h transport tended to be lower than after 1 h transport (p = 0.051). In Experiment 2, the levels of urea and superoxide dismutase in the group fasted pre-transport was significantly lower than those of the group fed pre-transport (p < 0.05). The serum cortisol level in the pre-transport fed group was higher compared to the group fed pre-transport (p = 0.04). Total antioxidant capacity in the pre-transport fasted group tended to be lower compared to that in the pre-transport fed group (p < 0.0001). We conclude that the reduction in nutritional status of sheep transported for longer and without feed pre-transport suggests that transporting sheep in hot conditions in northern China after fasting for a long period should be restricted. However, a decrease in the stress induced by transport following fasting is worthy of further study.
Collapse
Affiliation(s)
- Jin Xiao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.H.); (X.L.); (B.S.)
| | - Zhipeng Han
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.H.); (X.L.); (B.S.)
| | - Xintong Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.H.); (X.L.); (B.S.)
| | - Clive J. C. Phillips
- Curtin University Sustainability Policy (CUSP) Institute, Curtin University, Perth, WA 6845, Australia;
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia
| | - Binlin Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.H.); (X.L.); (B.S.)
| |
Collapse
|
6
|
Stefanska B, Sobolewska P, Fievez V, Pruszynska-Oszmałek E, Purwin C, Nowak W. The effect of heat stress on performance, fertility, and adipokines involved in regulating systemic immune response during lipolysis of early lactating dairy cows. J Dairy Sci 2024; 107:2111-2128. [PMID: 37923214 DOI: 10.3168/jds.2023-23804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023]
Abstract
The aim of this study was to assess the potential effect of heat stress on dairy cow productivity, fertility, and biochemical blood indices during the early lactation stage in a temperate climate. Additionally, the study aimed to determine the role of leptin and adiponectin in regulating the immune response accompanying lipolysis after calving in dairy cows. The study included 100 clinically healthy Polish Holstein-Friesian dairy cows selected based on parity and 305 d of milk yield from 5 commercial farms with similar herd management and housing systems. Prospective cohort data were recorded from calving day until 150 d in milk, and microclimate loggers installed inside the barns were used to record temperature and relative humidity data to calculate daily temperature-humidity index (THI) on the calving day, through +7, +14, and +21 d during early lactation. Additionally, monthly productive performance parameters such as milk yield, chemical composition, fatty acids composition, and fertility indices were analyzed. Results showed that the THI from calving day through +7, +14, and +21 d during early lactation was negatively associated with fertility parameters such as delayed first estrus postpartum and an elongated calving interval, respectively, by 29, 27, 25, and 16 d. Furthermore, an increase in THI value during early lactation was associated with an elongated artificially inseminated service period, days open, and intercalving period. Increasing THI from calving day (0 d) through +7, +14, and up to +21 d during early lactation was also linked to decreased milk yield by 3.20, 4.10, 5.60, and 5.60 kg, respectively. The study also found that heat stress during early lactation was associated with a lower body condition score in dairy cows and higher concentrations of leptin, nonesterified fatty acids, and β-hydroxybutyrate, accompanied by a drastic reduction in adipose tissue-secreted adiponectin levels after calving. Additionally, heat stress-induced lipolysis in adipose tissue caused an inflammatory response that increased biochemical blood indices associated with immune responses such as cytokines, acute phase proteins, and heat shock protein. These findings suggest that exposing dairy cows to heat stress during early lactation can negatively affect their productive performance, fertility, and biochemical blood indices in subsequent lactations. Thus, farm management changes should be implemented during early lactation to mitigate the negative consequences of heat stress occurrence.
Collapse
Affiliation(s)
- B Stefanska
- Department of Grassland and Natural Landscape Sciences, Poznań University of Life Sciences, 60-632 Poznań, Poland.
| | - P Sobolewska
- Department of Grassland and Natural Landscape Sciences, Poznań University of Life Sciences, 60-632 Poznań, Poland
| | - V Fievez
- Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Gent, Belgium
| | - E Pruszynska-Oszmałek
- Department of Animal Physiology, Biochemistry, and Biostructure, Poznań University of Life Science, 60-637 Poznań, Poland
| | - C Purwin
- Department of Animal Nutrition, Feed Science, and Cattle Breeding, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - W Nowak
- Department of Animal Nutrition, Poznań University of Life Sciences, 60-637 Poznań, Poland
| |
Collapse
|
7
|
Li B, Wu K, Duan G, Yin W, Lei M, Yan Y, Ren Y, Zhang C. Folic Acid and Taurine Alleviate the Impairment of Redox Status, Immunity, Rumen Microbial Composition and Fermentation of Lambs under Heat Stress. Animals (Basel) 2024; 14:998. [PMID: 38612237 PMCID: PMC11010938 DOI: 10.3390/ani14070998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
The aim of this study was to investigate if the supplementation of folic acid and taurine can relieve the adverse effects of different levels of heat stress (HS) on growth performance, physiological indices, antioxidative capacity, immunity, rumen fermentation and microbiota. A total of 24 Dorper × Hu crossbred lambs (27.51 ± 0.96 kg) were divided into four groups: control group (C, 25 °C), moderate HS group (MHS, 35 °C), severe HS group (SHS, 40 °C), and the treatment group, under severe HS (RHS, 40 °C, 4 and 40 mg/kg BW/d coated folic acid and taurine, respectively). Results showed that, compared with Group C, HS significantly decreased the ADG of lambs (p < 0.05), and the ADG in the RHS group was markedly higher than in the MHS and SHS group (p < 0.05). HS had significant detrimental effects on physiological indices, antioxidative indices and immune status on the 4th day (p < 0.05). The physiological indices, such as RR and ST, increased significantly (p < 0.05) with the HS level and were significantly decreased in the RHS group, compared to the SHS group (p < 0.05). HS induced the significant increase of MDA, TNF-α, and IL-β, and the decrease of T-AOC, SOD, GPx, IL-10, IL-13, IgA, IgG, and IgM (p < 0.05). However, there was a significant improvement in these indices after the supplementation of folic acid and taurine under HS. Moreover, there were a significant increase in Quinella and Succinivibrio, and an evident decrease of the genera Rikenellaceae_RC9_gut_group and Asteroleplasma under HS (p < 0.05). The LEfSe analysis showed that the genera Butyrivibrio, Eubacterium_ventriosum_group, and f_Bifidobacteriaceae were enriched in the MHS, SHS and RHS groups, respectively. Correlated analysis indicated that the genus Rikenellaceae_RC9_gut_group was positively associated with MDA, while it was negatively involved in IL-10, IgA, IgM, and SOD (p < 0.05); The genus Anaeroplasma was positively associated with the propionate and valerate, while the genus Succinivibrio was negatively involved in TNF-α (p < 0.05). In conclusion, folic acid and taurine may alleviate the adverse effects of HS on antioxidant capacity, immunomodulation, and rumen fermentation of lambs by inducing changes in the microbiome that improve animal growth performance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Youshe Ren
- College of Animal Science, Shanxi Agricultural University, Taiyuan 030031, China; (B.L.); (K.W.); (G.D.); (W.Y.); (M.L.); (Y.Y.)
| | - Chunxiang Zhang
- College of Animal Science, Shanxi Agricultural University, Taiyuan 030031, China; (B.L.); (K.W.); (G.D.); (W.Y.); (M.L.); (Y.Y.)
