1
|
Li J, Ma Y, Li Y, Ouyang W, Liu Z, Liu X, Li B, Xiao J, Ma D, Tang Y. Intraoperative hypotension associated with postoperative acute kidney injury in hypertension patients undergoing non-cardiac surgery: a retrospective cohort study. BURNS & TRAUMA 2024; 12:tkae029. [PMID: 39049867 PMCID: PMC11267586 DOI: 10.1093/burnst/tkae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/01/2023] [Accepted: 05/08/2024] [Indexed: 07/27/2024]
Abstract
Background Acute kidney injury (AKI) is a common surgical complication and is associated with intraoperative hypotension. However, the total duration and magnitude of intraoperative hypotension associated with AKI remains unknown. In this study, the causal relationship between the intraoperative arterial pressure and postoperative AKI was investigated among chronic hypertension patients undergoing non-cardiac surgery. Methods A retrospective cohort study of 6552 hypertension patients undergoing non-cardiac surgery (2011 to 2019) was conducted. The primary outcome was AKI as diagnosed with the Kidney Disease-Improving Global Outcomes criteria and the primary exposure was intraoperative hypotension. Patients' baseline demographics, pre- and post-operative data were harvested and then analyzed with multivariable logistic regression to assess the exposure-outcome relationship. Results Among 6552 hypertension patients, 579 (8.84%) had postoperative AKI after non-cardiac surgery. The proportions of patients admitted to ICU (3.97 vs. 1.24%, p < 0.001) and experiencing all-cause death (2.76 vs. 0.80%, p < 0.001) were higher in the patients with postoperative AKI. Moreover, the patients with postoperative AKI had longer hospital stays (13.50 vs. 12.00 days, p < 0.001). Intraoperative mean arterial pressure (MAP) < 60 mmHg for >20 min was an independent risk factor of postoperative AKI. Furthermore, MAP <60 mmHg for >10 min was also an independent risk factor of postoperative AKI in patients whose MAP was measured invasively in the subgroup analysis. Conclusions Our work suggested that MAP < 60 mmHg for >10 min measured invasively or 20 min measured non-invasively during non-cardiac surgery may be the threshold of postoperative AKI development in hypertension patients. This work may serve as a perioperative management guide for chronic hypertension patients. Trial registration clinical trial number: ChiCTR2100050209 (8/22/2021). http://www.chictr.org.cn/showproj.aspx?proj=132277.
Collapse
Affiliation(s)
- Jin Li
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, China
| | - Yeshuo Ma
- Department of Geriatrics, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, China
| | - Yang Li
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, China
| | - Wen Ouyang
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, China
| | - Zongdao Liu
- Department of Geriatrics, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, China
| | - Xing Liu
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, China
| | - Bo Li
- Operation Center, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, China
| | - Jie Xiao
- Department of Emergency, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, China
| | - Daqing Ma
- Division of Anesthetics, Pain Medicine & Intensive Care, Department of Surgery and Cancer, Chelsea and Westminster Hospital, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Yongzhong Tang
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, China
- Clinical Research Center, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, China
| |
Collapse
|
2
|
Park YJ, Heo JB, Choi YJ, Cho S, Lee T, Song GY, Bae JS. Antiseptic Functions of CGK012 against HMGB1-Mediated Septic Responses. Int J Mol Sci 2024; 25:2976. [PMID: 38474222 PMCID: PMC10931621 DOI: 10.3390/ijms25052976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
High mobility group box 1 (HMGB1), a protein with important functions, has been recognized as a potential therapeutic target for the treatment of sepsis. One possible mechanism for this is that inhibiting HMGB1 secretion can exert antiseptic effects, which can restore the integrity of the vascular barrier. (7S)-(+)-cyclopentyl carbamic acid 8,8-dimethyl-2-oxo-6,7-dihydro-2H,8H-pyrano[3,2-g]chromen-7-yl-ester (CGK012) is a newly synthesized pyranocoumarin compound that could function as a novel small-molecule inhibitor of the Wnt/β-catenin signaling pathway. However, no studies have yet determined the effects of CGK012 on sepsis. We investigated the potential of CGK012 to attenuate the excessive permeability induced by HMGB1 and enhance survival rates in a mouse model of sepsis with reduced HMGB1 levels following lipopolysaccharide (LPS) treatment. In both LPS-stimulated human endothelial cells and a mouse model exhibiting septic symptoms due to cecal ligation and puncture (CLP), we assessed proinflammatory protein levels and tissue damage biomarkers as indicators of reduced vascular permeability. CGK012 was applied after induction in human endothelial cells exposed to LPS and the CLP-induced mouse model of sepsis. CGK012 effectively mitigated excessive permeability and suppressed HMGB1 release, resulting in improved vascular stability, decreased mortality, and enhanced histological conditions in the mouse model of CLP-induced sepsis. In conclusion, our findings indicate that CGK012 treatment in mice with CLP-induced sepsis diminished HMGB1 release and increased the survival rate, suggesting its potential as a pharmaceutical intervention for sepsis.
Collapse
Affiliation(s)
- Yun Jin Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea; (Y.J.P.); (S.C.); (T.L.)
| | - Jong Beom Heo
- College of Pharmacy, Chungnam National University, Daejon 34134, Republic of Korea; (J.B.H.); (Y.-J.C.)
| | - Yoon-Jung Choi
- College of Pharmacy, Chungnam National University, Daejon 34134, Republic of Korea; (J.B.H.); (Y.-J.C.)
| | - Sanghee Cho
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea; (Y.J.P.); (S.C.); (T.L.)
| | - Taeho Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea; (Y.J.P.); (S.C.); (T.L.)
| | - Gyu Yong Song
- College of Pharmacy, Chungnam National University, Daejon 34134, Republic of Korea; (J.B.H.); (Y.-J.C.)
- AREZ Co., Ltd., Daejeon 34036, Republic of Korea
| | - Jong-Sup Bae
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea; (Y.J.P.); (S.C.); (T.L.)
| |
Collapse
|
3
|
Yang K, Huang Z, Wang S, Zhao Z, Yi P, Chen Y, Xiao M, Quan J, Hu X. The Hepatic Nerves Regulated Inflammatory Effect in the Process of Liver Injury: Is Nerve the Key Treating Target for Liver Inflammation? Inflammation 2023; 46:1602-1611. [PMID: 37490221 DOI: 10.1007/s10753-023-01854-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/09/2023] [Accepted: 06/05/2023] [Indexed: 07/26/2023]
Abstract
Liver injury is a common pathological basis for various liver diseases. Chronic liver injury is often an important initiating factor in liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Currently, hepatitis A and E infections are the most common causes of acute liver injury worldwide, whereas drug toxicity (paracetamol overdose) in the USA and part of Western Europe. In recent years, chronic liver injury has become a common disease that harms human health. Meanwhile, the main causes of chronic liver injury are viral hepatitis (B, C) and long-term alcohol consumption worldwide. During the process of liver injury, massive inflammatory cytokines are stimulated by these hazardous factors, leading to a systemic inflammatory response syndrome, followed by a compensatory anti-inflammatory response, which causes immune cell dysfunction and sepsis, subsequent multi-organ failure. Cytokine release and immune cell infiltration-mediated aseptic inflammation are the most important features of the pathobiology of liver failure. From this perspective, diminishing the onset and progression of liver inflammation is of clinical importance in the treatment of liver injury. Although many studies have hinted at the critical role of nerves in regulating inflammation, there largely remains undetermined how hepatic nerves mediate immune inflammation and how the inflammatory factors released by these nerves are involved in the process of liver injury. Therefore, the purpose of this article is to summarize previous studies in the field related to hepatic nerve and inflammation as well as future perspectives on the aforementioned questions. Our findings were presented in three aspects: types of nerve distribution in the liver, how these nerves regulate immunity, and the role of liver nerves in hepatitis and liver failure.
Collapse
Affiliation(s)
- Kaili Yang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zebing Huang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Shuyi Wang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhihong Zhao
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Panpan Yi
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yayu Chen
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Meifang Xiao
- Department of Health Management Center, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Jun Quan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Xingwang Hu
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, 87Th of Xiangya Road, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
4
|
Baek J, Kim S. Effects of Transfusion of Stored Red Blood Cells on Renal Ischemia-Reperfusion–Induced Hepatic Injury in Rats. Transplant Proc 2023; 55:629-636. [PMID: 37005156 DOI: 10.1016/j.transproceed.2023.02.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/26/2023] [Accepted: 02/24/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Renal ischemia-reperfusion (IR) injures the liver as well as the kidneys. Transfusion of stored red blood cells (RBCs) triggers inflammatory responses, oxidative stress, and activation of innate immunity. In the present study, we investigated the effect of transfusion of stored RBCs on renal IR-induced hepatic injury. METHODS Sprague-Dawley rats were randomly divided into 3 groups based on the following treatments: rats subjected to sham operation (sham group), rats subjected to the induction of renal IR only (RIR group), and rats transfused with stored RBCs 1 hour after the start of reperfusion (RIR-TF group). Renal ischemia was induced for 1 hour, and reperfusion was allowed for 24 hours. After reperfusion, blood and liver tissue samples were obtained. RESULTS Serum levels of aspartate and alanine aminotransferase were increased in the RIR-TF group compared with those in the RIR and sham groups. The hepatic mRNA expression levels of heme oxygenase-1 and neutrophil gelatinase-associated lipocalin were increased in the RIR-TF group compared with those in the RIR and sham groups. The mRNA expression level of high mobility group box-1 was also increased in the RIR-TF group compared with that in the RIR group. CONCLUSION The transfusion of stored RBCs exacerbates renal IR-induced liver damage. Oxidative stress may be responsible for hepatic injury.
Collapse
|
5
|
Mineralocorticoid Receptor Antagonism Attenuates Multiple Organ Failure after Renal Ischemia and Reperfusion in Mice. Int J Mol Sci 2023; 24:ijms24043413. [PMID: 36834824 PMCID: PMC9965387 DOI: 10.3390/ijms24043413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Renal ischemia reperfusion (IR) injury is a major cause of acute kidney injury (AKI) that is often complicated by multiple organ failure of the liver and intestine. The mineralocorticoid receptor (MR) is activated in patients with renal failure associated with glomerular and tubular damage. We thus investigated whether canrenoic acid (CA), a mineralocorticoid receptor (MR) antagonist, protects against AKI-induced hepatic and intestinal injury, suggesting the underlying mechanisms. Mice were divided into five groups: sham mice, mice subjected to renal IR, and mice pretreated with canrenoic acid (CA; 1 or 10 mg/kg) 30 min prior to renal IR. At 24 h after renal IR, the levels of plasma creatinine, alanine aminotransferase and aldosterone were measured, and structural changes and inflammatory responses of the kidney, liver, and intestine were analyzed. We found that CA treatment reduced plasma creatinine levels, tubular cell death and oxidative stress induced by renal IR. CA treatment also decreased renal neutrophil infiltration and inflammatory cytokine expression and inhibited the release of high-mobility group box 1 induced by renal IR. Consistently, CA treatment reduced renal IR-induced plasma alanine transaminase, hepatocellular injury and neutrophil infiltration, and inflammatory cytokine expression. CA treatment also decreased small intestinal cell death, neutrophil infiltration and inflammatory cytokine expression induced by renal IR. Taken together, we conclude that MR antagonism by CA treatment protects against multiple organ failure in the liver and intestine after renal IR.
