1
|
Nagah A, El-Sheekh MM, Arief OM, Alqahtani MD, Alharbi BM, Dawwam GE. Endophytic Bacillus vallismortis and Bacillus tequilensis bacteria isolated from medicinal plants enhance phosphorus acquisition and fortify Brassica napus L. vegetative growth and metabolic content. FRONTIERS IN PLANT SCIENCE 2024; 15:1324538. [PMID: 38584952 PMCID: PMC10995350 DOI: 10.3389/fpls.2024.1324538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/28/2024] [Indexed: 04/09/2024]
Abstract
Phosphorus fertilization imposes critical limitations on crop productivity and soil health. The aim of the present work is to explore the potential of two phosphate solubilizing bacteria (PSB) species in phosphorus supplementation of canola (Brassica napus L.). Out of 38 bacterial isolates obtained from nine medicinal plants, two bacterial strains (20P and 28P) were proved as the most potent for the in-vitro tricalcium phosphate solubilization test. These isolates verified their activity toward different enzymes as nitrogenase and alkaline phosphatase. Also, 20P and 28P gave a high amount of indole-3-acetic acid, 34.16 μg/ml and 35.20 μg/ml, respectively, and were positive for siderophores production as they detected moderate affinity for iron chelation. Molecular identification confirmed that strain 20P was Bacillus vallismortis and strain 28P was Bacillus tequilensis. A pot experiment was conducted to study the effect of four different phosphorus concentrations (0%, 50%, 75%, and 100% P) each alone and/or in combination with B. vallismortis, B. tequilensis, or both bacterial isolates on the vegetative growth and some physiological parameters of canola. The combined treatment of 50% phosphorus + (B. vallismortis + B. tequilensis) was generally the most effective with respect to shoot height, shoot dry mass, leaf area, photosynthetic pigment fractions, total sugar content, and accumulated NPK content. In contrast, the rhizosphere pH reached the minimum value under the same treatment. These findings highlighted the potential use of PSB (B. vallismortis and B. tequilensis) along with phosphorus fertilization as a safe sustainable tactic.
Collapse
Affiliation(s)
- Aziza Nagah
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | | | - Omnia M. Arief
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Mashael Daghash Alqahtani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Basmah M. Alharbi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Ghada E. Dawwam
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| |
Collapse
|
2
|
Feng Q, Sehar S, Zhou F, Wei D, Askri SMH, Ma Z, Adil MF, Shamsi IH. Physiological and TMT-based quantitative proteomic responses of barley to aluminium stress under phosphorus-Piriformospora indica interaction. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:634-646. [PMID: 36791535 DOI: 10.1016/j.plaphy.2023.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Barley (Hordeum vulgare L.) is one of the most important cereal crop in the world, and is also the one being seriously affected by heavy metals, particularly aluminium (Al). Keeping in view the utility of barley as food, fodder and raw material for traditional beer brewing, the top-notch quality and higher production of this crop must be sustained. Phosphorus (P) has a quintessential role in plant growth with a potential to relieve symptoms caused by Al poisoning. Displaying a phytopromotive and stress alleviatory potential, Piriformospora indica (P. indica) can improve the stress tolerance in crops. Several studies have been conducted to evaluate the mechanism of Al translocation in a variety of crops including barley, however, the bio-remediative studies related to detoxification and/or sequestration of metals are scarce. Therefore, the current study was carried out to elucidate the tolerance mechanism of an Al-sensitive barley cultivar ZU9 following the colonization with P. indica and exogenous P supply by physio-biochemical, elemental, leaf ultrastructural and root proteome analyses. When compared to the Al alone treated counterparts, the Al + P + P.i treated plants exhibited 4.1-, 1.38-, 2.7 and 1.35-fold improved root and shoot fresh and dry weights, respectively. With the provision of additional phosphorus, the content of P in the root and shoot for Al + P + P.i group was reportedly higher (71.6% and 49.5%, respectively) as compared to the control group. Moreover, inoculation of P. indica combined with P improved barley leaves' cell arrangement and also maintained normal cell wall shape. The root protemics experiment was divided into three groups: Al, Al + P.i and Al + P + P.i. In total, 28, 598, and 823 differentially expressed proteins were found in Al + P.i vs. Al and Al + P + P.i vs. Al, and phenylpropanoid biosynthesis was the most prominently enriched pathway, which contributed significantly to the recuperating effects of P-P. indica interaction. Conslusively, it was found that the percentage of protein related to peroxidase was 70/359 (Al + P + P.i vs. Al) and 92/447 (Al + P + P.i vs. Al + P.i), respectively, which indicated that P. indica in combination with P might be involved in the regulation of peroxidases, increasing the adaptability of barley plants by enhanced reactive oxygen species (ROS) scavenging mechansism.
Collapse
Affiliation(s)
- Qidong Feng
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Shafaque Sehar
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fanrui Zhou
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of State Forestry and Grassland Administration on Highly Efficient Utilization of Forestry Biomass Resources in Southwest China, College of Material and Chemical Engineering, Southwest Forestry University, Kunming, 650224, China
| | - Dongming Wei
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Syed Muhammad Hassan Askri
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhengxin Ma
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Faheem Adil
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Imran Haider Shamsi
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Pang J, Ryan MH, Wen Z, Lambers H, Liu Y, Zhang Y, Tueux G, Jenkins S, Mickan B, Wong WS, Yong JWH, Siddique KHM. Enhanced nodulation and phosphorus acquisition from sparingly-soluble iron phosphate upon treatment with arbuscular mycorrhizal fungi in chickpea. PHYSIOLOGIA PLANTARUM 2023; 175:e13873. [PMID: 36762694 DOI: 10.1111/ppl.13873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/23/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The coordination/trade-off among below-ground strategies for phosphorus (P) acquisition, including root morphology, carboxylate exudation and colonisation by arbuscular mycorrhizal fungi (AMF), is not well understood. This is the first study investigating the relationships between root nodulation, morphology, carboxylates and colonisation by an indigenous community of AMF under varying P levels and source. Two chickpea genotypes with contrasting amounts of rhizosheath carboxylates were grown in pots at six P levels (from 0 to 160 μg g-1 ) as KH2 PO4 (KP, highly soluble) or FePO4 (FeP, sparingly soluble), with or without AMF (±AMF) treatment. Under both FeP and KP, the presence of AMF inhibited shoot growth and shoot branching, decreased total root length and specific root length, increased mean root diameter and root tissue density and reduced carboxylates. However, the role of AMF in acquiring P differed between the two P sources, with the enhanced P acquisition under FeP while not under KP. Co-inoculation of AMF and rhizobia enhanced nodulation under FeP, but not under KP. Our results suggest that the effects of AMF on shoot branching were mediated by cytokinins as the reduced shoot branching in FeP40 and KP40 under +AMF relative to -AMF coincided with a decreased concentration of cytokinins in xylem sap for both genotypes.
