1
|
Henríquez R, Muñoz-Barroso I. Viral vector- and virus-like particle-based vaccines against infectious diseases: A minireview. Heliyon 2024; 10:e34927. [PMID: 39144987 PMCID: PMC11320483 DOI: 10.1016/j.heliyon.2024.e34927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/28/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
To overcome the limitations of conventional vaccines, new platforms for vaccine design have emerged such as those based on viral vectors and virus-like particles (VLPs). Viral vector vaccines are highly efficient and the onset of protection is quick. Many recombinant vaccine candidates for humans are based on viruses belonging to different families such as Adenoviridae, Retroviridae, Paramyxoviridae, Rhabdoviridae, and Parvoviridae. Also, the first viral vector vaccine licensed for human vaccination was the Japanese encephalitis virus vaccine. Since then, several viral vectors have been approved for vaccination against the viruses of Lassa fever, Ebola, hepatitis B, hepatitis E, SARS-CoV-2, and malaria. VLPs are nanoparticles that mimic viral particles formed from the self-assembly of structural proteins and VLP-based vaccines against hepatitis B and E viruses, human papillomavirus, and malaria have been commercialized. As evidenced by the accelerated production of vaccines against COVID-19, these new approaches are important tools for vaccinology and for generating rapid responses against pathogens and emerging pandemic threats.
Collapse
Affiliation(s)
- Ruth Henríquez
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental Lab.106. Plaza Doctores de la Reina S/n, 37007, Salamanca, Spain
| | - Isabel Muñoz-Barroso
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental Lab.106. Plaza Doctores de la Reina S/n, 37007, Salamanca, Spain
| |
Collapse
|
2
|
Konstantinidis S, Poplyk MR, Ma WJ, Reilly D, Zhang Y, Wang J, Thompson R, Stiving A, Winters MA, Wang SC, Kristopeit A. Purification processes of live virus vaccine candidates expressed in adherent Vero cell lines via multimodal chromatography in flowthrough mode. Biotechnol Bioeng 2024; 121:2482-2499. [PMID: 37209394 DOI: 10.1002/bit.28430] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/22/2023]
Abstract
Live virus vaccine (LVV) purification, employing chromatography, can be challenged by low binding capacities and elution yields. Alternatively, processes relying solely on enzymatic digestion steps and size-based membrane separations can be limited by suboptimal reduction of process related impurities and poorly scalable unit operations. Here, we demonstrate that the combination of flowthrough mode chromatography and an ultrafiltration/diafiltration (UF/DF) unit operation delivers a purification process for two different LVV candidates, V590 and Measles, expressed in adherent Vero cells. For V590, chromatography with mixed mode cation exchange resins returned final product yields of ∼50% and logarithmic reduction values (LRVs) of 1.7->3.4 and 2.5-3.0 for host cell DNA (hcDNA) and host cell proteins (HCPs), respectively. For Measles, chromatography with mixed mode anion exchange resins returned final product yields of ∼50% and LRVs of 1.6 and 2.2 for hcDNA and HCPs, respectively. For both V590 and Measles processing, the employed resins cleared a key HCP, fibronectin, which could foul the UF/DF unit operation, and thusly enabling it to further reduce HCPs and to formulate the final LVV products. This integrated purification process utilizes the complementary action of the two unit operations and its applicability across LVVs supports its consideration for their processing.
Collapse
Affiliation(s)
| | - Murphy R Poplyk
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Wanli Justin Ma
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Devan Reilly
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Young Zhang
- Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Jamin Wang
- Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Rachel Thompson
- Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Alyssa Stiving
- Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Michael A Winters
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Sheng-Ching Wang
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Adam Kristopeit
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey, USA
| |
Collapse
|
3
|
Yang ZH, Song YL, Pei J, Li SZ, Liu RL, Xiong Y, Wu J, Liu YL, Fan HF, Wu JH, Wang ZJ, Guo J, Meng SL, Chen XQ, Lu J, Shen S. Measles Virus-Based Vaccine Expressing Membrane-Anchored Spike of SARS-CoV-2 Inducing Efficacious Systemic and Mucosal Humoral Immunity in Hamsters. Viruses 2024; 16:559. [PMID: 38675901 PMCID: PMC11054861 DOI: 10.3390/v16040559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
As SARS-CoV-2 continues to evolve and COVID-19 cases rapidly increase among children and adults, there is an urgent need for a safe and effective vaccine that can elicit systemic and mucosal humoral immunity to limit the emergence of new variants. Using the Chinese Hu191 measles virus (MeV-hu191) vaccine strain as a backbone, we developed MeV chimeras stably expressing the prefusion forms of either membrane-anchored, full-length spike (rMeV-preFS), or its soluble secreted spike trimers with the help of the SP-D trimerization tag (rMeV-S+SPD) of SARS-CoV-2 Omicron BA.2. The two vaccine candidates were administrated in golden Syrian hamsters through the intranasal or subcutaneous routes to determine the optimal immunization route for challenge. The intranasal delivery of rMeV-S+SPD induced a more robust mucosal IgA antibody response than the subcutaneous route. The mucosal IgA antibody induced by rMeV-preFS through the intranasal routine was slightly higher than the subcutaneous route, but there was no significant difference. The rMeV-preFS vaccine stimulated higher mucosal IgA than the rMeV-S+SPD vaccine through intranasal or subcutaneous administration. In hamsters, intranasal administration of the rMeV-preFS vaccine elicited high levels of NAbs, protecting against the SARS-CoV-2 Omicron BA.2 variant challenge by reducing virus loads and diminishing pathological changes in vaccinated animals. Encouragingly, sera collected from the rMeV-preFS group consistently showed robust and significantly high neutralizing titers against the latest variant XBB.1.16. These data suggest that rMeV-preFS is a highly promising COVID-19 candidate vaccine that has great potential to be developed into bivalent vaccines (MeV/SARS-CoV-2).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jia Lu
- Wuhan Institute of Biological Products Co. Ltd., Wuhan 430207, China; (Z.-H.Y.); (Y.-L.S.); (J.P.); (S.-Z.L.); (R.-L.L.); (Y.X.); (J.W.); (Y.-L.L.); (H.-F.F.); (J.-H.W.); (Z.-J.W.); (J.G.); (S.-L.M.); (X.-Q.C.)
| | - Shuo Shen
- Wuhan Institute of Biological Products Co. Ltd., Wuhan 430207, China; (Z.-H.Y.); (Y.-L.S.); (J.P.); (S.-Z.L.); (R.-L.L.); (Y.X.); (J.W.); (Y.-L.L.); (H.-F.F.); (J.-H.W.); (Z.-J.W.); (J.G.); (S.-L.M.); (X.-Q.C.)
| |
Collapse
|
4
|
Muñoz-Alía MÁ, Nace RA, Balakrishnan B, Zhang L, Packiriswamy N, Singh G, Warang P, Mena I, Narjari R, Vandergaast R, Peng KW, García-Sastre A, Schotsaert M, Russell SJ. Surface-modified measles vaccines encoding oligomeric, prefusion-stabilized SARS-CoV-2 spike glycoproteins boost neutralizing antibody responses to Omicron and historical variants, independent of measles seropositivity. mBio 2024; 15:e0292823. [PMID: 38193729 PMCID: PMC10865805 DOI: 10.1128/mbio.02928-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
Serum titers of SARS-CoV-2-neutralizing antibodies (nAbs) correlate well with protection from symptomatic COVID-19 but decay rapidly in the months following vaccination or infection. In contrast, measles-protective nAb titers are lifelong after measles vaccination, possibly due to persistence of the live-attenuated virus in lymphoid tissues. We, therefore, sought to generate a live recombinant measles vaccine capable of driving high SARS-CoV-2 nAb responses. Since previous clinical testing of a live measles vaccine encoding a SARS-CoV-2 spike glycoprotein resulted in suboptimal anti-spike antibody titers, our new vectors were designed to encode prefusion-stabilized SARS-CoV-2 spike glycoproteins, trimerized via an inserted peptide domain, and displayed on a dodecahedral miniferritin scaffold. Additionally, to circumvent the blunting of vaccine efficacy by preformed anti-measles antibodies, we extensively modified the measles surface glycoproteins. Comprehensive in vivo mouse testing demonstrated the potent induction of high titer nAbs in measles-immune mice and confirmed the significant contributions to overall potency afforded by prefusion stabilization, trimerization, and miniferritin display of the SARS-CoV-2 spike glycoprotein. In animals primed and boosted with a measles virus (MeV) vaccine encoding the ancestral SARS-CoV-2 spike, high-titer nAb responses against ancestral virus strains were only weakly cross-reactive with the Omicron variant. However, in primed animals that were boosted with a MeV vaccine encoding the Omicron BA.1 spike, antibody titers to both ancestral and Omicron strains were robustly elevated, and the passive transfer of serum from these animals protected K18-ACE2 mice from infection and morbidity after exposure to BA.1 and WA1/2020 strains. Our results demonstrate that by engineering the antigen, we can develop potent measles-based vaccine candidates against SARS-CoV-2.IMPORTANCEAlthough the live-attenuated measles virus (MeV) is one of the safest and most efficacious human vaccines, a measles-vectored COVID-19 vaccine candidate expressing the SARS-CoV-2 spike failed to elicit neutralizing antibody (nAb) responses in a phase-1 clinical trial, especially in measles-immune individuals. Here, we constructed a comprehensive panel of MeV-based COVID-19 vaccine candidates using a MeV with extensive modifications on the envelope glycoproteins (MeV-MR). We show that artificial trimerization of the spike is critical for the induction of nAbs and that their magnitude can be significantly augmented when the spike protein is synchronously fused to a dodecahedral scaffold. Furthermore, preexisting measles immunity did not abolish heterologous immunity elicited by our vector. Our results highlight the importance of antigen optimization in the development of spike-based COVID-19 vaccines and therapies.
Collapse
Affiliation(s)
- Miguel Á. Muñoz-Alía
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Vyriad Inc, Rochester, Minnesota, USA
| | - Rebecca A. Nace
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Lianwen Zhang
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Prajakta Warang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | - Kah-Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Vyriad Inc, Rochester, Minnesota, USA
- Imanis Life Sciences, Rochester, Minnesota, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stephen J. Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Vyriad Inc, Rochester, Minnesota, USA
- Imanis Life Sciences, Rochester, Minnesota, USA
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
5
|
Peng ZY, Yang S, Lu HZ, Wang LM, Li N, Zhang HT, Xing SY, Du YN, Deng SQ. A review on Zika vaccine development. Pathog Dis 2024; 82:ftad036. [PMID: 38192053 PMCID: PMC10901608 DOI: 10.1093/femspd/ftad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/15/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024] Open
Abstract
Zika virus (ZIKV), which belongs to the Flavivirus family, is mainly transmitted via the bite of Aedes mosquitoes. In newborns, ZIKV infection can cause severe symptoms such as microcephaly, while in adults, it can lead to Guillain‒Barré syndrome (GBS). Due to the lack of specific therapeutic methods against ZIKV, the development of a safe and effective vaccine is extremely important. Several potential ZIKV vaccines, such as live attenuated, inactivated, nucleic acid, viral vector, and recombinant subunit vaccines, have demonstrated promising outcomes in clinical trials involving human participants. Therefore, in this review, the recent developmental progress, advantages and disadvantages of these five vaccine types are examined, and practical recommendations for future development are provided.