Collapse
|
6
|
Alasmari WA, Hosny S, Fouad H, Quthami KA, Althobiany EAM, Faruk EM. Molecular and Cellular Mechanisms Involved in Adipose-derived stem cell and their extracellular vesicles in an Experimental Model of Cardio- renal Syndrome type 3: Histological and Biochemical Study. Tissue Cell 2022; 77:101842. [DOI: 10.1016/j.tice.2022.101842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
|
7
|
Alasmari WA, Faruk E, Fouad H, Radi R, El-Wafaey DI. Adipose-derived stem cell and their extracellular vesicles ameliorates immune function, and cardiac markers in experimental model of cardiorenal syndrome type III: TNF-α, IFN-γ and IL-10 cytokine production and their correlation with genotype. Transpl Immunol 2022; 72:101586. [PMID: 35364243 DOI: 10.1016/j.trim.2022.101586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/15/2022] [Accepted: 03/19/2022] [Indexed: 11/19/2022]
Abstract
Cardio-renal syndrome (CRS) denotes the convergence of heart-kidney interactions across several mechanisms. The current study is conducted to evaluate the anti-inflammatory role of adipose tissue-derived stem cells (ASCs) versus adipose stem cell-derived extracellular vesicles (ADSCs-EVs) in experimental model of cardiorenal syndrome type III. The study was conducted on 50 male rats that were equally divided to: group I (control group); Group II (experimental cardiorenal syndrome group) which induced by right renal artery ligation (ICRSIII); Group III (Sham-operated control group) which underwent surgical incision without renal artery ligation; Group IV (ICRSIII which received ADSCs-extracellular vesicles (ADSCs-EVs); Group V (ICRSIII which received adipose tissue stem cells (ASCs). Assessment of pro-inflammatory cytokines; IL-10, IL-1α, IL-6, IL-1 β, IFN-γ, NF-α and their mRNA gene expression quantitation, (NGAL), and brain natriuretic peptide (BNP) as markers of cardiac dysfunction, as well as histopathological examination of renal tissue was examined by H& E, Masson trichrome and periodic acid-Schiff stains (PAS). The ICRS group exhibited significant acute tubular injury with tubular dilation, loss of brush borders, epithelial flattening, and occasional sloughed cells in lumen. Use of either ADSCs-EVs or ASCs significantly ameliorated the histological findings of tubular injury. Proinflammatory cytokines, BNP and NGAL were significantly elevated in ICRSIII group as compared to all other studied groups. Administration of ADSCs-EVs or ASCs led to significant decrease in all proinflammatory cytokines as well as BNP and NGAL levels with no significant difference between them. In conclusion, ADSCs-EXs and ASCs exhibited significant repairing effects in experimental-induced cardiorenal syndrome type III as evidenced by amelioration of histological findings of tubular injury, anti-inflammatory effects, and the significant decrease in markers of cardiac dysfunction. ADSC-EVs reprogramed injured cardiac cells by activating regenerative processes.
Collapse
Affiliation(s)
| | - Eman Faruk
- Department of Anatomy, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia; Benha University, Faculty of Medicine, Histology & Cell Biology Department, Egypt.
| | - Hanan Fouad
- Cairo University, Faculty of Medicine, Medical Biochemistry Department, POB 11562, Egypt; Galala University, Faculty of Medicine, Suez Governorate, POB 43511, Egypt
| | - Rabab Radi
- Cairo University, Faculty of Medicine, Pathology Department, POB 11562, Egypt
| | | |
Collapse
|
8
|
Rissel R, Schaefer M, Kamuf J, Ruemmler R, Riedel J, Mohnke K, Renz M, Hartmann EK, Ziebart A. Lung-brain 'cross-talk': systemic propagation of cytokines in the ARDS via the bloodstream using a blood transfusion model does not influence cerebral inflammatory response in pigs. PeerJ 2022; 10:e13024. [PMID: 35265399 PMCID: PMC8900612 DOI: 10.7717/peerj.13024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/07/2022] [Indexed: 01/11/2023] Open
Abstract
Background Interorgan cross-talk describes the phenomenon in which a primarily injured organ causes secondary damage to a distant organ. This cross-talk is well known between the lung and brain. One theory suggests that the release and systemic distribution of cytokines via the bloodstream from the primarily affected organ sets in motion proinflammatory cascades in distant organs. In this study, we analysed the role of the systemic distribution of cytokines via the bloodstream in a porcine ARDS model for organ cross-talk and possible inflammatory changes in the brain. Methods After approval of the State and Institutional Animal Care Committee, acute respiratory distress syndrome (ARDS) induction with oleic acid injection was performed in seven animals. Eight hours after ARDS induction, blood (35-40 ml kg-1) was taken from these seven 'ARDS donor' pigs. The collected 'ARDS donor' blood was transfused into seven healthy 'ARDS-recipient' pigs. Three animals served as a control group, and blood from these animals was transfused into three healthy pigs after an appropriate ventilation period. All animals were monitored for 8 h using advanced cardiorespiratory monitoring. Postmortem assessment included cerebral (hippocampal and cortex) mediators of early inflammatory response (IL-6, TNF-alpha, iNOS, sLCN-2), wet-to-dry ratio and lung histology. TNF-alpha serum concentration was measured in all groups. Results ARDS was successfully induced in the 'ARDS donor' group, and serum TNF-alpha levels were elevated compared with the 'ARDS-recipient' group. In the 'ARDS-recipient' group, neither significant ARDS alterations nor upregulation of inflammatory mediators in the brain tissue were detected after high-volume random allogenic 'ARDS-blood' transfusion. The role of the systemic distribution of inflammatory cytokines from one affected organ to another could not be confirmed in this study.
Collapse
|
9
|
Anti-Septic Functions of Cornuside against HMGB1-Mediated Severe Inflammatory Responses. Int J Mol Sci 2022; 23:ijms23042065. [PMID: 35216180 PMCID: PMC8874448 DOI: 10.3390/ijms23042065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
High mobility group box 1 (HMGB1) is acknowledged to have critical functions; therefore, targeting this protein may have therapeutic effects. One example is potential antiseptic activity obtained by suppressing HMGB1 secretion, leading to the recovery of vascular barrier integrity. Cornuside (CN), which is a product extracted from the fruit of Cornusofficinalis Seib, is a natural bis-iridoid glycoside with the therapeutic effects of suppressing inflammation and regulating immune responses. However, the mechanism of action of CN and impact on sepsis is still unclear. We examined if CN could suppress HMGB1-induced excessive permeability and if the reduction of HMGB1 in response to LPS treatment increased the survival rate in a mouse model of sepsis. In human endothelial cells stimulated by LPS and mice with septic symptoms of cecal ligation and puncture (CLP), we examined levels of proinflammatory proteins and biomarkers as an index of tissue damage, along with decreased vascular permeability. In both LPS-treated human umbilical vein endothelial cells (HUVECs) and the CLP-treated mouse model of sepsis, we applied CN after the induction processes were over. CN suppressed excessive permeability and inhibited HMGB1 release, leading to the amelioration of vascular instability, reduced mortality, and improved histological conditions in the CLP-induced septic mouse model. Overall, we conclude that the suppressed release of HMGB1 and the increased survival rate of mice with CLP-induced sepsis caused by CN may be an effective pharmaceutical treatment for sepsis.
Collapse
|
10
|
Franco ML, Beyerstedt S, Rangel ÉB. Klotho and Mesenchymal Stem Cells: A Review on Cell and Gene Therapy for Chronic Kidney Disease and Acute Kidney Disease. Pharmaceutics 2021; 14:pharmaceutics14010011. [PMID: 35056905 PMCID: PMC8778857 DOI: 10.3390/pharmaceutics14010011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) and acute kidney injury (AKI) are public health problems, and their prevalence rates have increased with the aging of the population. They are associated with the presence of comorbidities, in particular diabetes mellitus and hypertension, resulting in a high financial burden for the health system. Studies have indicated Klotho as a promising therapeutic approach for these conditions. Klotho reduces inflammation, oxidative stress and fibrosis and counter-regulates the renin-angiotensin-aldosterone system. In CKD and AKI, Klotho expression is downregulated from early stages and correlates with disease progression. Therefore, the restoration of its levels, through exogenous or endogenous pathways, has renoprotective effects. An important strategy for administering Klotho is through mesenchymal stem cells (MSCs). In summary, this review comprises in vitro and in vivo studies on the therapeutic potential of Klotho for the treatment of CKD and AKI through the administration of MSCs.
Collapse
Affiliation(s)
- Marcella Liciani Franco
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo 05652-900, Brazil; (M.L.F.); (S.B.)
| | - Stephany Beyerstedt
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo 05652-900, Brazil; (M.L.F.); (S.B.)
| | - Érika Bevilaqua Rangel
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo 05652-900, Brazil; (M.L.F.); (S.B.)
- Nephrology Division, Federal University of São Paulo, Sao Paulo 04038-901, Brazil
- Correspondence: ; Tel.: +55-11-2151-2148
| |
Collapse
|
11
|
Shi ZA, Li TT, Kang DL, Su H, Tu FP. Fingolimod attenuates renal ischemia/reperfusion-induced acute lung injury by inhibiting inflammation and apoptosis and modulating S1P metabolism. J Int Med Res 2021; 49:3000605211032806. [PMID: 34340580 PMCID: PMC8358582 DOI: 10.1177/03000605211032806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective This study examined whether the immunomodulator fingolimod (FTY720) could alleviate renal ischemia/reperfusion (I/R)-induced lung injury and explored the potential mechanisms. Methods Renal I/R was established in a rat model, and FTY720 (0.5, 1, or 2 mg/kg) was injected intraperitoneally after 15 minutes of ischemia. Pro-inflammatory cytokine levels, oxidative stress, apoptosis, and the mRNA expression of the sphingosine-1-phosphate (S1P)-related signaling pathway genes sphingosine kinase-1 (SphK1) and sphingosine kinase-2 were analyzed in lung tissue. Results Increased pro-inflammatory cytokine levels; decreased total superoxide dismutase, catalase, and glutathione peroxidase levels; increased apoptosis; and increased S1P lyase and SphK1 expression were observed following renal I/R. FTY720 reversed renal I/R-induced changes and effectively attenuated lung injury. Conclusion FTY720 protected against acute lung injury in rats subjected to renal I/R by decreasing pulmonary inflammation and apoptosis, increasing oxidative stress, and modulating S1P metabolism.
Collapse
Affiliation(s)
- Zu-An Shi
- Department of Anesthesiology, Nanchong Central Hospital, the Second Clinical College of North Sichuan Medical College, Nanchong, P.R. China
| | - Ting-Ting Li
- Department of Pharmacy, the Second Affiliated Hospital of North Sichuan Medical College, Nanchong, P.R. China
| | - Dao-Ling Kang
- Department of Anesthesiology, 117913Affiliated Hospital of North Sichuan Medical College, Affiliated Hospital of North Sichuan Medical College, Nanchong, P.R. China
| | - Hang Su
- Department of Anesthesiology, 117913Affiliated Hospital of North Sichuan Medical College, Affiliated Hospital of North Sichuan Medical College, Nanchong, P.R. China
| | - Fa-Ping Tu
- Department of Anesthesiology, 117913Affiliated Hospital of North Sichuan Medical College, Affiliated Hospital of North Sichuan Medical College, Nanchong, P.R. China
| |
Collapse
|
12
|
Han YK, Kim JS, Lee GB, Lim JH, Park KM. Oxidative stress following acute kidney injury causes disruption of lung cell cilia and their release into the bronchoaveolar lavage fluid and lung injury, which are exacerbated by Idh2 deletion. Redox Biol 2021; 46:102077. [PMID: 34315110 PMCID: PMC8326422 DOI: 10.1016/j.redox.2021.102077] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 01/02/2023] Open
Abstract
Acute kidney injury (AKI) induces distant organ injury, which is a serious concern in patients with AKI. Recent studies have demonstrated that distant organ injury is associated with oxidative stress of organ and damage of cilium, an axoneme-based cellular organelle. However, the role of oxidative stress and cilia damage in AKI-induced lung injury remains to be defined. Here, we investigated whether AKI-induced lung injury is associated with mitochondrial oxidative stress and cilia disruption in lung cells. AKI was induced in isocitrate dehydrogenase 2 (Idh2, a mitochondrial antioxidant enzyme)-deleted (Idh2−/−) and wild-type (Idh2+/+) mice by kidney ischemia-reperfusion (IR). A group of mice were treated with Mito-TEMPO, a mitochondria-specific antioxidant. Kidney IR caused lung injuries, including alveolar septal thickening, alveolar damage, and neutrophil accumulation in the lung, and increased protein concentration and total cell number in bronchoalveolar lavage fluid (BALF). In addition, kidney IR caused fragmentation of lung epithelial cell cilia and the release of fragments into BALF. Kidney IR also increased the production of superoxide, lipid peroxidation, and mitochondrial and nuclei DNA oxidation in lungs and decreased IDH2 expression. Lung oxidative stress and injury relied on the degree of kidney injury. Idh2 deletion exacerbated kidney IR-induced lung injuries. Treatment with Mito-TEMPO attenuated kidney IR-induced lung injuries, with greater attenuation in Idh2−/− than Idh2+/+ mice. Our data demonstrate that AKI induces the disruption of cilia and damages cells via oxidative stress in lung epithelial cells, which leads to the release of disrupted ciliary fragments into BALF.