| |
Collapse
|
8
|
Wang L, Yan X, Wu H, Wang F, Zhong Z, Zheng G, Xiao Q, Wu K, Na W. Selection Signal Analysis Reveals Hainan Yellow Cattle Are Being Selectively Bred for Heat Tolerance. Animals (Basel) 2024; 14:775. [PMID: 38473160 DOI: 10.3390/ani14050775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Hainan yellow cattle are indigenous Zebu cattle from southern China known for their tolerance of heat and strong resistance to disease. Generations of adaptation to the tropical environment of southern China and decades of artificial breeding have left identifiable selection signals in their genomic makeup. However, information on the selection signatures of Hainan yellow cattle is scarce. Herein, we compared the genomes of Hainan yellow cattle with those of Zebu, Qinchuan, Nanyang, and Yanbian cattle breeds by the composite likelihood ratio method (CLR), Tajima's D method, and identifying runs of homozygosity (ROHs), each of which may provide evidence of the genes responsible for heat tolerance in Hainan yellow cattle. The results showed that 5210, 1972, and 1290 single nucleotide polymorphisms (SNPs) were screened by the CLR method, Tajima's D method, and ROH method, respectively. A total of 453, 450, and 325 genes, respectively, were identified near these SNPs. These genes were significantly enriched in 65 Gene Ontology (GO) functional terms and 11 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways (corrected p < 0.05). Five genes-Adenosylhomocysteinase-like 2, DnaJ heat shock protein family (Hsp40) member C3, heat shock protein family A (Hsp70) member 1A, CD53 molecule, and zinc finger and BTB domain containing 12-were recognized as candidate genes associated with heat tolerance. After further functional verification of these genes, the research results may benefit the understanding of the genetic mechanism of the heat tolerance in Hainan yellow cattle, which lay the foundation for subsequent studies on heat stress in this breed.
Collapse
Affiliation(s)
- Liuhao Wang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xuehao Yan
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Hongfen Wu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Feifan Wang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Ziqi Zhong
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Gang Zheng
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Qian Xiao
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Kebang Wu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Wei Na
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
9
|
Brcko CC, da Silva JAR, Garcia AR, Silva AGME, Martorano LG, Vilela RA, Nahúm BDS, Barbosa AVC, da Silva WC, Rodrigues TCGDC, da Silva ÉBR, Lourenço-Júnior JDB. Effects of Climatic Conditions and Supplementation with Palm Cake on the Thermoregulation of Crossbred Buffaloes Raised in a Rotational Grazing System and with Natural Shade in Humid Tropical Regions. Animals (Basel) 2023; 14:53. [PMID: 38200784 PMCID: PMC10777955 DOI: 10.3390/ani14010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/10/2023] [Accepted: 11/23/2023] [Indexed: 01/12/2024] Open
Abstract
In ruminants, diet composition has a positive correlation with heat production, which can influence thermoregulation, energy expenditure and, consequently, animal performance. The objective of this work was to evaluate the effects of climatic conditions and supplementation based on palm kernel cake, on the thermoregulation of crossbred buffaloes in the eastern Amazon. The research was carried out at Embrapa Amazônia Oriental (01°26' S and 48°24' W), Belém, Pará, and lasted 12 months (representing the entire year). Twenty-four buffaloes, females, with initial age and an average weight of 54 ± 7 months and 503.1 ± 23 kg, respectively, non-pregnant, non-lactating and clinically healthy were used, divided into four treatments based on the supplementation content of the palm cake (%DM) in relation to their body weight (%): 0, 0.25, 0.50 and 1.0. The animals were kept in paddocks with Brachiaria brizantha (cv. Marandu), in a rotating system, with water to drink and mineral salt ad libitum. Equipment was installed to record environmental data (temperature and relative humidity, dew point temperature, wet bulb and black globe) and physiological data: rectal temperature (RT); respiratory rate (RR); and body surface temperature (BST), recorded twice a day, always in the morning (6:00 a.m. to 7:00 a.m.) and afternoon (12:00 p.m. to 1:00 p.m.) shifts, and were used to calculate the Globe Temperature and Humidity Index (GTHI). Supplementation did not influence the physiological variables of thermoregulation (p > 0.05). However, there were differences in the GTHI between the shifts, with higher means in the afternoon shift, especially in the less rainy period of the year, where the GTHI reached 92.06 ± 2.74 (p < 0.05). In all periods of the year, the mean values of RT, RR and BST were higher in the afternoon shift (p > 0.05). The respiratory rate (RR) is associated with the annual seasonality of the thermal waters, with higher averages in the afternoons of the rainy season. The positive correlation for rectal temperature, respiratory rate and body surface temperature indicated that buffaloes respond to thermal elevations in the atmosphere (afternoon period) and, consequently, reflect on the GTHI. Supplementation does not influence thermoregulation; the changes observed occurred in response to the region's thermal and rainfall conditions (mainly in the afternoon shift), with higher GTHI values.
Collapse
Affiliation(s)
- Carolina Carvalho Brcko
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Pará (UFPA), Federal Rural University of the Amazônia (UFRA), Brazilian Agricultural Research Corporation (EMBRAPA), Castanhal 68746-360, Brazil; (C.C.B.); (A.G.M.e.S.); (R.A.V.); (T.C.G.d.C.R.); (É.B.R.d.S.); (J.d.B.L.-J.)
| | - Jamile Andrea Rodrigues da Silva
- Institute of Animal Health and Production, Federal Rural University of the Amazônia (UFRA), Belem 66077-830, Brazil; (J.A.R.d.S.); (A.V.C.B.)
| | - Alexandre Rossetto Garcia
- Brazilian Agricultural Research Corporation, Embrapa Southeast Livestock, Rod Washington Luiz, São Carlos 13560-970, Brazil;
| | - André Guimarães Maciel e Silva
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Pará (UFPA), Federal Rural University of the Amazônia (UFRA), Brazilian Agricultural Research Corporation (EMBRAPA), Castanhal 68746-360, Brazil; (C.C.B.); (A.G.M.e.S.); (R.A.V.); (T.C.G.d.C.R.); (É.B.R.d.S.); (J.d.B.L.-J.)
| | | | - Reíssa Alves Vilela
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Pará (UFPA), Federal Rural University of the Amazônia (UFRA), Brazilian Agricultural Research Corporation (EMBRAPA), Castanhal 68746-360, Brazil; (C.C.B.); (A.G.M.e.S.); (R.A.V.); (T.C.G.d.C.R.); (É.B.R.d.S.); (J.d.B.L.-J.)
| | | | - Antônio Vinícius Corrêa Barbosa
- Institute of Animal Health and Production, Federal Rural University of the Amazônia (UFRA), Belem 66077-830, Brazil; (J.A.R.d.S.); (A.V.C.B.)
| | - Welligton Conceição da Silva
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Pará (UFPA), Federal Rural University of the Amazônia (UFRA), Brazilian Agricultural Research Corporation (EMBRAPA), Castanhal 68746-360, Brazil; (C.C.B.); (A.G.M.e.S.); (R.A.V.); (T.C.G.d.C.R.); (É.B.R.d.S.); (J.d.B.L.-J.)
| | - Thomaz Cyro Guimarães de Carvalho Rodrigues
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Pará (UFPA), Federal Rural University of the Amazônia (UFRA), Brazilian Agricultural Research Corporation (EMBRAPA), Castanhal 68746-360, Brazil; (C.C.B.); (A.G.M.e.S.); (R.A.V.); (T.C.G.d.C.R.); (É.B.R.d.S.); (J.d.B.L.-J.)
| | - Éder Bruno Rebelo da Silva
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Pará (UFPA), Federal Rural University of the Amazônia (UFRA), Brazilian Agricultural Research Corporation (EMBRAPA), Castanhal 68746-360, Brazil; (C.C.B.); (A.G.M.e.S.); (R.A.V.); (T.C.G.d.C.R.); (É.B.R.d.S.); (J.d.B.L.-J.)
| | - José de Brito Lourenço-Júnior
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Pará (UFPA), Federal Rural University of the Amazônia (UFRA), Brazilian Agricultural Research Corporation (EMBRAPA), Castanhal 68746-360, Brazil; (C.C.B.); (A.G.M.e.S.); (R.A.V.); (T.C.G.d.C.R.); (É.B.R.d.S.); (J.d.B.L.-J.)