Collapse
Affiliation(s)
- Jiayin Pang
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia
| | - Megan H Ryan
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia
| | - Zhihui Wen
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Department of Plant Nutrition, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Hans Lambers
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Yifei Liu
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shenyang Agricultural University, Shenyang, China
| | - Yi Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Guillaume Tueux
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
- Ecole d'Ingénieurs de PURPAN, Toulouse, France
| | - Sasha Jenkins
- School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia
| | - Bede Mickan
- School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia
| | - Wei San Wong
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
4
|
Zuo YW, He P, Zhang JH, Li WQ, Ning DH, Zeng YL, Yang Y, Xia CY, Zhang H, Deng HP. Contrasting Responses of Multispatial Soil Fungal Communities of Thuja sutchuenensis Franch., an Extremely Endangered Conifer in Southwestern China. Microbiol Spectr 2022; 10:e0026022. [PMID: 35735985 PMCID: PMC9431436 DOI: 10.1128/spectrum.00260-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/20/2022] [Indexed: 11/28/2022] Open
Abstract
Thuja sutchuenensis Franch. is an endangered species in southwest China, distributed sporadically in mountainous areas. Soil property and soil fungal community play a crucial role in plant growth and survival. Nevertheless, understanding soil properties and the soil fungal community in the areas where T. sutchuenensis is distributed is extremely limited. Hence, this study collected a total of 180 soil samples from five altitudinal distribution areas (altitudinal gradients) and three vertical depths throughout four horizontal distances from the base of each tree. The results found that altitudinal gradients and vertical depths altered soil properties, including pH, organic matter content, water content, total nitrogen, phosphorus, and potassium, and available nitrogen, phosphorus, and potassium. The fungal alpha diversity indexes (Chao1 and Shannon) and beta diversity were dramatically decreased with elevation. In addition, high altitudes (2,119 m) harbored the highest relative abundance of ectomycorrhizal fungi (27.57%) and the lowest relative abundance of plant-pathogenic fungi (1.81%). Meanwhile, we identified a series of fungal communities, such as Tomentella, Piloderma, Cortinarius, Sebacina, and Boletaceae, that play an essential role in the survival of T. sutchuenensis. The correlation analysis and random forest model identified that water content and total phosphorus showed strong relationships with fungal characteristics and were the primary variables for Zygomycota and Rozellomycota. Collectively, the findings of this integrated analysis provide profound insights into understanding the contrasting responses of T. sutchuenensis soil fungal communities and provide a theoretical basis for T. sutchuenensis habitat restoration and species conservation from multispatial perspectives. IMPORTANCE The present study highlights the importance of fungal communities in an endangered plant, T. sutchuenensis. Comparative analysis of soil samples in nearly all extant T. sutchuenensis populations identified that soil properties, especially soil nutrients, might play critical roles in the survival of T. sutchuenensis. Our findings prove that a series of fungal communities (e.g., Tomentella, Piloderma, and Cortinarius) could be key indicators for T. sutchuenensis survival. In addition, this is the first time that large-scale soil property and fungal community investigations have been carried out in southwest China, offering important values for exploring the distribution pattern of regional soil microorganisms. Collectively, our findings display a holistic picture of soil microbiome and environmental factors associated with T. sutchuenensis.
Collapse
Affiliation(s)
- You-wei Zuo
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Beibei, Chongqing, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Institute of Resources Botany, School of Life Sciences, Southwest University, Beibei, Chongqing, China
| | - Ping He
- Chongqing Academy of Science and Technology, Low Carbon and Ecological Environment Protection Research Center, Liangjiang New Area, Chongqing, China
| | - Jia-hui Zhang
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Beibei, Chongqing, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Institute of Resources Botany, School of Life Sciences, Southwest University, Beibei, Chongqing, China
| | - Wen-qiao Li
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Beibei, Chongqing, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Institute of Resources Botany, School of Life Sciences, Southwest University, Beibei, Chongqing, China
| | - Deng-hao Ning
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Beibei, Chongqing, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Institute of Resources Botany, School of Life Sciences, Southwest University, Beibei, Chongqing, China
| | - Yu-lian Zeng
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Beibei, Chongqing, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Institute of Resources Botany, School of Life Sciences, Southwest University, Beibei, Chongqing, China
| | - Ying Yang
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Beibei, Chongqing, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Institute of Resources Botany, School of Life Sciences, Southwest University, Beibei, Chongqing, China
| | - Chang-ying Xia
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Beibei, Chongqing, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Institute of Resources Botany, School of Life Sciences, Southwest University, Beibei, Chongqing, China
| | - Huan Zhang
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Beibei, Chongqing, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Institute of Resources Botany, School of Life Sciences, Southwest University, Beibei, Chongqing, China
| | - Hong-ping Deng
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Beibei, Chongqing, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Institute of Resources Botany, School of Life Sciences, Southwest University, Beibei, Chongqing, China
| |
Collapse
|
5
|
Roylawar P, Khandagale K, Randive P, Shinde B, Murumkar C, Ade A, Singh M, Gawande S, Morelli M. Piriformospora indica Primes Onion Response against Stemphylium Leaf Blight Disease. Pathogens 2021; 10:1085. [PMID: 34578118 PMCID: PMC8472787 DOI: 10.3390/pathogens10091085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/14/2021] [Accepted: 08/15/2021] [Indexed: 12/11/2022] Open
Abstract
The root-endophytic fungus Piriformospora indica (=Serendipita indica) has been revealed for its growth-promoting effects and its capacity to induce resistance in a broad spectrum of host plants. However, the bioefficacy of this fungus had not yet been tested against any pathogen affecting onion (Allium cepa). In this study, the biocontrol potency of P. indica against onion leaf blight, an impacting disease caused by the necrotrophic fungal pathogen Stemphylium vesicarium, was evaluated. First, it was proved that colonisation of onion roots by P. indica was beneficial for plant growth, as it increased leaf development and root biomass. Most relevantly, P. indica was also effective in reducing Stemphylium leaf blight (SLB) severity, as assessed under greenhouse conditions and confirmed in field trials in two consecutive years. These investigations could also provide some insight into the biochemical and molecular changes that treatment with P. indica induces in the main pathways associated with host defence response. It was possible to highlight the protective effect of P. indica colonisation against peroxidative damage, and its role in signalling oxidative stress, by assessing changes in malondialdehyde and H2O2 content. It was also showed that treatment with P. indica contributes to modulate the enzymatic activity of superoxide dismutase, catalase, phenylalanine ammonia-lyase and peroxidase, in the course of infection. qPCR-based expression analysis of defence-related genes AcLOX1, AcLOX2, AcPAL1, AcGST, AcCHI, AcWRKY1, and AcWRKY70 provided further indications on P. indica ability to induce onion systemic response. Based on the evidence gathered, this study aims to propose P. indica application as a sustainable tool for improving SLB control, which might not only enhance onion growth performance but also activate defence signalling mechanisms more effectively, involving different pathways.
Collapse
Affiliation(s)
- Praveen Roylawar
- ICAR-Directorate of Onion and Garlic Research (DOGR), Rajgurunagar, Pune 410505, India; (P.R.); (P.R.); (M.S.)
