1
|
Dong Y, Zhang J, Wang Q, Xu D, Pang S, Campos LC, Ren Z, Wang P. Dual function of magnetic field in enhancing antibiotic wastewater treatment by an integrated photocatalysis and fluidized bed biofilm reactor (FBBR). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119249. [PMID: 37812897 DOI: 10.1016/j.jenvman.2023.119249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 09/17/2023] [Accepted: 10/02/2023] [Indexed: 10/11/2023]
Abstract
The integrated photocatalysis and fluidized bed biofilm reactor (FBBR) is an attractive wastewater treatment technique for managing wastewater containing antibiotics. However, the fast recombination of photoinduced charge and low microbial activity limit the degradation and mineralization efficiency for antibiotics. To address this, we attempt to introduce magnetic field (MF) to the integrated system with B-doped Bi3O4Cl as the photocatalysts to effectively improve removal and mineralization of ciprofloxacin (CIP). As a consequence, the degradation rate reaches 96% after 40 d in integrated system with MF. The biofilm inside the integrated system with MF carrier can mineralize the photocatalytic products, thereby increasing the total organic carbon (TOC) degradation rate by more than 32%. The electrochemical experiment indicates the Lorentz force generated by MF can accelerate charge separation, increasing the electron concentration. Simultaneously, the increased amounts of electrons lead to the generation of more ·OH and ·O2-. MF addition also results in increased biomass, increased biological respiratory activity, microbial community evolution and accelerated microbial metabolism, enabling more members to biodegrade photocatalytic intermediates. Therefore, applied MF is an efficient method to enhance CIP degradation and mineralization by the integrated system.
Collapse
Affiliation(s)
- Yilin Dong
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Jie Zhang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Qiuwen Wang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Dongyu Xu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Shaoxuan Pang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Luiza C Campos
- Department of Civil, Environmental and Geomatic Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Zhijun Ren
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Pengfei Wang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| |
Collapse
|
2
|
Mohamed MSM, Asair AA, Fetyan NAH, Elnagdy SM. Complete Biodegradation of Diclofenac by New Bacterial Strains: Postulated Pathways and Degrading Enzymes. Microorganisms 2023; 11:1445. [PMID: 37374947 DOI: 10.3390/microorganisms11061445] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
The accumulation of xenobiotic compounds in different environments interrupts the natural ecosystem and induces high toxicity in non-target organisms. Diclofenac is one of the commonly used pharmaceutical drugs that persist in the environment due to its low natural degradation rate and high toxicity. Therefore, this study aimed to isolate potential diclofenac-degrading bacteria, detect the intermediate metabolites formed, and determine the enzyme involved in the degradation process. Four bacterial isolates were selected based on their ability to utilize a high concentration of diclofenac (40 mg/L) as the sole carbon source. The growth conditions for diclofenac degradation were optimized, and bacteria were identified as Pseudomonas aeruginosa (S1), Alcaligenes aquatilis (S2), Achromobacter spanius (S11), and Achromobacter piechaudii (S18). The highest percentage of degradation was recorded (97.79 ± 0.84) after six days of incubation for A. spanius S11, as analyzed by HPLC. To detect and identify biodegradation metabolites, the GC-MS technique was conducted for the most efficient bacterial strains. In all tested isolates, the initial hydroxylation of diclofenac was detected. The cleavage step of the NH bridge between the aromatic rings and the subsequent cleavage of the ring adjacent to or in between the two hydroxyl groups of polyhydroxylated derivatives might be a key step that enables the complete biodegradation of diclofenac by A. piechaudii S18, as well as P. aeruginosa S1. Additionally, the laccase, peroxidase, and dioxygenase enzyme activities of the two Achromobacter strains, as well as P. aeruginosa S1, were tested in the presence and absence of diclofenac. The obtained results from this work are expected to be a useful reference for the development of effective detoxification bioprocesses utilizing bacterial cells as biocatalysts. The complete removal of pharmaceuticals from polluted water will stimulate water reuse, meeting the growing worldwide demand for clean and safe freshwater.