| |
Collapse
|
10
|
Satapathy PP, Mishra SR, Patnaik S, Behera SS, Mishra C, Kundu AK. Transcription pattern of key molecular chaperones in heat shocked caprine cardiac fibroblasts. Anim Biotechnol 2023; 34:1711-1718. [PMID: 35294843 DOI: 10.1080/10495398.2022.2043886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The present study was attempted to unveil the impact of heat stress on transcription pattern of major heat shock response genes in caprine cardiac fibroblasts. Cardiac tissues (n = 6) were collected and primary cardiac cell culture was done. Cultured cardiac fibroblasts were kept in an atmosphere of 5% CO2 and 95% air at 38.5 °C. Cardiac cells achieved 70-75% confluence after 72 hours of incubation. Heat stress was induced on confluent cardiac fibroblasts at 42 °C for 0 (control), 20, 60, 100 and 200 min. Quantitative RT-PCR for β2m (internal control), HSP60, HSP70, HSP90, and HSP110 was done and their transcription pattern was assessed by Pfaffl method. HSP60, HSP90, and HSP110 transcription did not differ at 20 min, up-regulated (p < 0.05) from 60 to 200 min and registered highest at 200 min of heat exposure. HSP70 transcription was gradually escalated (p < 0.05) time dependently from 20 to 200 min and reached zenith at 200 min of heat exposure. Differential induction in transcription of key molecular chaperones at various durations of heat exposure might reduce cardiac fibroblasts apoptosis and thus could maintain cardiac tissue function during heat stress.
Collapse
Affiliation(s)
- P P Satapathy
- Department of Veterinary Physiology, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, India
| | - S R Mishra
- Department of Veterinary Physiology, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, India
| | - S Patnaik
- Department of Veterinary Physiology, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, India
| | - S S Behera
- Department of Veterinary Surgery and Radiology, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, India
| | - C Mishra
- Department of Animal Breeding & Genetics, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, India
| | - A K Kundu
- Department of Veterinary Physiology, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, India
| |
Collapse
|
11
|
Loor JJ, Lopreiato V, Palombo V, D’Andrea M. Physiological impact of amino acids during heat stress in ruminants. Anim Front 2023; 13:69-80. [PMID: 37841758 PMCID: PMC10575319 DOI: 10.1093/af/vfad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Affiliation(s)
- Juan J Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Vincenzo Lopreiato
- Department of Veterinary Sciences, Università degli Studi di Messina, Viale Palatucci snc 98168, Messina, Italy
| | - Valentino Palombo
- Department of Agricultural, Environmental and Food Sciences, Università degli Studi del Molise, via De Sanctis snc 86100, Campobasso, Italy
| | - Mariasilvia D’Andrea
- Department of Agricultural, Environmental and Food Sciences, Università degli Studi del Molise, via De Sanctis snc 86100, Campobasso, Italy
| |
Collapse
|
12
|
Su Y, Cheng Z, Liu W, Wu T, Wang W, Lin M. Effects of rumen-protective γ-aminobutyric acid additive on lactation performance and serum biochemistry in heat-stressed cows. Front Vet Sci 2023; 10:1228155. [PMID: 37808113 PMCID: PMC10556515 DOI: 10.3389/fvets.2023.1228155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
In the context of global warming, heat stress has become one of the major stress factors limiting dairy cattle production. Although many methods have been explored to help cows mitigate the negative effects of heat stress during the hot summer months, maintaining the performance of high-yielding cows under heat stress is still a great challenge. The aim of this trial was to investigate the effect of RP-GABA in the diet on milk yield, milk composition and serum biochemical parameters in heat-stressed cows. Twenty Chinese Holstein cows in early lactation (51.00 ± 4.92 kg milk/d, 71 ± 10.94 d in milk and 2.68 ± 0.73 parities) were included in this experiment and randomly divided into four groups (n = 5/group). The four experimental groups consisted of one control group (0 g RP-GABA/d) and three treatment groups, given 5, 7.5 and 10 g RP-GABA/d of dry matter (DM) per cow, respectively. The results showed that supplementing high-yielding cows with 10 g/d of RP-GABA improved milk protein production but had no effect on the improvement of other production performance, the alleviation of heat stress in cows, or the improvement of immune function and antioxidant capacity. Ultimately, we conclude that the supplementation of 10 g/d RP-GABA to heat-stressed, high-yielding dairy cows can provide a degree of performance enhancement. Furthermore, our study provides some reference for nutritional improvement measures for summer heat stress in dairy cows, especially high-yielding cows.
Collapse
Affiliation(s)
| | - Zhiqiang Cheng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Wengboyang Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | | | | | - Miao Lin
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
13
|
Worku D, Hussen J, De Matteis G, Schusser B, Alhussien MN. Candidate genes associated with heat stress and breeding strategies to relieve its effects in dairy cattle: a deeper insight into the genetic architecture and immune response to heat stress. Front Vet Sci 2023; 10:1151241. [PMID: 37771947 PMCID: PMC10527375 DOI: 10.3389/fvets.2023.1151241] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 08/31/2023] [Indexed: 09/30/2023] Open
Abstract
The need for food products of animal origin is increasing worldwide. Satisfying these needs in a way that has minimal impact on the environment requires cutting-edge technologies and techniques to enhance the genetic quality of cattle. Heat stress (HS), in particular, is affecting dairy cattle with increasing frequency and severity. As future climatic challenges become more evident, identifying dairy cows that are more tolerant to HS will be important for breeding dairy herds that are better adapted to future environmental conditions and for supporting the sustainability of dairy farming. While research into the genetics of HS in the context of the effect of global warming on dairy cattle is gaining momentum, the specific genomic regions involved in heat tolerance are still not well documented. Advances in omics information, QTL mapping, transcriptome profiling and genome-wide association studies (GWAS) have identified genomic regions and variants associated with tolerance to HS. Such studies could provide deeper insights into the genetic basis for response to HS and make an important contribution to future breeding for heat tolerance, which will help to offset the adverse effects of HS in dairy cattle. Overall, there is a great interest in identifying candidate genes and the proportion of genetic variation associated with heat tolerance in dairy cattle, and this area of research is currently very active worldwide. This review provides comprehensive information pertaining to some of the notable recent studies on the genetic architecture of HS in dairy cattle, with particular emphasis on the identified candidate genes associated with heat tolerance in dairy cattle. Since effective breeding programs require optimal knowledge of the impaired immunity and associated health complications caused by HS, the underlying mechanisms by which HS modulates the immune response and renders animals susceptible to various health disorders are explained. In addition, future breeding strategies to relieve HS in dairy cattle and improve their welfare while maintaining milk production are discussed.