Collapse
Affiliation(s)
- Zhe-Yu Peng
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoon-oses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Song Yang
- Institute of Agro-products Processing, Anhui Academy of Agricultural Sciences, Hefei 230031, Anhui, China
| | - Hong-Zheng Lu
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoon-oses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Lin-Min Wang
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoon-oses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Ni Li
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoon-oses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Hai-Ting Zhang
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoon-oses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Si-Yu Xing
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoon-oses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Yi-Nan Du
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoon-oses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Sheng-Qun Deng
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoon-oses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
6
|
Park SI, Park S, Lee K, Kwak HW, Kim YK, Park HJ, Bang YJ, Kim JY, Kim D, Seo KW, Lee SJ, Kim H, Kim Y, Kim DH, Park HJ, Jung SY, Ga E, Hwang J, Na W, Hong SH, Lee SM, Nam JH. Intranasal immunization with the recombinant measles virus encoding the spike protein of SARS-CoV-2 confers protective immunity against COVID-19 in hamsters. Vaccine 2024; 42:69-74. [PMID: 38097457 DOI: 10.1016/j.vaccine.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 10/12/2023] [Accepted: 12/02/2023] [Indexed: 01/01/2024]
Abstract
BACKGROUND As the nasal mucosa is the initial site of infection for COVID-19, intranasal vaccines are more favorable than conventional vaccines. In recent clinical studies, intranasal immunization has been shown to generate higher neutralizing antibodies; however, there is a lack of evidence on sterilizing immunity in the upper airway. Previously, we developed a recombinant measles virus encoding the spike protein of SARS-CoV-2 (rMeV-S), eliciting humoral and cellular immune responses against SARS-CoV-2. OBJECTIVES In this study, we aim to provide an experiment on nasal vaccines focusing on a measles virus platform as well as injection routes. STUDY DESIGN Recombinant measles viruses expressing rMeV-S were prepared, and 5 × 105 PFUs of rMeV-S were administered to Syrian golden hamsters via intramuscular or intranasal injection. Subsequently, the hamsters were challenged with inoculations of 1 × 105 PFUs of SARS-CoV-2 and euthanized 4 days post-infection. Neutralizing antibodies and RBD-specific IgG in the serum and RBD-specific IgA in the bronchoalveolar lavage fluid (BALF) were measured, and SARS-CoV-2 clearance capacity was determined via quantitative reverse-transcription PCR (qRT-PCR) analysis and viral titer measurement in the upper respiratory tract and lungs. Immunohistochemistry and histopathological examinations of lung samples from experimental hamsters were conducted. RESULTS The intranasal immunization of rMeV-S elicits protective immune responses and alleviates virus-induced pathophysiology, such as body weight reduction and lung weight increase in hamsters. Furthermore, lung immunohistochemistry demonstrated that intranasal rMeV-S immunization induces effective SARS-CoV-2 clearance that correlates with viral RNA content, as determined by qRT-PCR, in the lung and nasal wash samples, SARS-CoV-2 viral titers in lung, nasal wash, BALF samples, serum RBD-specific IgG concentration, and RBD-specific IgA concentration in the BALF. CONCLUSION An intranasal vaccine based on the measles virus platform is a promising strategy owing to the typical route of infection of the virus, the ease of administration of the vaccine, and the strong immune response it elicits.
Collapse
Affiliation(s)
| | - Sohyun Park
- Chungbuk National University, Cheongju, Republic of Korea
| | - Kunse Lee
- SK Bioscience, Seongnam, Republic of Korea
| | - Hye Won Kwak
- SML Biopharm, Gwangmyeong, Republic of Korea; The Catholic University of Korea, Bucheon, Republic of Korea
| | | | - Hyeong-Jun Park
- SML Biopharm, Gwangmyeong, Republic of Korea; The Catholic University of Korea, Bucheon, Republic of Korea
| | - Yoo-Jin Bang
- The Catholic University of Korea, Bucheon, Republic of Korea
| | - Jae-Yong Kim
- The Catholic University of Korea, Bucheon, Republic of Korea
| | - Daegeun Kim
- SML Biopharm, Gwangmyeong, Republic of Korea
| | | | | | - Hun Kim
- SK Bioscience, Seongnam, Republic of Korea
| | - Yeonhwa Kim
- Chungbuk National University, Cheongju, Republic of Korea
| | - Do-Hyung Kim
- SML Biopharm, Gwangmyeong, Republic of Korea; The Catholic University of Korea, Bucheon, Republic of Korea
| | - Hyo-Jung Park
- The Catholic University of Korea, Bucheon, Republic of Korea
| | | | - Eulhae Ga
- Chonnam National University, Gwangju, Republic of Korea
| | - Jaehyun Hwang
- Chonnam National University, Gwangju, Republic of Korea
| | - Woonsung Na
- Chonnam National University, Gwangju, Republic of Korea
| | - So-Hee Hong
- Ewha Womans University, Seoul, Republic of Korea
| | | | - Jae-Hwan Nam
- The Catholic University of Korea, Bucheon, Republic of Korea.
| |
Collapse
|
7
|
Murr M, Mettenleiter T. Negative-Strand RNA Virus-Vectored Vaccines. Methods Mol Biol 2024; 2786:51-87. [PMID: 38814390 DOI: 10.1007/978-1-0716-3770-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Vectored RNA vaccines offer a variety of possibilities to engineer targeted vaccines. They are cost-effective and safe, but replication competent, activating the humoral as well as the cellular immune system.This chapter focuses on RNA vaccines derived from negative-strand RNA viruses from the order Mononegavirales with special attention to Newcastle disease virus-based vaccines and their generation. It shall provide an overview on the advantages and disadvantages of certain vector platforms as well as their scopes of application, including an additional section on experimental COVID-19 vaccines.
Collapse
Affiliation(s)
- Magdalena Murr
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| | - Thomas Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| |
Collapse
|
8
|
Sulis G, Peebles A, Basta NE. Lassa fever vaccine candidates: A scoping review of vaccine clinical trials. Trop Med Int Health 2023; 28:420-431. [PMID: 37095630 PMCID: PMC10247453 DOI: 10.1111/tmi.13876] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
OBJECTIVE Lassa fever (LF) is caused by a viral pathogen with pandemic potential. LF vaccines have the potential to prevent significant disease in individuals at risk of infection, but no such vaccine has been licensed or authorised for use thus far. We conducted a scoping review to identify and compare registered phase 1, 2 or 3 clinical trials of LF vaccine candidates, and appraise the current trajectory of LF vaccine development. METHOD We systematically searched 24 trial registries, PubMed, relevant conference abstracts and additional grey literature sources up to 27 October 2022. After extracting key details about each vaccine candidate and each eligible trial, we qualitatively synthesised the evidence. RESULTS We found that four LF vaccine candidates (INO-4500, MV-LASV, rVSV∆G-LASV-GPC, and EBS-LASV) have entered the clinical stage of assessment. Five phase 1 trials (all focused on healthy adults) and one phase 2 trial (involving a broader age group from 18 months to 70 years) evaluating one of these vaccines have been registered to date. Here, we describe the characteristics of each vaccine candidate and trial and compare them to WHO's target product profile for Lassa vaccines. CONCLUSION Though LF vaccine development is still in early stages, current progress towards a safe and effective vaccine is encouraging.
Collapse
Affiliation(s)
- Giorgia Sulis
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Alexandra Peebles
- Department of Epidemiology, Biostatistics and Occupational Health, School of Population and Global Health, Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | - Nicole E. Basta
- Department of Epidemiology, Biostatistics and Occupational Health, School of Population and Global Health, Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| |
Collapse
|
9
|
Schrauf S, Tomberger Y, Nambulli S, Duprex WP, Tschismarov R, Tauber E, Ramsauer K. Biodistribution and toxicology evaluation of a recombinant measles Schwarz-based Lassa vaccine in cynomolgus macaques. J Appl Toxicol 2023; 43:719-733. [PMID: 36480160 DOI: 10.1002/jat.4421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
MV-LASV is an investigational measles Schwarz-based vaccine for the prevention of Lassa fever. A repeated-dose toxicity study in cynomolgus macaques was performed to assess the biodistribution and local and systemic toxicological effects. Monkeys received three immunizations of MV-LASV or saline intramuscularly with a 2-week interval. An increase in anti-measles antibodies confirmed the reaction of the immune system to the vaccine backbone. Clinical observations, body weight, body temperature, local tolerance, electrocardiogram parameters, various clinical pathology parameters (hematology, coagulation urinalysis, serum chemistry, and C-reactive protein) were monitored. Gross pathology and histopathology of various tissues were evaluated. MV-LASV induced a mild increase in fibrinogen and C-reactive protein concentrations. This coincided with microscopic inflammation at the injection sites which partially or fully resolved following a 3-week recovery period. Viral RNA was found in secondary lymphoid organs and injection sites and gall bladder. No viral shedding to the environment was observed. Overall, the vaccine was locally and systemically well tolerated, supporting a first-in-human study.
Collapse
Affiliation(s)
- Sabrina Schrauf
- Themis Bioscience GmbH, Vienna, Austria, a subsidiary of Merck & Co., Inc., Rahway, New Jersey, USA
| | - Yvonne Tomberger
- Themis Bioscience GmbH, Vienna, Austria, a subsidiary of Merck & Co., Inc., Rahway, New Jersey, USA
| | - Sham Nambulli
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - W Paul Duprex
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Roland Tschismarov
- Themis Bioscience GmbH, Vienna, Austria, a subsidiary of Merck & Co., Inc., Rahway, New Jersey, USA
| | - Erich Tauber
- Themis Bioscience GmbH, Vienna, Austria, a subsidiary of Merck & Co., Inc., Rahway, New Jersey, USA
| | - Katrin Ramsauer
- Themis Bioscience GmbH, Vienna, Austria, a subsidiary of Merck & Co., Inc., Rahway, New Jersey, USA
| |
Collapse
|
10
|
Dogadov DI, Kyuregyan KK, Goncharenko AM, Mikhailov MI. Measles in non-human primates. J Med Primatol 2023; 52:135-143. [PMID: 36440505 DOI: 10.1111/jmp.12630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/07/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022]
Abstract
It is six decades since the measles vaccine was first introduced, and yet we continue to see frequent outbreaks of this disease occurring all over the world. Many non-human primate (NHP) species, including apes, are susceptible to the measles virus. Spontaneous measles outbreaks have been described in a number of zoos and primate centers worldwide. Research into the spontaneous and experimental infection of laboratory primates with measles represents an invaluable source of information regarding the biology and pathogenesis of this virus and continues to be an irreplaceable and unique tool for testing vaccines and treatments. The purpose of this literature review is to summarize and analyze published data on the circulation of the measles virus among free-living synanthropic and captive primate populations, as well as the results of experiments that have modeled this infection in NHPs.
Collapse
Affiliation(s)
- Dmitriy I Dogadov
- Research Institute of Medical Primatology of the Ministry of Education and Science of Russia, Sochi, Russia
| | - Karen K Kyuregyan
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia.,Russian Medical Academy of Continuous Professional Education of the Ministry of Health of Russia, Moscow, Russia
| | - Alexandra M Goncharenko
- Research Institute of Medical Primatology of the Ministry of Education and Science of Russia, Sochi, Russia
| | - Mikhail I Mikhailov
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia.,Russian Medical Academy of Continuous Professional Education of the Ministry of Health of Russia, Moscow, Russia
| |
Collapse
|
11
|
Zhang Y, Lu M, Thongpan I, Xu J, Kc M, Dravid P, Trivedi S, Sharma H, Liang X, Kapoor A, Peeples ME, Li J. Recombinant measles virus expressing prefusion spike protein stabilized by six rather than two prolines is more efficacious against SARS-CoV-2 infection. J Med Virol 2023; 95:e28687. [PMID: 36941778 DOI: 10.1002/jmv.28687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023]
Abstract
Measles virus (MeV) has been an excellent vector platform for delivering vaccines against many pathogens because of its high safety and efficacy, and induction of long-lived immunity. Early in the COVID-19 pandemic, a recombinant MeV (rMeV) expressing the prefusion full-length spike protein stabilized by two prolines (TMV-083) was developed and tested in phase 1 and 1/2 clinical trials but was discontinued because of insufficient immunogenicity and a low seroconversion rate in adults. Here, we compared the immunogenicity of rMeV expressing a soluble prefusion spike (preS) protein stabilized by two prolines (rMeV-preS-2P) with a rMeV expressing a soluble preS protein stabilized by six prolines (rMeV-preS-6P). We found that rMeV-preS-6P expressed approximately five times more preS than rMeV-preS-2P in cell culture. Importantly, rMeV-preS-6P induced 30-60 and six times more serum immunoglobulin G and neutralizing antibody than rMeV-preS-2P, respectively, in IFNAR-/- mice. IFNAR-/- mice immunized with rMeV-preS-6P were completely protected from challenge with a mouse-adapted SARS-CoV-2, whereas those immunized with rMeV-preS-2P were partially protected. In addition, hamsters immunized with rMeV-preS-6P were completely protected from the challenge with a Delta variant of SARS-CoV-2. Our results demonstrate that rMeV-preS-6P is significantly more efficacious than rMeV-preS-2P, highlighting the value of using preS-6P as the antigen for developing vaccines against SARS-CoV-2.