- Tuljaram Chaturchand College of Arts, Science and Commerce, Baramati, Pune 413102, India;
- Department of Botany, Sangamner Nagarpalika Arts, D. J. Malpani Commerce, B. N. Sarda Science College, Sangamner, Ahamadnagar 422605, India
| | - Kiran Khandagale
- Department of Botany, Savitribai Phule Pune University, Pune 411007, India; (K.K.); (A.A.)
| | - Pragati Randive
- ICAR-Directorate of Onion and Garlic Research (DOGR), Rajgurunagar, Pune 410505, India; (P.R.); (P.R.); (M.S.)
| | - Bharat Shinde
- Vidya Pratishthan’s Arts, Science & Commerce College, Baramati, Pune 413133, India;
| | | | - Avinash Ade
- Department of Botany, Savitribai Phule Pune University, Pune 411007, India; (K.K.); (A.A.)
| | - Major Singh
- ICAR-Directorate of Onion and Garlic Research (DOGR), Rajgurunagar, Pune 410505, India; (P.R.); (P.R.); (M.S.)
| | - Suresh Gawande
- ICAR-Directorate of Onion and Garlic Research (DOGR), Rajgurunagar, Pune 410505, India; (P.R.); (P.R.); (M.S.)
| | - Massimiliano Morelli
- CNR-IPSP Istituto per la Protezione Sostenibile delle Piante, Sede Secondaria di Bari, 70124 Bari, Italy;
| |
Collapse
|
6
|
Tienda S, Vida C, Lagendijk E, de Weert S, Linares I, González-Fernández J, Guirado E, de Vicente A, Cazorla FM. Soil Application of a Formulated Biocontrol Rhizobacterium, Pseudomonas chlororaphis PCL1606, Induces Soil Suppressiveness by Impacting Specific Microbial Communities. Front Microbiol 2020; 11:1874. [PMID: 32849458 PMCID: PMC7426498 DOI: 10.3389/fmicb.2020.01874] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022] Open
Abstract
Biocontrol bacteria can be used for plant protection against some plant diseases. Pseudomonas chlororaphis PCL1606 (PcPCL1606) is a model bacterium isolated from the avocado rhizosphere with strong antifungal antagonism mediated by the production of 2-hexyl, 5-propil resorcinol (HPR). Additionally, PcPCL1606 has biological control against different soil-borne fungal pathogens, including the causal agent of the white root rot of many woody crops and avocado in the Mediterranean area, Rosellinia necatrix. The objective of this study was to assess whether the semicommercial application of PcPCL1606 to soil can potentially affect avocado soil and rhizosphere microbial communities and their activities in natural conditions and under R. necatrix infection. To test the putative effects of PcPCL1606 on soil eukaryotic and prokaryotic communities, a formulated PcPCL1606 was prepared and applied to the soil of avocado plants growing in mesocosm experiments, and the communities were analyzed by using 16S/ITS metagenomics. PcPCL1606 survived until the end of the experiments. The effect of PcPCL1606 application on prokaryotic communities in soil and rhizosphere samples from natural soil was not detectable, and very minor changes were observed in eukaryotic communities. In the infested soils, the presence of R. necatrix strongly impacted the soil and rhizosphere microbial communities. However, after PcPCL1606 was applied to soil infested with R. necatrix, the prokaryotic community reacted by increasing the relative abundance of few families with protective features against fungal soilborne pathogens and organic matter decomposition (Chitinophagaceae, Cytophagaceae), but no new prokaryotic families were detected. The treatment of PcPCL1606 impacted the fungal profile, which strongly reduced the presence of R. necatrix in avocado soil and rhizosphere, minimizing its effect on the rest of the microbial communities. The bacterial treatment of formulated PcPCL1606 on avocado soils infested with R. necatrix resulted in biological control of the pathogen. This suppressiveness phenotype was analyzed, and PcPCL1606 has a key role in suppressiveness induction; in addition, this phenotype was strongly dependent on the production of HPR.
Collapse
Affiliation(s)
- Sandra Tienda
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Málaga, Spain
| | - Carmen Vida
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Málaga, Spain
| | - Ellen Lagendijk
- Koppert Biological Systems, Berkel en Rodenrijs, Netherlands
| | - Sandra de Weert
- Koppert Biological Systems, Berkel en Rodenrijs, Netherlands
| | - Irene Linares
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Málaga, Spain
| | - Jorge González-Fernández
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Estación Experimental “La Mayora”, Algarrobo, Spain
| | - Emilio Guirado
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Estación Experimental “La Mayora”, Algarrobo, Spain
| | - Antonio de Vicente
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Málaga, Spain
| | - Francisco M. Cazorla
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Málaga, Spain
| |
Collapse
|
7
|
Dabral S, Saxena SC, Choudhary DK, Bandyopadhyay P, Sahoo RK, Tuteja N, Nath M. Synergistic inoculation of Azotobacter vinelandii and Serendipita indica augmented rice growth. Symbiosis 2020. [DOI: 10.1007/s13199-020-00689-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
del Barrio-Duque A, Ley J, Samad A, Antonielli L, Sessitsch A, Compant S. Beneficial Endophytic Bacteria- Serendipita indica Interaction for Crop Enhancement and Resistance to Phytopathogens. Front Microbiol 2019; 10:2888. [PMID: 31921065 PMCID: PMC6930893 DOI: 10.3389/fmicb.2019.02888] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/02/2019] [Indexed: 12/30/2022] Open
Abstract
Serendipita (=Piriformospora) indica is a fungal endophytic symbiont with the capabilities to enhance plant growth and confer resistance to different stresses. However, the application of this fungus in the field has led to inconsistent results, perhaps due to antagonism with other microbes. Here, we studied the impact of individual bacterial isolates from the endophytic bacterial community on the in vitro growth of S. indica. We further analyzed how combinations of bacteria and S. indica influence plant growth and protection against the phytopathogens Fusarium oxysporum and Rhizoctonia solani. Bacterial strains of the genera Bacillus, Enterobacter and Burkholderia negatively affected S. indica growth on plates, whereas Mycolicibacterium, Rhizobium, Paenibacillus strains and several other bacteria from different taxa stimulated fungal growth. To further explore the potential of bacteria positively interacting with S. indica, four of the most promising strains belonging to the genus Mycolicibacterium were selected for further experiments. Some dual inoculations of S. indica and Mycolicibacterium strains boosted the beneficial effects triggered by S. indica, further enhancing the growth of tomato plants, and alleviating the symptoms caused by the phytopathogens F. oxysporum and R. solani. However, some combinations of S. indica and bacteria were less effective than individual inoculations. By analyzing the genomes of the Mycolicibacterium strains, we revealed that these bacteria encode several genes predicted to be involved in the stimulation of S. indica growth, plant development and tolerance to abiotic and biotic stresses. Particularly, a high number of genes related to vitamin and nitrogen metabolism were detected. Taking into consideration multiple interactions on and inside plants, we showed in this study that some bacterial strains may induce beneficial effects on S. indica and could have an outstanding influence on the plant-fungus symbiosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Stéphane Compant
- Bioresources Unit, Center for Health and Bioresources, AIT Austrian Institute of Technology, Tulln, Austria
| |
Collapse
|
9
|
Ren CG, Kong CC, Wang SX, Xie ZH. Enhanced phytoremediation of uranium-contaminated soils by arbuscular mycorrhiza and rhizobium. CHEMOSPHERE 2019; 217:773-779. [PMID: 30448757 DOI: 10.1016/j.chemosphere.2018.11.085] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/31/2018] [Accepted: 11/12/2018] [Indexed: 05/10/2023]
Abstract
Uranium phytoextraction is a promising technology, however, facing difficult that limited plant biomass due to nutrient deficiency in the contaminated sites. The aim of this study is to evaluate the potential of a symbiotic associations of a legume Sesbania rostrata, rhizobia and arbuscular mycorrhiza fungi (AMF) for reclamation of uranium contaminated soils. Results showed AMF and rhizobia had a mutual beneficial relations in the triple symbiosis, which significantly increased plant biomass and uranium accumulation in S. rostrata plant. The highest uranium removal rates was observed in plant-AMF-rhizobia treated soils, in which 50.5-73.2% had been extracted, whereas 7.2-23.3% had been extracted in plant-treated soil. Also, the S. rostrata phytochelatin synthase (PCS) genes expression were increased in AMF and rhizobia plants compared with the plants. Meantime, content of malic acid, succinic acid and citric acid were elevated in S. rostrata root exudates of AMF and rhizobia inoculated plants. The facts suggest that the mutual interactions in the triple symbiosis help to improve phytoremediation efficiency of uranium by S. rostrata.