Collapse
Affiliation(s)
- Mahmoud S M Mohamed
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Ayan A Asair
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Nashwa A H Fetyan
- Department of Microbiology, Soil, Water and Environment Research Institute, Agriculture Research Center, Giza 12619, Egypt
| | - Sherif M Elnagdy
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
3
|
Haque MA, Prodhan MY, Ghosh S, Hossain MS, Rahman A, Sarker UK, Haque MA. Enhanced rice plant (BRRI-28) growth at lower doses of urea caused by diazinon mineralizing endophytic bacterial consortia and explorations of relevant regulatory genes in a Klebsiella sp. strain HSTU-F2D4R. Arch Microbiol 2023; 205:231. [PMID: 37165147 DOI: 10.1007/s00203-023-03564-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/14/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023]
Abstract
Endophytic biostimulant with pesticide bioremediation activities may reduce agrochemicals application in rice cultivation. The present study evaluates diazinon-degrading endophytic bacteria, isolated from rice plants grown in the fields with pesticide amalgamation, leading to increased productivity in high-yielding rice plants. These endophytes showed capabilities of decomposing diazinon, confirmed by FT-IR spectra analysis. Growth promoting activities of these endophytes can be attributed to their abilities to produce an increased level of IAA content and to demonstrate high level ACC-deaminase activities. Furthermore, these endophytes demonstrated enhanced level of extracellular cellulase, xylanase, amylase, protease and lignin degrading activities. Five genera including Enterobacter, Pantoea, Shigella, Acinetobacter, and Serratia, are represented only by the leaves, while four genera such as Enterobacter, Escherichia, Kosakonia, and Pseudomonas are represented only by the shoots. Five genera including, Klebsiella, Enterobacter, Pseudomonas, Burkholderia, and Bacillus are represented only by the roots of rice plants. All these strains demonstrated cell wall hydrolytic enzyme activities, except pectinase. All treatments, either individual strains or consortia of strains, enhanced rice plant growth at germination, seedling, vegetative and reproductive stages. Among four (I-IV) consortia, consortium-III generated the maximum rice yield under 70% lower doses of urea compared to that of control (treated with only fertilizer). The decoded genome of Klebsiella sp. HSTU-F2D4R revealed nif-cluster, chemotaxis, phosphates, biofilm formation, and organophosphorus insecticide-degrading genes. Sufficient insecticide-degrading proteins belonging to strain HSTU-F2D4R had interacted with diazinon, confirmed in molecular docking and formed potential catalytic triads, suggesting the strains have bioremediation potential with biofertilizer applications in rice cultivation.
Collapse
Affiliation(s)
- Md Azizul Haque
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh.
| | - Md Yeasin Prodhan
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| | - Sibdas Ghosh
- Department of Biological Sciences, College of Arts and Sciences, Carlow University, 3333 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Md Shohorab Hossain
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| | - Aminur Rahman
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Uttam Kumar Sarker
- Dept. of Chemistry, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| | - Md Atiqul Haque
- Department of Microbiology, Faculty of Veterinary and Animal Science, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| |
Collapse
|
4
|
Lou F, Okoye CO, Gao L, Jiang H, Wu Y, Wang Y, Li X, Jiang J. Whole-genome sequence analysis reveals phenanthrene and pyrene degradation pathways in newly isolated bacteria Klebsiella michiganensis EF4 and Klebsiella oxytoca ETN19. Microbiol Res 2023; 273:127410. [PMID: 37178499 DOI: 10.1016/j.micres.2023.127410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are diverse pollutants of significant environmental concerns, requiring effective biodegradation. This study used different bioinformatics tools to conduct whole-genome sequencing of two novel bacterial strains, Klebsiella michiganensis EF4 and K. oxytoca ETN19, to improve our understanding of their many genomic functions and degradation pathways of phenanthrene and pyrene. After 28 days of cultivation, strain EF4 degraded approximately 80% and 60% of phenanthrene and pyrene, respectively. However, their combinations (EF4 +ETN19) showed tremendous phenanthrene degradation efficiency, supposed to be at the first-level kinetic model with a t1/2 value of approximately 6 days. In addition, the two bacterial genomes contained carbohydrate-active enzymes and secondary metabolites biosynthetic gene clusters associated with PAHs degradation. The two genomes contained the bZIP superfamily of transcription factors, primarily the cAMP-response element-binding protein (CREB), which could regulate the expression of several PAHs degradation genes and enzymes. Interestingly, the two genomes were found to uniquely degrade phenanthrene through a putative pathway that catabolizes 2-carboxybenzalpyruvate into the TCA cycle. An operon containing multicomponent proteins, including a novel gene (JYK05_14550) that could initiate the beginning step of phenanthrene and pyrene degradation, was found in the EF4 genome. However, the degradation pathway of ETN19 showed that the yhfP gene encoding putative quinone oxidoreductase was associated with phenanthrene and pyrene catabolic processes. Furthermore, the significant expression of catechol 1,2-dioxygenase and quinone oxidoreductase genes in EF4 +ETN19 and ETN19 following the quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis confirmed the ability of the bacteria combination to degrade pyrene and phenanthrene effectively. These findings present new insight into the possible co-metabolism of the two bacterial species in the rapid biodegradation of phenanthrene and pyrene in soil environments.