Collapse
Affiliation(s)
- Yuexiu Zhang
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Mijia Lu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Ilada Thongpan
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Jiayu Xu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Mahesh Kc
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Piyush Dravid
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Sheetal Trivedi
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Himanshu Sharma
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Xueya Liang
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Amit Kapoor
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
- Infectious Disease Institute, The Ohio State University, Columbus, Ohio, USA
| | - Mark E Peeples
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
- Infectious Disease Institute, The Ohio State University, Columbus, Ohio, USA
| | - Jianrong Li
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
- Infectious Disease Institute, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
12
|
Hörner C, Fiedler AH, Bodmer BS, Walz L, Scheuplein VA, Hutzler S, Matrosovich MN, von Messling V, Mühlebach MD. A protective measles virus-derived vaccine inducing long-lasting immune responses against influenza A virus H7N9. NPJ Vaccines 2023; 8:46. [PMID: 36964176 PMCID: PMC10037405 DOI: 10.1038/s41541-023-00643-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/09/2023] [Indexed: 03/26/2023] Open
Abstract
A novel Influenza A virus (subtype H7N9) emerged in spring 2013 and caused considerable mortality in zoonotically infected patients. To be prepared for potential pandemics, broadly effective and safe vaccines are crucial. Recombinant measles virus (MeV) encoding antigens of foreign pathogens constitutes a promising vector platform to generate novel vaccines. To characterize the efficacy of H7N9 antigens in a prototypic vaccine platform technology, we generated MeVs encoding either neuraminidase (N9) or hemagglutinin (H7). Moraten vaccine strain-derived vaccine candidates were rescued; they replicated with efficiency comparable to that of the measles vaccine, robustly expressed H7 and N9, and were genetically stable over 10 passages. Immunization of MeV-susceptible mice triggered the production of antibodies against H7 and N9, including hemagglutination-inhibiting and neutralizing antibodies induced by MVvac2-H7(P) and neuraminidase-inhibiting antibodies by MVvac2-N9(P). Vaccinated mice also developed long-lasting H7- and N9-specific T cells. Both MVvac2-H7(P) and MVvac2-N9(P)-vaccinated mice were protected from lethal H7N9 challenge.
Collapse
Affiliation(s)
- Cindy Hörner
- Section 4/3: Product Testing of IVMPs, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
- German Center for Infection Research, Gießen-Marburg-Langen, Germany
| | - Anna H Fiedler
- Section 4/3: Product Testing of IVMPs, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
- German Center for Infection Research, Gießen-Marburg-Langen, Germany
| | - Bianca S Bodmer
- Section 4/3: Product Testing of IVMPs, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany
| | - Lisa Walz
- Section 4/0: Research in Veterinary Medicine, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
| | - Vivian A Scheuplein
- Section 4/3: Product Testing of IVMPs, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
| | - Stefan Hutzler
- Section 4/3: Product Testing of IVMPs, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
| | - Mikhail N Matrosovich
- German Center for Infection Research, Gießen-Marburg-Langen, Germany
- Institute of Virology, Philipps University, Marburg, Germany
| | - Veronika von Messling
- German Center for Infection Research, Gießen-Marburg-Langen, Germany
- Section 4/0: Research in Veterinary Medicine, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
| | - Michael D Mühlebach
- Section 4/3: Product Testing of IVMPs, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany.
- German Center for Infection Research, Gießen-Marburg-Langen, Germany.
| |
Collapse
|
13
|
Wu B, Qi Z, Qian X. Recent Advancements in Mosquito-Borne Flavivirus Vaccine Development. Viruses 2023; 15:813. [PMID: 37112794 PMCID: PMC10143207 DOI: 10.3390/v15040813] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Lately, the global incidence of flavivirus infection has been increasing dramatically and presents formidable challenges for public health systems around the world. Most clinically significant flaviviruses are mosquito-borne, such as the four serotypes of dengue virus, Zika virus, West Nile virus, Japanese encephalitis virus and yellow fever virus. Until now, no effective antiflaviviral drugs are available to fight flaviviral infection; thus, a highly immunogenic vaccine would be the most effective weapon to control the diseases. In recent years, flavivirus vaccine research has made major breakthroughs with several vaccine candidates showing encouraging results in preclinical and clinical trials. This review summarizes the current advancement, safety, efficacy, advantages and disadvantages of vaccines against mosquito-borne flaviviruses posing significant threats to human health.
Collapse
Affiliation(s)
| | - Zhongtian Qi
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China;
| | - Xijing Qian
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China;
| |
Collapse
|
14
|
Chavda VP, Bezbaruah R, Valu D, Patel B, Kumar A, Prasad S, Kakoti BB, Kaushik A, Jesawadawala M. Adenoviral Vector-Based Vaccine Platform for COVID-19: Current Status. Vaccines (Basel) 2023; 11:432. [PMID: 36851309 PMCID: PMC9965371 DOI: 10.3390/vaccines11020432] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/16/2023] Open
Abstract
The coronavirus disease (COVID-19) breakout had an unimaginable worldwide effect in the 21st century, claiming millions of lives and putting a huge burden on the global economy. The potential developments in vaccine technologies following the determination of the genetic sequence of SARS-CoV-2 and the increasing global efforts to bring potential vaccines and therapeutics into the market for emergency use have provided a small bright spot to this tragic event. Several intriguing vaccine candidates have been developed using recombinant technology, genetic engineering, and other vaccine development technologies. In the last decade, a vast amount of the vaccine development process has diversified towards the usage of viral vector-based vaccines. The immune response elicited by such vaccines is comparatively higher than other approved vaccine candidates that require a booster dose to provide sufficient immune protection. The non-replicating adenoviral vectors are promising vaccine carriers for infectious diseases due to better yield, cGMP-friendly manufacturing processes, safety, better efficacy, manageable shipping, and storage procedures. As of April 2022, the WHO has approved a total of 10 vaccines around the world for COVID-19 (33 vaccines approved by at least one country), among which three candidates are adenoviral vector-based vaccines. This review sheds light on the developmental summary of all the adenoviral vector-based vaccines that are under emergency use authorization (EUA) or in the different stages of development for COVID-19 management.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Disha Valu
- Drug Product Development Laboratory, Biopharma Division, Intas Pharmaceutical Ltd., Moraiya, Ahmedabad 382213, Gujarat, India
| | - Bindra Patel
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Anup Kumar
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Sanjay Prasad
- Cell and Gene Therapy Drug Product Development Laboratory, Biopharma Division, Intas Pharmaceutical Ltd., Moraiya, Ahmedabad 382213, Gujarat, India
| | - Bibhuti Bhusan Kakoti
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805-8531, USA
| | - Mariya Jesawadawala
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| |
Collapse
|
15
|
Wang W, An X, Yan K, Li Q. Construction and Application of Orthogonal T7 Expression System in Eukaryote: An Overview. Adv Biol (Weinh) 2023; 7:e2200218. [PMID: 36464626 DOI: 10.1002/adbi.202200218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/17/2022] [Indexed: 12/12/2022]
Abstract
The T7 system is an orthogonal transcription-system, which is characterized by simplicity, higher efficiency, and higher processivity, and it is used for protein or mRNA synthesis in various biological-systems. In comparison with prokaryotes, the construction of the T7 expression system is still on-going in eukaryotes, but it shows greatly applicable prospects. In the present paper, development of T7 expression system construction in eukaryotes is reviewed, including its construction in animal (mammalian cells, trypanosomatid protozoa, Xenopus oocytes, zebrafish), plant, and microorganism and its application in vaccine production and gene therapy. In addition, the innate challenges of T7 expression system construction in eukaryote and its potential application in vaccine production and gene therapy are discussed.
Collapse
Affiliation(s)
- Wenya Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaoyan An
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Kun Yan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qiang Li
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
16
|
Muñoz-Alía MÁ, Nace RA, Balakrishnan B, Zhang L, Packiriswamy N, Singh G, Warang P, Mena I, Narjari R, Vandergaast R, García-Sastre A, Schotsaert M, Russell SJ. Surface-modified measles vaccines encoding oligomeric, fusion-stabilized SARS-CoV-2 spike glycoproteins bypass measles seropositivity, boosting neutralizing antibody responses to omicron and historical variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.12.16.520799. [PMID: 36561187 PMCID: PMC9774211 DOI: 10.1101/2022.12.16.520799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Serum titers of SARS-CoV-2 neutralizing antibodies (nAb) correlate well with protection from symptomatic COVID-19, but decay rapidly in the months following vaccination or infection. In contrast, measles-protective nAb titers are life-long after measles vaccination, possibly due to persistence of the live-attenuated virus in lymphoid tissues. We therefore sought to generate a live recombinant measles vaccine capable of driving high SARS-CoV-2 nAb responses. Since previous clinical testing of a live measles vaccine encoding a SARS-CoV-2 spike glycoprotein resulted in suboptimal anti-spike antibody titers, our new vectors were designed to encode prefusion-stabilized SARS-CoV-2 spike glycoproteins, trimerized via an inserted peptide domain and displayed on a dodecahedral miniferritin scaffold. Additionally, to circumvent the blunting of vaccine efficacy by preformed anti-measles antibodies, we extensively modified the measles surface glycoproteins. Comprehensive in vivo mouse testing demonstrated potent induction of high titer nAb in measles-immune mice and confirmed the significant incremental contributions to overall potency afforded by prefusion stabilization, trimerization, and miniferritin-display of the SARS-CoV-2 spike glycoprotein, and vaccine resurfacing. In animals primed and boosted with a MeV vaccine encoding the ancestral SARS-CoV-2 spike, high titer nAb responses against ancestral virus strains were only weakly cross-reactive with the omicron variant. However, in primed animals that were boosted with a MeV vaccine encoding the omicron BA.1 spike, antibody titers to both ancestral and omicron strains were robustly elevated and the passive transfer of serum from these animals protected K18-ACE2 mice from infection and morbidity after exposure to BA.1 and WA1/2020 strains. Our results demonstrate that antigen engineering can enable the development of potent measles-based SARS-CoV-2 vaccine candidates.
Collapse
Affiliation(s)
- Miguel Á. Muñoz-Alía
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
- Vyriad Inc, Rochester, MN, USA
| | - Rebecca A. Nace
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Lianwen Zhang
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Prajakta Warang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephen J. Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
- Vyriad Inc, Rochester, MN, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Imanis Life Sciences, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
17
|
Auste A, Mühlebach MD. Concentrating all helper protein functions on a single entity allows rescue of recombinant measles virus by transfection of just two plasmids. J Gen Virol 2022; 103. [PMID: 36748683 DOI: 10.1099/jgv.0.001815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The generation of recombinant measles virus (MeV) from manipulated genomes on plasmid DNA is quite a complex and inefficient process. As a member of the order Mononegavirales its single-stranded ssRNA genome in negative sense orientation is not infectious, but requires co-availability of the viral RNA-dependent RNA polymerase L, the polymerase co-factor phosphoprotein P, and the nucleocapsid protein N in defined relative amounts to establish infectious centres in transfected cell cultures that release replication-competent recombinant MeV particles. For this so-called rescue, different rescue systems were developed that rely on at least four different components. In this work, we establish a functional MeV rescue system just being composed of two components: the plasmid encoding the (modified) viral genome, and a one-helper-plasmid bundling all helper functions. In contrast to a rescue-system for Newcastle Disease Virus, another paramyxovirus, co-expression of all helper proteins by the same promoter failed. Instead, adaptation of the strength of the respective promoters to drive each helper gene´s expression to the relative expression found in MeV-infected cells or other rescue systems, which indeed adjusted respective mRNA and protein expression, yielded success, albeit not yet to the same efficacy as the four-component system. Thereby, our study paves the way for the development of easier and, after further optimization, more efficient rescue systems to generate recombinant MeV for e.g. the application as a vaccine platform or oncolytic virus, for example.