Collapse
Affiliation(s)
- Cheng-Gang Ren
- Key Laboratory of Biology and Utilization of Biological Resources of Coastal Zone, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Cun-Cui Kong
- College of Marine Life Sciences, Ocean University of China, Qingdao, PR China
| | - Shuo-Xiang Wang
- Key Laboratory of Biology and Utilization of Biological Resources of Coastal Zone, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Zhi-Hong Xie
- Key Laboratory of Biology and Utilization of Biological Resources of Coastal Zone, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China.
| |
Collapse
|
10
|
Hilbert M, Novero M, Rovenich H, Mari S, Grimm C, Bonfante P, Zuccaro A. MLO Differentially Regulates Barley Root Colonization by Beneficial Endophytic and Mycorrhizal Fungi. FRONTIERS IN PLANT SCIENCE 2019; 10:1678. [PMID: 32010163 PMCID: PMC6976535 DOI: 10.3389/fpls.2019.01678] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/28/2019] [Indexed: 05/05/2023]
Abstract
Loss-of-function alleles of MLO (Mildew Resistance Locus O) confer broad-spectrum resistance to foliar infections by powdery mildew pathogens. Like pathogens, microbes that establish mutually beneficial relationships with their plant hosts, trigger the induction of some defense responses. Initially, barley colonization by the root endophyte Serendipita indica (syn. Piriformospora indica) is associated with enhanced defense gene expression and the formation of papillae at sites of hyphal penetration attempts. This phenotype is reminiscent of mlo-conditioned immunity in barley leaf tissue and raises the question whether MLO plays a regulatory role in the establishment of beneficial interactions. Here we show that S. indica colonization was significantly reduced in plants carrying mlo mutations compared to wild type controls. The reduction in fungal biomass was associated with the enhanced formation of papillae. Moreover, epidermal cells of S. indica-treated mlo plants displayed an early accumulation of iron in the epidermal layer suggesting increased basal defense activation in the barley mutant background. Correspondingly, the induction of host cell death during later colonization stages was impaired in mlo colonized plants, highlighting the importance of the early biotrophic growth phase for S. indica root colonization. In contrast, the arbuscular mycorrhizal fungus Funneliformis mosseae displayed a similar colonization morphology on mutant and wild type plants. However, the frequency of mycorrhization and number of arbuscules was higher in mlo-5 mutants. These findings suggest that MLO differentially regulates root colonization by endophytic and AM fungi.
Collapse
Affiliation(s)
- Magdalena Hilbert
- Department of Organismic Interactions, Max Planck Institute of Terrestrial Microbiology, Marburg, Germany
| | - Mara Novero
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Hanna Rovenich
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Stéphane Mari
- BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier, France
| | - Carolin Grimm
- Department of Organismic Interactions, Max Planck Institute of Terrestrial Microbiology, Marburg, Germany
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Alga Zuccaro
- Department of Organismic Interactions, Max Planck Institute of Terrestrial Microbiology, Marburg, Germany
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
- *Correspondence: Alga Zuccaro,
| |
Collapse
|
11
|
Comparative Study of Growth of Piriformospora indica by using Different Sources of Jaggery. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.2.56] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
12
|
Zhang W, Wang J, Xu L, Wang A, Huang L, Du H, Qiu L, Oelmüller R. Drought stress responses in maize are diminished by Piriformospora indica. PLANT SIGNALING & BEHAVIOR 2018; 13:e1414121. [PMID: 29219729 PMCID: PMC5790412 DOI: 10.1080/15592324.2017.1414121] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/27/2017] [Accepted: 12/04/2017] [Indexed: 05/21/2023]
Abstract
As an endophytic fungus of Sebacinales, Piriformospora indica promotes plant growth and resistance to abiotic stress, including drought. Colonization of maize roots promoted the leaf size, root length and number of tap roots. Under drought stress, the maize seedlings profited from the presence of the fungus and performed visibly better than the uncolonized controls. To identify genes and biological processes involved in growth promotion and drought tolerance conferred by P. indica, the root transcriptome of colonized and uncolonized seedlings was analyzed 0, 6 and 12 h after drought stress (20% polyethylene glycol 6000). The number of P. indica-responsive genes increased from 464 (no stress at 0 h) to 1337 (6 h drought) and 2037 (12 h drought). Gene Ontology analyses showed that the carbon and sulfur metabolisms are major targets of the fungus. Furthermore, the growth promoting effect of P. indica is reflected by higher transcript levels for microtubule associated processes. Under drought stress, the fungus improved the oxidative potential of the roots, and stimulated genes for hormone functions, including those which respond to abscisic acid, auxin, salicylic acid and cytokinins. The comparative analyses of our study provides systematic insight into the molecular mechanism how P. indica promotes plant performance under drought stress, and presents a collection of genes which are specifically targeted by the fungus under drought stress in maize roots.