Collapse
Affiliation(s)
- Destaw Worku
- Department of Animal Science, College of Agriculture, Food and Climate Sciences, Injibara University, Injibara, Ethiopia
| | - Jamal Hussen
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Giovanna De Matteis
- Council for Agricultural Research and Economics, CREA Research Centre for Animal Production and Aquaculture, Monterotondo, Rome, Italy
| | - Benjamin Schusser
- Reproductive Biotechnology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Mohanned Naif Alhussien
- Reproductive Biotechnology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
14
|
da Silva WC, da Silva JAR, da Silva ÉBR, Barbosa AVC, Sousa CEL, de Carvalho KC, dos Santos MRP, Neves KAL, Martorano LG, Camargo Júnior RNC, Lourenço-Júnior JDB. Characterization of Thermal Patterns Using Infrared Thermography and Thermolytic Responses of Cattle Reared in Three Different Systems during the Transition Period in the Eastern Amazon, Brazil. Animals (Basel) 2023; 13:2735. [PMID: 37685000 PMCID: PMC10487038 DOI: 10.3390/ani13172735] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
In the Lower Amazon mesoregion, there are basically three types of production systems: the traditional (without shade and no bathing area), the silvopastoral (with shade and no bathing area), and the integrated (with shade and bathing area). It is considered that the type of production system influences the thermal comfort and productivity of cattle, so this research aims to evaluate the influence of these three types of production systems on the thermoregulation of Nellore cattle. The experiment was carried out on a rural property for raising cattle, located in Mojuí dos Campos, Pará, Brazil, during the transition period (June/July). Thirty bovine males (not castrated, aged between 18 and 20 months, average weight of 250 ± 36 kg, body condition score of 3.5, clinically healthy) were randomly divided into three groups: Silvopastoral System-SS (n = 10), Traditional System-TS (n = 10), and Integrated System-IS (n = 10). Climate variables were collected (air temperature (AT °C), relative humidity (RH %), wind speed (WS, m/s), solar radiation (SR), black globe temperature (BGT °C), and physiological parameters, such as respiratory rate (RR) and rectal temperature (RT)) at 6 a.m., 12 p.m., 6 p.m., and 12 a.m. to determine the thermal comfort situation of the animals. Thermographic images of the environment and animals were captured in order to obtain the body surface temperature (BST) through infrared thermography. The Benezra Thermal Comfort Index (BTCI), Environmental Stress Index (ESI), Equivalent Temperature Index (ETI), and Iberian Heat Tolerance Index (Iberian HTI) were used. The results showed that the silvopastoral system, with shading by chestnut trees and an ample vegetative area, presented better thermal conditions, with an average of 28.98 °C, in comparison with the traditional system (35.93 °C) and the integrated one (34.11 °C). It was observed that the body surface temperature of cattle did not differ significantly between the anatomical regions of the body and the studied systems (p > 0.05). As for the respiratory rate, the traditional system registered higher values, with an average of 41 movements per minute, indicating possible thermal stress (p < 0.05). The thermal comfort indices revealed that all systems presented moderate stress conditions during times of higher solar intensity. It is concluded that the silvopastoral system proved to be more favorable for cattle, providing shade and reducing thermal stress, which may have a positive impact on animal welfare and productivity in this region.
Collapse
Affiliation(s)
- Welligton Conceição da Silva
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Para (UFPA), Federal Rural University of the Amazônia (UFRA), Brazilian Agricultural Research Corporation (EMBRAPA), Castanhal 68746-360, Brazil; (É.B.R.d.S.); (R.N.C.C.J.); (J.d.B.L.-J.)
| | | | - Éder Bruno Rebelo da Silva
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Para (UFPA), Federal Rural University of the Amazônia (UFRA), Brazilian Agricultural Research Corporation (EMBRAPA), Castanhal 68746-360, Brazil; (É.B.R.d.S.); (R.N.C.C.J.); (J.d.B.L.-J.)
| | | | - Carlos Eduardo Lima Sousa
- Department of Veterinary Medicine, University Center of the Amazon (UNAMA), Santarem 68010-200, Brazil; (C.E.L.S.); (K.C.d.C.)
| | - Katarina Cardoso de Carvalho
- Department of Veterinary Medicine, University Center of the Amazon (UNAMA), Santarem 68010-200, Brazil; (C.E.L.S.); (K.C.d.C.)
| | | | | | | | - Raimundo Nonato Colares Camargo Júnior
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Para (UFPA), Federal Rural University of the Amazônia (UFRA), Brazilian Agricultural Research Corporation (EMBRAPA), Castanhal 68746-360, Brazil; (É.B.R.d.S.); (R.N.C.C.J.); (J.d.B.L.-J.)
| | - José de Brito Lourenço-Júnior
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Para (UFPA), Federal Rural University of the Amazônia (UFRA), Brazilian Agricultural Research Corporation (EMBRAPA), Castanhal 68746-360, Brazil; (É.B.R.d.S.); (R.N.C.C.J.); (J.d.B.L.-J.)
| |
Collapse
|
15
|
Sampath V, Shalakhti O, Veidis E, Efobi JAI, Shamji MH, Agache I, Skevaki C, Renz H, Nadeau KC. Acute and chronic impacts of heat stress on planetary health. Allergy 2023; 78:2109-2120. [PMID: 36883412 DOI: 10.1111/all.15702] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Heat waves are increasing in intensity, frequency, and duration causing significant heat stress in all living organisms. Heat stress has multiple negative effects on plants affecting photosynthesis, respiration, growth, development, and reproduction. It also impacts animals leading to physiological and behavioral alterations, such as reduced caloric intake, increased water intake, and decreased reproduction and growth. In humans, epidemiological studies have shown that heat waves are associated with increased morbidity and mortality. There are many biological effects of heat stress (structural changes, enzyme function disruption, damage through reactive oxygen or nitrogen species). While plants and animals can mitigate some of these effects through adaptive mechanisms such as the generation of heat shock proteins, antioxidants, stress granules, and others, these mechanisms may likely be inadequate with further global warming. This review summarizes the effects of heat stress on plants and animals and the adaptative mechanisms that have evolved to counteract this stress.
Collapse
Affiliation(s)
- Vanitha Sampath
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, California, Stanford, USA
| | - Omar Shalakhti
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, California, Stanford, USA
| | - Erika Veidis
- Center for Innovation in Global Health, Stanford University, California, Stanford, USA
| | - Jo Ann Ifeoma Efobi
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, California, Stanford, USA
| | - Mohamed H Shamji
- National Heart and Lung Institute, Imperial College London, London, UK
- NIHR Imperial Biomedical Research Centre, London, UK
| | - Ioana Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania
| | - Chrysanthi Skevaki
- Institute of Laboratory Medicine, Member of the German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
- German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
| | - Harald Renz
- Institute of Laboratory Medicine, Member of the German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
- German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
- Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia
- Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
| | - Kari C Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Gandara ACP, Drummond-Barbosa D. Chronic exposure to warm temperature causes low sperm abundance and quality in Drosophila melanogaster. Sci Rep 2023; 13:12331. [PMID: 37518578 PMCID: PMC10387475 DOI: 10.1038/s41598-023-39360-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023] Open
Abstract
Temperature influences male fertility across organisms; however, how suboptimal temperatures affect adult spermatogenesis remains understudied. In a recent study on Drosophila melanogaster oogenesis, we observed a drastic reduction in the fertility of adult males exposed to warm temperature (29 °C). Here, we show that males become infertile at 29 °C because of low sperm abundance and quality. The low sperm abundance at 29 °C does not stem from reduced germline stem cell or spermatid numbers, as those numbers remain comparable between 29 °C and control 25 °C. Notably, males at cold 18 °C and 29 °C had similarly increased frequencies of spermatid elongation and individualization defects which, considering the high sperm abundance and male fertility measured at 18 °C, indicate that spermatogenesis has a high tolerance for elongation and individualization defects. Interestingly, the abundance of sperm at 29 °C decreases abruptly and with no evidence of apoptosis as they transition into the seminal vesicle near the end of spermatogenesis, pointing to sperm elimination through an unknown mechanism. Finally, sperm from males at 29 °C fertilize eggs less efficiently and do not support embryos past the first stage of embryogenesis, indicating that poor sperm quality is an additional cause of male infertility at 29 °C.