Collapse
Affiliation(s)
- Yong Kwon Han
- Department of Anatomy, Cardiovascular Research Institute and BK21 Plus, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Junggu, Daegu, 41944, Republic of Korea
| | - Ji Su Kim
- Department of Anatomy, Cardiovascular Research Institute and BK21 Plus, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Junggu, Daegu, 41944, Republic of Korea
| | - Gwan Beom Lee
- Department of Anatomy, Cardiovascular Research Institute and BK21 Plus, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Junggu, Daegu, 41944, Republic of Korea
| | - Jae Hang Lim
- Department of Microbiology, School of Medicine, Ihwa Woman's University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea
| | - Kwon Moo Park
- Department of Anatomy, Cardiovascular Research Institute and BK21 Plus, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Junggu, Daegu, 41944, Republic of Korea.
| |
Collapse
|
13
|
Radhakrishnan K, Kim YH, Jung YS, Kim DK, Na SY, Lim D, Kim DH, Kim J, Kim HS, Choy HE, Cho SJ, Lee IK, Ayvaz Ş, Nittka S, Fliser D, Schunk SJ, Speer T, Dooley S, Lee CH, Choi HS. Orphan nuclear receptor ERR-γ regulates hepatic FGF23 production in acute kidney injury. Proc Natl Acad Sci U S A 2021; 118. [DOI: https:/doi.org/10.1073/pnas.2022841118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2023] Open
Abstract
Significance
Bone is the main source of fibroblast growth factor 23 (FGF23), which is important for phosphate and vitamin D homeostasis. In acute kidney injury (AKI), high blood levels of FGF23 are positively correlated with disease progression and increased risk of mortality. Reducing adverse plasma FGF23 levels in AKI patients is favorable. We showed here that hepatocytes are the major source of circulating FGF23, and orphan nuclear receptor ERR-γ is a novel transcriptional regulator of hepatic FGF23 production in AKI. Liver-specific depletion of ERR-γ or ERR-γ inverse agonist, GSK5182, significantly reduced plasma levels of FGF23 in AKI. This study reveals liver is the source of FGF23 and a therapeutic strategy to control pathologically adverse plasma FGF23 levels in AKI.
Collapse
Affiliation(s)
- Kamalakannan Radhakrishnan
- School of Biological Sciences and Technology, Chonnam National University, 61186 Gwangju, Republic of Korea
| | - Yong-Hoon Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 34141 Daejeon, Republic of Korea
- Department of Functional Genomics, Korea Research Institute of Biosciences and Biotechnology School of Bioscience, University of Science and Technology, 34141 Daejeon, Republic of Korea
| | - Yoon Seok Jung
- School of Biological Sciences and Technology, Chonnam National University, 61186 Gwangju, Republic of Korea
| | - Don-Kyu Kim
- Department of Molecular Biotechnology, Chonnam National University, 61186 Gwangju, Republic of Korea
| | - Soon-Young Na
- School of Biological Sciences and Technology, Chonnam National University, 61186 Gwangju, Republic of Korea
| | - Daejin Lim
- Department of Microbiology, Chonnam National University Medical School, 61468 Gwangju, Republic of Korea
| | - Dong Hun Kim
- Department of Biomedical Science, Graduate School, Kyungpook National University, 41404 Daegu, Republic of Korea
| | - Jina Kim
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, 41061 Daegu, Republic of Korea
| | - Hyung-Seok Kim
- Department of Forensic Medicine, Chonnam National University Medical School, 61468 Gwangju, Republic of Korea
| | - Hyon E. Choy
- Department of Microbiology, Chonnam National University Medical School, 61468 Gwangju, Republic of Korea
| | - Sung Jin Cho
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, 41061 Daegu, Republic of Korea
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, 41404 Daegu, Republic of Korea
| | - In-Kyu Lee
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, 41404 Daegu, Republic of Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, 41944 Daegu, Republic of Korea
| | - Şamil Ayvaz
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Stefanie Nittka
- Institute for Clinical Chemistry, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Danilo Fliser
- Department of Internal Medicine IV, Nephrology and Hypertension, Saarland University, D-66421 Homburg/Saar, Germany
| | - Stefan J. Schunk
- Department of Internal Medicine IV, Nephrology and Hypertension, Saarland University, D-66421 Homburg/Saar, Germany
| | - Thimoteus Speer
- Department of Internal Medicine IV, Nephrology and Hypertension, Saarland University, D-66421 Homburg/Saar, Germany
| | - Steven Dooley
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 34141 Daejeon, Republic of Korea
- Department of Functional Genomics, Korea Research Institute of Biosciences and Biotechnology School of Bioscience, University of Science and Technology, 34141 Daejeon, Republic of Korea
| | - Hueng-Sik Choi
- School of Biological Sciences and Technology, Chonnam National University, 61186 Gwangju, Republic of Korea
| |
Collapse
|
14
|
Orphan nuclear receptor ERR-γ regulates hepatic FGF23 production in acute kidney injury. Proc Natl Acad Sci U S A 2021; 118:2022841118. [PMID: 33853949 DOI: 10.1073/pnas.2022841118] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Fibroblast growth factor 23 (FGF23), a hormone generally derived from bone, is important in phosphate and vitamin D homeostasis. In acute kidney injury (AKI) patients, high-circulating FGF23 levels are associated with disease progression and mortality. However, the organ and cell type of FGF23 production in AKI and the molecular mechanism of its excessive production are still unidentified. For insight, we investigated folic acid (FA)-induced AKI in mice. Interestingly, simultaneous with FGF23, orphan nuclear receptor ERR-γ expression is increased in the liver of FA-treated mice, and ectopic overexpression of ERR-γ was sufficient to induce hepatic FGF23 production. In patients and in mice, AKI is accompanied by up-regulated systemic IL-6, which was previously identified as an upstream regulator of ERR-γ expression in the liver. Administration of IL-6 neutralizing antibody to FA-treated mice or of recombinant IL-6 to healthy mice confirms IL-6 as an upstream regulator of hepatic ERR-γ-mediated FGF23 production. A significant (P < 0.001) interconnection between high IL-6 and FGF23 levels as a predictor of AKI in patients that underwent cardiac surgery was also found, suggesting the clinical relevance of the finding. Finally, liver-specific depletion of ERR-γ or treatment with an inverse ERR-γ agonist decreased hepatic FGF23 expression and plasma FGF23 levels in mice with FA-induced AKI. Thus, inverse agonist of ERR-γ may represent a therapeutic strategy to reduce adverse plasma FGF23 levels in AKI.
Collapse
|
15
|
Han M, Li S, Xie H, Liu Q, Wang A, Hu S, Zhao X, Kong Y, Wang W, Li C. Activation of TGR5 restores AQP2 expression via the HIF pathway in renal ischemia-reperfusion injury. Am J Physiol Renal Physiol 2021; 320:F308-F321. [PMID: 33427060 DOI: 10.1152/ajprenal.00577.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/22/2020] [Indexed: 12/28/2022] Open
Abstract
Renal ischemia-reperfusion (I/R) injury is associated with markedly reduced protein expression of aquaporins (AQPs). Membrane G protein-coupled bile acid receptor-1 (TGR5) has shown protective roles in some kidney diseases. The purpose of the current study was to investigate whether activation of TGR5 prevented the decreased protein expression of AQPs in rodents with renal I/R injury and potential mechanisms. TGR5 agonist lithocholic acid (LCA) treatment reduced polyuria after renal I/R injury in rats. LCA prevented the decreased abundance of AQP2 protein and upregulated hypoxia-inducible factor (HIF)-1α protein expression, which were associated with decreased protein abundance of NF-κB p65 and IL-1β. After renal I/R, mice with tgr5 gene deficiency exhibited further decreases in AQP2 and HIF-1α protein abundance and increases of IL-1β and NF-κB p65 protein expression compared with wild-type mice. In primary cultured inner medullary collecting duct cells with hypoxia/reoxygenation, LCA induced markedly increased protein expression of AQP2 and HIF-1α, which were partially prevented by the PKA inhibitor H89. FG4592, a prolyl-4-hydroxylase domain-containing protein inhibitor, increased HIF-1α and AQP2 protein abundance in association with decreased NF-κB p65 protein expression in inner medullary collecting duct cells with hypoxia/reoxygenation. In conclusion, TGR5 stimulation by LCA prevented downregulation of renal AQPs in kidney with I/R injury, likely through activating HIF-1α signaling and suppressing inflammatory responses.NEW & NOTEWORTHY Stimulation of the membrane G protein-coupled bile acid receptor TGR5 by lithocholic acid (LCA) reduced polyuria in rats with renal ischemia-reperfusion (I/R) injury. LCA increased abundance of aquaporin-2 (AQP2) protein and upregulated hypoxia-inducible factor (HIF)-1α protein expression in association with decreased NF-κB p65 and IL-1β. After I/R, mice with tgr5 gene deficiency exhibited more severe decreases in AQP2 and HIF-1α protein abundance and inflammatory responses. TGR5 activation exhibits a protective role in acute renal injury induced by I/R.
Collapse
Affiliation(s)
- Mengke Han
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Suchun Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Haixia Xie
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qiaojuan Liu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ani Wang
- Cardiovascular Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Shan Hu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaoduo Zhao
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yonglun Kong
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weidong Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Nephrology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Chunling Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
16
|
Shen WC, Chou YH, Shi LS, Chen ZW, Tu HJ, Lin XY, Wang GJ. AST-120 Improves Cardiac Dysfunction in Acute Kidney Injury Mice via Suppression of Apoptosis and Proinflammatory NF-κB/ICAM-1 Signaling. J Inflamm Res 2021; 14:505-518. [PMID: 33658826 PMCID: PMC7917393 DOI: 10.2147/jir.s283378] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/09/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Acute kidney injury (AKI) is a devastating disorder associated with considerably high morbidity and mortality. Reports have shown that AST-120, an oral charcoal adsorbent, can reduce oxidative stress by lowering serum indoxyl sulfate levels. The effects of AST-120 and indoxyl sulfate on kidney injury and cardiac dysfunction were investigated in vivo and in vitro. Patients and Methods Patients were tracked for enrollment upon receiving a diagnosis of AKI. Plasma was collected to determine the renal and inflammatory parameters. Renal ischemia/reperfusion (I/R) induced AKI or sham operation was performed in C57BL/6J mice. Animals were divided into sham, AKI+vehicle, and AKI+AST-120 groups. Plasma and tissues were assembled after 48 h to assess apoptotic and inflammatory responses. We also conducted human umbilical vein endothelial cell (HUVECs) and HL-1 cardiomyocyte culture studies to determine the underlying mechanisms of indoxyl sulfate’s effects. Echocardiography, histopathology, biochemical indexes, ELISA, terminal dUTP nick-end labeling (TUNEL) and Western blot analysis were performed. Results The cohort included 25 consecutive patients with AKI and 25 non-AKI. Plasma levels of creatinine, indoxyl sulfate, IL-1β and ICAM-1 were significantly higher in patients with AKI than in non-AKI controls. Plasma levels of blood urea nitrogen, creatinine, indoxyl sulfate, IL-1β and renal tubular injury were increased in mice after renal I/R and were decreased by AST-120 treatment. In addition, AST-120 therapy not only improved the parameters assessed by echocardiography but also substantially attenuated the elevation of plasma BNP. Oral administration of AST-120 significantly downregulated NF-κB/ICAM-1 expression and reduced cell apoptosis in both kidney and heart after renal I/R injury. Conclusion Our investigations demonstrated that AST-120 administration improves cardiac dysfunction in AKI mice via the suppression of apoptosis and proinflammatory NF-κB/ICAM-1 signaling.
