1
|
Hachimi O, Falender R, Davis G, Wafula RV, Sutton M, Bancroft J, Cieslak P, Kelly C, Kaya D, Radniecki T. Evaluation of molecular-based methods for the detection and quantification of Cryptosporidium spp. in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174219. [PMID: 38917908 DOI: 10.1016/j.scitotenv.2024.174219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
Cryptosporidium poses significant public health risks as a cause of waterborne disease worldwide. Clinical surveillance of cryptosporidiosis is largely underreported due to the asymptomatic and mildly symptomatic infections, clinical misdiagnoses, and barriers to access testing. Wastewater surveillance overcomes these limitations and could serve as an effective tool for identifying cryptosporidiosis at the population level. Despite its potential, the lack of standardized wastewater surveillance methods for Cryptosporidium spp. challenges implementation design and the comparability between studies. Thus, this study compared and contrasted Cryptosporidium wastewater surveillance methods for concentrating wastewater oocysts, extracting oocyst DNA, and detecting Cryptosporidium genetic markers. The evaluated concentration methods included electronegative membrane filtration, Envirocheck HV capsule filtration, centrifugation, and Nanotrap Microbiome Particles, with and without additional immunomagnetic separation purification (except for the Nanotrap Microbiome Particles). Oocyst DNA extraction by either the DNeasy Powersoil Pro kit and the QIAamp DNA Mini kit were evaluated and the impact of bead beating and freeze-thaw pretreatments on DNA recoveries was assessed. Genetic detection via qPCR assays targeting either the Cryptosporidium 18S rRNA gene or the Cryptosporidium oocyst wall protein gene were tested. Oocyst recovery percentages were highest for centrifugation (39-77 %), followed by the Nanotrap Microbiome Particles (24 %), electronegative filtration with a PBST elution (22 %), and Envirocheck HV capsule filtration (13 %). Immunomagnetic separation purification was found to be unsuitable due to interference from the wastewater matrix. Bead-beating pretreatment enhanced DNA recoveries from both the DNeasy Powersoil Pro kit (314 gc/μL DNA) and the QIAamp DNA Mini kit (238 gc/μL DNA). In contrast, freeze-thaw pretreatment reduced DNA recoveries to under 92 gc/μL DNA, likely through DNA degradation. Finally, while both qPCR assays were specific to Cryptosporidium spp., the 18S rRNA assay had a 5-fold lower detection limit and could detect a wider range of Cryptosporidium spp. than the Cryptosporidium oocyst wall protein assay.
Collapse
Affiliation(s)
- Oumaima Hachimi
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 116 Johnson Hall, Corvallis, OR 97331, USA
| | - Rebecca Falender
- Oregon Health Authority, 800 NE Oregon St, Portland, OR 97232, USA
| | - Gabriel Davis
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 116 Johnson Hall, Corvallis, OR 97331, USA
| | - Rispa Vranka Wafula
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 116 Johnson Hall, Corvallis, OR 97331, USA
| | - Melissa Sutton
- Oregon Health Authority, 800 NE Oregon St, Portland, OR 97232, USA
| | - June Bancroft
- Oregon Health Authority, 800 NE Oregon St, Portland, OR 97232, USA
| | - Paul Cieslak
- Oregon Health Authority, 800 NE Oregon St, Portland, OR 97232, USA
| | - Christine Kelly
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 116 Johnson Hall, Corvallis, OR 97331, USA
| | - Devrim Kaya
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 116 Johnson Hall, Corvallis, OR 97331, USA
| | - Tyler Radniecki
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 116 Johnson Hall, Corvallis, OR 97331, USA.