Collapse
Affiliation(s)
- Arne Auste
- Section Product Testing of IVMPs, Div. Veterinary Medicine, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, D-63225 Langen, Germany.,German Center for Infection Research, Gießen-Marburg-Langen, Germany
| | - Michael D Mühlebach
- Section Product Testing of IVMPs, Div. Veterinary Medicine, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, D-63225 Langen, Germany.,German Center for Infection Research, Gießen-Marburg-Langen, Germany
| |
Collapse
|
18
|
Schmidt C, Schnierle BS. Chikungunya Vaccine Candidates: Current Landscape and Future Prospects. Drug Des Devel Ther 2022; 16:3663-3673. [PMID: 36277603 PMCID: PMC9580835 DOI: 10.2147/dddt.s366112] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/15/2022] [Indexed: 11/07/2022] Open
Abstract
Chikungunya virus (CHIKV) is an alphavirus that has spread globally in the last twenty years. Although mortality is rather low, infection can result in debilitating arthralgia that can persist for years. Unfortunately, no treatments or preventive vaccines are currently licensed against CHIKV infections. However, a large range of promising preclinical and clinical vaccine candidates have been developed during recent years. This review will give an introduction into the biology of CHIKV and the immune responses that are induced by infection, and will summarize CHIKV vaccine development.
Collapse
Affiliation(s)
- Christin Schmidt
- Paul-Ehrlich-Institut, Department of Virology, Section AIDS and Newly Emerging Pathogens, Langen, Germany
| | - Barbara S Schnierle
- Paul-Ehrlich-Institut, Department of Virology, Section AIDS and Newly Emerging Pathogens, Langen, Germany,Correspondence: Barbara S Schnierle, Paul-Ehrlich-Institut, Department of Virology, Section AIDS and newly emerging pathogens, Paul-Ehrlich-Strasse 51.59, Langen, 63225, Germany, Tel/Fax +49 6103 77 5504, Email
| |
Collapse
|
19
|
Kumar S, Basu M, Ghosh P, Ansari A, Ghosh MK. COVID-19: Clinical status of vaccine development to date. Br J Clin Pharmacol 2022; 89:114-149. [PMID: 36184710 PMCID: PMC9538545 DOI: 10.1111/bcp.15552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-induced COVID-19 is a complicated disease. Clinicians are continuously facing difficulties to treat infected patients using the principle of repurposing of drugs as no specific drugs are available to treat COVID-19. To minimize the severity and mortality, global vaccination is the only hope as a potential preventive measure. After a year-long global research and clinical struggle, 165 vaccine candidates have been developed and some are currently still in the pipeline. A total of 28 candidate vaccines have been approved for use and the remainder are in different phases of clinical trials. In this comprehensive report, the authors aim to demonstrate, classify and provide up-to-date clinical trial status of all the vaccines discovered to date and specifically focus on the approved candidates. Finally, the authors specifically focused on the vaccination of different types of medically distinct populations.
Collapse
Affiliation(s)
- Sunny Kumar
- Cancer Biology and Inflammatory Disorder DivisionCouncil of Scientific and Industrial Research‐Indian Institute of Chemical Biology (CSIR‐IICB), TRUE CampusKolkataIndia
| | - Malini Basu
- Department of MicrobiologyDhruba Chand Halder CollegeIndia
| | - Pratyasha Ghosh
- Department of Economics, Bethune CollegeUniversity of CalcuttaKolkataIndia
| | - Aafreen Ansari
- Cancer Biology and Inflammatory Disorder DivisionCouncil of Scientific and Industrial Research‐Indian Institute of Chemical Biology (CSIR‐IICB), TRUE CampusKolkataIndia
| | - Mrinal K. Ghosh
- Cancer Biology and Inflammatory Disorder DivisionCouncil of Scientific and Industrial Research‐Indian Institute of Chemical Biology (CSIR‐IICB), TRUE CampusKolkataIndia
| |
Collapse
|
20
|
Abstract
Self-replicating RNA viral vectors have been engineered for both prophylactic and therapeutic applications. Mainly the areas of infectious diseases and cancer have been targeted. Both positive and negative strand RNA viruses have been utilized including alphaviruses, flaviviruses, measles viruses and rhabdoviruses. The high-level of RNA amplification has provided efficient expression of viral surface proteins and tumor antigens. Immunization studies in animal models have elicit robust neutralizing antibody responses. In the context of infectious diseases, immunization with self-replicating RNA viral vectors has provided protection against challenges with lethal doses of pathogens in animal models. Similarly, immunization with vectors expressing tumor antigens has resulted in tumor regression and eradication and protection against tumor challenges in animal models. The transient nature and non-integration of viral RNA into the host genome are ideal features for vaccine development. Moreover, self-replicating RNA viral vectors show great flexibility as they can be applied as recombinant viral particles, RNA replicons or DNA replicon plasmids. Several clinical trials have been conducted especially in the area of cancer immunotherapy.
Collapse
|
21
|
Wyss M, Gradauskaite V, Ebert N, Thiel V, Zurbriggen A, Plattet P. Efficient Recovery of Attenuated Canine Distemper Virus from cDNA. Virus Res 2022; 316:198796. [PMID: 35568090 DOI: 10.1016/j.virusres.2022.198796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/21/2022] [Accepted: 05/04/2022] [Indexed: 11/28/2022]
Abstract
To provide insights into the biology of the attenuated canine distemper virus (CDV) Onderstepoort (OP) strain (large plaque forming variant), design next-generation multivalent vaccines, or further investigate its promising potential as an oncolytic vector, we employed contemporary modifications to establish an efficient OP-CDV-based reverse genetics platform. Successful viral rescue was obtained however only upon recovery of a completely conserved charged residue (V13E) residing at the N-terminal region of the large protein (L). Although L-V13 and L-V13E did not display drastic differences in cellular localization and physical interaction with P, efficient polymerase complex (P+L) activity was recorded only with L-V13E. Interestingly, grafting mNeonGreen to the viral N protein via a P2A ribosomal skipping sequence (OPneon) and its derivative V-protein-knockout variant (OPneon-Vko) exhibited delayed replication kinetics in cultured cells. Collectively, we established an efficient OP-CDV-based reverse genetics system that enables the design of various strategies potentially contributing to veterinary medicine and research.
Collapse
Affiliation(s)
- Marianne Wyss
- Division of Neurological Sciences, Vetsuisse faculty, University of Bern, Switzerland
| | - Vaiva Gradauskaite
- Division of Neurological Sciences, Vetsuisse faculty, University of Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Nadine Ebert
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Institute of Virology and Immunology, Bern and Mittelhäusern, Switzerland
| | - Volker Thiel
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Institute of Virology and Immunology, Bern and Mittelhäusern, Switzerland
| | - Andreas Zurbriggen
- Division of Neurological Sciences, Vetsuisse faculty, University of Bern, Switzerland
| | - Philippe Plattet
- Division of Neurological Sciences, Vetsuisse faculty, University of Bern, Switzerland.
| |
Collapse
|
22
|
Escalante GM, Mutsvunguma LZ, Muniraju M, Rodriguez E, Ogembo JG. Four Decades of Prophylactic EBV Vaccine Research: A Systematic Review and Historical Perspective. Front Immunol 2022; 13:867918. [PMID: 35493498 PMCID: PMC9047024 DOI: 10.3389/fimmu.2022.867918] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/11/2022] [Indexed: 02/06/2023] Open
Abstract
BackgroundEpstein-Barr virus (EBV) is the causal agent of infectious mononucleosis and has been associated with various cancers and autoimmune diseases. Despite decades of research efforts to combat this major global health burden, there is no approved prophylactic vaccine against EBV. To facilitate the rational design and assessment of an effective vaccine, we systematically reviewed pre-clinical and clinical prophylactic EBV vaccine studies to determine the antigens, delivery platforms, and animal models used in these studies.MethodsWe searched Cochrane Library, ClinicalTrials.gov, Embase, PubMed, Scopus, Web of Science, WHO’s Global Index Medicus, and Google Scholar from inception to June 20, 2020, for EBV prophylactic vaccine studies focused on humoral immunity.ResultsThe search yielded 5,614 unique studies. 36 pre-clinical and 4 clinical studies were included in the analysis after screening against the exclusion criteria. In pre-clinical studies, gp350 was the most commonly used immunogen (33 studies), vaccines were most commonly delivered as monomeric proteins (12 studies), and mice were the most used animal model to test immunogenicity (15 studies). According to an adaptation of the CAMARADES checklist, 4 pre-clinical studies were rated as very high, 5 as high, 13 as moderate quality, 11 as poor, and 3 as very poor. In clinical studies, gp350 was the sole vaccine antigen, delivered in a vaccinia platform (1 study) or as a monomeric protein (3 studies). The present study was registered in PROSPERO (CRD42020198440).ConclusionsFour major obstacles have prevented the development of an effective prophylactic EBV vaccine: undefined correlates of immune protection, lack of knowledge regarding the ideal EBV antigen(s) for vaccination, lack of an appropriate animal model to test vaccine efficacy, and lack of knowledge regarding the ideal vaccine delivery platform. Our analysis supports a multivalent antigenic approach including two or more of the five main glycoproteins involved in viral entry (gp350, gB, gH/gL, gp42) and a multimeric approach to present these antigens. We anticipate that the application of two underused challenge models, rhesus macaques susceptible to rhesus lymphocryptovirus (an EBV homolog) and common marmosets, will permit the establishment of in vivo correlates of immune protection and attainment of more generalizable data.Systematic Review Registrationhttps://www.crd.york.ac.uk/prospero/display_record.php?RecordID=198440, identifier PROSPERO I.D. CRD4202019844.
Collapse
|
23
|
A scalable, integrated downstream process for production of a recombinant measles virus-vectored vaccine. Vaccine 2022; 40:1323-1333. [PMID: 35094870 DOI: 10.1016/j.vaccine.2022.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/16/2021] [Accepted: 01/07/2022] [Indexed: 11/20/2022]
Abstract
Purification of very large and complex, enveloped viruses, such as measles virus is very challenging, it must be performed in a closed system because the final product cannot be sterile filtered and often loss of virus titer and poor product purity has been observed. We developed a purification process where the clarified and endonuclease treated culture supernatant is loaded on a restricted access chromatography medium where small impurities are bound and the virus is collected in the flow-through, which is then concentrated, and buffer exchanged by ultra/diafiltration. Up to 98.5% of host cell proteins could be captured by direct loading of clarified and endonuclease treated cell culture supernatant. Reproducible process performance and scalability of the chromatography step were demonstrated from small to pilot scale, including loading volumes from 50 mL up to 9 L. A 10-fold virus concentration was achieved by the ultrafiltration using a 100 kDa flat-sheet membrane. The order of individual process steps had a large impact on the virus infectivity and total process yields. The developed process maintained virus infectivity and is twice as fast as the traditional process train, where concentration is performed before loading on the chromatography column. Capturing impurities by the restricted access medium makes it a platform purification process with a high flexibility, which can be easily and quickly adapted to other vectors based on the measles virus vector platform.
Collapse
|
24
|
Lundstrom K. Self-replicating vehicles based on negative strand RNA viruses. Cancer Gene Ther 2022:10.1038/s41417-022-00436-7. [PMID: 35169298 PMCID: PMC8853047 DOI: 10.1038/s41417-022-00436-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/14/2022] [Accepted: 01/31/2022] [Indexed: 11/10/2022]
Abstract
Self-replicating RNA viruses have been engineered as efficient expression vectors for vaccine development for infectious diseases and cancers. Moreover, self-replicating RNA viral vectors, particularly oncolytic viruses, have been applied for cancer therapy and immunotherapy. Among negative strand RNA viruses, measles viruses and rhabdoviruses have been frequently applied for vaccine development against viruses such as Chikungunya virus, Lassa virus, Ebola virus, influenza virus, HIV, Zika virus, and coronaviruses. Immunization of rodents and primates has elicited strong neutralizing antibody responses and provided protection against lethal challenges with pathogenic viruses. Several clinical trials have been conducted. Ervebo, a vaccine based on a vesicular stomatitis virus (VSV) vector has been approved for immunization of humans against Ebola virus. Different types of cancers such as brain, breast, cervical, lung, leukemia/lymphoma, ovarian, prostate, pancreatic, and melanoma, have been the targets for cancer vaccine development, cancer gene therapy, and cancer immunotherapy. Administration of measles virus and VSV vectors have demonstrated immune responses, tumor regression, and tumor eradication in various animal models. A limited number of clinical trials have shown well-tolerated treatment, good safety profiles, and dose-dependent activity in cancer patients.