Collapse
Affiliation(s)
- Wen-Ching Shen
- Department of Basic Medicine, Putian University, Putian City, Fujian Province, People's Republic of China
| | - Yu-Hsiang Chou
- Department of Internal Medicine, National Taiwan University Hospital Jin-Shan Branch, New Taipei City, Taiwan
| | - Li-Shian Shi
- Department of Biotechnology, National Formosa University, Yun-Lin, Taiwan
| | - Zhi-Wei Chen
- The Affiliated Hospital of Putian University, Putian City, Fujian Province, People's Republic of China
| | - Hai-Jian Tu
- The Affiliated Hospital of Putian University, Putian City, Fujian Province, People's Republic of China
| | - Xin-Yi Lin
- Department of Basic Medicine, Putian University, Putian City, Fujian Province, People's Republic of China
| | - Guei-Jane Wang
- School of Medicine, Graduate Institute of Clinical Medical Science, China Medical University, Taichung, 40402, Taiwan.,School of Medicine, Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 40402, Taiwan.,Department of Medical Research, China Medical University Hospital, Taichung, 40447, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, 41354, Taiwan
| |
Collapse
|
17
|
Biapenem reduces sepsis mortality via barrier protective pathways against HMGB1-mediated septic responses. Pharmacol Rep 2021; 73:786-795. [PMID: 33515401 DOI: 10.1007/s43440-020-00212-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND As a late mediator of sepsis, the role of high mobility group box 1 (HMGB1) has been recognized as important, and suppression of HMGB1 release and restoration of vascular barrier integrity are regarded as potentially promising therapeutic strategies for sepsis. For repositioning of previously FDA-approved drugs to develop new therapies for human diseases, screening of chemical compound libraries, biological active, is an efficient method. Our study illustrates an example of drug repositioning of Biapenem (BIPM), a carbapenem antibiotic, for the modulation of HMGB1-induced septic responses. METHODS We tested our hypothesis that BIPM inhibits HMGB1-induced vascular hyperpermeability and thereby increases the survival of septic mouse model from suppression of HMGB1 release upon lipopolysaccharide (LPS)-stimulation. In LPS-activated human umbilical vein endothelial cells (HUVECs) and a cecal ligation and puncture (CLP)-induced sepsis mouse model, antiseptic activity of BIPM was investigated from suppression of vascular permeability, pro-inflammatory proteins, and markers for tissue injury. RESULTS BIPM significantly suppressed release of HMGB1 both in LPS-activated HUVECs (upto 60%) and the CLP-induced sepsis mouse model (upto 54%). BIPM inhibited hyperpermeability (upto 59%) and reduced HMGB1-mediated vascular disruptions (upto 62%), mortality (upto 50%), and also tissue injury including lung, liver, and kidney in mice. CONCLUSION Reduction of HMGB1 release and septic mortality by BIPM (in vitro, from 5 to 15 μM for 6 h; in vivo, from 0.37 to 1.1 mg/kg, 24 h) indicate a possibility of successful repositioning of BIPM for the treatment of sepsis.
Collapse
|
18
|
Icoglu Aksakal F, Koc K, Geyikoglu F, Karakaya S. Ameliorative effect of umbelliferone in remote organ injury induced by renal ischemia-reperfusion in rats. J Food Biochem 2021; 45:e13628. [PMID: 33502024 DOI: 10.1111/jfbc.13628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/07/2020] [Accepted: 01/10/2021] [Indexed: 12/01/2022]
Abstract
We evaluated the ameliorative role of umbelliferone in kidney, heart, and lung damage induced by renal ischemia/reperfusion (I/R) injury in rats. Umbelliferone was given orally to rats 60 min before ischemia. Ischemia was induced for 50 min and then reperfusion for 3 hr. The antioxidant enzymes, myeloperoxidase (MPO) activity, malondialdehyde (MDA) content, and cytokine levels in the kidney, heart, and lung were measured by ELISA. Moreover, histopathological changes were monitored. Renal I/R-induced oxidative stress in the organs by decreasing antioxidant enzymes. However, umbelliferone pretreatment enhanced superoxide dismutase (SOD) and glutathione (GSH), levels, reduced MDA and MPO levels. Renal I/R increased in tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) levels, and histopathological changes but these effects were inhibited with umbelliferone pretreatment. Furthermore, umbelliferone increased in nitric oxide synthase (eNOS) level under ischemia conditions. Our results indicated that pretreatment of umbelliferone-ameliorated damages in remote organ induced by renal I/R through suppressing oxidative stress and modulating inflammatory responses. PRACTICAL APPLICATIONS: kidney, heart, and lung damages induced by renal I/R in rats was alleviated by umbelliferone. The oral treatment of umbelliferone markedly reversed the oxidative stress, inflammation, and histopathological changes by increasing in the levels of SOD, GSH, and eNOS, decreasing in the levels of MDA, MPO, TNF-α, and IL-6 in distant organ injury induced by renal I/R. This study firstly revealed that umbelliferone has potent antioxidant and anti-inflammatory activity in the remote organ damages caused by renal I/R. Consequently, umbelliferone may be an alternative therapeutic agent for treating renal I/R-induced damages.
Collapse
Affiliation(s)
- Feyza Icoglu Aksakal
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Kubra Koc
- Department of Biology, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Fatime Geyikoglu
- Department of Biology, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Songul Karakaya
- Department of Pharmacognosy, Faculty of Pharmaceutical Botany, Atatürk University, Erzurum, Turkey
| |
Collapse
|
19
|
Lee W, Choi HJ, Sim H, Choo S, Song GY, Bae JS. Barrier protective functions of hederacolchiside-E against HMGB1-mediated septic responses. Pharmacol Res 2021; 163:105318. [PMID: 33246171 DOI: 10.1016/j.phrs.2020.105318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/20/2022]
Abstract
The role of high mobility group box 1 (HMGB1) has been recognized as important, and suppression of HMGB1 release and restoration of vascular barrier integrity are regarded as potentially promising therapeutic strategies against sepsis. Hederacolchiside-E (HCE), namely 3-O-{α-L-rhamnopyranosyl (1→2)-[β-D-glucopyranosyl(1→4)]-α-L-arabinopyranosyl}-28-O-[α-L-rhamnopyranosyl (1→4)-β-D-glucopyranosyl(1→6)-β-D-glucopyranosyl ester, is a bidesmosidic oleanane saponin first isolated in 1970 from the leaves of Hedera colchica. We tested our hypothesis that HCE inhibits HMGB1-induced vascular hyperpermeability and thereby increases the survival of septic mouse model from suppression of HMGB1 release upon lipopolysaccharide (LPS)-stimulation. In LPS-activated human endothelial cells and a sepsis mouse model by cecal ligation and puncture (CLP), antiseptic activity of HCE was investigated from suppression of vascular permeability, pro-inflammatory proteins, and tissue injury markers. Post-treatment of HCE significantly suppressed HMGB1 release both in LPS-activated human endothelial cells and the CLP-induced sepsis mouse model. HCE inhibited hyperpermeability and alleviated HMGB1-mediated vascular disruptions, and reduced sepsis-related mortality and tissue injury in mice. Our results suggest that reduction of HMGB1 release and septic mortality by HCE may be useful for the drug candidate of sepsis, indicating a possibility of successful repositioning of HCE.
Collapse
Affiliation(s)
- Wonhwa Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea; Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Hui-Ji Choi
- College of Pharmacy, Chungnam National University, Daejon 34134, Republic of Korea
| | - Hyunchae Sim
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Samyeol Choo
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Gyu Yong Song
- College of Pharmacy, Chungnam National University, Daejon 34134, Republic of Korea.
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
20
|
Chen R, Zeng Z, Zhang YY, Cao C, Liu HM, Li W, Wu Y, Xia ZY, Ma D, Meng QT. Ischemic postconditioning attenuates acute kidney injury following intestinal ischemia-reperfusion through Nrf2-regulated autophagy, anti-oxidation, and anti-inflammation in mice. FASEB J 2020; 34:8887-8901. [PMID: 32519766 DOI: 10.1096/fj.202000274r] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/06/2020] [Accepted: 05/10/2020] [Indexed: 12/12/2022]
Abstract
Intestinal ischemia-reperfusion (IIR) often occurs during and following major cardiovascular or gut surgery and causes significant organ including kidney injuries. This study was to investigate the protective effect of intestinal ischemic postconditioning (IPo) on IIR-induced acute kidney injury (AKI) and the underling cellular signaling mechanisms with focus on the Nrf2/HO-1. Adult C57BL/6J mice were subjected to IIR with or without IPo. IIR was established by clamping the superior mesenteric artery (SMA) for 45 minutes followed by 120 minutes reperfusion. Outcome measures were: (i) Intestinal and renal histopathology; (ii) Renal function; (iii) Cellular signaling changes; (iv) Oxidative stress and inflammatory responses. IPo significantly attenuated IIR-induced kidney injury. Furthermore, IPo significantly increased both nuclear Nrf2 and HO-1 expression in the kidney, upregulated autophagic flux, inhibited IIR-induced inflammation and reduced oxidative stress. The protective effect of IPo was abolished by the administration of Nrf2 inhibitor (Brusatol) or Nrf2 siRNA. Conversely, a Nrf2 activator t-BHQ has a similar protective effect to that of IPo. Our data indicate that IPo protects the kidney injury induced by IIR, which was likely mediated through the Nrf2/HO-1 cellular signaling activation.