| |
Collapse
|
2
|
Garg R, Maurya A, Mani NK, Prasad D. Thread-powered cell lysis and isotachophoresis: unlocking microbial DNA for diverse molecular applications. World J Microbiol Biotechnol 2024; 40:97. [PMID: 38349426 DOI: 10.1007/s11274-024-03906-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/22/2024] [Indexed: 02/15/2024]
Abstract
Central to the domain of molecular biology resides the foundational process of DNA extraction and purification, a cornerstone underpinning a myriad of pivotal applications. In this research, we introduce a DNA extraction and purification technique leveraging polypropylene (PP) threads. The process commences with robust cell lysis achieved through the vigorous agitation of interwoven PP threads. The friction between the threads facilitates cell lysis especially those microbes having tough cell wall. For purification of DNA, thread-based isotachophoresis was employed which makes the whole process swift and cost-effective. Lysed cell-laden threads were submerged in a trailing electrolyte which separated DNA from other cellular contents. The process was performed with a tailored ITP device. An electric field directs DNA, cell debris, trailing electrolyte, and leading electrolyte toward the anode. Distinct ion migration resulted in DNA concentrating on the PP thread's anode-proximal region. The SYBR green dye is used to visualize DNA as a prominent green zone under blue light. The purified DNA exhibits high purity levels of 1.82 ± 0.1 (A260/A280), making it suitable for various applications aiming at nucleic acid detection.
Collapse
Affiliation(s)
- Rishabh Garg
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Jharkhand, 835215, India
| | - Aharnish Maurya
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Jharkhand, 835215, India
| | - Naresh Kumar Mani
- Microfluidics, Sensors and Diagnostics (μSenD) Laboratory, Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Dinesh Prasad
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Jharkhand, 835215, India.
| |
Collapse
|
3
|
Monitoring of Paenibacillus larvae in Lower Austria through DNA-Based Detection without De-Sporulation: 2018 to 2022. Vet Sci 2023; 10:vetsci10030213. [PMID: 36977252 PMCID: PMC10054382 DOI: 10.3390/vetsci10030213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
American foulbrood is caused by the spore-forming Paenibacillus larvae. Although the disease effects honey bee larvae, it threatens the entire colony. Clinical signs of the disease are seen at a very late stage of the disease and bee colonies are often beyond saving. Therefore, through active monitoring based on screening, an infection can be detected early and bee colonies can be protected with hygiene measures. As a result, the pressure to spread in an area remains low. The cultural and molecular biological detection of P. larvae is usually preceded by spore germination before detection. In this study, we compared the results of two methods, the culture detection and RT-PCR detection of DNA directly isolated from spores. Samples of honey and cells with honey surrounding the brood were used in a five-year voluntary monitoring program in a western part of Lower Austria. DNA-extraction from spores to speed up detection involved one chemical and two enzymatic steps before mechanical bashing-beat separation and additional lysis. The results are comparable to culture-based methods, but with a large time advantage. Within the voluntary monitoring program, the proportion of bee colonies without the detection of P. larvae was high (2018: 91.9%, 2019: 72.09%, 2020: 74.6%, 2021: 81.35%, 2022: 84.5%), and in most P. larvae-positive bee colonies, only a very low spore content was detected. Nevertheless, two bee colonies in one apiary with clinical signs of disease had to be eradicated.
Collapse
|
4
|
Ribani A, Taurisano V, Utzeri VJ, Fontanesi L. Honey Environmental DNA Can Be Used to Detect and Monitor Honey Bee Pests: Development of Methods Useful to Identify Aethina tumida and Galleria mellonella Infestations. Vet Sci 2022; 9:213. [PMID: 35622741 PMCID: PMC9147136 DOI: 10.3390/vetsci9050213] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/09/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
Environmental DNA (eDNA) contained in honey derives from the organisms that directly and indirectly have been involved in the production process of this matrix and that have played a role in the hive ecosystems where the honey has been produced. In this study we set up PCR-based assays to detect the presence of DNA traces left in the honey by two damaging honey bee pests: the small hive beetle (Aethina tumida) and the greater wax moth (Galleria mellonella). DNA was extracted from 82 honey samples produced in Italy and amplified using two specific primer pairs that target the mitochondrial gene cytochrome oxidase I (COI) of A. tumida and two specific primer pairs that target the same gene in G. mellonella. The limit of detection was tested using sequential dilutions of the pest DNA. Only one honey sample produced in Calabria was positive for A. tumida whereas about 66% of all samples were positively amplified for G. mellonella. The use of honey eDNA could be important to establish early and effective measures to contain at the local (e.g., apiary) or regional scales these two damaging pests and, particularly for the small hive beetle, to prevent its widespread diffusion.