Collapse
|
25
|
Breuil L, Debache A, Giraud-Sauveur F, Glascott-Jones E. [A further step against Lassa fever?]. Med Sci (Paris) 2021; 37:1076-1079. [PMID: 34851291 DOI: 10.1051/medsci/2021169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Lucas Breuil
- École normale supérieure de Lyon, Département de biologie, Master biologie, Lyon, France
| | - Auriane Debache
- École normale supérieure de Lyon, Département de biologie, Master biologie, Lyon, France
| | - Félicie Giraud-Sauveur
- École normale supérieure de Lyon, Département de biologie, Master biologie, Lyon, France
| | - Eleanor Glascott-Jones
- École normale supérieure de Lyon, Département de biologie, Master biologie, Lyon, France
| |
Collapse
|
26
|
Gutiérrez-Álvarez J, Honrubia JM, Sanz-Bravo A, González-Miranda E, Fernández-Delgado R, Rejas MT, Zúñiga S, Sola I, Enjuanes L. Middle East respiratory syndrome coronavirus vaccine based on a propagation-defective RNA replicon elicited sterilizing immunity in mice. Proc Natl Acad Sci U S A 2021; 118:e2111075118. [PMID: 34686605 PMCID: PMC8639359 DOI: 10.1073/pnas.2111075118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2021] [Indexed: 12/11/2022] Open
Abstract
Self-amplifying RNA replicons are promising platforms for vaccine generation. Their defects in one or more essential functions for viral replication, particle assembly, or dissemination make them highly safe as vaccines. We previously showed that the deletion of the envelope (E) gene from the Middle East respiratory syndrome coronavirus (MERS-CoV) produces a replication-competent propagation-defective RNA replicon (MERS-CoV-ΔE). Evaluation of this replicon in mice expressing human dipeptidyl peptidase 4, the virus receptor, showed that the single deletion of the E gene generated an attenuated mutant. The combined deletion of the E gene with accessory open reading frames (ORFs) 3, 4a, 4b, and 5 resulted in a highly attenuated propagation-defective RNA replicon (MERS-CoV-Δ[3,4a,4b,5,E]). This RNA replicon induced sterilizing immunity in mice after challenge with a lethal dose of a virulent MERS-CoV, as no histopathological damage or infectious virus was detected in the lungs of challenged mice. The four mutants lacking the E gene were genetically stable, did not recombine with the E gene provided in trans during their passage in cell culture, and showed a propagation-defective phenotype in vivo. In addition, immunization with MERS-CoV-Δ[3,4a,4b,5,E] induced significant levels of neutralizing antibodies, indicating that MERS-CoV RNA replicons are highly safe and promising vaccine candidates.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/biosynthesis
- Antibodies, Viral/biosynthesis
- Coronavirus Infections/genetics
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Coronavirus Infections/virology
- Defective Viruses/genetics
- Defective Viruses/immunology
- Female
- Gene Deletion
- Genes, env
- Humans
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Middle East Respiratory Syndrome Coronavirus/genetics
- Middle East Respiratory Syndrome Coronavirus/immunology
- Middle East Respiratory Syndrome Coronavirus/pathogenicity
- RNA, Viral/administration & dosage
- RNA, Viral/genetics
- RNA, Viral/immunology
- Replicon
- Vaccines, DNA
- Vaccines, Virus-Like Particle/administration & dosage
- Vaccines, Virus-Like Particle/genetics
- Vaccines, Virus-Like Particle/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Viral Vaccines/immunology
- Virulence/genetics
- Virulence/immunology
Collapse
Affiliation(s)
- J Gutiérrez-Álvarez
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autónoma de Madrid 28049 Madrid, Spain
| | - J M Honrubia
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autónoma de Madrid 28049 Madrid, Spain
| | - A Sanz-Bravo
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autónoma de Madrid 28049 Madrid, Spain
| | - E González-Miranda
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autónoma de Madrid 28049 Madrid, Spain
| | - R Fernández-Delgado
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autónoma de Madrid 28049 Madrid, Spain
| | - M T Rejas
- Electron Microscopy Service, Centro de Biología Molecular "Severo Ochoa" (CBMSO-CSIC-UAM), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - S Zúñiga
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autónoma de Madrid 28049 Madrid, Spain
| | - I Sola
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autónoma de Madrid 28049 Madrid, Spain
| | - L Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autónoma de Madrid 28049 Madrid, Spain;
| |
Collapse
|
27
|
El Hidan MA, Laaradia MA, El Hiba O, Draoui A, Aimrane A, Kahime K. Scorpion-Derived Antiviral Peptides with a Special Focus on Medically Important Viruses: An Update. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9998420. [PMID: 34527748 PMCID: PMC8437663 DOI: 10.1155/2021/9998420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/07/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022]
Abstract
The global burden of viral infection, especially the current pandemics of SARS-CoV-2, HIV/AIDS, and hepatitis, is a very risky one. Additionally, HCV expresses the necessity for antiviral therapeutic elements. Venoms are known to contain an array of bioactive peptides that are commonly used in the treatment of various medical issues. Several peptides isolated from scorpion venom have recently been proven to possess an antiviral activity against several viral families. The aim of this review is to provide an up-to-date overview of scorpion antiviral peptides and to discuss their modes of action and potential biomedical application against different viruses.
Collapse
Affiliation(s)
- Moulay Abdelmonaim El Hidan
- Laboratory of Biotechnology and Valorization of Natural Resources, Faculty of Applied Sciences, Ibn Zohr University, Agadir, Morocco
| | | | - Omar El Hiba
- Nutritional Physiopathology Team, Faculty of Sciences, Chouaib Doukkali University, El Jadida 24000, Morocco
| | - Ahmed Draoui
- Laboratory of Clinical and Experimental Neurosciences and Environment, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Morocco
| | - Abdelmohcine Aimrane
- Nutritional Physiopathology Team, Faculty of Sciences, Chouaib Doukkali University, El Jadida 24000, Morocco
- Metabolic Platform, Biochemistry Laboratory, Faculty of Medicine, Cadi Ayad University, Marrakech, Morocco
| | - Kholoud Kahime
- SAEDD Laboratory, School of Technology Essaouira, Cadi Ayyad University of Marrakesh, Morocco
| |
Collapse
|
28
|
Cimica V, Galarza JM, Rashid S, Stedman TT. Current development of Zika virus vaccines with special emphasis on virus-like particle technology. Expert Rev Vaccines 2021; 20:1483-1498. [PMID: 34148481 DOI: 10.1080/14760584.2021.1945447] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Zika virus disease received little attention until its recent explosive emergence around the globe. The devastating consequences of this pandemic include congenital Zika syndrome (CZS) and the neurological autoimmune disorder Guillain-Barré syndrome. These potential outcomes prompted massive efforts to understand the course of Zika infection and to develop therapeutic and prophylactic strategies for treatment and prevention of disease.Area covered: Preclinical and clinical data demonstrate that a safe and efficacious vaccine for protection against Zika virus infection is possible in the near future. Nevertheless, significant knowledge gaps regarding the outcome of a mass vaccination strategy exist and must be addressed. Zika virus circulates in flavivirus-endemic regions, an ideal Zika vaccine should avoid the potential of antibody-dependent enhancement from exposure to dengue virus. Prevention of CZS is the primary goal for immunization, and the vaccine must provide protection against intrauterine transmission for use during pregnancy and in women of childbearing age. Ideally, a vaccine should also prevent sexual transmission of the virus through mucosal protection.Expert opinion: This review describes current vaccine approaches against Zika virus with particular attention to the application of virus-like particle (VLP) technology as a strategy for solving the challenges of Zika virus immunization.
Collapse
Affiliation(s)
- Velasco Cimica
- American Type Culture Collection (ATCC), Manassas, VA, USA
| | | | - Sujatha Rashid
- American Type Culture Collection (ATCC), Manassas, VA, USA
| | | |
Collapse
|
29
|
Virotherapy in Germany-Recent Activities in Virus Engineering, Preclinical Development, and Clinical Studies. Viruses 2021; 13:v13081420. [PMID: 34452286 PMCID: PMC8402873 DOI: 10.3390/v13081420] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
Virotherapy research involves the development, exploration, and application of oncolytic viruses that combine direct killing of cancer cells by viral infection, replication, and spread (oncolysis) with indirect killing by induction of anti-tumor immune responses. Oncolytic viruses can also be engineered to genetically deliver therapeutic proteins for direct or indirect cancer cell killing. In this review—as part of the special edition on “State-of-the-Art Viral Vector Gene Therapy in Germany”—the German community of virotherapists provides an overview of their recent research activities that cover endeavors from screening and engineering viruses as oncolytic cancer therapeutics to their clinical translation in investigator-initiated and sponsored multi-center trials. Preclinical research explores multiple viral platforms, including new isolates, serotypes, or fitness mutants, and pursues unique approaches to engineer them towards increased safety, shielded or targeted delivery, selective or enhanced replication, improved immune activation, delivery of therapeutic proteins or RNA, and redirecting antiviral immunity for cancer cell killing. Moreover, several oncolytic virus-based combination therapies are under investigation. Clinical trials in Germany explore the safety and potency of virotherapeutics based on parvo-, vaccinia, herpes, measles, reo-, adeno-, vesicular stomatitis, and coxsackie viruses, including viruses encoding therapeutic proteins or combinations with immune checkpoint inhibitors. These research advances represent exciting vantage points for future endeavors of the German virotherapy community collectively aimed at the implementation of effective virotherapeutics in clinical oncology.
Collapse
|
30
|
Mateo M, Reynard S, Journeaux A, Germain C, Hortion J, Carnec X, Picard C, Baillet N, Borges-Cardoso V, Merabet O, Vallve A, Barron S, Jourjon O, Lacroix O, Duthey A, Dirheimer M, Jouvion G, Moreau PH, Fellmann L, Carbonnelle C, Raoul H, Tangy F, Baize S. A single-shot Lassa vaccine induces long-term immunity and protects cynomolgus monkeys against heterologous strains. Sci Transl Med 2021; 13:13/597/eabf6348. [PMID: 34108251 DOI: 10.1126/scitranslmed.abf6348] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/12/2021] [Accepted: 04/15/2021] [Indexed: 12/12/2022]
Abstract
A safe and protective Lassa virus vaccine is crucially needed in Western Africa to stem the recurrent outbreaks of Lassa virus infections in Nigeria and the emergence of Lassa virus in previously unaffected countries, such as Benin and Togo. Major challenges in developing a Lassa virus vaccine include the high diversity of circulating strains and their reemergence from 1 year to another. To address each of these challenges, we immunized cynomolgus monkeys with a measles virus vector expressing the Lassa virus glycoprotein and nucleoprotein of the prototypic Lassa virus strain Josiah (MeV-NP). To evaluate vaccine efficacy against heterologous strains of Lassa virus, we challenged the monkeys a month later with heterologous strains from lineage II or lineage VII, finding that the vaccine was protective against these strains. A second cohort of monkeys was challenged 1 year later with the homologous Josiah strain, finding that a single dose of MeV-NP was sufficient to protect all vaccinated monkeys. These studies demonstrate that MeV-NP can generate both long-lasting immune responses and responses that are able to protect against diverse strains of Lassa virus.