Collapse
MESH Headings
- Adaptation, Physiological/drug effects
- Adaptation, Physiological/genetics
- Basidiomycota/drug effects
- Basidiomycota/growth & development
- Basidiomycota/physiology
- Colony Count, Microbial
- Droughts
- Gene Expression Profiling
- Gene Expression Regulation, Plant/drug effects
- Gene Ontology
- Genes, Plant
- Plant Growth Regulators/pharmacology
- Plant Roots/drug effects
- Plant Roots/genetics
- Plant Roots/microbiology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Seedlings/drug effects
- Seedlings/growth & development
- Sequence Analysis, RNA
- Stress, Physiological/drug effects
- Stress, Physiological/genetics
- Zea mays/anatomy & histology
- Zea mays/drug effects
- Zea mays/microbiology
- Zea mays/physiology
Collapse
Affiliation(s)
- Wenying Zhang
- Hubei Collaborative Innovation Center for Grain Industry/ Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, Hubei, China
- CONTACT Wenying Zhang Hubei Collaborative Innovation Center for Grain Industry/ Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou 434025, Hubei, China
| | - Jun Wang
- Hubei Collaborative Innovation Center for Grain Industry/ Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, Hubei, China
| | - Le Xu
- Hubei Collaborative Innovation Center for Grain Industry/ Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, Hubei, China
| | - Aiai Wang
- Hubei Collaborative Innovation Center for Grain Industry/ Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, Hubei, China
| | - Lan Huang
- Department of Computer Science, Yangtze University, Jingzhou, Hubei, China
| | - Hewei Du
- Hubei Collaborative Innovation Center for Grain Industry/ Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, Hubei, China
| | - Lijuan Qiu
- Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ralf Oelmüller
- Friedrich Schiller University Jena, Institute of General Botany and Plant Physiology, Jena, Freistaat Thüringen, Germany
- Ralf Oelmüller Friedrich Schiller University Jena, Institute of General Botany and Plant Physiology, Jena Am Planetarium 1 D-07743, Freistaat Thüringen, Germany
| |
Collapse
|
13
|
Ren CG, Kong CC, Bian B, Liu W, Li Y, Luo YM, Xie ZH. Enhanced phytoremediation of soils contaminated with PAHs by arbuscular mycorrhiza and rhizobium. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2017; 19:789-797. [PMID: 28165756 DOI: 10.1080/15226514.2017.1284755] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Greenhouse experiment was conducted to evaluate the potential effectiveness of a legume (Sesbania cannabina), arbuscular mycorrhizal fungi (AMF) (Glomus mosseae), and rhizobia (Ensifer sp.) symbiosis for remediation of Polycyclic aromatic hydrocarbons (PAHs) in spiked soil. AMF and rhizobia had a beneficial impact on each other in the triple symbiosis. AMF and/or rhizobia significantly increased plant biomass and PAHs accumulation in plants. The highest PAHs dissipation was observed in plant + AMF + rhizobia treated soil, in which >97 and 85-87% of phenanthrene and pyrene, respectively, had been degraded, whereas 81-85 and 72-75% had been degraded in plant-treated soil. During the experiment, a relatively large amount of water-soluble phenolic compounds was detected in soils of AMF and/or rhizobia treatment. It matches well with the high microbial activity and soil enzymes activity. These results suggest that the mutual interactions in the triple symbiosis enhanced PAHs degradation via stimulating both microbial development and soil enzyme activity. The mutual interactions between rhizobia and AMF help to improve phytoremediation efficiency of PAHs by S. cannabina.
Collapse
Affiliation(s)
- Cheng-Gang Ren
- a Key Laboratory of Biology and Utilization of Biological Resources of Coastal Zone , Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences , Yantai , China
| | - Cun-Cui Kong
- a Key Laboratory of Biology and Utilization of Biological Resources of Coastal Zone , Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences , Yantai , China
- b Shanxi Agricultural University , Taigu , China
| | - Bian Bian
- a Key Laboratory of Biology and Utilization of Biological Resources of Coastal Zone , Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences , Yantai , China
| | - Wei Liu
- a Key Laboratory of Biology and Utilization of Biological Resources of Coastal Zone , Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences , Yantai , China
| | - Yan Li
- a Key Laboratory of Biology and Utilization of Biological Resources of Coastal Zone , Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences , Yantai , China
| | - Yong-Ming Luo
- c Key Laboratory of Coastal Environmental Processes and Ecological Remediation , Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences , Yantai , China
| | - Zhi-Hong Xie
- a Key Laboratory of Biology and Utilization of Biological Resources of Coastal Zone , Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences , Yantai , China
| |
Collapse
|
14
|
Su ZZ, Wang T, Shrivastava N, Chen YY, Liu X, Sun C, Yin Y, Gao QK, Lou BG. Piriformospora indica promotes growth, seed yield and quality of Brassica napus L. Microbiol Res 2017; 199:29-39. [PMID: 28454707 DOI: 10.1016/j.micres.2017.02.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 02/19/2017] [Accepted: 02/25/2017] [Indexed: 10/20/2022]
Abstract
In current scenario, crop productivity is being challenged by decreasing soil fertility. To cope up with this problem, different beneficial microbes are explored to increase the crop productivity with value additions. In this study, Brassica napus L., an important agricultural economic oilseed crop with rich source of nutritive qualities, was interacted with Piriformospora indica, a unique root colonizing fungus with wide host range and multifunctional aspects. The fungus-treated plants showed a significant increase in agronomic parameters with plant biomass, lodging-resistance, early bolting and flowering, oil yield and quality. Nutritional analysis revealed that plants treated by P. indica had reduced erucic acid and glucosinolates contents, and increased the accumulation of N, Ca, Mg, P, K, S, B, Fe and Zn elements. Low erucic acid and glucosinolates contents are important parameters for high quality oil, because oils high in erucic acid and glucosinolates are considered undesirable for human nutrition. Furthermore, the expression profiles of two encoding enzyme genes, Bn-FAE1 and BnECR, which are responsible for regulating erucic acid biosynthesis, were down-regulated at mid- and late- life stages during seeds development in colonized plants. These results demonstrated that P. indica played an important role in enhancing plant growth, rapeseed yield and quality improvement of B. napus.
Collapse
Affiliation(s)
- Zhen-Zhu Su
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China; Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Ting Wang
- Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - Neeraj Shrivastava
- Institute of Biotechnology, Zhejiang University, Hangzhou, China; Institute of Microbial Technology, Amity University, New Delhi, India
| | - You-Yuan Chen
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiaoxi Liu
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Chao Sun
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yufeng Yin
- Agricultural Technology Extension Center, Zhejiang University, Hangzhou, China
| | - Qi-Kang Gao
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Bing-Gan Lou
- Institute of Biotechnology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
15
|
Varma A, Uma, Khanuja M. Role of Nanoparticles on Plant Growth with Special Emphasis on Piriformospora indica: A Review. NANOSCIENCE AND PLANT–SOIL SYSTEMS 2017. [DOI: 10.1007/978-3-319-46835-8_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
16
|
Weiß M, Waller F, Zuccaro A, Selosse MA. Sebacinales - one thousand and one interactions with land plants. THE NEW PHYTOLOGIST 2016; 211:20-40. [PMID: 27193559 DOI: 10.1111/nph.13977] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/05/2016] [Indexed: 05/20/2023]
Abstract
20 I 21 II 21 III 23 IV 29 V 33 VI 35 36 36 References 36 SUMMARY: Root endophytism and mycorrhizal associations are complex derived traits in fungi that shape plant physiology. Sebacinales (Agaricomycetes, Basidiomycota) display highly diverse interactions with plants. Although early-diverging Sebacinales lineages are root endophytes and/or have saprotrophic abilities, several more derived clades harbour obligate biotrophs forming mycorrhizal associations. Sebacinales thus display transitions from saprotrophy to endophytism and to mycorrhizal nutrition within one fungal order. This review discusses the genomic traits possibly associated with these transitions. We also show how molecular ecology revealed the hyperdiversity of Sebacinales and their evolutionary diversification into two sister families: Sebacinaceae encompasses mainly ectomycorrhizal and early-diverging saprotrophic species; the second family includes endophytes and lineages that repeatedly evolved ericoid, orchid and ectomycorrhizal abilities. We propose the name Serendipitaceae for this family and, within it, we transfer to the genus Serendipita the endophytic cultivable species Piriformospora indica and P. williamsii. Such cultivable Serendipitaceae species provide excellent models for root endophytism, especially because of available genomes, genetic tractability, and broad host plant range including important crop plants and the model plant Arabidopsis thaliana. We review insights gained with endophytic Serendipitaceae species into the molecular mechanisms of endophytism and of beneficial effects on host plants, including enhanced resistance to abiotic and pathogen stress.