Collapse
Affiliation(s)
- Anisa Ribani
- Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy; (A.R.); (V.T.); (V.J.U.)
- GRIFFA srl, Viale Fanin 48, 40127 Bologna, Italy
| | - Valeria Taurisano
- Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy; (A.R.); (V.T.); (V.J.U.)
| | - Valerio Joe Utzeri
- Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy; (A.R.); (V.T.); (V.J.U.)
- GRIFFA srl, Viale Fanin 48, 40127 Bologna, Italy
| | - Luca Fontanesi
- Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy; (A.R.); (V.T.); (V.J.U.)
| |
Collapse
|
5
|
Ribani A, Utzeri VJ, Taurisano V, Galuppi R, Fontanesi L. Analysis of honey environmental DNA indicates that the honey bee (Apis mellifera L.) trypanosome parasite Lotmaria passim is widespread in the apiaries of the North of Italy. J Invertebr Pathol 2021; 184:107628. [PMID: 34090931 DOI: 10.1016/j.jip.2021.107628] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/09/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022]
Abstract
Lotmaria passim is a trypanosomatid that infects honey bees. In this study, we established an axenic culture of L. passim from Italian isolates and then used its DNA as a control in subsequent analyses that investigated environmental DNA (eDNA) to detect this trypasonosomatid. The source of eDNA was honey, which has been already demonstrated to be useful to detect honey bee parasites. DNA from a total of 164 honey samples collected in the North of Italy was amplified with three L. passim specific PCR primers and 78% of the analysed samples gave positive results. These results indicated a high prevalence rate of this trypanosomatid in the North of Italy, where it might be considered another threat to honey bee health.
Collapse
Affiliation(s)
- Anisa Ribani
- Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy
| | - Valerio Joe Utzeri
- Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy
| | - Valeria Taurisano
- Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy
| | - Roberta Galuppi
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Bologna, Italy
| | - Luca Fontanesi
- Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy.
| |
Collapse
|
6
|
Sánchez-Chica J, Correa MM, Aceves-Diez AE, Castañeda-Sandoval LM. Enterotoxin Gene Distribution and Genotypes of Bacillus cereussensu lato Isolated from Cassava Starch. Toxins (Basel) 2021; 13:131. [PMID: 33578634 PMCID: PMC7916381 DOI: 10.3390/toxins13020131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/24/2022] Open
Abstract
Bacillus cereus is a human pathogenic bacterium found in foods with the potential to cause emesis and diarrhea. This study estimated the presence, toxigenic and genomic diversity of B. cereus s.l. obtained from cassava starch samples collected in bakeries and powdered food companies in Medellín (Colombia). Bacillus cereuss.l. was found in 43 of 75 (57%) cassava starch samples and 98 isolates were obtained. The nheABC, hblCDAB, cytK2, entFM and cesB toxin genes were detected by multiplex PCR and the most frequent operon was nheABC, whereas cesB gene was not found. Twelve toxigenic profiles were determined by the detection of toxin genes, and the most frequent profiles harbored all enterotoxin genes. A broad genomic diversity was detected according to GTG5-PCR fingerprinting results with 76 B. cereus s.l. grouped in sixteen clusters and the 22 isolates clustering separately. No relationship was observed between genomic background and toxigenic profiles. In general, the results showed a high genomic and enterotoxigenic diversity in B. cereus s.l. found in cassava starch. These results should incentive future studies to understand the distribution of B. cereus s.l. isolated on raw materials in comparison with finished products.