Collapse
Affiliation(s)
- Ana Caroline P Gandara
- Department of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Morgridge Institute for Research, Madison, WI, 53706, USA
| | - Daniela Drummond-Barbosa
- Department of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Morgridge Institute for Research, Madison, WI, 53706, USA.
| |
Collapse
|
17
|
Galina CS, Geffroy M. Dual-Purpose Cattle Raised in Tropical Conditions: What Are Their Shortcomings in Sound Productive and Reproductive Function? Animals (Basel) 2023; 13:2224. [PMID: 37444022 DOI: 10.3390/ani13132224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Dual-purpose husbandry might well be the most commonly employed cattle management system in tropical regions worldwide. The advantages of producing both meat and milk, although in reduced quantities, gives an edge to the farmer in coping with the volatile economic conditions that prevail in the region. Herein, we discuss the different methods of cattle management under tropical conditions based on the financial and social structure of this system. An account of the sanitary and nutritional conditions available to the farmers and how these factors affect the profitability of the enterprise will also be given. Finally, we will discuss how these systems can take advantage of several biotechnological procedures, and how these tools (such as controlled natural mating, artificial insemination, and embryo transfer) affect reproductive outcomes. The present review will mainly concentrate on production systems located less than 1000 m above sea level, as the problems and shortcomings of cattle raised above this arbitrary landmark are quite different.
Collapse
Affiliation(s)
- Carlos Salvador Galina
- Departamento de Reproducción, Facultad de Medicina, Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Mariana Geffroy
- Departamento de Reproducción, Facultad de Medicina, Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico
| |
Collapse
|
18
|
Dovolou E, Giannoulis T, Nanas I, Amiridis GS. Heat Stress: A Serious Disruptor of the Reproductive Physiology of Dairy Cows. Animals (Basel) 2023; 13:1846. [PMID: 37889768 PMCID: PMC10252019 DOI: 10.3390/ani13111846] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Global warming is a significant threat to the sustainability and profitability of the dairy sector, not only in tropical or subtropical regions but also in temperate zones where extreme summer temperatures have become a new and challenging reality. Prolonged exposure of dairy cows to high temperatures compromises animal welfare, increases morbidity, and suppresses fertility, resulting in devastating economic losses for farmers. To counteract the deleterious effects of heat stress, cattl e employ various adaptive thermoregulatory mechanisms including molecular, endocrine, physiological, and behavioral responses. These adaptations involve the immediate secretion of heat shock proteins and cortisol, followed by a complex network of disrupted secretion of metabolic and reproductive hormones such as prolactin, ghrelin, ovarian steroid, and pituitary gonadotrophins. While the strategic heat stress mitigation measures can restore milk production through modifications of the microclimate and nutritional interventions, the summer fertility records remain at low levels compared to those of the thermoneutral periods of the year. This is because sustainment of high fertility is a multifaceted process that requires appropriate energy balance, undisrupted mode of various hormones secretion to sustain the maturation and fertilizing competence of the oocyte, the normal development of the early embryo and unhampered maternal-embryo crosstalk. In this review, we summarize the major molecular and endocrine responses to elevated temperatures in dairy cows, as well as the impacts on maturing oocytes and early embryos, and discuss the consequences that heat stress brings about in dairy cattle fertility.
Collapse
Affiliation(s)
- Eleni Dovolou
- Laboratory of Reproduction, Faculty of Animal Science, University of Thessaly, 41223 Larissa, Greece;
- Department of Obstetrics & Reproduction, Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece;
| | - Themistoklis Giannoulis
- Laboratory of Genetics, Faculty of Animal Science, University of Thessaly, 41223 Larissa, Greece;
| | - Ioannis Nanas
- Department of Obstetrics & Reproduction, Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece;
| | - Georgios S. Amiridis
- Department of Obstetrics & Reproduction, Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece;
| |
Collapse
|
19
|
Lemal P, May K, König S, Schroyen M, Gengler N. Invited review: From heat stress to disease-Immune response and candidate genes involved in cattle thermotolerance. J Dairy Sci 2023:S0022-0302(23)00214-X. [PMID: 37164864 DOI: 10.3168/jds.2022-22727] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/01/2023] [Indexed: 05/12/2023]
Abstract
Heat stress implies unfavorable effects on primary and functional traits in dairy cattle and, in consequence, on the profitability of the whole production system. The increasing number of days with extreme hot temperatures suggests that it is imperative to detect the heat stress status of animals based on adequate measures. However, confirming the heat stress status of an individual is still challenging, and, in consequence, the identification of novel heat stress biomarkers, including molecular biomarkers, remains a very relevant issue. Currently, it is known that heat stress seems to have unfavorable effects on immune system mechanisms, but this information is of limited use in the context of heat stress phenotyping. In addition, there is a lack of knowledge addressing the molecular mechanisms linking the relevant genes to the observed phenotype. In this review, we explored the potential molecular mechanisms explaining how heat stress affects the immune system and, therefore, increases the occurrence of immune-related diseases in cattle. In this regard, 2 relatively opposite hypotheses are under focus: the immunosuppressive action of cortisol, and the proinflammatory effect of heat stress. In both hypotheses, the modulation of the immune response during heat stress is highlighted. Moreover, it is possible to link candidate genes to these potential mechanisms. In this context, immune markers are very valuable indicators for the detection of heat stress in dairy cattle, broadening the portfolio of potential biomarkers for heat stress.
Collapse
Affiliation(s)
- P Lemal
- TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech (ULiège-GxABT), 5030 Gembloux, Belgium
| | - K May
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, Ludwigstraße 21B, 35390 Gießen, Germany
| | - S König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, Ludwigstraße 21B, 35390 Gießen, Germany
| | - M Schroyen
- TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech (ULiège-GxABT), 5030 Gembloux, Belgium
| | - N Gengler
- TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech (ULiège-GxABT), 5030 Gembloux, Belgium.
| |
Collapse
|
20
|
Sajjanar B, Aalam MT, Khan O, Tanuj GN, Sahoo AP, Manjunathareddy GB, Gandham RK, Dhara SK, Gupta PK, Mishra BP, Dutt T, Singh G. Genome-wide expression analysis reveals different heat shock responses in indigenous (Bos indicus) and crossbred (Bos indicus X Bos taurus) cattle. Genes Environ 2023; 45:17. [PMID: 37127630 PMCID: PMC10152620 DOI: 10.1186/s41021-023-00271-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 04/03/2023] [Indexed: 05/03/2023] Open
Abstract
Environmental heat stress in dairy cattle leads to poor health, reduced milk production and decreased reproductive efficiency. Multiple genes interact and coordinate the response to overcome the impact of heat stress. The present study identified heat shock regulated genes in the peripheral blood mononuclear cells (PBMC). Genome-wide expression patterns for cellular stress response were compared between two genetically distinct groups of cattle viz., Hariana (B. indicus) and Vrindavani (B. indicus X B. taurus). In addition to major heat shock response genes, oxidative stress and immune response genes were also found to be affected by heat stress. Heat shock proteins such as HSPH1, HSPB8, FKB4, DNAJ4 and SERPINH1 were up-regulated at higher fold change in Vrindavani compared to Hariana cattle. The oxidative stress response genes (HMOX1, BNIP3, RHOB and VEGFA) and immune response genes (FSOB, GADD45B and JUN) were up-regulated in Vrindavani whereas the same were down-regulated in Hariana cattle. The enrichment analysis of dysregulated genes revealed the biological functions and signaling pathways that were affected by heat stress. Overall, these results show distinct cellular responses to heat stress in two different genetic groups of cattle. This also highlight the long-term adaptation of B. indicus (Hariana) to tropical climate as compared to the crossbred (Vrindavani) with mixed genetic makeup (B. indicus X B. taurus).