Collapse
Affiliation(s)
- Feiyue Lou
- Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Charles Obinwanne Okoye
- Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Department of Zoology & Environmental Biology, University of Nigeria, Nsukka 410001, Nigeria
| | - Lu Gao
- Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Huifang Jiang
- Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yanfang Wu
- Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yongli Wang
- Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xia Li
- Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianxiong Jiang
- Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
5
|
Dong Y, Xu D, Zhang J, Wang Q, Pang S, Zhang G, Campos LC, Lv L, Liu X, Gao W, Sun L, Ren Z, Wang P. Enhanced antibiotic wastewater degradation by intimately coupled B-Bi 3O 4Cl photocatalysis and biodegradation reactor: Elucidating degradation principle systematically. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130364. [PMID: 36463742 DOI: 10.1016/j.jhazmat.2022.130364] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/18/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Intimately coupled photocatalysis and biodegradation (ICPB) is an emerging technology that has potential applications in the degradation of bio-recalcitrant pollutants. However, the interaction principles between photocatalysts and biofilms in ICPB have not been well developed. This article covers a cooperative degradation scheme coupling photocatalysis and biodegradation for efficient degradation and mineralization of ciprofloxacin (CIP) using ICPB with B-doped Bi3O4Cl as the photocatalyst. In consequence, a removal rate of ∼95 % is reached after 40 d. The biofilms inside the ICPB carriers can mineralize the photocatalytic products, thus improving the removal rate of total organic carbon (TOC) by more than 20 %. Interior biofilms are not destroyed by CIP or photocatalysis, and they adapt to ICPB of CIP by enriching in Pseudoxanthomonas, Ferruginibacter, Clostridium, Stenotrophomonas and Comamonas and reconstructing their microbial communities using energy produced by the light-excited photoelectrons. Furthermore, this research gives new opinion into the degradation principles of the ICPB system.
Collapse
Affiliation(s)
- Yilin Dong
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; Tianjin Key Laboratory of Clean Energy and Pollutant Control, Tianjin 300401, China
| | - Dongyu Xu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; Tianjin Key Laboratory of Clean Energy and Pollutant Control, Tianjin 300401, China
| | - Jie Zhang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; Tianjin Key Laboratory of Clean Energy and Pollutant Control, Tianjin 300401, China
| | - Qiuwen Wang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; Tianjin Key Laboratory of Clean Energy and Pollutant Control, Tianjin 300401, China
| | - Shaoxuan Pang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; Tianjin Key Laboratory of Clean Energy and Pollutant Control, Tianjin 300401, China
| | - Guangming Zhang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; Tianjin Key Laboratory of Clean Energy and Pollutant Control, Tianjin 300401, China
| | - Luiza C Campos
- Department of Civil, Environmental and Geomatic Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Longyi Lv
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; Tianjin Key Laboratory of Clean Energy and Pollutant Control, Tianjin 300401, China
| | - Xiaoyang Liu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; Tianjin Key Laboratory of Clean Energy and Pollutant Control, Tianjin 300401, China
| | - Wenfang Gao
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; Tianjin Key Laboratory of Clean Energy and Pollutant Control, Tianjin 300401, China
| | - Li Sun
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; Tianjin Key Laboratory of Clean Energy and Pollutant Control, Tianjin 300401, China
| | - Zhijun Ren
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; Tianjin Key Laboratory of Clean Energy and Pollutant Control, Tianjin 300401, China.
| | - Pengfei Wang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; Tianjin Key Laboratory of Clean Energy and Pollutant Control, Tianjin 300401, China.