Collapse
Affiliation(s)
- Jennifer Sánchez-Chica
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia; (J.S.-C.); (M.M.C.)
| | - Margarita M. Correa
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia; (J.S.-C.); (M.M.C.)
| | - Angel E. Aceves-Diez
- Research and Development Department, Minkab Laboratories, Av. 18 de Marzo No. 546, Col. La Nogalera, Guadalajara P.O. Box 44470, Jalisco, Mexico;
| | - Laura M. Castañeda-Sandoval
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia; (J.S.-C.); (M.M.C.)
| |
Collapse
|
7
|
Sánchez-Chica J, Correa MM, Aceves-Diez AE, Castañeda-Sandoval LM. Genetic and toxigenic diversity of Bacillus cereus group isolated from powdered foods. Journal of Food Science and Technology 2020; 58:1892-1899. [PMID: 33897025 DOI: 10.1007/s13197-020-04700-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/13/2020] [Accepted: 08/06/2020] [Indexed: 11/27/2022]
Abstract
Bacillus cereus is a human pathogenic bacterium that produces emetic and diarrheal foodborne diseases. This study evaluated the genetic and toxigenic diversity in B. cereus group isolates from powdered foods collected in public educational institutions, bakeries and powdered food companies located in Medellín, Colombia. B. cereus was detected in 35 of 305 (11%) powdered food samples and 52 B. cereus were isolated. The presence of ten toxin genes, hblCDAB, nheABC, cytK2, entFM and cesB, was evaluated in the isolates by multiplex PCR. The nheABC operon was found in all isolates (100%), hblCDAB in 22 (42%), hblCDA in 8 (15%) and hblCD in 3 (6%); the cytK2 gene was detected in 32 isolates (62%) and entFM in 32 (62%). Notably, the cesB gene was not detected. According to the presence of toxin genes, fifteen profiles were identified. The predominant toxigenic profile contained all toxin genes but cesB. A large genetic diversity was observed by GTG5 fingerprinting with 46 isolates grouped in seven clusters and the remaining six clustering individually. There was no relationship between toxigenic profiles and genetic clusters, but some genetic clusters seemed to be related to particular powdered food types. In general, the results evidenced high genetic and enterotoxigenic diversity among the B. cereus group isolates.
Collapse
Affiliation(s)
- Jennifer Sánchez-Chica
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia-UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Margarita M Correa
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia-UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Angel E Aceves-Diez
- Research and Development Department, Minkab Laboratories, P.O. Box 44470, Av. 18 de Marzo No. 546, Col. La Nogalera, Guadalajara, Jalisco Mexico
| | | |
Collapse
|
8
|
Ribani A, Utzeri VJ, Taurisano V, Fontanesi L. Honey as a Source of Environmental DNA for the Detection and Monitoring of Honey Bee Pathogens and Parasites. Vet Sci 2020; 7:vetsci7030113. [PMID: 32824137 PMCID: PMC7558659 DOI: 10.3390/vetsci7030113] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 02/08/2023] Open
Abstract
Environmental DNA (eDNA) has been proposed as a powerful tool to detect and monitor cryptic, elusive, or invasive organisms. We recently demonstrated that honey constitutes an easily accessible source of eDNA. In this study, we extracted DNA from 102 honey samples (74 from Italy and 28 from 17 other countries of all continents) and tested the presence of DNA of nine honey bee pathogens and parasites (Paenibacillus larvae, Melissococcus plutonius, Nosema apis, Nosema ceranae, Ascosphaera apis,Lotmaria passim, Acarapis woodi, Varroa destructor, and Tropilaelaps spp.) using qualitative PCR assays. All honey samples contained DNA from V. destructor, confirming the widespread diffusion of this mite. None of the samples gave positive amplifications for N. apis, A. woodi, and Tropilaelaps spp. M. plutonius was detected in 87% of the samples, whereas the other pathogens were detected in 43% to 57% of all samples. The frequency of Italian samples positive for P. larvae was significantly lower (49%) than in all other countries (79%). The co-occurrence of positive samples for L. passim and A. apis with N. ceranae was significant. This study demonstrated that honey eDNA can be useful to establish monitoring tools to evaluate the sanitary status of honey bee populations.