Collapse
Affiliation(s)
- Basavaraj Sajjanar
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India.
| | - Mohd Tanzeel Aalam
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Owais Khan
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Gunturu Narasimha Tanuj
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Aditya Prasad Sahoo
- ICAR- Directorate of Foot and Mouth Disease, Bhubaneswar, 752050, Odisha, India
| | | | - Ravi Kumar Gandham
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Sujoy K Dhara
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Praveen K Gupta
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Bishnu Prasad Mishra
- ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
| | - Triveni Dutt
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Gyanendra Singh
- Physiology and Climatology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India.
| |
Collapse
|
21
|
Asmarasari SA, Azizah N, Sutikno S, Puastuti W, Amir A, Praharani L, Rusdiana S, Hidayat C, Hafid A, Kusumaningrum DA, Saputra F, Talib C, Herliatika A, Shiddieqy MI, Hayanti SY. A review of dairy cattle heat stress mitigation in Indonesia. Vet World 2023; 16:1098-1108. [PMID: 37576750 PMCID: PMC10420724 DOI: 10.14202/vetworld.2023.1098-1108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/17/2023] [Indexed: 08/15/2023] Open
Abstract
Indonesia is a tropical country with a hot climate. In tropical nations such as Indonesia, heat stress is a key reason for the reduced productivity of dairy cattle. Heat stress is a combination of internal and external stimuli that affects an animal, raises its body temperature, and causes it to react physiologically. Most Indonesian dairy cattle are Friesian Holstein (FH), imported from European nations with a temperate environment with low temperatures in the range of 5°C-25°C. Indonesia has a tropical climate with a high ambient temperature that can reach 34°C during the day and the local relative humidity varies between 70% and 90%. Temperature and humidity are two microenvironment factors that may impact the production and heat release in FH cattle. More than 98% of the entire dairy cattle population in Indonesia is found on Java Island. On Java Island, there are between 534.22 and 543.55 thousand heads of cattle, while the dairy cattle population outside Java Island is just 6.59 thousand heads of cattle. The milk output climbs by an average of 3.34% per year, or approximately 909.64 thousand tons and the average annual growth in whole milk consumption was 0.19 L/capita. Indonesian cow milk output has been unable to keep pace with the country's increasing demand. This study aimed to review the strategies to mitigate heat stress in FH dairy cattle in Indonesia.
Collapse
Affiliation(s)
- Santiananda Arta Asmarasari
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency of Indonesia, Cibinong Science Center, Jalan Raya Jakarta – Bogor, Cibinong, Bogor 16915, West Java, Indonesia
| | - Nurul Azizah
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency of Indonesia, Cibinong Science Center, Jalan Raya Jakarta – Bogor, Cibinong, Bogor 16915, West Java, Indonesia
| | - Sutikno Sutikno
- Research Center for Applied Zoology, Research Organization for Life Science and Environment, National Research and Innovation Agency of Indonesia, Jl. Raya Jakarta-Bogor Km 46, Cibinong, Bogor, 16911, West Java, Indonesia
| | - Wisri Puastuti
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency of Indonesia, Cibinong Science Center, Jalan Raya Jakarta – Bogor, Cibinong, Bogor 16915, West Java, Indonesia
| | - Azhar Amir
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency of Indonesia, Cibinong Science Center, Jalan Raya Jakarta – Bogor, Cibinong, Bogor 16915, West Java, Indonesia
| | - Lisa Praharani
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency of Indonesia, Cibinong Science Center, Jalan Raya Jakarta – Bogor, Cibinong, Bogor 16915, West Java, Indonesia
| | - Supardi Rusdiana
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency of Indonesia, Cibinong Science Center, Jalan Raya Jakarta – Bogor, Cibinong, Bogor 16915, West Java, Indonesia
| | - Cecep Hidayat
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency of Indonesia, Cibinong Science Center, Jalan Raya Jakarta – Bogor, Cibinong, Bogor 16915, West Java, Indonesia
| | - Anita Hafid
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency of Indonesia, Cibinong Science Center, Jalan Raya Jakarta – Bogor, Cibinong, Bogor 16915, West Java, Indonesia
| | - Diana Andrianita Kusumaningrum
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency of Indonesia, Cibinong Science Center, Jalan Raya Jakarta – Bogor, Cibinong, Bogor 16915, West Java, Indonesia
| | - Ferdy Saputra
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency of Indonesia, Cibinong Science Center, Jalan Raya Jakarta – Bogor, Cibinong, Bogor 16915, West Java, Indonesia
| | - Chalid Talib
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency of Indonesia, Cibinong Science Center, Jalan Raya Jakarta – Bogor, Cibinong, Bogor 16915, West Java, Indonesia
| | - Agustin Herliatika
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency of Indonesia, Cibinong Science Center, Jalan Raya Jakarta – Bogor, Cibinong, Bogor 16915, West Java, Indonesia
| | - Mohammad Ikhsan Shiddieqy
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency of Indonesia, Cibinong Science Center, Jalan Raya Jakarta – Bogor, Cibinong, Bogor 16915, West Java, Indonesia
| | - Sari Yanti Hayanti
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency of Indonesia, Cibinong Science Center, Jalan Raya Jakarta – Bogor, Cibinong, Bogor 16915, West Java, Indonesia
| |
Collapse
|
22
|
Yüzen D, Graf I, Diemert A, Arck PC. Climate change and pregnancy complications: From hormones to the immune response. Front Endocrinol (Lausanne) 2023; 14:1149284. [PMID: 37091849 PMCID: PMC10113645 DOI: 10.3389/fendo.2023.1149284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
Pregnant women are highly vulnerable to adverse environments. Accumulating evidence highlights that increasing temperatures associated with the ongoing climate change pose a threat to successful reproduction. Heat stress caused by an increased ambient temperature can result in adverse pregnancy outcomes, e.g., preterm birth, stillbirth and low fetal weight. The pathomechanisms through which heat stress interferes with pregnancy maintenance still remain vague, but emerging evidence underscores that the endocrine system is severely affected. It is well known that the endocrine system pivotally contributes to the physiological progression of pregnancy. We review – sometimes speculate - how heat stress can offset hormonal dysregulations and subsequently derail other systems which interact with hormones, such as the immune response. This may account for the heat-stress related threat to successful pregnancy progression, fetal development and long-term children’s health.
Collapse
Affiliation(s)
- Dennis Yüzen
- Laboratory for Experimental Feto-Maternal Medicine, Department of Obstetrics and Prenatal Medicine, University Medical Center of Hamburg-Eppendorf, Hamburg, Germany
- Institute of Immunology, University Medical Center of Hamburg-Eppendorf, Hamburg, Germany
| | - Isabel Graf
- Laboratory for Experimental Feto-Maternal Medicine, Department of Obstetrics and Prenatal Medicine, University Medical Center of Hamburg-Eppendorf, Hamburg, Germany
| | - Anke Diemert
- Laboratory for Experimental Feto-Maternal Medicine, Department of Obstetrics and Prenatal Medicine, University Medical Center of Hamburg-Eppendorf, Hamburg, Germany
| | - Petra Clara Arck
- Laboratory for Experimental Feto-Maternal Medicine, Department of Obstetrics and Prenatal Medicine, University Medical Center of Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
23
|
Camargo LSA, Saraiva NZ, Oliveira CS, Carmickle A, Lemos DR, Siqueira LGB, Denicol AC. Perspectives of gene editing for cattle farming in tropical and subtropical regions. Anim Reprod 2023; 19:e20220108. [PMID: 36819485 PMCID: PMC9924776 DOI: 10.1590/1984-3143-ar2022-0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/23/2023] [Indexed: 02/19/2023] Open
Abstract
Cattle productivity in tropical and subtropical regions can be severely affected by the environment. Reproductive performance, milk and meat production are compromised by the heat stress imposed by the elevated temperature and humidity. The resulting low productivity contributes to reduce the farmer's income and to increase the methane emissions per unit of animal protein produced and the pressure on land usage. The introduction of highly productive European cattle breeds as well as crossbreeding with local breeds have been adopted as strategies to increase productivity but the positive effects have been limited by the low adaptation of European animals to hot climates and by the reduction of the heterosis effect in the following generations. Gene editing tools allow precise modifications in the animal genome and can be an ally to the cattle industry in tropical and subtropical regions. Alleles associated with production or heat tolerance can be shifted between breeds without the need of crossbreeding. Alongside assisted reproductive biotechnologies and genome selection, gene editing can accelerate the genetic gain of indigenous breeds such as zebu cattle. This review focuses on some of the potential applications of gene editing for cattle farming in tropical and subtropical regions, bringing aspects related to heat stress, milk yield, bull reproduction and methane emissions.