Collapse
Affiliation(s)
- Michael Weiß
- Steinbeis-Innovationszentrum Organismische Mykologie und Mikrobiologie, Vor dem Kreuzberg 17, 72070, Tübingen, Germany
- Department of Biology, University of Tübingen, Auf der Morgenstelle 1, 72076, Tübingen, Germany
| | - Frank Waller
- Pharmaceutical Biology, Julius von Sachs Institute for Biosciences, Biocenter, Würzburg University, Julius-von-Sachs Platz 2, 97082, Würzburg, Germany
| | - Alga Zuccaro
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), BioCenter, University of Cologne, 50674, Cologne, Germany
- Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Marc-André Selosse
- Département Systématique et Evolution (UMR 7205 ISYEB), Muséum national d'Histoire naturelle, CP 50, 45 rue Buffon, 75005, Paris, France
- Department of Plant Taxonomy and Nature Conservation, University of Gdansk, Gdansk, Poland
| |
Collapse
|
17
|
Gill SS, Gill R, Trivedi DK, Anjum NA, Sharma KK, Ansari MW, Ansari AA, Johri AK, Prasad R, Pereira E, Varma A, Tuteja N. Piriformospora indica: Potential and Significance in Plant Stress Tolerance. Front Microbiol 2016; 7:332. [PMID: 27047458 PMCID: PMC4801890 DOI: 10.3389/fmicb.2016.00332] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/03/2016] [Indexed: 11/17/2022] Open
Abstract
Owing to its exceptional ability to efficiently promote plant growth, protection and stress tolerance, a mycorrhiza like endophytic Agaricomycetes fungus Piriformospora indica has received a great attention over the last few decades. P. indica is an axenically cultiviable fungus which exhibits its versatility for colonizing/hosting a broad range of plant species through directly manipulating plant hormone-signaling pathway during the course of mutualism. P. indica-root colonization leads to a better plant performance in all respect, including enhanced root proliferation by indole-3-acetic acid production which in turn results into better nutrient-acquisition and subsequently to improved crop growth and productivity. Additionally, P. indica can induce both local and systemic resistance to fungal and viral plant diseases through signal transduction. P. indica-mediated stimulation in antioxidant defense system components and expressing stress-related genes can confer crop/plant stress tolerance. Therefore, P. indica can biotize micropropagated plantlets and also help these plants to overcome transplantation shock. Nevertheless, it can also be involved in a more complex symbiotic relationship, such as tripartite symbiosis and can enhance population dynamic of plant growth promoting rhizobacteria. In brief, P. indica can be utilized as a plant promoter, bio-fertilizer, bioprotector, bioregulator, and biotization agent. The outcome of the recent literature appraised herein will help us to understand the physiological and molecular bases of mechanisms underlying P. indica-crop plant mutual relationship. Together, the discussion will be functional to comprehend the usefulness of crop plant-P. indica association in both achieving new insights into crop protection/improvement as well as in sustainable agriculture production.
Collapse
Affiliation(s)
- Sarvajeet S Gill
- Stress Physiology and Molecular Biology Laboratory, Centre for Biotechnology, Maharshi Dayanand University Rohtak, India
| | - Ritu Gill
- Stress Physiology and Molecular Biology Laboratory, Centre for Biotechnology, Maharshi Dayanand University Rohtak, India
| | - Dipesh K Trivedi
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology New Delhi, India
| | - Naser A Anjum
- Centre for Environmental and Marine Studies and Department of Chemistry, University of Aveiro Aveiro, Portugal
| | - Krishna K Sharma
- Department of Microbiology, Maharshi Dayanand University Rohtak, India
| | - Mohammed W Ansari
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology New Delhi, India
| | - Abid A Ansari
- Department of Biology, University of Tabuk Tabuk, Saudi Arabia
| | - Atul K Johri
- School of Life Sciences, Jawaharlal Nehru University New Delhi, India
| | - Ram Prasad
- Amity Institute of Microbial Technology, Amity University Noida, India
| | - Eduarda Pereira
- Centre for Environmental and Marine Studies and Department of Chemistry, University of Aveiro Aveiro, Portugal
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University Noida, India
| | - Narendra Tuteja
- Amity Institute of Microbial Technology, Amity University Noida, India
| |
Collapse
|
18
|
Interaction of Piriformospora indica with Azotobacter chroococcum. Sci Rep 2015; 5:13911. [PMID: 26350628 PMCID: PMC4563567 DOI: 10.1038/srep13911] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 07/23/2015] [Indexed: 12/05/2022] Open
Abstract
Microbial communities in rhizosphere interact with each other and form a basis of a cumulative impact on plant growth. Rhizospheric microorganisms like Piriformospora indica and Azotobacter chroococcum are well known for their beneficial interaction with plants. These features make P. indica /A. chroococcum co-inoculation of crops most promising with respect to sustainable agriculture and to understanding the transitions in the evolution of rhizospheric microbiome. Here, we investigated interactions of P. indica with A. chroococcum in culture. Out of five Azotobacter strains tested, WR5 exhibited growth-promoting while strain M4 exerted growth-inhibitory effect on the fungus in axenic culture. Electron microscopy of co-culture indicated an intimate association of the bacterium with the fungus. 2-D gel electrophoresis followed by mass spectrometry of P. indica cellular proteins grown with or without WR5 and M4 showed differential expression of many metabolic proteins like enolase-I, ureaseD, the GTP binding protein YPT1 and the transmembrane protein RTM1. Fungal growth as influenced by bacterial crude metabolites was also monitored. Taken together, the results conform to a model where WR5 and M4 influence the overall growth and physiology of P. indica which may have a bearing on its symbiotic relationship with plants.
Collapse
|
19
|
Jain A, Singh A, Singh S, Singh HB. Biological management of Sclerotinia sclerotiorum in pea using plant growth promoting microbial consortium. J Basic Microbiol 2015; 55:961-72. [PMID: 25727183 DOI: 10.1002/jobm.201400628] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 02/05/2015] [Indexed: 12/21/2022]
Abstract
The beneficial plant-microbe interactions play crucial roles in protection against large number of plant pathogens causing disease. The present study aims to investigate the growth promoting traits induced by beneficial microbes namely Pseudomonas aeruginosa PJHU15, Trichoderma harzianum TNHU27, and Bacillus subtilis BHHU100 treated singly and in combinations under greenhouse and field conditions to control Sclerotinia sclerotiorum. Plants treated with three microbe consortium enhanced plant growth maximally both in the presence and absence of the pathogen. Increase in plant length, total biomass, number of leaves, nodules and secondary roots, total chlorophyll and carotenoid content, and yield were recorded in plants treated with microbial consortia. Also, a decrease in plant mortality was observed in plants treated with microbial consortia in comparison to untreated control plants challenged with S. sclerotiorum. Furthermore, the decrease in disease of all the treatments can be associated with differential improvement of growth induced in pea.