Collapse
Affiliation(s)
- Anisa Ribani
- Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy; (A.R.); (V.J.U.); (V.T.)
- GRIFFA s.r.l., Viale Giuseppe Fanin 48, 40127 Bologna, Italy
| | - Valerio Joe Utzeri
- Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy; (A.R.); (V.J.U.); (V.T.)
- GRIFFA s.r.l., Viale Giuseppe Fanin 48, 40127 Bologna, Italy
| | - Valeria Taurisano
- Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy; (A.R.); (V.J.U.); (V.T.)
| | - Luca Fontanesi
- Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy; (A.R.); (V.J.U.); (V.T.)
- Correspondence: ; Tel.: +39-051-2096535
| |
Collapse
|
9
|
|
10
|
Sánchez Chica J, Correa MM, Aceves-Diez AE, Rasschaert G, Heyndrickx M, Castañeda-Sandoval LM. Genomic and Toxigenic Heterogeneity of Bacillus cereus sensu lato Isolated from Ready-to-Eat Foods and Powdered Milk in Day Care Centers in Colombia. Foodborne Pathog Dis 2019; 17:340-347. [PMID: 31738585 DOI: 10.1089/fpd.2019.2709] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Bacillus cereus sensu lato (s.l.) is a group of bacteria commonly found in diverse environments, including foods, with potential to cause emesis and diarrhea. In Colombia, it is one of the main foodborne pathogens. The aim of this study was to determine the genomic and toxigenic heterogeneity of B. cereus s.l. isolated from ready-to-eat foods and powdered milk collected in day care centers of Medellin, Colombia. Of 112 B. cereus s.l. isolates obtained, 94% were β-hemolytic. Toxigenic heterogeneity was established by the presence of nheABC, hblCDAB, cytK2, entFM, and cesB toxigenic genes. The nheABC operon and entFM gene were most frequently detected in the isolates, whereas the cesB gene was not found. According to the toxin genes content, nine toxigenic profiles were identified. A 44% of isolates had profiles with all genes for nonhemolytic enterotoxin, hemolysin BL, and enterotoxin FM production (profiles II and IV). Pulsed-field gel electrophoresis analysis indicated a high genomic heterogeneity among the B. cereus s.l., with 68 isolates grouping into 16 clusters and 33 placed separately in the dendrogram. This study provides useful information on the safety of ready-to-eat foods and powdered milk in day care centers where children, a susceptible population, are exposed and it should incentive for more studies to understand the distribution of different toxin-encoding genes among B. cereus s.l. isolates, enabling detailed risk assessment.
Collapse
Affiliation(s)
- Jennifer Sánchez Chica
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | - Margarita M Correa
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | - Angel E Aceves-Diez
- Laboratorios Minkab, Departamento de Investigación y Desarrollo, Guadalajara, Jalisco, Mexico
| | - Geertrui Rasschaert
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Melle, Belgium
| | - Marc Heyndrickx
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Melle, Belgium.,Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Merelbeke, Belgium
| | | |
Collapse
|
11
|
Rusenova N, Parvanov P, Stanilova S. Detection of Paenibacillus larvae spores in honey by conventional PCR and its potential for American foulbrood control. BULGARIAN JOURNAL OF VETERINARY MEDICINE 2019. [DOI: 10.15547/bjvm.2159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The present study attempted to detect Paenibacillus larvae spores in naturally contaminated honeys by conventional PCR and to determine the sensitivity of the reaction with different primer pairs in order to assess its potential for American foulbrood control. For this purpose, duplicated honey samples were collected from 5 bee colonies with clinical American foulbrood and 5 clinically healthy colonies in the same apiary. The samples were analysed for the presence of Paenibacillus larvae spores by culture method and subsequent PCR detection in bacterial colonies. The PCR performed directly with spore DNA failed in 6 out of the 20 honeys investigated with spore load of 10–46 cfu/g. The established sensitivity of 70% of the reaction in the present study shows that the adequate control of American foulbrood by analysis of honeys for Paenibacillus larvae spore contamination should be done by combination of culture method followed by PCR in bacterial colonies, whose sensitivity was 100%.