| |
Collapse
|
6
|
Meier A, Worch S, Hartmann A, Marzec M, Mock HP, Bode R, Kunze G, Matthes F. Characterization of Catechol-1,2-Dioxygenase (Acdo1p) From Blastobotrys raffinosifermentans and Investigation of Its Role in the Catabolism of Aromatic Compounds. Front Microbiol 2022; 13:872298. [PMID: 35722288 PMCID: PMC9204233 DOI: 10.3389/fmicb.2022.872298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/16/2022] [Indexed: 11/18/2022] Open
Abstract
Gallic acid, protocatechuic acid, catechol, and pyrogallol are only a few examples of industrially relevant aromatics. Today much attention is paid to the development of new microbial factories for the environmentally friendly biosynthesis of industrially relevant chemicals with renewable resources or organic pollutants as the starting material. The non-conventional yeast, Blastobotrys raffinosifermentans, possesses attractive properties for industrial bio-production processes such as thermo- and osmotolerance. An additional advantage is its broad substrate spectrum, with tannins at the forefront. The present study is dedicated to the characterization of catechol-1,2-dioxygenase (Acdo1p) and the analysis of its function in B. raffinosifermentans tannic acid catabolism. Acdo1p is a dimeric protein with higher affinity for catechol (K M = 0.004 ± 0.001 mM, k cat = 15.6 ± 0.4 s-1) than to pyrogallol (K M = 0.1 ± 0.02 mM, k cat = 10.6 ± 0.4 s-1). It is an intradiol dioxygenase and its reaction product with catechol as the substrate is cis,cis-muconic acid. B. raffinosifermentans G1212/YIC102-AYNI1-ACDO1-6H, which expresses the ACDO1 gene under the control of the strong nitrate-inducible AYNI1 promoter, achieved a maximum catechol-1,2-dioxygenase activity of 280.6 U/L and 26.9 U/g of dry cell weight in yeast grown in minimal medium with nitrate as the nitrogen source and 1.5% glucose as the carbon source. In the same medium with glucose as the carbon source, catechol-1,2-dioxygenase activity was not detected for the control strain G1212/YIC102 with ACDO1 expression under the regulation of its respective endogenous promoter. Gene expression analysis showed that ACDO1 is induced by gallic acid and protocatechuic acid. In contrast to the wild-type strain, the B. raffinosifermentans strain with a deletion of the ACDO1 gene was unable to grow on medium supplemented with gallic acid or protocatechuic acid as the sole carbon source. In summary, we propose that due to its substrate specificity, its thermal stability, and its ability to undergo long-term storage without significant loss of activity, B. raffinosifermentans catechol-1,2-dioxygenase (Acdo1p) is a promising enzyme candidate for industrial applications.
Collapse
Affiliation(s)
- Anna Meier
- Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Sebastian Worch
- Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Anja Hartmann
- Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Marek Marzec
- Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Hans-Peter Mock
- Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Rüdiger Bode
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Gotthard Kunze
- Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Falko Matthes
- Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| |
Collapse
|
7
|
Peralta H, Aguilar A, Cancino-Díaz JC, Cuevas-Rico EA, Carmona-González A, Cruz-Maya JA, Jan-Roblero J. Determination of the metabolic pathways for degradation of naphthalene and pyrene in Amycolatopsis sp. Poz14. Comp Biochem Physiol C Toxicol Pharmacol 2022; 254:109268. [PMID: 35026398 DOI: 10.1016/j.cbpc.2022.109268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/10/2021] [Accepted: 01/05/2022] [Indexed: 11/27/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) constitute important soil contaminants derived from petroleum. Poz14 strain can degrade pyrene and naphthalene. Its genome presented 9333 genes, among them those required for PAHs degradation. By phylogenomic analysis, the strain might be assigned to Amycolatopsis nivea. The strain was grown in glucose, pyrene, and naphthalene to compare their proteomes; 180 proteins were detected in total, and 90 of them were exclusives for xenobiotic conditions. Functions enriched with the xenobiotics belonged to transcription, translation, modification of proteins and transport of inorganic ions. Enriched pathways were pentose phosphate, proteasome and RNA degradation; in contrast, in glucose were glycolysis/gluconeogenesis and glyoxylate cycle. Proteins proposed to participate in the upper PAHs degradation were multicomponent oxygenase complexes, Rieske oxygenases, and dioxygenases; in the lower pathways were ortho-cleavage of catechol, phenylacetate, phenylpropionate, benzoate, and anthranilate. The catechol dioxygenase activity was measured and found increased when the strain was grown in naphthalene. Amycolatopsis sp. Poz14 genome and proteome revealed the PAHs degradation pathways and functions helping to contend the effects of such process.