Collapse
Affiliation(s)
- Akansha Jain
- Department of Botany, Banaras Hindu University, Varanasi, India
| | - Akanksha Singh
- Department of Botany, Banaras Hindu University, Varanasi, India
| | - Surendra Singh
- Department of Botany, Banaras Hindu University, Varanasi, India
| | - Harikesh Bahadur Singh
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
20
|
Mansotra P, Sharma P, Sharma S. Bioaugmentation of Mesorhizobium cicer, Pseudomonas spp. and Piriformospora indica for Sustainable Chickpea Production. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2015; 21:385-393. [PMID: 26261403 PMCID: PMC4524863 DOI: 10.1007/s12298-015-0296-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/01/2015] [Accepted: 04/06/2015] [Indexed: 05/30/2023]
Abstract
Chickpea establishes symbiotic association with Mesorhizobium to fulfill its nitrogen (N) requirement. Integrating chickpea rhizosphere with potential native mesorhizobia and other plant growth promoting microorganisms can contribute multiple benefits to plants. The present investigation was undertaken to study interactions among Piriformospora indica (PI) with potential plant growth promoting rhizobacteria (PGPR) viz. Pseudomonas argentinensis (LPGPR1), Pseudomonas sp. (LPGPR2) along with national check Pseudomons sp. (LK884) and Mesorhizobium cicer (LGR33, MR) to examine the synergistic effect of consortium for improving growth, symbiotic efficiency, nutrient acquisition and yield in two chickpea (Cicer arietinum L.) varieties viz. desi PBG1 and kabuli BG1053. In-vitro, seed germination with consortium MR + PI + LPGPR1 was the best compatible treatment followed by MR + PI + LK884 and MR + PI + LPGPR2. Significant improvement in the growth, symbiotic parameters and grain yield was observed with MR + PI + LPGPR1 and MR + PI + LK884 treatments. Significantly high chlorophyll and leghaemoglobin content was recorded with MR + PI + LPGPR1 (1.57 and 1.64 mg g(-1) fresh weight of leaves and 5.19 and 4.39 mg/g(-1) fresh weight of nodules) in desi PBG1 and kabuli BG1053 chickpea varieties, respectively. At 90 DAS, MR + PI + LPGPR1 treatment significantly improved nodule dry weight (ranged between 84.0 and 141.7 mg plant(-1)) as compared to MR alone treatment (ranged between 62.3 and 123.3 mg plant(-1)). Data revealed significant increase in total nitrogen (N) and phosphorus (P) content of shoot with MR + PI + LPGPR1 by 1.2 and 1.5 fold, respectively over MR alone treatment. On the basis of overall mean, MR + PI + LPGPR1 significantly improved the yield by 8.2 % over Mesorhizobium alone application. It seems from foregoing study that tripartite combination of different micro-organisms can be explored as biofertilizer for improvement in chickpea productivity.
Collapse
Affiliation(s)
- Pallavi Mansotra
- />Department of Microbiology, Punjab Agricultural University, Ludhiana, 141 004 India
| | - Poonam Sharma
- />Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141 004 India
| | - Sunita Sharma
- />Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141 004 India
| |
Collapse
|
21
|
Tripathi P, Singh PC, Mishra A, Tripathi RD, Nautiyal CS. Trichoderma inoculation augments grain amino acids and mineral nutrients by modulating arsenic speciation and accumulation in chickpea (Cicer arietinum L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 117:72-80. [PMID: 25839184 DOI: 10.1016/j.ecoenv.2014.10.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 05/17/2023]
Abstract
Trichoderma reesei is an industrially important fungi which also imparts stress tolerance and plant growth promotion in various crops. Arsenic (As) contamination of field soils is one of the challenging problems in agriculture, posing potential threats for both human health and the environment. Plants in association with microbes are a liable method to improve metal tolerance and enhance crop productivity. Chickpea (Cicer arietinum L.), is an important grain legume providing cheap source of protein in semi-arid regions including As affected areas. In this study we report the role of T. reesei NBRI 0716 (NBRI 0716) in supporting chickpea growth and improving soil quality in As simulated conditions. NBRI 0716 modulated the As speciation and its availability to improve grain yield and quality (amino acids and mineral content) in chickpea (C. arietinum L.) plants grown in As spiked soil (100 mg As kg(-1) soil). Arsenic accumulation and speciation results indicate that arsenate [As(V)] was the dominant species in chickpea seeds and rhizosphere soil. The Trichoderma reduced total grain inorganic As (Asi) by 66% and enhanced dimethylarsonic acid (DMA) and monomethylarsinic acid (MMA) content of seed and rhizosphere soil. The results indicate a probable role of NBRI 0716 in As methylation as the possible mechanism for maneuvering As stress in chickpea. Analysis of functional diversity using carbon source utilization (Biolog) showed significant difference in diversity and evenness indices among the soil microbial rhizosphere communities. Microbial diversity loss caused by As were prevented in the presence of Trichoderma NBRI 0716.
Collapse
Affiliation(s)
| | - Poonam C Singh
- CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Aradhana Mishra
- CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Rudra D Tripathi
- CSIR-National Botanical Research Institute, Lucknow 226001, India.
| | | |
Collapse
|
22
|
Ansari MW, Trivedi DK, Sahoo RK, Gill SS, Tuteja N. A critical review on fungi mediated plant responses with special emphasis to Piriformospora indica on improved production and protection of crops. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 70:403-410. [PMID: 23831950 DOI: 10.1016/j.plaphy.2013.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 06/07/2013] [Indexed: 06/02/2023]
Abstract
The beneficial fungi are potentially useful in agriculture sector to avail several services to crop plants such as water status, nutrient enrichment, stress tolerance, protection, weed control and bio-control. Natural agro-ecosystem relies on fungi because of it takes part in soil organic matter decomposition, nutrient acquisition, organic matter recycling, nutrient recycling, antagonism against plant pests, and crop management. The crucial role of fungi in normalizing the toxic effects of phenols, HCN and ROS by β-CAS, ACC demainase and antioxidant enzymes in plants is well documented. Fungi also play a part in various physiological processes such as water uptake, stomatal movement, mineral uptake, photosynthesis and biosynthesis of lignan, auxins and ethylene to improve growth and enhance plant fitness to cope heat, cold, salinity, drought and heavy metal stress. Here, we highlighted the ethylene- and cyclophilin A (CypA)-mediated response of Piriformospora indica for sustainable crop production under adverse environmental conditions.
Collapse
Affiliation(s)
- Mohammad Wahid Ansari
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | | | | | | | | |
Collapse
|
23
|
Yang T, Du W, Zhou J, Wang XX, Dai CC. Effects of the symbiosis between fungal endophytes and Atractylodes lancea on rhizosphere and phyllosphere microbial communities. Symbiosis 2013. [DOI: 10.1007/s13199-013-0254-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
24
|
Tripathi P, Singh PC, Mishra A, Chaudhry V, Mishra S, Tripathi RD, Nautiyal CS. Trichoderma inoculation ameliorates arsenic induced phytotoxic changes in gene expression and stem anatomy of chickpea (Cicer arietinum). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 89:8-14. [PMID: 23273619 DOI: 10.1016/j.ecoenv.2012.10.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 10/19/2012] [Accepted: 10/20/2012] [Indexed: 05/05/2023]
Abstract
Arsenic, a carcinogenic metalloid severely affects plant growth in contaminated areas. Present study shows role of Trichoderma reesei NBRI 0716 (NBRI 0716) in ameliorating arsenic (As) stress on chickpea under greenhouse conditions. Arsenic stress adversely affected seed germination (25%), chlorophyll content (44%) and almost eliminated nodule formation that were significantly restored on NBRI 0716 inoculation. It also restored stem anomalies like reduced trichome turgidity and density, deformation in collenchymatous and sclerenchymatous cells induced by As stress. Semi-quantitative RT-PCR of stress responsive genes showed differential expression of genes involved in synthesis of cell wall degrading enzymes, dormancy termination and abiotic stress. Upregulation of drought responsive genes (DRE, EREBP, T6PS, MIPS, and PGIP), enhanced proline content and shrunken cortex cells in the presence of As suggests that it creates water deficiency in plants and these responses were modulated by NBRI 0716 which provides a protective role. NBRI0716 mediated production of As reductase enzyme in chickpea and thus contributed in As metabolism. The study suggests a multifarious role of NBRI0716 in mediating stress tolerance in chickpea towards As.