Collapse
|
12
|
Bovo S, Ribani A, Utzeri VJ, Schiavo G, Bertolini F, Fontanesi L. Shotgun metagenomics of honey DNA: Evaluation of a methodological approach to describe a multi-kingdom honey bee derived environmental DNA signature. PLoS One 2018; 13:e0205575. [PMID: 30379893 PMCID: PMC6209200 DOI: 10.1371/journal.pone.0205575] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/27/2018] [Indexed: 12/27/2022] Open
Abstract
Honey bees are considered large-scale monitoring tools due to their environmental exploration and foraging activities. Traces of these activities can be recovered in the honey that also may reflect the hive ecological micro-conditions in which it has been produced. This study applied a next generation sequencing platform (Ion Torrent) for shotgun metagenomic analysis of honey environmental DNA (eDNA). The study tested a methodological framework to interpret DNA sequence information useful to describe the complex ecosystems of the honey bee colony superorganism, its pathosphere and the heterogeneity of the agroecological environments and environmental sources that left DNA marks in the honey. Analysis of two honeys reported sequence reads from five main organism groups (kingdoms or phyla): arthropods (that mainly included reads from Apis mellifera, several other members of the Hymenotpera, in addition to members of the Diptera, Coleoptera and Lepidoptera, as well as aphids and mites), plants (that clearly confirmed the botanical origin of the two honeys, i.e. orange tree blossom and eucalyptus tree blossom honeys), fungi and bacteria (including common hive and honey bee gut microorganisms, honey bee pathogens and plant pathogens), and viruses (which accounted for the largest number of reads in both honeys, mainly assigned to Apis mellifera filamentous virus). The shotgun metagenomic approach that was used in this study can be applied in large scale experiments that might have multiple objectives according to the multi-kingdom derived eDNA that is contained in the honey.
Collapse
Affiliation(s)
- Samuele Bovo
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Anisa Ribani
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Valerio Joe Utzeri
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Giuseppina Schiavo
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Francesca Bertolini
- Department of Bio and Health Informatics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Luca Fontanesi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
- * E-mail:
| |
Collapse
|
13
|
Mulyukin AL, Suzina NE, El’-Registan GI, Danilevich VN. Effective PCR detection of vegetative and dormant bacterial cells due to a unified method for preparation of template DNA encased within cell envelopes. Microbiology (Reading) 2013. [DOI: 10.1134/s0026261713020100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
14
|
American Foulbrood in Uruguay: Twelve years from its first report. J Invertebr Pathol 2012; 110:129-31. [DOI: 10.1016/j.jip.2012.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 02/01/2012] [Accepted: 02/11/2012] [Indexed: 11/20/2022]
|
15
|
Antúnez K, Arredondo D, Anido M, Zunino P. Metalloprotease production by Paenibacillus larvae during the infection of honeybee larvae. MICROBIOLOGY-SGM 2011; 157:1474-1480. [PMID: 21330433 DOI: 10.1099/mic.0.044321-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
American foulbrood is a bacterial disease of worldwide distribution that affects larvae of the honeybee Apis mellifera. The causative agent is the Gram-positive, spore-forming bacterium Paenibacillus larvae. Several authors have proposed that P. larvae secretes metalloproteases that are involved in the larval degradation that occurs after infection. The aim of the present work was to evaluate the production of a metalloprotease by P. larvae during larval infection. First, the complete gene encoding a metalloprotease was identified in the P. larvae genome and its distribution was evaluated by PCR in a collection of P. larvae isolates from different geographical regions. Then, the complete gene was amplified, cloned and overexpressed, and the recombinant metalloprotease was purified and used to generate anti-metalloprotease antibodies. Metalloprotease production was evaluated by immunofluorescence and fluorescence in situ hybridization. The gene encoding a P. larvae metalloprotease was widely distributed in isolates from different geographical origins in Uruguay and Argentina. Metalloprotease was detected inside P. larvae vegetative cells, on the surface of P. larvae spores and secreted to the external growth medium. Its production was also confirmed in vivo, during the infection of honeybee larvae. This protein was able to hydrolyse milk proteins as described for P. larvae, suggesting that could be involved in larval degradation. This work contributes to the knowledge of the pathogenicity mechanisms of a bacterium of great economic significance and is one step in the characterization of potential P. larvae virulence factors.