Collapse
Affiliation(s)
- Humberto Peralta
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apdo. postal 565-A, Cuernavaca, Morelos 62210, Mexico
| | - Alejandro Aguilar
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apdo. postal 565-A, Cuernavaca, Morelos 62210, Mexico
| | - Juan Carlos Cancino-Díaz
- Laboratorio de Inmunomicrobiología, Prol. de Carpio y Plan de Ayala s/n, Col. Santo Tomás, 11340 Mexico City, Mexico
| | - Eduardo Abiud Cuevas-Rico
- Laboratorio de Biotecnología Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n, Col. Santo Tomás, 11340 Mexico City, Mexico
| | - Alejandra Carmona-González
- Laboratorio de Biotecnología Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n, Col. Santo Tomás, 11340 Mexico City, Mexico
| | - Juan Antonio Cruz-Maya
- Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas, Instituto Politécnico Nacional, Av. IPN 2580, Col. La Laguna Ticomán, 07340 Mexico City, Mexico
| | - Janet Jan-Roblero
- Laboratorio de Biotecnología Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n, Col. Santo Tomás, 11340 Mexico City, Mexico.
| |
Collapse
|
8
|
Lee GLY, Zakaria NN, Convey P, Futamata H, Zulkharnain A, Suzuki K, Abdul Khalil K, Shaharuddin NA, Alias SA, González-Rocha G, Ahmad SA. Statistical Optimisation of Phenol Degradation and Pathway Identification through Whole Genome Sequencing of the Cold-Adapted Antarctic Bacterium, Rhodococcus sp. Strain AQ5-07. Int J Mol Sci 2020; 21:ijms21249363. [PMID: 33316871 PMCID: PMC7764105 DOI: 10.3390/ijms21249363] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 11/16/2022] Open
Abstract
Study of the potential of Antarctic microorganisms for use in bioremediation is of increasing interest due to their adaptations to harsh environmental conditions and their metabolic potential in removing a wide variety of organic pollutants at low temperature. In this study, the psychrotolerant bacterium Rhodococcus sp. strain AQ5-07, originally isolated from soil from King George Island (South Shetland Islands, maritime Antarctic), was found to be capable of utilizing phenol as sole carbon and energy source. The bacterium achieved 92.91% degradation of 0.5 g/L phenol under conditions predicted by response surface methodology (RSM) within 84 h at 14.8 °C, pH 7.05, and 0.41 g/L ammonium sulphate. The assembled draft genome sequence (6.75 Mbp) of strain AQ5-07 was obtained through whole genome sequencing (WGS) using the Illumina Hiseq platform. The genome analysis identified a complete gene cluster containing catA, catB, catC, catR, pheR, pheA2, and pheA1. The genome harbours the complete enzyme systems required for phenol and catechol degradation while suggesting phenol degradation occurs via the β-ketoadipate pathway. Enzymatic assay using cell-free crude extract revealed catechol 1,2-dioxygenase activity while no catechol 2,3-dioxygenase activity was detected, supporting this suggestion. The genomic sequence data provide information on gene candidates responsible for phenol and catechol degradation by indigenous Antarctic bacteria and contribute to knowledge of microbial aromatic metabolism and genetic biodiversity in Antarctica.
Collapse
Affiliation(s)
- Gillian Li Yin Lee
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang UPM 43400, Selangor, Malaysia; (G.L.Y.L.); (N.N.Z.); (N.A.S.)
| | - Nur Nadhirah Zakaria
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang UPM 43400, Selangor, Malaysia; (G.L.Y.L.); (N.N.Z.); (N.A.S.)
| | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 0ET, UK;
| | - Hiroyuki Futamata
- Graduate School of Science and Technology, Shizuoka University, Hamamatsu 432-8561, Japan;
- Research Institute of Green Science and Technology, Shizuoka University, Suruga-ku, Shizuoka 422-8529, Japan;
| | - Azham Zulkharnain
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan;
| | - Kenshi Suzuki
- Research Institute of Green Science and Technology, Shizuoka University, Suruga-ku, Shizuoka 422-8529, Japan;
| | - Khalilah Abdul Khalil
- School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia;
| | - Noor Azmi Shaharuddin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang UPM 43400, Selangor, Malaysia; (G.L.Y.L.); (N.N.Z.); (N.A.S.)
| | - Siti Aisyah Alias
- National Antarctic Research Centre, B303 Level 3, Block B, IPS Building, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
- Institute of Ocean and Earth Sciences, B303 Level 3, Block B, Universiti Malaya, Lembah Pantai, Kuala Lumpur 50603, Malaysia
| | - Gerardo González-Rocha
- Laboratorio de Investigacion en Agentes Antibacterianos, Facultad de Ciencias Biologicas, Universidad de Concepcion, Concepcion 4070386, Chile;
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang UPM 43400, Selangor, Malaysia; (G.L.Y.L.); (N.N.Z.); (N.A.S.)