Collapse
Affiliation(s)
- Rong Chen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zi Zeng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yun-Yan Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chen Cao
- Department of Endocrinology, The 3rd Hospital of Wuhan, Wuhan, China
| | - Hui-Min Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yang Wu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhong-Yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Qing-Tao Meng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
21
|
Shang Y, Madduma Hewage S, Wijerathne CUB, Siow YL, Isaak CK, O K. Kidney Ischemia-Reperfusion Elicits Acute Liver Injury and Inflammatory Response. Front Med (Lausanne) 2020; 7:201. [PMID: 32582723 PMCID: PMC7280447 DOI: 10.3389/fmed.2020.00201] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/24/2020] [Indexed: 12/20/2022] Open
Abstract
Ischemia-reperfusion (IR) is a common risk factor that causes acute kidney injury (AKI). AKI is associated with dysfunction of other organs also known as distant organ injury. The liver function is often compromised in patients with AKI and in animal models. However, the underlying mechanisms are not fully understood. Inflammatory response plays an important role in IR-induced tissue injury. Although increased proinflammatory cytokines have been detected in the kidney and the distant organs after renal IR, their original sources remain uncertain. In the present study, we investigated the acute effect of renal IR on hepatic inflammatory cytokine expression and the mechanism involved. Sprague-Dawley rats that were subjected to renal IR (ischemia for 45 min followed by reperfusion for 1 h or 6 h) had increased plasma levels of creatinine, urea, and transaminases, indicating kidney and liver injuries. There was a significant increase in the expression of proinflammatory cytokine mRNA (MCP-1, TNF-α, IL-6) in the kidney and liver in rats with renal IR. This was accompanied by a significant increase in proinflammatory cytokine protein levels in the plasma, kidney, and liver. Activation of a nuclear transcription factor kappa B (NF-κB) was detected in the liver after renal IR. The inflammatory foci and an increased myeloperoxidase (MPO) activity were detected in the liver after renal IR, indicating hepatic inflammatory response and leukocyte infiltration. These results suggest that renal IR can directly activate NF-κB and induce acute production of proinflammatory cytokines in the liver. Renal IR-induced hepatic inflammatory response may contribute to impaired liver function and systemic inflammation.
Collapse
Affiliation(s)
- Yue Shang
- St. Boniface Hospital Research Centre, Winnipeg, MB, Canada.,Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Susara Madduma Hewage
- St. Boniface Hospital Research Centre, Winnipeg, MB, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Charith U B Wijerathne
- St. Boniface Hospital Research Centre, Winnipeg, MB, Canada.,Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Yaw L Siow
- St. Boniface Hospital Research Centre, Winnipeg, MB, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada.,Agriculture and Agri Food Canada, St. Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | - Cara K Isaak
- St. Boniface Hospital Research Centre, Winnipeg, MB, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Karmin O
- St. Boniface Hospital Research Centre, Winnipeg, MB, Canada.,Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
22
|
van Schaik TG, Jongkind V, Lindhout RJ, van der Reijden J, Wisselink W, van Leeuwen PAM, Musters RJP, Yeung KK. Cold Renal Perfusion During Simulation of Juxtarenal Aortic Aneurysm Repair Reduces Systemic Oxidative Stress and Sigmoid Damage in Rats. Eur J Vasc Endovasc Surg 2020; 58:891-901. [PMID: 31791617 DOI: 10.1016/j.ejvs.2019.05.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/13/2019] [Accepted: 05/29/2019] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Juxtarenal aortic surgery induces renal ischaemia reperfusion, which contributes to systemic inflammatory tissue injury and remote organ damage. Renal cooling during suprarenal cross clamping has been shown to reduce renal damage. It is hypothesised that renal cooling during suprarenal cross clamping also has systemic effects and could decrease damage to other organs, like the sigmoid colon. METHODS Open juxtarenal aortic aneurysm repair was simulated in 28 male Wistar rats with suprarenal cross clamping for 45 min, followed by 20 min of infrarenal aortic clamping. Four groups were created: sham, no, warm (37 °C saline), and cold (4 °C saline) renal perfusion during suprarenal cross clamping. Primary outcomes were renal damage and sigmoid damage. To assess renal damage, procedure completion serum creatinine rises were measured. Peri-operative microcirculatory flow ratios were determined in the sigmoid using laser Doppler flux. Semi-quantitative immunofluorescence microscopy was used to measure alterations in systemic inflammation parameters, including reactive oxygen species (ROS) production in circulating leukocytes and leukocyte infiltration in the sigmoid. Sigmoid damage was assessed using digestive enzyme (intestinal fatty acid binding protein - I-FABP) leakage, a marker of intestinal integrity. RESULTS Suprarenal cross clamping caused deterioration of all systemic parameters. Only cold renal perfusion protected against serum creatinine rise: 0.45 mg/dL without renal perfusion, 0.33 mg/dL, and 0.14 mg/dL (p = .009) with warm and cold perfusion, respectively. Microcirculation in the sigmoid was attenuated with warm (p = .002) and cold renal perfusion (p = .002). A smaller increase of ROS production (p = .034) was seen only after cold perfusion, while leukocyte infiltration in the sigmoid colon decreased after warm (p = .006) and cold perfusion (p = .018). Finally, digestive enzyme leakage increased more without (1.5AU) than with warm (1.3AU; p = .007) and cold renal perfusion (1.2AU; p = .002). CONCLUSIONS Renal ischaemia/reperfusion injury after suprarenal cross clamping decreased microcirculatory flow, increased systemic ROS production, leukocyte infiltration, and I-FABP leakage in the sigmoid colon. Cold renal perfusion was superior to warm perfusion and reduced renal damage and had beneficial systemic effects, reducing sigmoid damage in this experimental study.
Collapse
Affiliation(s)
- Theodorus G van Schaik
- Amsterdam University Medical Centres, Location VUmc, Department of Surgery, Amsterdam, the Netherlands
| | - Vincent Jongkind
- Dijklander Ziekenhuis, Department of Surgery, Hoorn, the Netherlands
| | - Robert J Lindhout
- Amsterdam University Medical Centres, Location VUmc, Department of Physiology, Amsterdam, the Netherlands
| | - Jeroen van der Reijden
- Amsterdam University Medical Centres, Location VUmc, Department of Physiology, Amsterdam, the Netherlands
| | - Willem Wisselink
- Amsterdam University Medical Centres, Location VUmc, Department of Surgery, Amsterdam, the Netherlands
| | - Paul A M van Leeuwen
- Amsterdam University Medical Centres, Location VUmc, Department of Surgery, Amsterdam, the Netherlands
| | - Rene J P Musters
- Amsterdam University Medical Centres, Location VUmc, Department of Physiology, Amsterdam, the Netherlands
| | - Kak K Yeung
- Amsterdam University Medical Centres, Location VUmc, Department of Surgery, Amsterdam, the Netherlands; Amsterdam University Medical Centres, Location VUmc, Department of Physiology, Amsterdam, the Netherlands.
| |
Collapse
|
23
|
Lee W, Lee H, Lee T, Park EK, Bae JS. Inhibitory functions of maslinic acid, a natural triterpene, on HMGB1-mediated septic responses. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 69:153200. [PMID: 32163831 DOI: 10.1016/j.phymed.2020.153200] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/22/2020] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Maslinic acid (MA), a natural triterpenoid from Olea europaea, prevents oxidative stress and pro-inflammatory cytokine generation. High mobility group box 1 (HMGB1) has been recognized as a late mediator of sepsis, and the inhibition of the release of HMGB1 and the recovery of vascular barrier integrity have emerged as attractive therapeutic strategies for the management of sepsis. METHODS We tested the hypothesis that MA induces sirtuin 1 and heme oxygenase-1, which inhibit the release of HMGB1 in lipopolysaccharide (LPS)-stimulated cells, thus inhibiting HMGB1-induced hyperpermeability and increasing the survival of septic mice. MA was administered after LPS or HMGB1 challenge, and the antiseptic activity of MA was determined based on permeability, the activation of pro-inflammatory proteins, and the production of markers for tissue injury in HMGB1-activated human umbilical vein endothelial cells (HUVECs) and a cecal ligation and puncture (CLP)-induced sepsis mouse model. RESULTS MA significantly reduced the release of HMGB1 in LPS-activated HUVECs and attenuated the CLP-induced release of HMGB1. Additionally, MA alleviated HMGB1-mediated vascular disruption and inhibited hyperpermeability in mice, and in vivo analysis revealed that MA reduced sepsis-related mortality and tissue injury. CONCLUSION Taken together, the present results suggest that MA reduced HMGB1 release and septic mortality and thus may be useful in the treatment of sepsis.
Collapse
Affiliation(s)
- Wonhwa Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea; Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Hayeong Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Taeho Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Eui Kyun Park
- Department of Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| |
Collapse
|
24
|
Li P, Shi M, Maique J, Shaffer J, Yan S, Moe OW, Hu MC. Beclin 1/Bcl-2 complex-dependent autophagy activity modulates renal susceptibility to ischemia-reperfusion injury and mediates renoprotection by Klotho. Am J Physiol Renal Physiol 2020; 318:F772-F792. [PMID: 31984794 PMCID: PMC7099499 DOI: 10.1152/ajprenal.00504.2019] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/10/2020] [Accepted: 01/16/2020] [Indexed: 02/06/2023] Open
Abstract
Klotho- and beclin 1-driven autophagy extends life. We examined the role of beclin 1 in modifying acute kidney injury (AKI) and whether beclin 1 mediates Klotho's known renoprotective action in AKI. AKI was induced by ischemia-reperfusion injury in mice with different levels of autophagy activity by genetic manipulation: wild-type (WT) mice with normal beclin 1 expression and function, mice with normal beclin 1 levels but high activity through knockin of gain-of-function mutant beclin 1 (Becn1F121A), mice with low beclin 1 levels and activity caused by heterozygous global deletion of beclin 1 (Becn1+/-), or mice with extremely low beclin 1 activity from knockin of the mutant constitutively active beclin 1 inhibitor Bcl-2 (Bcl2AAA). Klotho was increased by transgenic overexpression (Tg-Kl) or recombinant Klotho protein administration. After ischemia-reperfusion injury, Becn1F121A mice (high autophagy) had milder AKI and Becn1+/- and Bcl2AAA mice (low autophagy) had more severe AKI than WT mice. Tg-Kl mice had milder AKI, but its renoprotection was partially attenuated in Becn1+/-;Tg-Kl mice and was significantly reduced, although not completely abolished, in Bcl2AAA;Tg-Kl mice. Recombinant Klotho protein conferred more renoprotection from AKI in WT mice than in Becn1+/- or Bcl2AAA mice. Klotho reduced beclin 1/Bcl-2 protein complexes and increased autophagy activity, but this effect was less prominent in mice or cells with Bcl2AAA. Transfected Bcl2AAA or Becn1F123A decreased or increased autophagy activity and rendered cells more susceptible or more resistant to oxidative cytotoxicity, respectively. In conclusion, beclin 1 confers renoprotection by activating autophagy. Klotho protects the kidney partially via disruption of beclin 1/Bcl-2 interactions and enhancement of autophagy activity.
Collapse
Affiliation(s)
- Peng Li
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Mingjun Shi
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jenny Maique
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Joy Shaffer
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Shirley Yan
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Orson W Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ming Chang Hu
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
25
|
Rudnick MR, Leonberg-Yoo AK, Litt HI, Cohen RM, Hilton S, Reese PP. The Controversy of Contrast-Induced Nephropathy With Intravenous Contrast: What Is the Risk? Am J Kidney Dis 2020; 75:105-113. [DOI: 10.1053/j.ajkd.2019.05.022] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 05/07/2019] [Indexed: 01/07/2023]
|
26
|
Carlisle MA, Soranno DE, Basu RK, Gist KM. Acute Kidney Injury and Fluid Overload in Pediatric Cardiac Surgery. CURRENT TREATMENT OPTIONS IN PEDIATRICS 2019; 5:326-342. [PMID: 33282633 PMCID: PMC7717109 DOI: 10.1007/s40746-019-00171-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE OF REVIEW Acute kidney injury (AKI) and fluid overload affect a large number of children undergoing cardiac surgery, and confers an increased risk for adverse complications and outcomes including death. Survivors of AKI suffer long-term sequelae. The purpose of this narrative review is to discuss the short and long-term impact of cardiac surgery associated AKI and fluid overload, currently available tools for diagnosis and risk stratification, existing management strategies, and future management considerations. RECENT FINDINGS Improved risk stratification, diagnostic prediction tools and clinically available early markers of tubular injury have the ability to improve AKI-associated outcomes. One of the major challenges in diagnosing AKI is the diagnostic imprecision in serum creatinine, which is impacted by a variety of factors unrelated to renal disease. In addition, many of the pharmacologic interventions for either AKI prevention or treatment have failed to show any benefit, while peritoneal dialysis catheters, either for passive drainage or prophylactic dialysis may be able to mitigate the detrimental effects of fluid overload. SUMMARY Until novel risk stratification and diagnostics tools are integrated into routine practice, supportive care will continue to be the mainstay of therapy for those affected by AKI and fluid overload after pediatric cardiac surgery. A viable series of preventative measures can be taken to mitigate the risk and severity of AKI and fluid overload following cardiac surgery, and improve care.