Collapse
Affiliation(s)
- Mathieu Mateo
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, 69007 Lyon, France
| | - Stéphanie Reynard
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, 69007 Lyon, France
| | - Alexandra Journeaux
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, 69007 Lyon, France
| | - Clara Germain
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, 69007 Lyon, France
| | - Jimmy Hortion
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, 69007 Lyon, France
| | - Xavier Carnec
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, 69007 Lyon, France
| | - Caroline Picard
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, 69007 Lyon, France
| | - Nicolas Baillet
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, 69007 Lyon, France
| | - Virginie Borges-Cardoso
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, 69007 Lyon, France
| | - Othmann Merabet
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, 69007 Lyon, France
| | - Audrey Vallve
- Laboratoire P4 INSERM-Jean Mérieux, INSERM US003, 69007 Lyon, France
| | - Stéphane Barron
- Laboratoire P4 INSERM-Jean Mérieux, INSERM US003, 69007 Lyon, France
| | - Ophélie Jourjon
- Laboratoire P4 INSERM-Jean Mérieux, INSERM US003, 69007 Lyon, France
| | - Orianne Lacroix
- Laboratoire P4 INSERM-Jean Mérieux, INSERM US003, 69007 Lyon, France
| | - Aurélie Duthey
- Laboratoire P4 INSERM-Jean Mérieux, INSERM US003, 69007 Lyon, France
| | - Manon Dirheimer
- INSERM, Délégation Régionale Auvergne Rhône-Alpes, 69500 Bron, France
| | - Gregory Jouvion
- Ecole Nationale Vétérinaire d'Alfort, Unité d'Histologie et d'Anatomie Pathologique, 94700 Maisons-Alfort, France.,Dynamic Research Group, Université Paris Est Créteil, Ecole Nationale Vétérinaire d'Alfort, USC ANSES, 94700 Maisons-Alfort, France
| | | | - Lyne Fellmann
- SILABE, Université de Strasbourg, Fort Foch, 67207 Niederhausbergen, France
| | | | - Hervé Raoul
- Laboratoire P4 INSERM-Jean Mérieux, INSERM US003, 69007 Lyon, France
| | - Frédéric Tangy
- Viral Genomics and Vaccination, Institut Pasteur, CNRS UMR-3569, 75015 Paris, France
| | - Sylvain Baize
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France. .,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, 69007 Lyon, France
| |
Collapse
|
31
|
A safe and highly efficacious measles virus-based vaccine expressing SARS-CoV-2 stabilized prefusion spike. Proc Natl Acad Sci U S A 2021; 118:2026153118. [PMID: 33688034 PMCID: PMC8000430 DOI: 10.1073/pnas.2026153118] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Measles virus (MeV) vaccine is one of the safest and most efficient vaccines with a track record in children. Here, we generated a panel of rMeV-based vaccines with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S antigens inserted near 3′ of the MeV genome. The rMeV expressing a soluble stabilized, prefusion spike (preS) is much more potent in triggering SARS-CoV-2–specific neutralizing antibody than rMeV-based full-length S vaccine candidate. A single dose of rMeV-preS is sufficient to induce high levels of SARS-CoV-2 antibody in animals. Furthermore, rMeV-preS induces high levels of Th1-biased immunity. Hamsters immunized with rMeV-preS were completely protected against SARS-CoV-2 challenge. Our results demonstrate rMeV-preS is a safe and highly efficacious bivalent vaccine candidate for SARS-CoV-2 and MeV. The current pandemic of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highlights an urgent need to develop a safe, efficacious, and durable vaccine. Using a measles virus (rMeV) vaccine strain as the backbone, we developed a series of recombinant attenuated vaccine candidates expressing various forms of the SARS-CoV-2 spike (S) protein and its receptor binding domain (RBD) and evaluated their efficacy in cotton rat, IFNAR−/−mice, IFNAR−/−-hCD46 mice, and golden Syrian hamsters. We found that rMeV expressing stabilized prefusion S protein (rMeV-preS) was more potent in inducing SARS-CoV-2–specific neutralizing antibodies than rMeV expressing full-length S protein (rMeV-S), while the rMeVs expressing different lengths of RBD (rMeV-RBD) were the least potent. Animals immunized with rMeV-preS produced higher levels of neutralizing antibody than found in convalescent sera from COVID-19 patients and a strong Th1-biased T cell response. The rMeV-preS also provided complete protection of hamsters from challenge with SARS-CoV-2, preventing replication in lungs and nasal turbinates, body weight loss, cytokine storm, and lung pathology. These data demonstrate that rMeV-preS is a safe and highly efficacious vaccine candidate, supporting its further development as a SARS-CoV-2 vaccine.
Collapse
|
32
|
Measles Virus as an Oncolytic Immunotherapy. Cancers (Basel) 2021; 13:cancers13030544. [PMID: 33535479 PMCID: PMC7867054 DOI: 10.3390/cancers13030544] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Measles virus (MeV) preferentially replicates in malignant cells, leading to tumor lysis and priming of antitumor immunity. Live attenuated MeV vaccine strains are therefore under investigation as cancer therapeutics. The versatile MeV reverse genetics systems allows for engineering of advanced targeted, armed, and shielded oncolytic viral vectors. Therapeutic efficacy can further be enhanced by combination treatments. An emerging focus in this regard is combination immunotherapy, especially with immune checkpoint blockade. Despite challenges arising from antiviral immunity, availability of preclinical models, and GMP production, early clinical trials have demonstrated safety of oncolytic MeV and yielded promising efficacy data. Future clinical trials with engineered viruses, rational combination regimens, and comprehensive translational research programs will realize the potential of oncolytic immunotherapy.
Collapse
|
33
|
Rasker JJ, Linn-Rasker SP. VACCINATION WITH MMR MAY REDUCE DISEASE SEVERITY IN COVID-19 PATIENTS. CENTRAL ASIAN JOURNAL OF MEDICAL HYPOTHESES AND ETHICS 2021. [DOI: 10.47316/cajmhe.2020.1.2.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We hypothesise that MMR vaccination is possibly a safe, cheap, effective and readily available method to reduce the severity of COVID-19 disease course in health care workers, elderly patients and other people at risk. The evidence is based on relevant literature. Suggestions for further studies are given.
Collapse
|
34
|
A highly immunogenic and effective measles virus-based Th1-biased COVID-19 vaccine. Proc Natl Acad Sci U S A 2020; 117:32657-32666. [PMID: 33257540 PMCID: PMC7768780 DOI: 10.1073/pnas.2014468117] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The COVID-19 pandemic has already caused over 1 million deaths. Therefore, effective vaccine concepts are urgently needed. In search of such a concept, we have analyzed a measles virus-based vaccine candidate targeting SARS-CoV-2. Using this well-known, safe vaccine backbone, we demonstrate here induction of functional immune responses in both arms of adaptive immunity, yielding antiviral efficacy in vivo with the desired immune bias. Consequently, no immunopathologies became evident during challenge experiments. Moreover, the candidate still induces immunity against the measles, recognized as a looming second menace, when countries are forced to stop routine vaccination campaigns in the face of COVID-19. Thus, a bivalent measles-based COVID-19 vaccine could be the solution for two significant public health threats. The COVID-19 pandemic is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and has spread worldwide, with millions of cases and more than 1 million deaths to date. The gravity of the situation mandates accelerated efforts to identify safe and effective vaccines. Here, we generated measles virus (MeV)-based vaccine candidates expressing the SARS-CoV-2 spike glycoprotein (S). Insertion of the full-length S protein gene in two different MeV genomic positions resulted in modulated S protein expression. The variant with lower S protein expression levels was genetically stable and induced high levels of effective Th1-biased antibody and T cell responses in mice after two immunizations. In addition to neutralizing IgG antibody responses in a protective range, multifunctional CD8+ and CD4+ T cell responses with S protein-specific killing activity were detected. Upon challenge using a mouse-adapted SARS-CoV-2, virus loads in vaccinated mice were significantly lower, while vaccinated Syrian hamsters revealed protection in a harsh challenge setup using an early-passage human patient isolate. These results are highly encouraging and support further development of MeV-based COVID-19 vaccines.
Collapse
|
35
|
Mühlebach MD. Measles virus in cancer therapy. Curr Opin Virol 2020; 41:85-97. [PMID: 32861945 DOI: 10.1016/j.coviro.2020.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
Over the last years, the development of viruses to treat cancer patients has re-gained considerable attention. A genetically modified herpesvirus, Talimogene laherparepvec, has already been authorized for the treatment of melanoma patients. Also recombinant measles virus (MeV) is developed as an oncolytic virus. Because of its high genetic flexibility, a number of different MeV strains have been the basis for the generation of targeted, armed, or shielded viruses that are highly specific for a given tumor target, more effective, or protected against serum neutralization. Such MeV have been extensively tested in vitro and in vivo, whereby remarkable oncolytic potency is accompanied by safety also in non-human primates. Therefore, MeV has been introduced into 19 different clinical trials and has reached phase II against two different tumor entities, multiple myeloma and ovarian carcinoma. Remarkably, one patient with advanced stage myeloma experienced long-term remission after treatment, visualizing the potency of this approach.
Collapse
Affiliation(s)
- Michael D Mühlebach
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, D-63225 Langen, Germany.
| |
Collapse
|
36
|
Pidelaserra-Martí G, Engeland CE. Mechanisms of measles virus oncolytic immunotherapy. Cytokine Growth Factor Rev 2020; 56:28-38. [PMID: 32660751 DOI: 10.1016/j.cytogfr.2020.07.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 02/08/2023]
Abstract
The study of measles virus (MeV) as a cancer immunotherapeutic was prompted by clinical observations of leukemia and lymphoma regressions in patients following measles virus infection in the 1970s and 1980s. Since then, numerous preclinical studies have confirmed the oncolytic activity of MeV vaccine strains as well as their potential to promote long-lasting tumor-specific immune responses. Early clinical data indicate that some of these effects may translate to the treatment of cancer patients. In this review, we provide a structured summary of current evidence for the anti-tumor immune activity of oncolytic MeV. We start with an overview of MeV oncolysis and MeV-induced immunogenic cell death. Next, we relate findings on MeV-mediated activation of antigen-presenting cells, T cell priming and effector mechanisms to the cancer immunity cycle. We discuss additional factors in the tumor microenvironment which are modulated by MeV treatment as well as the role of anti-viral immunity. Based on these findings, we highlight avenues for rational enhancement of oncolytic MeV immunotherapy by vector engineering. We further point to advantages and drawbacks of experimental models and propose areas warranting promising research. Lastly, we review the available immunomonitoring data from several Phase I clinical trials. While this review presents data for MeV, the concepts and principles introduced herein apply to other oncolytic viruses, providing a framework to assess novel cancer immunotherapies.
Collapse
Affiliation(s)
- Gemma Pidelaserra-Martí
- Research Group Mechanisms of Oncolytic Immunotherapy, Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany; Faculty of Biosciences, Heidelberg University and Helmholtz International Graduate School for Cancer Research, DKFZ, Heidelberg, Germany.
| | - Christine E Engeland
- Research Group Mechanisms of Oncolytic Immunotherapy, Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany; University Hospital Heidelberg, Department of Medical Oncology, Heidelberg, Germany; Faculty of Health/School of Medicine, Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Germany.
| |
Collapse
|
37
|
康 庄, 唐 梅. [Progress and analysis on the development of 2019-nCoV vaccine]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2020; 37:373-379. [PMID: 32597077 PMCID: PMC10319570 DOI: 10.7507/1001-5515.202004025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Indexed: 11/03/2022]
Abstract
As the COVID-19 pandemic is intensifying globally, more and more people are pinning their hopes on the development of vaccines. At present, there are many research teams who have adopted different vaccine technology routes to develop 2019-nCoV vaccines. This article reviews and analyzes the current development and research status of 2019-nCoV vaccines in different routes, and explores their possible development in the future.