- National Antarctic Research Centre, B303 Level 3, Block B, IPS Building, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
- Correspondence:
| |
Collapse
|
9
|
Li K, Yang B, Wang L. Performance evaluation of a biotrickling filter for the removal of gas-phase 1,2-dichlorobenzene: Influence of rhamnolipid and ferric ions. CHEMOSPHERE 2020; 250:126261. [PMID: 32109701 DOI: 10.1016/j.chemosphere.2020.126261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/12/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
The aim of this study was to evaluate the influence of rhamnolipid (RL) and ferric ions on the performance of a biotrickling filter (BTF) for the removal of gas-phase 1,2-dichlorobenzene (o-DCB). A comprehensive investigation of microbial growth, pollutant solubility, extracellular polymeric substances (EPS) and enzymatic activity in o-DCB degradation by an isolated strain Bacillus cereus DL-1 with/without RL and Fe3+ were carried out using batch microcosm experiments. In addition, o-DCB removal performance, biofilm morphology, and microbial community structures in two identical lab-scale biotrickling filters (named BTF1 and BTF2) inoculated with strain DL-1 were studied. The batch microcosm experiments demonstrated that 120 mg L-1 RL and 4 mg L-1 Fe3+ could enhance the biodegradation of o-DCB, which may be due to promotion on bacterial growth, o-DCB solubilization, C12O enzyme activity, and polysaccharide (PS) and protein (PN) in EPS. Fourier transform infrared (FTIR) spectra indicated that the addition of RL with Fe3+ had notable effects on the functional groups of PS and PN in EPS. The experimental results in BTFs indicate that the removal efficiency of o-DCB decreased from 100% to 56.4% for BTF1, which was not fed with RL and Fe3+, and from 100% to 80.3% for BTF2, which was fed with RL and Fe3+, when the inlet loading rate increased from 4.88 to 102 g m-3 h-1 at an empty bed residence time of 60 s. In addition, the microbial adhesive strength and the microbial community structure were different among both BTFs, highlighting the positive effects of RL and Fe3+.
Collapse
Affiliation(s)
- Kang Li
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, PR China
| | - Bairen Yang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, PR China; School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, 224000, PR China
| | - Liping Wang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, PR China; Engineering Research Center of Mine Ecological Construction, Ministry of Education, Xuzhou, Jiangsu, 221116, PR China.
| |
Collapse
|
10
|
Effects of Low Concentration of Selected Analgesics and Successive Bioaugmentation of the Activated Sludge on Its Activity and Metabolic Diversity. WATER 2020. [DOI: 10.3390/w12041133] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, we evaluated the impact of the successive bioaugmentation of the activated sludge (AS) with the defined bacterial consortium on the activity and functional capacity of the AS microorganisms. In parallel, the removal of low concentrations of the selected non-steroidal anti-inflammatory drugs (ibuprofen, naproxen, diclofenac) and analgesic paracetamol was studied. We found that the addition of the bacterial consortium consisting of three pharmaceuticals-degrading strains Bacillus thuringiensis B1 (2015b), Stenotrophomonas maltophilia KB2, and Pseudomonas moorei KB4 into the AS did not cause any significant changes in the biomass abundance and metabolic activity of the AS microorganisms. Although, the successive bioaugmentation of the AS caused a slight increase in the metabolic diversity, the intensity of carbohydrates usage, and metabolic richness. Microorganisms in the bioaugmented and non-bioaugmented AS were able to degrade the mixture of the analyzed drugs with similar efficiency, however, diclofenac was removed more effectively in the bioaugmented AS. Several metabolites were identified and efficiently utilized, with the exception of 4-OH diclofenac. Two new diclofenac-degrading strains assigned as Serratia proteamaculans AS4 and Rahnella bruchi AS7 were isolated from the diclofenac-treated AS.