Collapse
Affiliation(s)
- Michael A Carlisle
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, University of Colorado Anschutz Medical Campus, Children’s Hospital Colorado, Aurora CO
| | - Danielle E. Soranno
- Department of Pediatrics, Division of Pediatric Nephrology, University of Colorado Anschutz Medical Campus, Children’s Hospital Colorado, Aurora CO
| | - Rajit K Basu
- Department of Pediatrics, Division of Pediatric Critical Care, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta GA
| | - Katja M Gist
- Department of Pediatrics, Division of Pediatric Cardiology, University of Colorado Anschutz Medical Campus, Children’s Hospital Colorado, Aurora CO
| |
Collapse
|
27
|
Organ crosstalk: the potent roles of inflammation and fibrotic changes in the course of organ interactions. Inflamm Res 2019; 68:825-839. [PMID: 31327029 DOI: 10.1007/s00011-019-01271-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Organ crosstalk can be defined as the complex and mutual biological communication between distant organs mediated by signaling factors. Normally, crosstalk helps to coordinate and maintain homeostasis, but sudden or chronic dysfunction in any organ causes dysregulation in another organ. Many signal molecules, including cytokines and growth factors, are involved in the metabolic dysregulation, and excessive or inappropriate release of these molecules leads to organ dysfunction or disease (e.g., obesity, type 2 diabetes). AIM AND METHOD The aim of this review is to reveal the impact of organ crosstalk on the pathogenesis of diseases associated with organ interactions and the role of inflammatory and fibrotic changes in the organ dysfunction. After searching in MEDLINE, PubMed and Google Scholar databases using 'organ crosstalk' as a keyword, studies related to organ crosstalk and organ interaction were compiled and examined. CONCLUSION The organ crosstalk and the functional integration of organ systems are exceedingly complex processes. Organ crosstalk contributes to metabolic homeostasis and affects the inflammatory response, related pathways and fibrotic changes. As in the case of interactions between adipose tissue and intestine, stimulation of inflammatory mechanisms plays an active role in the development of diseases including insulin resistance, obesity, type 2 diabetes and hepatic steatosis. The increased level of knowledge about the 'crosstalk' between any organ and distant organs will facilitate the early diagnosis of the disease as well as the management of the treatment practices in the short- and long-term organ dysfunction.
Collapse
|
28
|
Lai Y, Deng J, Wang M, Wang M, Zhou L, Meng G, Zhou Z, Wang Y, Guo F, Yin M, Zhou X, Jiang H. Vagus nerve stimulation protects against acute liver injury induced by renal ischemia reperfusion via antioxidant stress and anti-inflammation. Biomed Pharmacother 2019; 117:109062. [PMID: 31177065 DOI: 10.1016/j.biopha.2019.109062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 10/26/2022] Open
Abstract
OBJECTIVE Renal ischemia reperfusion (I/R) is not an isolated event; however, it results in remote organ dysfunction. Vagus nerve stimulation (VNS) has shown protective effects against renal I/R injury via an anti-inflammatory mechanism. This study aimed to investigate whether VNS could attenuate liver injury induced by renal I/R and identify the underlying mechanisms. METHODS Eighteen healthy male Sprague-Dawley rats (200-250 g) were equally divided into three groups: sham group (sham surgery without I/R or VNS), I/R group (renal I/R) and VNS group (renal I/R plus VNS). The I/R model was established by excising the right kidney and then clamping the left renal pedicle with an occlusive nontraumatic microaneurysm clamp for 45 min followed by a 6-h reperfusion. The rats in the VNS group received spontaneous left cervical VNS with renal ischemia and reperfusion. At the end of the experiment, blood and liver tissues were collected to detect liver function, oxidative stress and inflammatory parameters. Additionally, TUNEL staining, real-time PCR, western blotting and hematoxylin and eosin staining of liver tissues were performed to assess liver injury and the underlying mechanisms. RESULTS Kidney and liver function was severely damaged in the I/R group compared to the sham group. However, VNS significantly protected kidney and liver function. Rats treated with VNS revealed decreases in oxidative enzymes, apoptosis and levels of tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) in serum and liver compared with rats in the I/R group. Rats in the VNS group also showed increased antioxidant stress responses compared to rats in the I/R group. CONCLUSION VNS exerts protective effects against liver injury from renal I/R via inhibiting oxidative stress and apoptosis, downregulating inflammatory cytokines and enhancing antioxidative capability in the liver, and may become a promising adjuvant therapeutic strategy for treating liver injury induced by acute renal injury.
Collapse
Affiliation(s)
- Yanqiu Lai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Jielin Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Meng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Liping Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Guannan Meng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Zhen Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Yuhong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Fuding Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Ming Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Xiaoya Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China.
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China.
| |
Collapse
|
29
|
Lee W, Yuseok O, Lee C, Jeong SY, Lee JH, Baek MC, Song GY, Bae JS. Suppressive activities of KC1-3 on HMGB1-mediated septic responses. Biochem Pharmacol 2019; 163:260-268. [PMID: 30822402 DOI: 10.1016/j.bcp.2019.02.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/25/2019] [Indexed: 10/27/2022]
Abstract
In the present study, several decursin analogues (KC1-3) were synthesized and evaluated in terms of their anti-septic activities on high mobility group box 1 (HMGB1)-mediated septic responses and survival rate in a mouse model of sepsis. KC1 and KC3, but not KC2, significantly reduced HMGB1 release in lipopolysaccharide (LPS)-activated human umbilical vein endothelial cells (HUVECs) and attenuated the cecal ligation and puncture (CLP)-induced release of HMGB1. Additionally, in vitro analyses revealed that KC1 and KC3 both alleviated HMGB1-mediated vascular disruptions and inhibited hyperpermeability in mice, and in vivo analyses revealed that KC1 and KC3 reduced sepsis-related mortality and tissue injury. Taken together, the present results suggest that KC1 and KC3 both reduced HMGB1 release and septic mortality and, thus, may be useful for the treatment of sepsis.
Collapse
Affiliation(s)
- Wonhwa Lee
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - O Yuseok
- College of Pharmacy, Chungnam National University, Daejon 34134, Republic of Korea
| | - Changhun Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| | - So Yeon Jeong
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jee-Hyun Lee
- AREZ Co. Ltd., 197 Songam-ro, Sejong 30066, Republic of Korea
| | - Moon-Chang Baek
- Department of Molecular Medicine, CMRI, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - Gyu-Yong Song
- College of Pharmacy, Chungnam National University, Daejon 34134, Republic of Korea; AREZ Co. Ltd., 197 Songam-ro, Sejong 30066, Republic of Korea.
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
30
|
Fox BM, Gil HW, Kirkbride-Romeo L, Bagchi RA, Wennersten SA, Haefner KR, Skrypnyk NI, Brown CN, Soranno DE, Gist KM, Griffin BR, Jovanovich A, Reisz JA, Wither MJ, D'Alessandro A, Edelstein CL, Clendenen N, McKinsey TA, Altmann C, Faubel S. Metabolomics assessment reveals oxidative stress and altered energy production in the heart after ischemic acute kidney injury in mice. Kidney Int 2019; 95:590-610. [PMID: 30709662 PMCID: PMC6564679 DOI: 10.1016/j.kint.2018.10.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 09/20/2018] [Accepted: 10/04/2018] [Indexed: 12/15/2022]
Abstract
Acute kidney injury (AKI) is a systemic disease associated with widespread effects on distant organs, including the heart. Normal cardiac function is dependent on constant ATP generation, and the preferred method of energy production is via oxidative phosphorylation. Following direct ischemic cardiac injury, the cardiac metabolome is characterized by inadequate oxidative phosphorylation, increased oxidative stress, and increased alternate energy utilization. We assessed the impact of ischemic AKI on the metabolomics profile in the heart. Ischemic AKI was induced by 22 minutes of renal pedicle clamping, and 124 metabolites were measured in the heart at 4 hours, 24 hours, and 7 days post-procedure. Forty-one percent of measured metabolites were affected, with the most prominent changes observed 24 hours post-AKI. The post-AKI cardiac metabolome was characterized by amino acid depletion, increased oxidative stress, and evidence of alternative energy production, including a shift to anaerobic forms of energy production. These metabolomic effects were associated with significant cardiac ATP depletion and with echocardiographic evidence of diastolic dysfunction. In the kidney, metabolomics analysis revealed shifts suggestive of energy depletion and oxidative stress, which were reflected systemically in the plasma. This is the first study to examine the cardiac metabolome after AKI, and demonstrates that effects of ischemic AKI on the heart are akin to the effects of direct ischemic cardiac injury.
Collapse
Affiliation(s)
- Benjamin M Fox
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, Colorado, USA
| | - Hyo-Wook Gil
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, Colorado, USA; Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Lara Kirkbride-Romeo
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, Colorado, USA
| | - Rushita A Bagchi
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sara A Wennersten
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Korey R Haefner
- Department of Pediatrics and Bioengineering, University of Colorado Denver, Aurora, Colorado, USA; Division of Pediatric Cardiology, Department of Pediatrics, University of Colorado Denver, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Nataliya I Skrypnyk
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, Colorado, USA
| | - Carolyn N Brown
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, Colorado, USA
| | - Danielle E Soranno
- Department of Pediatrics and Bioengineering, University of Colorado Denver, Aurora, Colorado, USA
| | - Katja M Gist
- Division of Pediatric Cardiology, Department of Pediatrics, University of Colorado Denver, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Benjamin R Griffin
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, Colorado, USA
| | - Anna Jovanovich
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, Colorado, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Matthew J Wither
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Charles L Edelstein
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, Colorado, USA; Denver VA Medical Center, Division of Nephrology, Department of Medicine, Denver, Colorado, USA
| | - Nathan Clendenen
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Timothy A McKinsey
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christopher Altmann
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, Colorado, USA
| | - Sarah Faubel
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, Colorado, USA; Denver VA Medical Center, Division of Nephrology, Department of Medicine, Denver, Colorado, USA.
| |
Collapse
|
31
|
Elshazly S, Soliman E. PPAR gamma agonist, pioglitazone, rescues liver damage induced by renal ischemia/reperfusion injury. Toxicol Appl Pharmacol 2018; 362:86-94. [PMID: 30393147 DOI: 10.1016/j.taap.2018.10.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/16/2018] [Accepted: 10/24/2018] [Indexed: 01/09/2023]
Abstract
Remote organ damage is the major cause of death in patients with acute kidney injury (AKI) due to renal ischemia reperfusion (IR). Liver is one of the vital organs which are profoundly affected by AKI. The present study aims to investigate the role of peroxisome proliferator activator receptor gamma (PPARγ) in liver damage induced by IR injury in rats. Renal IR was induced by right nephrectomy, occlusion of left renal pedicle for 45 min to induce ischemia, and then reperfusion for 6 or 24 h. The PPARγ agonist, pioglitazone, was given orally for 7 days before renal IR procedure. Animals receiving pioglitazone showed improvement in renal and hepatic functions when compared to IR groups. Renal IR increased renal, hepatic and serum levels of tumor necrosis factor-α (TNF-α) and induced apoptotic cell death in liver. These effects were diminished with pioglitazone. In addition, pioglitazone reduced renal IR-induced oxidative stress in liver. Pioglitazone reduced malondialdehyde (MDA) content and NADPH oxidase mRNA expression and induced further increase in nuclear factor erythroid 2-related factor 2 (Nrf2) expression when compared to IR groups. Furthermore, pioglitazone increased the expression of PPARγ target genes such as renal and hepatic PPARγ1 (Pparg1), hepatic hemoxygenase-1 (Hmox1), and hepatic thioredoxin (TRx). Histological profiles for kidney and liver were also ameliorated with pioglitazone. Hence, PPARγ is a potential target to protect liver in patients with renal IR injury.