Collapse
Affiliation(s)
| | | | | | - Allie Carmickle
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | | | | | | |
Collapse
|
24
|
Effects of Heat Stress in Dairy Cows Raised in the Confined System: A Scientometric Review. Animals (Basel) 2023; 13:ani13030350. [PMID: 36766240 PMCID: PMC9913584 DOI: 10.3390/ani13030350] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Due to climate change, heat stress is a growing problem for the dairy industry. Based on this, annual economic losses in the dairy sector are verified mainly on a large scale. Despite several publications on thermal stress in lactating dairy cows in confinement systems, there need to be published reviews addressing this issue systematically. Our objective was to scientometrically analyze the effects of heat stress in dairy cows managed in a confinement system. Based on PRISMA guidelines, research articles were identified, screened, and summarized based on inclusion criteria for heat stress in a confinement system. Data was obtained from the Web of Science. A total of 604 scientific articles published between 2000 and April 2022 were considered. Data was then analyzed using Microsoft Excel and CiteSpace. The results pointed to a significant increase in studies on heat stress in lactating cows housed in confinement systems. The main research areas were Agriculture, Dairy Animal Science and Veterinary Sciences. The USA showed the highest concentration of studies (31.12%), followed by China (14.90%). Emerging themes included heat stress and behavior. The most influential journals were the Journal of Dairy Science and the Journal of Animal Science. The top authors were L. H. Baumgard and R. J. Collier. The leading institutions were the Chinese Academy of Agricultural Sciences, followed by the State University System of Florida and the University of Florida. The study maps the significant research domains on heat stress of lactating cows in confinement systems, discusses implications and explanations and highlights emerging trends.
Collapse
|
25
|
Satapathy PP, Mishra SR, Jena GR, Kundu AK. Hyper-transcription of heat shock factors and heat shock proteins safeguard caprine cardiac cells against heat stress. J Therm Biol 2023; 111:103393. [PMID: 36585073 DOI: 10.1016/j.jtherbio.2022.103393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/16/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022]
Abstract
The present study was undertaken to document the transcriptional abundance of heat shock factors and heat shock proteins and their role in survivability of caprine cardiac cells during heat stress. Cardiac tissues were collected from different goats (n = 6) and primary cardiac cell culture was done in an atmosphere of 5% CO2 and 95% air at 38.5 °C. Cardiac cells accomplished 70-75% confluence after 72 h of incubation. Confluent cardiac cells were exposed to heat stress at 42 °C for 0 (control), 20, 60, 100 and 200 min. Quantitative RT-PCR for β2m (internal control), heat shock factors (HSF1, HSF2, HSF4, HSF5), heat shock proteins (HSP10, HSP40), and Caspase-3 was done and their transcriptional abundance was assessed by Pfaffl method. Transcriptional abundance of HSF1, HSF2, and HSF4 did not change at 20 min, increased (P < 0.05) from 60 to 200 min and reached zenith at 200 min of heat exposure. However, transcriptional abundance of HSF5 was gradually escalated (P < 0.05) from 20 to 200 min and registered highest at 200 min of heat exposure. Transcriptional abundance of HSP10 and HSP40 followed an similar pattern like that of HSF5. Transcriptional abundance of Caspase-3 was significantly down-regulated at 200 min of heat exposure. It could be speculated that over-expression of HSFs and HSPs might have reduced Caspase-3 expression at 200 min of heat exposure suggesting their involvement in cardiac cells survival under heat stress. Moreover, hyper-expression of HSFs and HSPs could maintain the integrity and endurance of cardiac tissues of goats under heat stress.
Collapse
Affiliation(s)
- P P Satapathy
- Department of Veterinary Physiology, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, 751003, India
| | - S R Mishra
- Department of Veterinary Physiology, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, 751003, India.
| | - G R Jena
- Department of Veterinary Clinical Medicine, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, 751003, India
| | - A K Kundu
- Department of Veterinary Physiology, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, 751003, India
| |
Collapse
|
26
|
Molecular, Physiological and Hematological Responses of Crossbred Dairy Cattle in a Tropical Savanna Climate. BIOLOGY 2022; 12:biology12010026. [PMID: 36671719 PMCID: PMC9855086 DOI: 10.3390/biology12010026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
A comprehensive study was conducted to assess the effects of seasonal transition and temperature humidity index (THI) on the adaptive responses in crossbred dairy cows reared in a tropical savanna region. A total of 40 lactating dairy cattle reared by small-scale dairy farmers in Bengaluru, India, were selected for this study. The research period comprised the transitioning season of summer to monsoon, wherein all traits were recorded at two points, one representing late summer (June) and the other early monsoon (July). A set of extensive variables representing physiological responses (pulse rate, respiration rate, rectal temperature, skin surface temperature), hematological responses (hematological profile), production (test day milk yield, milk composition) and molecular patterns (PBMC mRNA relative expression of selective stress response genes) were assessed. A significant effect of seasonal transition was identified on respiration rate (RR), skin surface temperature, mean platelet volume (MPV), platelet distribution width (PDWc), test day milk yield and on milk composition variables (milk density, lactose, solids-not-fat (SNF) and salts). The THI had a significant effect on RR, skin surface temperature, platelet count (PLT), plateletcrit (PCT) and PDWc. Lastly, THI and/or seasonal transition significantly affected the relative PBMC mRNA expression of heat shock protein 70 (HSP70), interferon beta (IFNβ), IFNγ, tumor necrosis factor alpha (TNFα), growth hormone (GH) and insulin-like growth factor-1 (IGF-1) genes. The results from this study reveal environmental sensitivity of novel physiological traits and gene expressions to climatic stressors, highlighting their potential as THI-independent heat stress biomarkers.
Collapse
|
27
|
The Association between Gut Microbiome Diversity and Composition and Heat Tolerance in Cattle. Microorganisms 2022; 10:microorganisms10081672. [PMID: 36014088 PMCID: PMC9414853 DOI: 10.3390/microorganisms10081672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Cattle are raised around the world and are frequently exposed to heat stress, whether in tropical countries or in regions with temperate climates. It is universally acknowledged that compared to those in temperate areas, the cattle breeds developed in tropical and subtropical areas have better heat tolerance. However, the underlying mechanism of heat tolerance has not been fully studied, especially from the perspective of intestinal microbiomics. The present study collected fecal samples of cattle from four representative climatic regions of China, namely, the mesotemperate (HLJ), warm temperate (SD), subtropical (HK), and tropical (SS) regions. Then, the feces were analyzed using high-throughput 16S rRNA sequencing. The results showed that with increasing climatic temperature from HLJ to SS, the abundance of Firmicutes increased, accompanied by an increasing Firmicutes to Bacteroidota ratio. Proteobacteria showed a trend of reduction from HLJ to SS. Patescibacteria, Chloroflexi, and Actinobacteriota were particularly highest in SS for adapting to the tropical environment. The microbial phenotype in the tropics was characterized by an increase in Gram-positive bacteria and a decrease in Gram-negative bacteria, aerobic bacteria, and the forming of_biofilms. Consistently, the functional abundances of organismal systems and metabolism were decreased to reduce the material and energy demands in a hot environment. Genetic information processing and information storage and processing may be how gut flora deals with hot conditions. The present study revealed the differences in the structure and function of gut microbes of cattle from mesotemperate to tropical climates and provided an important reference for future research on the mechanism of heat tolerance regulated by the gut microbiota and a potential microbiota-based target to alleviate heat stress.