Collapse
Affiliation(s)
- 庄 康
- 乐山师范学院 生命科学学院(四川乐山 614000)College of Life Science, Leshan Normal University, Leshan, Sichuan 614000, P.R.China
- 成都生物制品研究所有限责任公司 生物技术研究室(成都 610000)Department of Biotechnology, Chengdu Institute of Biological Products, Chengdu 610000, P.R.China
| | - 梅 唐
- 乐山师范学院 生命科学学院(四川乐山 614000)College of Life Science, Leshan Normal University, Leshan, Sichuan 614000, P.R.China
| |
Collapse
|
38
|
Measles Vaccines Designed for Enhanced CD8 + T Cell Activation. Viruses 2020; 12:v12020242. [PMID: 32098134 PMCID: PMC7077255 DOI: 10.3390/v12020242] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/16/2020] [Accepted: 02/19/2020] [Indexed: 12/26/2022] Open
Abstract
Priming and activation of CD8+ T cell responses is crucial to achieve anti-viral and anti-tumor immunity. Live attenuated measles vaccine strains have been used successfully for immunization for decades and are currently investigated in trials of oncolytic virotherapy. The available reverse genetics systems allow for insertion of additional genes, including heterologous antigens. Here, we designed recombinant measles vaccine vectors for priming and activation of antigen-specific CD8+ T cells. For proof-of-concept, we used cytotoxic T lymphocyte (CTL) lines specific for the melanoma-associated differentiation antigen tyrosinase-related protein-2 (TRP-2), or the model antigen chicken ovalbumin (OVA), respectively. We generated recombinant measles vaccine vectors with TRP-2 and OVA epitope cassette variants for expression of the full-length antigen or the respective immunodominant CD8+ epitope, with additional variants mediating secretion or proteasomal degradation of the epitope. We show that these recombinant measles virus vectors mediate varying levels of MHC class I (MHC-I)-restricted epitope presentation, leading to activation of cognate CTLs, as indicated by secretion of interferon-gamma (IFNγ) in vitro. Importantly, the recombinant OVA vaccines also mediate priming of naïve OT-I CD8+ T cells by dendritic cells. While all vaccine variants can prime and activate cognate T cells, IFNγ release was enhanced using a secreted epitope variant and a variant with epitope strings targeted to the proteasome. The principles presented in this study will facilitate the design of recombinant vaccines to elicit CD8+ responses against pathogens and tumor antigens.
Collapse
|
39
|
Mateo M, Reynard S, Carnec X, Journeaux A, Baillet N, Schaeffer J, Picard C, Legras-Lachuer C, Allan R, Perthame E, Hillion KH, Pietrosemoli N, Dillies MA, Barrot L, Vallve A, Barron S, Fellmann L, Gaillard JC, Armengaud J, Carbonnelle C, Raoul H, Tangy F, Baize S. Vaccines inducing immunity to Lassa virus glycoprotein and nucleoprotein protect macaques after a single shot. Sci Transl Med 2019; 11:11/512/eaaw3163. [DOI: 10.1126/scitranslmed.aaw3163] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/16/2019] [Accepted: 08/02/2019] [Indexed: 01/01/2023]
Abstract
Lassa fever is a major threat in Western Africa. The large number of people living at risk for this disease calls for the development of a vaccine against Lassa virus (LASV). We generated live-attenuated LASV vaccines based on measles virus and Mopeia virus platforms and expressing different LASV antigens, with the aim to develop a vaccine able to protect after a single shot. We compared the efficacy of these vaccines against LASV in cynomolgus monkeys. The vaccines were well tolerated and protected the animals from LASV infection and disease after a single immunization but with varying efficacy. Analysis of the immune responses showed that complete protection was associated with robust secondary T cell and antibody responses against LASV. Transcriptomic and proteomic analyses showed an early activation of innate immunity and T cell priming after immunization with the most effective vaccines, with changes detectable as early as 2 days after immunization. The most efficacious vaccine candidate, a measles vector simultaneously expressing LASV glycoprotein and nucleoprotein, has been selected for further clinical evaluation.
Collapse
|
40
|
Generation of recombinant measles virus containing the wild-type P gene to improve its oncolytic efficiency. Microb Pathog 2019; 135:103631. [PMID: 31381964 DOI: 10.1016/j.micpath.2019.103631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 11/23/2022]
|
41
|
Abstract
Vaccination represents one of the major advances in the field of health. The first vaccines were produced on a rather empirical concept based on the so-called 3I strategy: isolation, inactivation, injection. More recently, protein vaccines have emerged. However, the emergence of new pathogens, the inefficiency of these vaccine strategies to protect against several infections, the need to be able to develop new vaccines quickly and at low cost have led to the development of new types of vaccines. In this context vaccines based on the use of the nucleic acid coding sequences of the antigens of interest (viral vectors, DNA vaccines, RNA vaccines) have been developed in order to improve the efficiency of the currently available vaccines and to propose generic platforms potentially usable against a large number of different pathogens. In addition to the use of these new vaccines, ongoing vaccine research is benefiting from technological developments aimed at optimally delivering vaccines, targeting, for example, dendritic cells, and better characterizing the antigens of interest through the use of vaccines of reverse vaccinology.
Collapse
Affiliation(s)
- Jean-Daniel Lelièvre
- Vaccine Research Institute, CHU Henri Mondor, 51 avenue Maréchal de Lattre de Tassigny, 94010 Créteil, France
- Service d’immunologie clinique et maladies infectieuses, CHU Henri Mondor, APHP, 51 avenue Maréchal de Lattre de Tassigny, 94010 Créteil, France
- IMRB, équipe 16, CHU Henri Mondor, 51 avenue Maréchal de Lattre de Tassigny, 94010 Créteil, France
- UPEC, 8, rue du Général Sarrail 94010 Créteil Cedex, France
| |
Collapse
|
42
|
Monath TP, Fast PE, Modjarrad K, Clarke DK, Martin BK, Fusco J, Nichols R, Heppner DG, Simon JK, Dubey S, Troth SP, Wolf J, Singh V, Coller BA, Robertson JS. rVSVΔG-ZEBOV-GP (also designated V920) recombinant vesicular stomatitis virus pseudotyped with Ebola Zaire Glycoprotein: Standardized template with key considerations for a risk/benefit assessment. Vaccine X 2019; 1:100009. [PMID: 31384731 PMCID: PMC6668225 DOI: 10.1016/j.jvacx.2019.100009] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 12/07/2018] [Indexed: 12/14/2022] Open
Abstract
The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety and characteristics of live, recombinant viral vector vaccines. A recent publication by the V3SWG described live, attenuated, recombinant vesicular stomatitis virus (rVSV) as a chimeric virus vaccine for HIV-1 (Clarke et al., 2016). The rVSV vector system is being explored as a platform for development of multiple vaccines. This paper reviews the molecular and biological features of the rVSV vector system, followed by a template with details on the safety and characteristics of a rVSV vaccine against Zaire ebolavirus (ZEBOV). The rVSV-ZEBOV vaccine is a live, replication competent vector in which the VSV glycoprotein (G) gene is replaced with the glycoprotein (GP) gene of ZEBOV. Multiple copies of GP are expressed and assembled into the viral envelope responsible for inducing protective immunity. The vaccine (designated V920) was originally constructed by the National Microbiology Laboratory, Public Health Agency of Canada, further developed by NewLink Genetics Corp. and Merck & Co., and is now in final stages of registration by Merck. The vaccine is attenuated by deletion of the principal virulence factor of VSV (the G protein), which also removes the primary target for anti-vector immunity. The V920 vaccine caused no toxicities after intramuscular (IM) or intracranial injection of nonhuman primates and no reproductive or developmental toxicity in a rat model. In multiple studies, cynomolgus macaques immunized IM with a wide range of virus doses rapidly developed ZEBOV-specific antibodies measured in IgG ELISA and neutralization assays and were fully protected against lethal challenge with ZEBOV virus. Over 20,000 people have received the vaccine in clinical trials; the vaccine has proven to be safe and well tolerated. During the first few days after vaccination, many vaccinees experience a mild acute-phase reaction with fever, headache, myalgia, and arthralgia of short duration; this period is associated with a low-level viremia, activation of anti-viral genes, and increased levels of chemokines and cytokines. Oligoarthritis and rash appearing in the second week occur at a low incidence, and are typically mild-moderate in severity and self-limited. V920 vaccine was used in a Phase III efficacy trial during the West African Ebola epidemic in 2015, showing 100% protection against Ebola Virus Disease, and it has subsequently been deployed for emergency control of Ebola outbreaks in central Africa. The template provided here provides a comprehensive picture of the first rVSV vector to reach the final stage of development and to provide a solution to control of an alarming human disease.
Collapse
Affiliation(s)
| | - Patricia E. Fast
- International AIDS Vaccine Initiative, New York, NY 10004, United States
| | - Kayvon Modjarrad
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, United States
| | | | | | - Joan Fusco
- NewLink Genetics Corp, Ames, IA, United States
| | | | | | | | - Sheri Dubey
- Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Sean P. Troth
- Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Jayanthi Wolf
- Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Vidisha Singh
- Immunology and Molecular Pathogenesis, Emory University, Atlanta, GA 30322, United States
| | | | | | | |
Collapse
|
43
|
Gerke C, Frantz PN, Ramsauer K, Tangy F. Measles-vectored vaccine approaches against viral infections: a focus on Chikungunya. Expert Rev Vaccines 2019; 18:393-403. [PMID: 30601074 DOI: 10.1080/14760584.2019.1562908] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION The large global burden of viral infections and especially the rapidly spreading vector-borne diseases and other emerging viral diseases show the need for new approaches in vaccine development. Several new vaccine technology platforms have been developed and are under evaluation. Areas covered: This article discusses the measles vector platform technology derived from the safe and highly efficacious measles virus vaccine. The pipeline of measles-vectored vaccine candidates against viral diseases is reviewed. Particular focus is given to the Chikungunya vaccine candidate as the first measles-vectored vaccine that demonstrated safety, immunogenicity, and functionality of the technology in humans even in the presence of pre-existing anti-measles immunity and thus achieved proof of concept for the technology. Expert commentary: Demonstrating no impact of pre-existing anti-measles immunity in humans on the response to the transgene was fundamental for the technology and indicates that the technology is suitable for large-scale immunization in measles pre-immune populations. The proof of concept in humans combined with a large preclinical track record of safety, immunogenicity, and efficacy for a variety of pathogens suggest the measles vector platform as promising plug-and-play vaccine platform technology for rapid development of effective preventive vaccines against viral and other infectious diseases.
Collapse
Affiliation(s)
| | - Phanramphoei N Frantz
- b Viral Genomics and Vaccination Unit, UMR-3569 CNRS, Department of Virology , Institut Pasteur , Paris , France.,c Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC) , National Science and Technology Development Agency , Pathumthani , Thailand
| | | | - Frédéric Tangy
- b Viral Genomics and Vaccination Unit, UMR-3569 CNRS, Department of Virology , Institut Pasteur , Paris , France
| |
Collapse
|
44
|
mRNA as a Transformative Technology for Vaccine Development to Control Infectious Diseases. Mol Ther 2019; 27:757-772. [PMID: 30803823 DOI: 10.1016/j.ymthe.2019.01.020] [Citation(s) in RCA: 297] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 02/07/2023] Open
Abstract
In the last two decades, there has been growing interest in mRNA-based technology for the development of prophylactic vaccines against infectious diseases. Technological advancements in RNA biology, chemistry, stability, and delivery systems have accelerated the development of fully synthetic mRNA vaccines. Potent, long-lasting, and safe immune responses observed in animal models, as well as encouraging data from early human clinical trials, make mRNA-based vaccination an attractive alternative to conventional vaccine approaches. Thanks to these data, together with the potential for generic, low-cost manufacturing processes and the completely synthetic nature, the prospects for mRNA vaccines are very promising. In addition, mRNA vaccines have the potential to streamline vaccine discovery and development, and facilitate a rapid response to emerging infectious diseases. In this review, we overview the unique attributes of mRNA vaccine approaches, review the data of mRNA vaccines against infectious diseases, discuss the current challenges, and highlight perspectives about the future of this promising technology.