Collapse
|
11
|
Alanis-Sánchez BM, Pérez-Tapia SM, Vázquez-Leyva S, Mejía-Calvo I, Macías-Palacios Z, Vallejo-Castillo L, Flores-Ortiz CM, Guerrero-Barajas C, Cruz-Maya JA, Jan-Roblero J. Utilization of naproxen by Amycolatopsis sp. Poz 14 and detection of the enzymes involved in the degradation metabolic pathway. World J Microbiol Biotechnol 2019; 35:186. [DOI: 10.1007/s11274-019-2764-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/05/2019] [Indexed: 11/24/2022]
|
12
|
Górny D, Guzik U, Hupert-Kocurek K, Wojcieszyńska D. Naproxen ecotoxicity and biodegradation by Bacillus thuringiensis B1(2015b) strain. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 167:505-512. [PMID: 30368144 DOI: 10.1016/j.ecoenv.2018.10.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 05/09/2023]
Abstract
High level of naproxen consumption leads to the appearance of this drug in the environment but its possible effects on non-target organisms together with its biodegradation are not well studied. The aim of this work was to evaluate naproxen ecotoxicity by using the Microbial Assay for Risk Assessment. Moreover, Bacillus thuringiensis B1(2015b) was tested for both ecotoxicity and the ability of this strain to degrade naproxen in cometabolic conditions. The results indicate that the mean value of microbial toxic concentration estimated by MARA test amounts to 1.66 g/L whereas EC50 of naproxen for B1(2015b) strain was 4.69 g/L. At toxic concentration, Bacillus thuringiensis B1(2015b) showed 16:0 iso 3OH fatty acid presence and an increase in the ratio of total saturated to unsaturated fatty acids. High resistance of the examined strain to naproxen correlated with its ability to degrade this drug in cometabolic conditions. The results of bacterial reverse mutation assay (Ames test) revealed that naproxen at concentrations above 1 g/L showed genotoxic effect but the response was not dose-dependent. Maximal specific naproxen removal rate was observed at pH 6.5 and 30 °C, and in the presence of 0.5 g/L glucose as a growth substrate. Kinetic analysis allowed estimation of the half saturation constant (Ks) and the maximum specific naproxen removal rate (qmax) as 6.86 mg/L and 1.26 mg/L day, respectively. These results indicate that Bacillus thuringiensis B1(2015b) has a high ability to degrade naproxen and is a potential tool for bioremediation.
Collapse
Affiliation(s)
- Dorota Górny
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland.
| | - Urszula Guzik
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland.
| | - Katarzyna Hupert-Kocurek
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland.
| | - Danuta Wojcieszyńska
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland.
| |
Collapse
|
13
|
Yuan K, Xie X, Wang X, Lin L, Yang L, Luan T, Chen B. Transcriptional response of Mycobacterium sp. strain A1-PYR to multiple polycyclic aromatic hydrocarbon contaminations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:824-832. [PMID: 30243191 DOI: 10.1016/j.envpol.2018.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/29/2018] [Accepted: 09/01/2018] [Indexed: 06/08/2023]
Abstract
Cometabolism mechanisms of organic pollutants in environmental microbes have not been fully understood. In this study, a global analysis of Mycobacterium sp. strain A1-PYR transcriptomes on different PAH substrates (single or binary of pyrene (PYR) and phenanthrene (PHE)) was conducted. Comparative results demonstrated that expression levels of 23 PAH degradation enzymes were significantly higher in the binary substrate than in the PYR-only one. These enzymes constituted an integrated enzymatic system to actualize all transformation steps of PYR, and most of their encoded genes formed a novel gene cascade in the genome of strain A1-PYR. The roles of different genotypes of enzymes in PYR cometabolism were also discriminated even though all of their gene sequences were presented in the genome of this strain. NidAB and PdoA2B2 instead of NidA3B3 served the initial oxidization of PAHs, and PcaL replaced PcaCD to catalyze the formation of 3-oxoadipate. Novel genes associated with PYR cometabolism was also predicted by the relationships between their transcription profiles and PYR removal. The results showed that ABC-type transporters probably played important roles in the transport of PAHs and their metabolites through cell membrane, and [4Fe-4S] ferredoxin might be essential for dioxygenases (NidAB and PdoA2B2) to achieve oxidative activities. This study provided molecular insight in that microbial degrader subtly cometabolized recalcitrant PAHs with relatively more degradable ones.