Collapse
Affiliation(s)
- Karina Antúnez
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avda Italia 3318, CP11600 Montevideo, Uruguay
| | - Daniela Arredondo
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avda Italia 3318, CP11600 Montevideo, Uruguay
| | - Matilde Anido
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avda Italia 3318, CP11600 Montevideo, Uruguay
| | - Pablo Zunino
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avda Italia 3318, CP11600 Montevideo, Uruguay
| |
Collapse
|
16
|
Mulyukin AL, Kudykina YK, Shleeva MO, Anuchin AM, Suzina NE, Danilevich VN, Duda VI, Kaprelyants AS, El’-Registan GI. Intraspecies diversity of dormant forms of Mycobacterium smegmatis. Microbiology (Reading) 2010. [DOI: 10.1134/s0026261710040089] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
17
|
Antúnez K, Anido M, Arredondo D, Evans JD, Zunino P. Paenibacillus larvae enolase as a virulence factor in honeybee larvae infection. Vet Microbiol 2010; 147:83-9. [PMID: 20609532 DOI: 10.1016/j.vetmic.2010.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 06/02/2010] [Accepted: 06/04/2010] [Indexed: 11/30/2022]
Abstract
Paenibacillus larvae is a gram-positive spore-forming bacteria, causative agent of American Foulbrood (AFB), a severe disease affecting larvae of the honeybee Apis mellifera. In an attempt to detect potential virulence factors secreted by P. larvae, we identified an enolase among different secreted proteins. Although this protein is a cytosolic enzyme involved in glycolytic pathways, it has been related to virulence. The aim of the present work was to evaluate its role during the infection of honeybee larvae. Toxicity assays showed that enolase was highly toxic and immunogenic to honeybee larvae. Its production was detected inside P. larvae vegetative cells, on the surface of P. larvae spores and secreted to the external growth medium. P. larvae enolase production was also confirmed in vivo, during the infection of honeybee larvae. This protein was able to hydrolyze milk proteins as described for P. larvae, suggesting that could be involved in larval degradation, maybe through the plasmin(ogen) system. These results suggest that P. larvae enolase may have a role in virulence and could contribute to a general insight about insect-pathogen interaction mechanisms.
Collapse
Affiliation(s)
- Karina Antúnez
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, C.P. 11600, Montevideo, Uruguay.