Collapse
Affiliation(s)
- Pratibha Tripathi
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226 001, India
| | | | | | | | | | | | | |
Collapse
|
25
|
Franken P. The plant strengthening root endophyte Piriformospora indica: potential application and the biology behind. Appl Microbiol Biotechnol 2012; 96:1455-64. [PMID: 23108570 PMCID: PMC3497943 DOI: 10.1007/s00253-012-4506-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 10/08/2012] [Accepted: 10/12/2012] [Indexed: 11/21/2022]
Abstract
The successful conversion of plant production systems from conventional resource-exhausting to sustainable strategies depends on knowledge-based management of environmental factors. Root-inhabiting fungi came more and more into focus because their hyphae connect in ideal manner resources and challenges of the surrounding with the plant. A paradigm for such root endophytes is presented by the basidiomycete Piriformospora indica. This fungus possesses a broad host spectrum and positively affects different aspects of plant performance. This so far unique combination of attributes makes P. indica and its close relatives among the Sebacinales very interesting tools for cultivation of various crops. This review will outline the different aspects required to apply this root endophyte in agri- and horticulture concerning plant growth, plant nutrition and plant defence or tolerance thereby explaining what is known about the biological basis for the observed effects. Open questions and challenges for successful inoculum production and application will be discussed.
Collapse
Affiliation(s)
- P Franken
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979, Grossbeeren, Germany.
| |
Collapse
|
26
|
|
27
|
Tajini F, Trabelsi M, Drevon JJ. Combined inoculation with Glomus intraradices and Rhizobium tropici CIAT899 increases phosphorus use efficiency for symbiotic nitrogen fixation in common bean (Phaseolus vulgaris L.). Saudi J Biol Sci 2012; 19:157-63. [PMID: 23961175 PMCID: PMC3730892 DOI: 10.1016/j.sjbs.2011.11.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Revised: 10/28/2011] [Accepted: 11/25/2011] [Indexed: 11/25/2022] Open
Abstract
This study compared the response of common bean (Phaseolus vulgaris L.) to arbuscular mycorrhizal fungi (AMF) and rhizobia strain inoculation. Two common bean genotypes i.e. CocoT and Flamingo varying in their effectiveness for nitrogen fixation were inoculated with Glomus intraradices and Rhizobium tropici CIAT899, and grown for 50 days in soil-sand substrate in glasshouse conditions. Inoculation of common bean plants with the AM fungi resulted in a significant increase in nodulation compared to plants without inoculation. The combined inoculation of AM fungi and rhizobia significantly increased various plant growth parameters compared to simple inoculated plants. In addition, the combined inoculation of AM fungi and rhizobia resulted in significantly higher nitrogen and phosphorus accumulation in the shoots of common bean plants and improved phosphorus use efficiency compared with their controls, which were not dually inoculated. It is concluded that inoculation with rhizobia and arbuscular mycorrhizal fungi could improve the efficiency in phosphorus use for symbiotic nitrogen fixation especially under phosphorus deficiency.
Collapse
Affiliation(s)
- Fatma Tajini
- INRA, UMR Eco&Sols, Place Viala, 34060 Montpellier Cedex 01, France
- Ecole Supérieure d’Agriculture de Mateur, Bizerte 7030, Tunisia
- Faculté des Sciences de Gafsa, 2112 Sidi Ahmed Zarroug, Tunisia
| | | | | |
Collapse
|
28
|
Mishra A, Chauhan PS, Chaudhry V, Tripathi M, Nautiyal CS. Rhizosphere competent Pantoea agglomerans enhances maize (Zea mays) and chickpea (Cicer arietinum L.) growth, without altering the rhizosphere functional diversity. Antonie van Leeuwenhoek 2011; 100:405-13. [DOI: 10.1007/s10482-011-9596-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 05/24/2011] [Indexed: 10/18/2022]
|
29
|
Tajini F, Trabelsi M, Drevon JJ. Co-inoculation with Glomus intraradices and Rhizobium tropici CIAT899 increases P use efficiency for N2 fixation in the common bean (Phaseolus vulgaris L.) under P deficiency in hydroaeroponic culture. Symbiosis 2011. [DOI: 10.1007/s13199-011-0117-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
30
|
Influence of culture filtrate of Piriformospora indica on growth and yield of seed oil in Helianthus annus. Symbiosis 2011. [DOI: 10.1007/s13199-011-0114-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
31
|
Singh LP, Singh Gill S, Tuteja N. Unraveling the role of fungal symbionts in plant abiotic stress tolerance. PLANT SIGNALING & BEHAVIOR 2011; 6:175-91. [PMID: 21512319 PMCID: PMC3121976 DOI: 10.4161/psb.6.2.14146] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Accepted: 11/06/2010] [Indexed: 05/18/2023]
Abstract
Fungal symbionts have been found associated with every plant studied in natural ecosystem, where they colonize and reside entirely in the internal tissues of their host plant or partially. Fungal endophytes can express/form a range of different lifestyle/relationships with different host including symbiotic, mutualistic, commensalistic and parasitic in response to host genotype and environmental factors. In mutualistic association fungal endophyte can enhance growth, increase reproductive success and confer biotic and abiotic stress tolerance to its host plant. Since abiotic stress such as, drought, high soil salinity, heat, cold, oxidative stress, heavy metal toxicity is the common adverse environmental conditions that affect and limit crop productivity worldwide. It may be a promising alternative strategy to exploit fungal endophytes to overcome the limitations to crop production brought by abiotic stress. There is increasing interest in developing the potential biotechnological applications of fungal endophytes for improving plant stress tolerance and sustainable production of food crops. Here we have described the fungal symbioses, fungal symbionts and their role in abiotic stress tolerance. A putative mechanism of stress tolerance by symbionts has also been covered.
Collapse
Affiliation(s)
| | - Sarvajeet Singh Gill
- Plant Molecular Biology Group; International Centre for Genetic Engineering and Biotechnology; Aruna Asaf Ali Marg; New Delhi, India
- Stress Physiology and Molecular Biology Lab; Centre for Biotechnology; MD University; Rohtak, Haryana India
| | - Narendra Tuteja
- Plant Molecular Biology Group; International Centre for Genetic Engineering and Biotechnology; Aruna Asaf Ali Marg; New Delhi, India
| |
Collapse
|