Collapse
Affiliation(s)
- Shimaa Elshazly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Eman Soliman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
32
|
Risk of Incident Non-Valvular Atrial Fibrillation after Dialysis-Requiring Acute Kidney Injury. J Clin Med 2018; 7:jcm7090248. [PMID: 30158498 PMCID: PMC6162837 DOI: 10.3390/jcm7090248] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 12/23/2022] Open
Abstract
The influence of acute kidney injury (AKI) on subsequent incident atrial fibrillation (AF) has not yet been fully addressed. This retrospective nationwide cohort study was conducted using Taiwan’s National Health Insurance Research Database from 1 January 2000 to 31 December 2010. A total of 41,463 patients without a previous AF, mitral valve disease, and hyperthyroidism who developed de novo dialysis-requiring AKI (AKI-D) during their index hospitalization were enrolled. After propensity score matching, “non-recovery group” (n = 2895), “AKI-recovery group” (n = 2895) and “non-AKI group” (control group, n = 5790) were categorized. Within a follow-up period of 6.52 ± 3.88 years (median, 6.87 years), we found that the adjusted risks for subsequent incident AF were increased in both AKI-recovery group (adjusted hazard ratio (aHR) = 1.30; 95% confidence intervals (CI), 1.07–1.58; p ≤ 0.01) and non-recovery group (aHR = 1.62; 95% CI, 1.36–1.94) compared to the non-AKI group. Furthermore, the development of AF carried elevated risks for major adverse cardiac events (aHR = 2.11; 95% CI, 1.83–2.43), ischemic stroke (aHR = 1.33; 95% CI, 1.19–1.49), and all stroke (aHR = 1.28; 95% CI, 1.15–1.43). (all p ≤ 0.001, except otherwise expressed) The authors concluded that AKI-D, even in those who withdrew from temporary dialysis, independently increases the subsequent risk of de novo AF.
Collapse
|
33
|
Zhao H, Huang H, Alam A, Chen Q, Suen KC, Cui J, Sun Q, Ologunde R, Zhang W, Lian Q, Ma D. VEGF mitigates histone-induced pyroptosis in the remote liver injury associated with renal allograft ischemia-reperfusion injury in rats. Am J Transplant 2018; 18:1890-1903. [PMID: 29446207 PMCID: PMC6175002 DOI: 10.1111/ajt.14699] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/22/2018] [Accepted: 02/07/2018] [Indexed: 01/25/2023]
Abstract
Clinical evidence has indicated a possible link between renal injury and remote liver injury. We investigated whether extracellular histone mediates remote hepatic damage after renal graft ischemia-reperfusion injury, while vascular endothelial growth factor (VEGF) is protective against remote hepatic injury. In vitro, hepatocyte HepG2 cultures were treated with histone. In vivo, the Brown-Norway renal graft was stored in 4°C preservation solution for 24 hours and then transplanted into a Lewis rat recipient; blood samples and livers from recipients were harvested 24 hours after surgery. Prolonged cold ischemia in renal grafts enhanced liver injury 24 hours after engraftment. Caspase-1, ASC, NLRP3, and AIM2 expressions in hepatocyte, CD68+ -infiltrating macrophages, tissue, and serum interleukin-1β and -18 were greatly elevated, indicating that pyroptosis occurred in the liver and resulted in acute liver functional impairment. Blocking the caspase-1 pathway decreased the number of necrotic hepatocytes. VEGF treatment suppressed the hepatocyte pyroptosis and liver function was partially restored. Our data suggested that renal allograft ischemia-reperfusion injury is likely associated with acute liver damage due to hepatocyte pyroptosis induced by histone and such injury may be protected by VEGF administration. VEGF, therefore, may serve as a new strategy against other remote organ injuries related to renal transplantation.
Collapse
Affiliation(s)
- Hailin Zhao
- Anaesthetics, Pain Medicine and Intensive CareDepartment of Surgery and CancerFaculty of MedicineImperial College LondonChelsea & Westminster HospitalLondonUK
| | - Han Huang
- Anaesthetics, Pain Medicine and Intensive CareDepartment of Surgery and CancerFaculty of MedicineImperial College LondonChelsea & Westminster HospitalLondonUK,Department of AnaesthesiologyWest China Second University HospitalSichuan UniversityChengduChina
| | - Azeem Alam
- Anaesthetics, Pain Medicine and Intensive CareDepartment of Surgery and CancerFaculty of MedicineImperial College LondonChelsea & Westminster HospitalLondonUK
| | - Qian Chen
- Anaesthetics, Pain Medicine and Intensive CareDepartment of Surgery and CancerFaculty of MedicineImperial College LondonChelsea & Westminster HospitalLondonUK,Department of AnaesthesiologySouthwest HospitalThird Military Medical UniversityChongqingChina
| | - Ka Chuen Suen
- Anaesthetics, Pain Medicine and Intensive CareDepartment of Surgery and CancerFaculty of MedicineImperial College LondonChelsea & Westminster HospitalLondonUK
| | - Jiang Cui
- Anaesthetics, Pain Medicine and Intensive CareDepartment of Surgery and CancerFaculty of MedicineImperial College LondonChelsea & Westminster HospitalLondonUK
| | - Qizhe Sun
- Anaesthetics, Pain Medicine and Intensive CareDepartment of Surgery and CancerFaculty of MedicineImperial College LondonChelsea & Westminster HospitalLondonUK
| | - Rele Ologunde
- Anaesthetics, Pain Medicine and Intensive CareDepartment of Surgery and CancerFaculty of MedicineImperial College LondonChelsea & Westminster HospitalLondonUK
| | - Wenwen Zhang
- Anaesthetics, Pain Medicine and Intensive CareDepartment of Surgery and CancerFaculty of MedicineImperial College LondonChelsea & Westminster HospitalLondonUK,The Second Affiliated HospitalWenzhou Medical UniversityWenzhouChina
| | - Qingquan Lian
- The Second Affiliated HospitalWenzhou Medical UniversityWenzhouChina
| | - Daqing Ma
- Anaesthetics, Pain Medicine and Intensive CareDepartment of Surgery and CancerFaculty of MedicineImperial College LondonChelsea & Westminster HospitalLondonUK
| |
Collapse
|
34
|
Honore PM, De Bels D, Spapen HD. BPI fold-containing family a member 2 as a biomarker of acute kidney injury-close but no (clinical) cigar? ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:191. [PMID: 29951513 PMCID: PMC5994521 DOI: 10.21037/atm.2018.03.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 03/07/2018] [Indexed: 08/30/2023]
Affiliation(s)
- Patrick M. Honore
- Department of Intensive Care, Centre Hospitalier Universitaire Brugmann, Brussels, Belgium
| | - David De Bels
- Department of Intensive Care, Centre Hospitalier Universitaire Brugmann, Brussels, Belgium
| | - Herbert D. Spapen
- Department of Intensive Care Unit, Universitair Ziekenhuis Brussel, VUB University, Brussels, Belgium
| |
Collapse
|
35
|
Li J, Chen Q, He X, Alam A, Ning J, Yi B, Lu K, Gu J. Dexmedetomidine attenuates lung apoptosis induced by renal ischemia-reperfusion injury through α 2AR/PI3K/Akt pathway. J Transl Med 2018; 16:78. [PMID: 29566706 PMCID: PMC5865375 DOI: 10.1186/s12967-018-1455-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/19/2018] [Indexed: 01/09/2023] Open
Abstract
Background Acute lung injury caused by renal ischemia–reperfusion is one of the leading causes of acute kidney injury-related death. Dexmedetomidine, an α2-adrenergic agonist sedative, has been found to have protective effects against acute kidney injury and remote lung injury. We sought to determine whether dexmedetomidine can exert its anti-apoptotic effects in acute lung injury after acute kidney injury, in addition to its common anti-inflammatory effects, and to determine the underlying mechanisms. Methods In vivo, acute kidney injury was induced by 60 min of kidney ischemia (bilateral occlusion of renal pedicles) followed by 24 h of reperfusion. Mice received dexmedetomidine (25 µg/kg, i.p.) in the absence or presence of α2-adrenergic antagonist atipamezole (250 µg/kg, i.p.) before IR. Histological assessment of the lung was conducted by HE staining and arterial blood gases were measured. Lung apoptosis was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay. The expression of caspase 3 and p-Akt in lung tissue was detected by western blot. In vitro, C57BL/6J mice pulmonary microvascular endothelial cells were treated with serum from mice obtained following sham or IR. Dexmedetomidine was given before serum stimulation in cells, alone or with atipamezole or LY294002. Cell viability was assessed by CCK 8 assay. Cell apoptosis was examined by Hoechst staining and Annexin V-FITC/PI staining flow cytometry analysis. Mitochondrial membrane potential was measured by flow cytometry. The expression of p-Akt, caspase 3, Bcl-2 and Bax was measured by western blot. Results In vivo, dexmedetomidine remarkably mitigated pathohistological changes and apoptosis and significantly increased p-Akt expression in the lung. In addition, dexmedetomidine also slightly improved oxygenation in mice after IR, which can be abolished by atipamezole. In vitro, dexmedetomidine significantly inhibited IR serum-induced loss of viability and apoptosis in PMVECs. Dexmedetomidine increased p-Akt in a time- and dose-dependent manner, and down-regulated the expression of caspase 3 and Bax and up-regulated the Bcl-2 expression in PMVECs. The changes of MMP were also improved by dexmedetomidine. Whilst these effects were abolished by Atipamezole or LY294002. Conclusion Our results demonstrated that dexmedetomidine attenuates lung apoptosis induced by IR, at least in part, via α2AR/PI3K/Akt pathway.
Collapse
Affiliation(s)
- Juanjuan Li
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Road, Chongqing, 400038, China
| | - Qian Chen
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Road, Chongqing, 400038, China
| | - Xinhai He
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Road, Chongqing, 400038, China
| | - Azeem Alam
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Campus, London, UK
| | - Jiaolin Ning
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Road, Chongqing, 400038, China
| | - Bin Yi
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Road, Chongqing, 400038, China
| | - Kaizhi Lu
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Road, Chongqing, 400038, China
| | - Jianteng Gu
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Road, Chongqing, 400038, China.
| |
Collapse
|
36
|
Tsai HH, Yen RF, Lin CL, Kao CH. Increased risk of dementia in patients hospitalized with acute kidney injury: A nationwide population-based cohort study. PLoS One 2017; 12:e0171671. [PMID: 28192452 PMCID: PMC5305096 DOI: 10.1371/journal.pone.0171671] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 01/09/2017] [Indexed: 12/20/2022] Open
Abstract
Purpose To determine whether acute kidney injury (AKI) is a risk factor for dementia. Methods This nationwide population-based cohort study was based on data from the Taiwan National Health Insurance Research Database for 2000–2011. The incidence and relative risk of dementia were assessed in 207788 patients hospitalized for AKI. The comparison control was selected using the propensity score based on age, sex, index year and comorbidities. Results During the 12-year follow-up, patients with AKI had a significantly higher incidence for developing dementia than did the controls (8.84 vs 5.75 per 1000 person-y). A 1.88-fold increased risk of dementia (95% confidence interval, 1.76–2.01) was observed after adjustment for age, sex, and several comorbidities (diabetes, hypertension, hyperlipidemia, head injury, depression, stroke, chronic obstructive pulmonary disease, coronary artery disease, congestive heart failure, atrial fibrillation, cancer, liver disease, chronic infection/inflammation, autoimmune disease, malnutrition). Conclusions We found that patients with AKI exhibited a significantly increased risk of developing dementia. This study provides evidence on the association between AKI and long-term adverse outcomes. Additional clinical studies investigating the related pathways are warranted.