| | | | | | | | | |
Collapse
|
18
|
Martínez J, Simon V, Gonzalez B, Conget P. A real-time PCR-based strategy for the detection of Paenibacillus larvae vegetative cells and spores to improve the diagnosis and the screening of American foulbrood. Lett Appl Microbiol 2010; 50:603-10. [PMID: 20406378 DOI: 10.1111/j.1472-765x.2010.02840.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM To develop a real-time PCR-based strategy for the detection of Paenibacillus larvae vegetative cells and spores to improve the diagnosis and the screening of American foulbrood (AFB), the most harmful pathology of honeybee brood. METHODS AND RESULTS A real-time PCR that allowed selective identification and quantification of P. larvae 16S rRNA sequence was developed. Using standard samples quantified by flow cytometry, detection limits of 37.5 vegetative cells ml(-1) and 10 spores ml(-1) were determined. Compared to spread plate method, this real-time PCR-based strategy allowed, in only 2 h, the detection of P. larvae in contaminated honeys. No false-positive results were obtained. Moreover, its detection limit was 100 times lower than that of the culture method (2 vs 200 spores g(-1) of honey). CONCLUSION A rapid, selective, with low detection limit, sensitive and specific method to detect and quantify vegetative cells and spores of P. larvae is now available. SIGNIFICANCE AND IMPACT OF STUDY In addition to honey samples, this real-time PCR-based strategy may be also applied to confirm AFB diagnosis in honeybee brood and to screen other apiary supplies and products (bees, pollen, wax), thus broadening the control of AFB spreading.
Collapse
Affiliation(s)
- J Martínez
- Instituto de Ciencias, Facultad de Medicina, Clinica Alemana Universidad del Desarrollo, Santiago, Chile
| | | | | | | |
Collapse
|
19
|
Ryba S, Titera D, Haklova M, Stopka P. A PCR method of detecting American Foulbrood (Paenibacillus larvae) in winter beehive wax debris. Vet Microbiol 2009; 139:193-6. [PMID: 19559547 DOI: 10.1016/j.vetmic.2009.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 05/11/2009] [Accepted: 05/28/2009] [Indexed: 10/20/2022]
Abstract
The objective of this work was to create a fast and sensitive method of detecting Paenibacillus larvae from beehive debris based on PCR that does not require long-lasting cultivation steps. Various methods of extracting spores from beehive debris were compared: the original method of extraction of spores into toluene, and alternative spore extraction methods into Tween 80, into water, into isopropanol and into 95% ethanol. Isolation of DNA from various spore extractions was evaluated too. Best results were provided by isolation of DNA using the QIAamp DNA Mini Kit, without heat treatment. DNA of spores was detected by PCR from 0.25 g of beeswax debris, with the detected titer of 10(5) in 1g according to the cultivation tests.
Collapse
Affiliation(s)
- Stepan Ryba
- Department of Zoology, Faculty of Science, Charles University in Prague, Prague, Czech Republic.
| | | | | | | |
Collapse
|
20
|
Antúnez K, Piccini C, Castro-Sowinski S, Rosado AS, Seldin L, Zunino P. Phenotypic and genotypic characterization of Paenibacillus larvae isolates. Vet Microbiol 2007; 124:178-83. [PMID: 17517481 DOI: 10.1016/j.vetmic.2007.04.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 03/30/2007] [Accepted: 04/04/2007] [Indexed: 11/26/2022]
Abstract
Paenibacillus larvae is the causative agent of American Foulbrood (AFB), a severe disease of honeybees (Apis melifera). The aim of this work was to develop a strategy for the subtyping and the epidemiological analysis of P. larvae. Phenotypic characterisation, susceptibility to several antibiotics, electrophoresis of whole bacterial proteins, rep-PCR, ribotyping and DGGE were assessed using a collection of P. larvae isolates from different Uruguayan and Argentinean locations. Results indicated that there are two P. larvae genotypes circulating in Uruguay ERIC I-BOX A (worldwide distributed) and ERIC I-BOX C (exclusively detected in Argentina until this study). These results suggest that P. larvae isolates had moved between Argentina and Uruguay, probably through the Uruguay River. Patterns of whole bacterial proteins, DGGE and ribotyping did not improve the P. larvae intraspecific discrimination. Antibiotic susceptibility assays showed that 100% isolates were OTC-sensitive and 22% (belonging to ERIC I-BOX A group) were sulfisoxazole-resistant. This work may contribute to the elucidation of basic aspects related to the epidemiology of AFB in Uruguay and in the region.
Collapse
Affiliation(s)
- K Antúnez
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, C.P. 11600 Montevideo, Uruguay
| | | | | | | | | | | |
Collapse
|