Collapse
|
28
|
Roberts JF, Jeff Huang CC. Bovine models for human ovarian diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 189:101-154. [PMID: 35595347 DOI: 10.1016/bs.pmbts.2022.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
During early embryonic development, late fetal growth, puberty, adult reproductive years, and advanced aging, bovine and human ovaries closely share molecular pathways and hormonal signaling mechanisms. Other similarities between these species include the size of ovaries, length of gestation, ovarian follicular and luteal dynamics, and pathophysiology of ovarian diseases. As an economically important agriculture species, cattle are a foundational species in fertility research with decades of groundwork using physiologic, genetic, and therapeutic experimental techniques. Many technologies used in modern reproductive medicine, such as ovulation induction using hormonal therapy, were first used in cows before human trials. Human ovarian diseases with naturally occurring bovine correlates include premature ovary insufficiency (POI), polycystic ovarian syndrome (PCOS), and sex-cord stromal tumors (SCSTs). This article presents an overview of bovine ovary research related to causes of infertility, ovarian diseases, diagnostics, and therapeutics, emphasizing where the bovine model can offer advantages over other lab animals for translational applications.
Collapse
Affiliation(s)
- John F Roberts
- Department of Comparative, Diagnostic & Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States.
| | - Chen-Che Jeff Huang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| |
Collapse
|
29
|
Cartwright S, Schmied J, Livernois A, Mallard BA. Physiological Response to Heat Stress in Immune Phenotyped Canadian Holstein Dairy Cattle in Free-Stall and Tie-Stall Management Systems. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.852958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The climate in northern latitude countries, such as Canada, are changing twice as fast as in lower latitude countries. This has resulted in an increased frequency of hot days and longer more frequent heat waves. Canadian dairy cattle are therefore at increased risk of heat stress, especially those in management systems without the infrastructure to properly cool animals. Cattle experiencing heat stress undergo numerous physiological changes. Previous research has shown dairy cattle classified as high immune responders have lower incidence of disease. Therefore, the objective of this study was to evaluate the variation in respiration rate, rectal temperature, and rumination activity in immune phenotyped dairy cattle during a natural heat stress challenge. Additionally, the relationship between physiological response and temperature humidity index was compared between free-stall and tie-stall management systems. A total of 27 immune phenotyped (nine high, nine average and nine low) lactating dairy cattle were housed in a free-stall during the summer months for a duration of 27 days. Concurrently, two groups of six (three high and three low) immune phenotyped lactating dairy cattle were housed in a tie-stall for a duration of 12 days. Rumination was measured for the duration of the study for all cattle using SCR Heatime rumination collars. Respiration was measured using EMKA respiration bands for cattle housed in the tie-stalls, and manually [once in the morning (a.m.) and once in the afternoon (p.m.)] for cattle in free-stall management. Rectal temperature was measured using a digital thermometer twice daily (a.m. and p.m.) in both free-stall and tie-stall management systems. The temperature humidity index was recorded every 15 min in both management systems for the duration of the study. The results showed that high responders had significantly lower respiration rates compared to low responders when the temperature humidity index was high in both free-stall and tie-stall management systems, but there was no difference in rectal temperature, or rumination activity between phenotypes. Temperature humidity index values in the free-stall were significantly lower than the tie-stall. These findings increase the evidence that high immune responders are more likely to be tolerant to heat stress than low immune responders.
Collapse
|
30
|
Gandara ACP, Drummond-Barbosa D. Warm and cold temperatures have distinct germline stem cell lineage effects during Drosophila oogenesis. Development 2022; 149:274368. [PMID: 35156684 PMCID: PMC8959152 DOI: 10.1242/dev.200149] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/31/2022] [Indexed: 11/20/2022]
Abstract
Despite their medical and economic relevance, it remains largely unknown how suboptimal temperatures affect adult insect reproduction. Here, we report an in-depth analysis of how chronic adult exposure to suboptimal temperatures affects oogenesis using the model insect Drosophila melanogaster. In adult females maintained at 18°C (cold) or 29°C (warm), relative to females at the 25°C control temperature, egg production was reduced through distinct cellular mechanisms. Chronic 18°C exposure improved germline stem cell maintenance, survival of early germline cysts and oocyte quality, but reduced follicle growth with no obvious effect on vitellogenesis. By contrast, in females at 29°C, germline stem cell numbers and follicle growth were similar to those at 25°C, while early germline cyst death and degeneration of vitellogenic follicles were markedly increased and oocyte quality plummeted over time. Finally, we also show that these effects are largely independent of diet, male factors or canonical temperature sensors. These findings are relevant not only to cold-blooded organisms, which have limited thermoregulation, but also potentially to warm-blooded organisms, which are susceptible to hypothermia, heatstroke and fever.
Collapse
Affiliation(s)
- Ana Caroline P Gandara
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
31
|
Haire A, Bai J, Zhao X, Song Y, Zhao G, Dilixiati A, Li J, Sun WQ, Wan P, Fu X, Wusiman A. Identifying the heat resistant genes by multi-tissue transcriptome sequencing analysis in Turpan Black sheep. Theriogenology 2021; 179:78-86. [PMID: 34844083 DOI: 10.1016/j.theriogenology.2021.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/10/2021] [Accepted: 11/13/2021] [Indexed: 12/29/2022]
Abstract
Heat stress not only affects the physical condition but also affects reproductive performance in sheep. A thorough understanding of the molecular and physiological mechanisms underlying heat stress would certainly improve livestock productivity and provide genetic evaluation ways for heat resistant breeds selection. In this study, 85 Turpan Black sheep, a breed exhibited excellent heat resistance from long-term artificial selection, and 85 heat sensitive Kazakh sheep in Turpan basin were tested for physiological and reproductive performance from July to August in summer. The results showed that the estrus rate was significantly higher in Turpan Black sheep (P < 0.05), while the heart rate and respiratory rate of Turpan Black sheep are significantly lower than that of Kazakh sheep (P < 0.05). Furthermore, to clarify genes participated in heat stress response, the pituitary, ovarian and hepatic tissues from three Turpan Black sheep and three Kazakh sheep were subjected to RNA-seq. The results indicated that 32, 49 and 69 genes were up-regulated, and 39, 60 and 145 genes were down-regulated in pituitary, ovarian and hepatic tissues in Turpan Black sheep compared with that of the Kazakh sheep, respectively. KEGG and gene set enrichment analysis showed that the differentially expressed genes were mainly involved in signal transduction pathways. In particular, the differentially expressed genes in hepar were enriched in the energy metabolism pathway, while the differentially expressed genes in ovarian tissue were enriched in the ovarium steroidogenesis pathway. In conclusion, our results implied that the pituitary-ovary axis might include hepar as downstream targeted organism in heat resistant regulation. Under heat stress, the signals released from pituitary would impact steroidogenesis in ovary, and further alter energy metabolism in hepar. As we know, this is the first comparative study to investigate the gene expression in multi-tissue in sheep under heat stress.
Collapse
Affiliation(s)
- Aerman Haire
- Department of Animal Science, College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Jiachen Bai
- Institute of Biothermal Science and Technology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China; State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihhotze, 832000, China; National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xi Zhao
- Department of Animal Science, College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China; National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yukun Song
- Department of Animal Science, College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Guodong Zhao
- Department of Animal Science, College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Airixiati Dilixiati
- Department of Animal Science, College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Jun Li
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wendell Q Sun
- Institute of Biothermal Science and Technology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Pengcheng Wan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihhotze, 832000, China
| | - Xiangwei Fu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihhotze, 832000, China; National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Abulizi Wusiman
- Department of Animal Science, College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China.
| |
Collapse
|