Collapse
|
45
|
Nürnberger C, Bodmer BS, Fiedler AH, Gabriel G, Mühlebach MD. A Measles Virus-Based Vaccine Candidate Mediates Protection against Zika Virus in an Allogeneic Mouse Pregnancy Model. J Virol 2019; 93:e01485-18. [PMID: 30429338 PMCID: PMC6340036 DOI: 10.1128/jvi.01485-18] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/27/2018] [Indexed: 12/19/2022] Open
Abstract
The impact of the Zika virus (ZIKV) epidemic highlights the need for vaccines that reduce or prevent infection and reliably prevent teratogenic complications. The live-attenuated measles virus (MV) vaccine strains are a promising vaccine platform, since they induce robust humoral and cellular immune responses against additional antigens and have an excellent safety record. To explore its potential to protect against ZIKV, we compared a recombinant Schwarz strain MV that encodes ZIKV prM and soluble E proteins (MV-Zika-sE) with a prototypic alum-adjuvanted whole inactivated ZIKV particle vaccine. Analysis of MV-Zika-sE-infected cells confirmed antigen expression, and the virus replicated with vaccine strain characteristics. Immunized IFNAR-/--CD46Ge mice developed E protein-specific and neutralizing antibodies, and ZIKV E-specific cellular immune responses were observed by gamma interferon (IFN-γ) enzyme-linked immunospot (ELISpot) and in vitro T cell proliferation assays. To analyze protective efficacy, vaccinated female mice were challenged with ZIKV after allogeneic mating. In MV-Zika-sE-vaccinated mice, weight gain was similar to that in uninfected mice, while no plasma viremia was detectable in the majority of the animals. In contrast, infected control animals gained less weight and experienced about 100-fold higher viremia over at least 3 days. Moreover, vaccination with MV-Zika-sE reduced the ZIKV load in different organs and the placentas and prevented infection of the fetus. Consequently, no fetal growth retardation, anemia, or death due to ZIKV infection was seen in MV-Zika-sE-vaccinated dams. In contrast, the inactivated ZIKV vaccine had little to no effect in our studies. Therefore, the MV-derived ZIKV vaccine is a promising candidate for further preclinical and clinical development.IMPORTANCE Zika virus (ZIKV) is a mosquito-borne flavivirus that causes a variety of neurological complications, including congenital birth defects. Despite the urgent need, no ZIKV vaccine has yet been licensed. Recombinant vaccine strain-derived measles viruses (MV) constitute a promising vector platform to induce immunity against foreign pathogens by expressing antigens from additional transcription units while at the same time possessing a remarkable safety profile. This concept has already been validated against different pathogens, including at least 3 other flaviviruses, and our data show that vaccination with MV expressing soluble ZIKV E protein significantly diminishes infection and prevents fetal loss or damage in an allogeneic mouse pregnancy model. It can thus be regarded as a promising emergency vaccine candidate with the potential for inclusion in routine vaccination settings in areas of endemicity to prevent teratogenic effects of circulating ZIKV during pregnancy, comparable to standard rubella virus vaccination.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Disease Models, Animal
- Female
- Genome, Viral
- Immunity, Cellular/immunology
- Immunity, Humoral/immunology
- Measles Vaccine/administration & dosage
- Measles Vaccine/immunology
- Measles virus/immunology
- Membrane Cofactor Protein/physiology
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Pregnancy
- Receptor, Interferon alpha-beta/physiology
- Vaccination
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/immunology
- Viral Envelope Proteins/immunology
- Zika Virus/genetics
- Zika Virus/immunology
- Zika Virus Infection/immunology
- Zika Virus Infection/prevention & control
- Zika Virus Infection/virology
Collapse
Affiliation(s)
- Cindy Nürnberger
- Veterinary Medicine Division, Paul-Ehrlich-Institut, Langen, Germany
- German Center for Infection Research, Gießen-Marburg-Langen, Germany
| | - Bianca S Bodmer
- Veterinary Medicine Division, Paul-Ehrlich-Institut, Langen, Germany
| | - Anna H Fiedler
- Veterinary Medicine Division, Paul-Ehrlich-Institut, Langen, Germany
- German Center for Infection Research, Gießen-Marburg-Langen, Germany
| | - Gülsah Gabriel
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- Institute for Virology, University of Veterinary Medicine, Hannover, Germany
| | - Michael D Mühlebach
- Veterinary Medicine Division, Paul-Ehrlich-Institut, Langen, Germany
- German Center for Infection Research, Gießen-Marburg-Langen, Germany
| |
Collapse
|
46
|
Abstract
Chikungunya is a clinically and economically important arbovirus that has spread globally in the twenty-first century. While uncommonly fatal, infection with the virus can lead to incapacitating arthralgia that can persist for months to years. The adverse impacts of viral spread are most severe in developing low- and middle-income countries in which medical infrastructure is insufficient and manual labor is an economic driver. Unfortunately, no prophylactic or therapeutic treatments are approved for human use to combat the virus. Historically, vaccination has proven to be the most efficient and successful strategy for protecting populations and eradicating infectious disease. A large and diverse range of promising vaccination approaches for use against Chikungunya has emerged in recent years and been shown to safely elicit protective immune responses in animal models and humans. Importantly, many of these are based on technologies that have been clinically approved for use against other pathogens. Furthermore, clinical trials are currently ongoing for a subset of these. The purpose of this review is to provide a description of the relevant immunobiology of Chikungunya infection, to present immune-stimulating technologies that have been successfully employed to protect against infection, and discuss priorities and challenges regarding the future development of a vaccine for clinical use.
Collapse
|
47
|
Wei J, Su W, Wang J, Zhang Y. Introduction of a conserved sequence into the 5'UTR of additional transcription down-regulation expression of foreign proteins of measles virus minigenome. Biochem Biophys Res Commun 2018; 508:1221-1226. [PMID: 30558793 DOI: 10.1016/j.bbrc.2018.12.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 12/05/2018] [Indexed: 12/01/2022]
Abstract
The noncoding sequences in the UTR between the Gene Start signal (GS) and the initial codon AUG from 25 measles virus genomes were compared. The conserved sequences 5'-U(NNNNN)5-8-3' and 5'-(CNNNNNC)-3' were found in the genome and the UTR of phosphoprotein (P) and Fusion (F) mRNA. These sequences were named the U-Unit and the C-Unit, respectively. These two sequences are different in the P and F mRNAs. To investigate whether these conserved sequences can be used to regulate expression of foreign proteins in additional transcription units (ATU), a series of minigenomes with various 5' UTRs were generated. From reporter gene assays and quantitation of gene copies by qPCR, we found that the introduction of the C-unit into the 5'UTR of mRNA can down-regulate the expression of foreign proteins in additional transcription units in vivo.
Collapse
Affiliation(s)
- Jiangbo Wei
- The Fourth Military Medical University, Biotechnology Center, School of Pharmacy, No.169, Changle West Road, Xi'an, Shanxi, CN 710032, PR China; China National Pharmaceutical Group Corporation (Sinopharm), National Vaccine and Serum Institute, Jianghai 2nd Road, Daxing district, Beijing, CN 100038, PR China.
| | - Wenhao Su
- China National Pharmaceutical Group Corporation (Sinopharm), National Vaccine and Serum Institute, Jianghai 2nd Road, Daxing district, Beijing, CN 100038, PR China.
| | - Junzhi Wang
- China National Institute for Food and Drug Control, Huatuo Road, Daxing district, Beijing, Beijing, CN 10050, PR China.
| | - Yingqi Zhang
- The Fourth Military Medical University, Biotechnology Center, School of Pharmacy, No.169, Changle West Road, Xi'an, Shanxi, CN 710032, PR China.
| |
Collapse
|
48
|
Rauch S, Jasny E, Schmidt KE, Petsch B. New Vaccine Technologies to Combat Outbreak Situations. Front Immunol 2018; 9:1963. [PMID: 30283434 PMCID: PMC6156540 DOI: 10.3389/fimmu.2018.01963] [Citation(s) in RCA: 360] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/09/2018] [Indexed: 01/07/2023] Open
Abstract
Ever since the development of the first vaccine more than 200 years ago, vaccinations have greatly decreased the burden of infectious diseases worldwide, famously leading to the eradication of small pox and allowing the restriction of diseases such as polio, tetanus, diphtheria, and measles. A multitude of research efforts focuses on the improvement of established and the discovery of new vaccines such as the HPV (human papilloma virus) vaccine in 2006. However, radical changes in the density, age distribution and traveling habits of the population worldwide as well as the changing climate favor the emergence of old and new pathogens that bear the risk of becoming pandemic threats. In recent years, the rapid spread of severe infections such as HIV, SARS, Ebola, and Zika have highlighted the dire need for global preparedness for pandemics, which necessitates the extremely rapid development and comprehensive distribution of vaccines against potentially previously unknown pathogens. What is more, the emergence of antibiotic resistant bacteria calls for new approaches to prevent infections. Given these changes, established methods for the identification of new vaccine candidates are no longer sufficient to ensure global protection. Hence, new vaccine technologies able to achieve rapid development as well as large scale production are of pivotal importance. This review will discuss viral vector and nucleic acid-based vaccines (DNA and mRNA vaccines) as new approaches that might be able to tackle these challenges to global health.
Collapse
|
49
|
Bodmer BS, Fiedler AH, Hanauer JRH, Prüfer S, Mühlebach MD. Live-attenuated bivalent measles virus-derived vaccines targeting Middle East respiratory syndrome coronavirus induce robust and multifunctional T cell responses against both viruses in an appropriate mouse model. Virology 2018; 521:99-107. [PMID: 29902727 PMCID: PMC7118890 DOI: 10.1016/j.virol.2018.05.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/04/2018] [Accepted: 05/31/2018] [Indexed: 12/15/2022]
Abstract
Cases of Middle East respiratory syndrome coronavirus (MERS-CoV) continue to occur, making it one of the WHO´s targets for accelerated vaccine development. One vaccine candidate is based on live-attenuated measles virus (MV) vaccine encoding the MERS-CoV spike glycoprotein (MERS-S). MVvac2-MERS-S(H) induces robust humoral and cellular immunity against MERS-S mediating protection. Here, the induction and nature of immunity after vaccination with MVvac2-MERS-S(H) or novel MVvac2-MERS-N were further characterized. We focused on the necessity for vector replication and the nature of induced T cells, since functional CD8+ T cells contribute importantly to clearance of MERS-CoV. While no immunity against MERS-CoV or MV was detected in MV-susceptible mice after immunization with UV-inactivated virus, replication-competent MVvac2-MERS-S(H) triggered robust neutralizing antibody titers also in adult mice. Furthermore, a significant fraction of MERS CoV-specific CD8+ T cells and MV-specific CD4+ T cells simultaneously expressing IFN-γ and TNF-α were induced, revealing that MVvac2-MERS-S(H) induces multifunctional cellular immunity.
Collapse
Affiliation(s)
- Bianca S Bodmer
- Product Testing of IVMPs, Div. of Veterinary Medicine, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, D-63225 Langen, Germany; German Center for Infection Research, Langen, Germany
| | - Anna H Fiedler
- Product Testing of IVMPs, Div. of Veterinary Medicine, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, D-63225 Langen, Germany; German Center for Infection Research, Langen, Germany
| | - Jan R H Hanauer
- Product Testing of IVMPs, Div. of Veterinary Medicine, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, D-63225 Langen, Germany
| | - Steffen Prüfer
- Product Testing of IVMPs, Div. of Veterinary Medicine, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, D-63225 Langen, Germany
| | - Michael D Mühlebach
- Product Testing of IVMPs, Div. of Veterinary Medicine, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, D-63225 Langen, Germany; German Center for Infection Research, Langen, Germany.
| |
Collapse
|
50
|
Abstract
Measles remains an important cause of child morbidity and mortality worldwide despite the availability of a safe and efficacious vaccine. The current measles virus (MeV) vaccine was developed empirically by attenuation of wild-type (WT) MeV by in vitro passage in human and chicken cells and licensed in 1963. Additional passages led to further attenuation and the successful vaccine strains in widespread use today. Attenuation is associated with decreased replication in lymphoid tissue, but the molecular basis for this restriction has not been identified. The immune response is age dependent, inhibited by maternal antibody (Ab) and involves induction of both Ab and T cell responses that resemble the responses to WT MeV infection, but are lower in magnitude. Protective immunity is correlated with levels of neutralizing Ab, but the actual immunologic determinants of protection are not known. Because measles is highly transmissible, control requires high levels of population immunity. Delivery of the two doses of vaccine needed to achieve >90% immunity is accomplished by routine immunization of infants at 9-15 months of age followed by a second dose delivered before school entry or by periodic mass vaccination campaigns. Because delivery by injection creates hurdles to sustained high coverage, there are efforts to deliver MeV vaccine by inhalation. In addition, the safety record for the vaccine combined with advances in reverse genetics for negative strand viruses has expanded proposed uses for recombinant versions of measles vaccine as vectors for immunization against other infections and as oncolytic agents for a variety of tumors.
Collapse
Affiliation(s)
- Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health , Baltimore, Maryland
| |
Collapse
|