Collapse
Affiliation(s)
- Hsin-Hsi Tsai
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ruoh-Fang Yen
- Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Radiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Chia-Hung Kao
- Graduate Institute of Clinical Medical Science and School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Department of Nuclear Medicine and PET Center, China Medical University Hospital, Taichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
37
|
Downregulation of Glutathione Biosynthesis Contributes to Oxidative Stress and Liver Dysfunction in Acute Kidney Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9707292. [PMID: 27872680 PMCID: PMC5107229 DOI: 10.1155/2016/9707292] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/22/2016] [Indexed: 01/21/2023]
Abstract
Ischemia-reperfusion is a common cause for acute kidney injury and can lead to distant organ dysfunction. Glutathione is a major endogenous antioxidant and its depletion directly correlates to ischemia-reperfusion injury. The liver has high capacity for producing glutathione and is a key organ in modulating local and systemic redox balance. In the present study, we investigated the mechanism by which kidney ischemia-reperfusion led to glutathione depletion and oxidative stress. The left kidney of Sprague-Dawley rats was subjected to 45 min ischemia followed by 6 h reperfusion. Ischemia-reperfusion impaired kidney and liver function. This was accompanied by a decrease in glutathione levels in the liver and plasma and increased hepatic lipid peroxidation and plasma homocysteine levels. Ischemia-reperfusion caused a significant decrease in mRNA and protein levels of hepatic glutamate-cysteine ligase mediated through the inhibition of transcription factor Nrf2. Ischemia-reperfusion inhibited hepatic expression of cystathionine γ-lyase, an enzyme responsible for producing cysteine (an essential precursor for glutathione synthesis) through the transsulfuration pathway. These results suggest that inhibition of glutamate-cysteine ligase expression and downregulation of the transsulfuration pathway lead to reduced hepatic glutathione biosynthesis and elevation of plasma homocysteine levels, which, in turn, may contribute to oxidative stress and distant organ injury during renal ischemia-reperfusion.
Collapse
|
38
|
Chen Q, Yi B, Ma J, Ning J, Wu L, Ma D, Lu K, Gu J. α2-adrenoreceptor modulated FAK pathway induced by dexmedetomidine attenuates pulmonary microvascular hyper-permeability following kidney injury. Oncotarget 2016; 7:55990-56001. [PMID: 27463003 PMCID: PMC5302891 DOI: 10.18632/oncotarget.10809] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/10/2016] [Indexed: 12/20/2022] Open
Abstract
Renal ischemia-reperfusion (rI/R) could cause remote acute lung injury (ALI) and combination of these two organ injuries can remarkably increase the mortality. This study aims to determine whether dexmedetomidine, an α2-adrenoreceptor agonist sedative, can ameliorate pulmonary microvascular hyper-permeability following rI/R injury and explore the underlying mechanisms. In vivo, C57BL/6J mice received dexmedetomidine (25µg/kg, i.p.) in the absence or presence of α2-adrenergic antagonist atipamezole (250µg/kg, i.p.) or focal adhesion kinase (FAK) inhibitor (30mg/kg, i.p.) before bilateral renal pedicle clamping for 45 minutes followed by 24 hours reperfusion. The lung histopathological changes and the permeability of pulmonary microvascular were assessed respectively. In vitro, the cultured C57BL/6J mice pulmonary microvascular endothelial cells (PMVECs) were treated with serum from mice with rI/R with or without dexmedetomidine and atipamezole. Trans-endothelial permeability and phospho-tyrosine397FAK, F-actin, VE-cadherin and ZO-1 in monolayer PMVECs were measured respectively in the presence or absence of rI/R serum, dexmedetomidine and FAK inhibitor. In vivo, dexmedetomidine remarkably attenuated lung injury and pulmonary microvascular hyper-permeability caused by rI/R injury, which was abolished by atipamezole or FAK inhibitor co-administration. In vitro, the permeability of PMVECs monolayer following exposure to serum from rI/R mice was increased significantly, and decreased by dexmedetomidine. Dexmedetomidine increased phospho-tyrosine397FAK in a time- and dose-dependent manner, which was correlated with the changes in trans-endothelial permeability. Our data indicated that dexmedetomidine is able to ameliorate remote pulmonary microvascular hyper-permeability induced by rI/R, at least in part, via FAK modulation.
Collapse
Affiliation(s)
- Qian Chen
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Bin Yi
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jianbo Ma
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jiaoling Ning
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Lingzhi Wu
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Campus, London, United Kingdom
| | - Daqing Ma
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Campus, London, United Kingdom
| | - Kaizhi Lu
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jianteng Gu
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
39
|
Williams JP, Calvi L, Chakkalakal JV, Finkelstein JN, O’Banion MK, Puzas E. Addressing the Symptoms or Fixing the Problem? Developing Countermeasures against Normal Tissue Radiation Injury. Radiat Res 2016; 186:1-16. [PMID: 27332954 PMCID: PMC4991354 DOI: 10.1667/rr14473.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jacqueline P. Williams
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York
| | - Laura Calvi
- Department of Medicine, University of Rochester Medical Center, Rochester, New York
| | - Joe V. Chakkalakal
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York
| | - Jacob N. Finkelstein
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York
- Department of Pediatrics and Neonatology, University of Rochester Medical Center, Rochester, New York
| | - M. Kerry O’Banion
- Department of Neuroscience, University of Rochester Medical Center, Rochester, New York
| | - Edward Puzas
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
40
|
Abstract
Aquaporins (AQPs) are a 13 member family (AQP0-12) of proteins that act as channels, through which water and, for some family members, glycerol, urea and other small solutes can be transported. Aquaporins are highly abundant in kidney epithelial cells where they play a critical role with respect to water balance. In this review we summarize the current knowledge with respect to the localization and function of AQPs within the kidney tubule, and their role in mammalian water homeostasis and the water balance disorders. Overviews of practical aspects with regard to differential diagnosis for some of these disorders, alongside treatment strategies are also discussed.
Collapse
Affiliation(s)
- Hanne B Moeller
- Department of Biomedicine and Center for Interactions of Proteins in Epithelial Transport, Aarhus University, Denmark
| | - Cecilia H Fuglsang
- Department of Biomedicine and Center for Interactions of Proteins in Epithelial Transport, Aarhus University, Denmark
| | - Robert A Fenton
- Department of Biomedicine and Center for Interactions of Proteins in Epithelial Transport, Aarhus University, Denmark.
| |
Collapse
|
41
|
Doi K, Rabb H. Impact of acute kidney injury on distant organ function: recent findings and potential therapeutic targets. Kidney Int 2016; 89:555-64. [PMID: 26880452 DOI: 10.1016/j.kint.2015.11.019] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/03/2015] [Accepted: 11/18/2015] [Indexed: 12/18/2022]
Abstract
Acute kidney injury (AKI) is a common complication in critically ill patients and subsequently worsens outcomes. Although many drugs to prevent and treat AKI have shown benefits in preclinical models, no specific agent has been shown to benefit AKI in humans. Moreover, despite remarkable advances in dialysis techniques that enable management of AKI in hemodynamically unstable patients with shock, dialysis-requiring severe AKI is still associated with an unacceptably high mortality rate. Thus, focusing only on kidney damage and loss of renal function has not been sufficient to improve outcomes of patients with AKI. Recent data from basic and clinical research have begun to elucidate complex organ interactions in AKI between kidney and distant organs, including heart, lung, spleen, brain, liver, and gut. This review serves to update the topic of organ cross talk in AKI and focuses on potential therapeutic targets to improve patient outcomes during AKI-associated multiple organ failure.
Collapse
Affiliation(s)
- Kent Doi
- Department of Emergency and Critical Care Medicine, The University of Tokyo, Tokyo, Japan.
| | - Hamid Rabb
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
42
|
Yang B, Fung A, Pac-Soo C, Ma D. Vascular surgery-related organ injury and protective strategies: update and future prospects. Br J Anaesth 2016; 117:ii32-ii43. [DOI: 10.1093/bja/aew211] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
43
|
Shiao CC, Wu PC, Huang TM, Lai TS, Yang WS, Wu CH, Lai CF, Wu VC, Chu TS, Wu KD. Long-term remote organ consequences following acute kidney injury. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:438. [PMID: 26707802 PMCID: PMC4699348 DOI: 10.1186/s13054-015-1149-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Acute kidney injury (AKI) has been a global health epidemic problem with soaring incidence, increased long-term risks for multiple comorbidities and mortality, as well as elevated medical costs. Despite the improvement of patient outcomes following the advancements in preventive and therapeutic strategies, the mortality rates among critically ill patients with AKI remain as high as 40–60 %. The distant organ injury, a direct consequence of deleterious systemic effects, following AKI is an important explanation for this phenomenon. To date, most evidence of remote organ injury in AKI is obtained from animal models. Whereas the observations in humans are from a limited number of participants in a relatively short follow-up period, or just focusing on the cytokine levels rather than clinical solid outcomes. The remote organ injury is caused with four underlying mechanisms: (1) “classical” pattern of acute uremic state; (2) inflammatory nature of the injured kidneys; (3) modulating effect of AKI of the underlying disease process; and (4) healthcare dilemma. While cytokines/chemokines, leukocyte extravasation, oxidative stress, and certain channel dysregulation are the pathways involving in the remote organ damage. In the current review, we summarized the data from experimental studies to clinical outcome studies in the field of organ crosstalk following AKI. Further, the long-term consequences of distant organ-system, including liver, heart, brain, lung, gut, bone, immune system, and malignancy following AKI with temporary dialysis were reviewed and discussed.
Collapse
Affiliation(s)
- Chih-Chung Shiao
- Division of Nephrology, Department of Internal Medicine, Saint Mary's Hospital Luodong, 160 Chong-Cheng South Road, Luodong, Yilan, 265, Taiwan.,Saint Mary's Medicine, Nursing and Management College, 160 Chong-Cheng South Road, Luodong, Yilan, 265, Taiwan
| | - Pei-Chen Wu
- Division of Nephrology, Department of Internal Medicine, MacKay Memorial Hospital, 92, Sec. 2, Zhongshan N. Road, Taipei, 10449, Taiwan
| | - Tao-Min Huang
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, 579, Sec. 2, Yunlin Road, Douliu City, Yunlin County, 640, Taiwan
| | - Tai-Shuan Lai
- Department of Internal Medicine, National Taiwan University Hospital, Bei-Hu Branch, 87 Neijiang Street, Taipei, 108, Taiwan
| | - Wei-Shun Yang
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Hisn-Chu Branch, No.25, Lane 442, Sec. 1, Jingguo Road, Hsin-Chu City, 300, Taiwan
| | - Che-Hsiung Wu
- Division of Nephrology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chun-Fu Lai
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, 7 Chung-Shan South Road, Zhong-Zheng District, Taipei, 100, Taiwan
| | - Vin-Cent Wu
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, 7 Chung-Shan South Road, Zhong-Zheng District, Taipei, 100, Taiwan.
| | - Tzong-Shinn Chu
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, 7 Chung-Shan South Road, Zhong-Zheng District, Taipei, 100, Taiwan
| | - Kwan-Dun Wu
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, 7 Chung-Shan South Road, Zhong-Zheng District, Taipei, 100, Taiwan
| | | |
Collapse
|
44
|
|