Collapse
Affiliation(s)
- Ke Yuan
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China; School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Xiuqin Xie
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Xiaowei Wang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Li Lin
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Lihua Yang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Tiangang Luan
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China; School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Baowei Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
14
|
Żur J, Wojcieszyńska D, Hupert-Kocurek K, Marchlewicz A, Guzik U. Paracetamol - toxicity and microbial utilization. Pseudomonas moorei KB4 as a case study for exploring degradation pathway. CHEMOSPHERE 2018; 206:192-202. [PMID: 29751245 DOI: 10.1016/j.chemosphere.2018.04.179] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/25/2018] [Accepted: 04/30/2018] [Indexed: 06/08/2023]
Abstract
Paracetamol, a widely used analgesic and antipyretic drug, is currently one of the most emerging pollutants worldwide. Besides its wide prevalence in the literature only several bacterial strains able to degrade this compound have been described. In this study, we isolated six new bacterial strains able to remove paracetamol. The isolated strains were identified as the members of Pseudomonas, Bacillus, Acinetobacter and Sphingomonas genera and characterized phenotypically and biochemically using standard methods. From the isolated strains, Pseudomonas moorei KB4 was able to utilize 50 mg L-1 of paracetamol. As the main degradation products, p-aminophenol and hydroquinone were identified. Based on the measurements of specific activity of acyl amidohydrolase, deaminase and hydroquinone 1,2-dioxygenase and the results of liquid chromatography analyses, we proposed a mechanism of paracetamol degradation by KB4 strain under co-metabolic conditions with glucose. Additionally, toxicity bioassays and the influence of various environmental factors, including pH, temperature, heavy metals at no-observed-effective-concentrations, and the presence of aromatic compounds on the efficiency and mechanism of paracetamol degradation by KB4 strain were determined. This comprehensive study about paracetamol biodegradation will be helpful in designing a treatment systems of wastewaters contaminated with paracetamol.
Collapse
Affiliation(s)
- Joanna Żur
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland.
| | - Danuta Wojcieszyńska
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland.
| | - Katarzyna Hupert-Kocurek
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland.
| | - Ariel Marchlewicz
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland.
| | - Urszula Guzik
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland.
| |
Collapse
|
15
|
Cloning and characterisation of four catA genes located on the chromosome and large plasmid of Pseudomonas putida ND6. ELECTRON J BIOTECHN 2018. [DOI: 10.1016/j.ejbt.2018.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
16
|
Guevara-Luna J, Alvarez-Fitz P, Ríos-Leal E, Acevedo-Quiroz M, Encarnación-Guevara S, Moreno-Godinez ME, Castellanos-Escamilla M, Toribio-Jiménez J, Romero-Ramírez Y. Biotransformation of benzo[a]pyrene by the thermophilic bacterium Bacillus licheniformis M2-7. World J Microbiol Biotechnol 2018; 34:88. [DOI: 10.1007/s11274-018-2469-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/31/2018] [Indexed: 10/14/2022]
|
17
|
Yang Z, Xu X, Dai M, Wang L, Shi X, Guo R. Accelerated ciprofloxacin biodegradation in the presence of magnetite nanoparticles. CHEMOSPHERE 2017; 188:168-173. [PMID: 28886550 DOI: 10.1016/j.chemosphere.2017.08.159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 08/06/2017] [Accepted: 08/25/2017] [Indexed: 06/07/2023]
Abstract
Ciprofloxacin (CIP) biodegradation was investigated using enrichments obtained in the presence of magnetite nanoparticles, CIP and human fecal sewage. CIP addition inhibited methanogenic activity and altered the bacterial community composition. The magnetite-supplemented enrichments significantly promoted CIP biodegradation, especially in the presence of 2-bromoethanesulfonate (BES). When BES was added, CIP biodegradation in the magnetite-supplemented enrichments was 67% higher than in the magnetite-unamended enrichments. Fe (II) concentrations were also significantly increased in the BES and magnetite-supplemented enrichments. This indicated that there might be a positive relationship of CIP biodegradation with microbial reduction of Fe (III) to Fe (II). As for the magnetite-supplemented enrichments, DNA-sequencing analysis revealed that Stenotrophomonas was the dominant genus, while Desulfovibrio became the dominant genus in the presence of BES. These two genera might be related to Fe (III) reduction in the magnetite. The findings provide a strategy for improving CIP biodegradation during waste treatment.
Collapse
Affiliation(s)
- Zhiman Yang
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province, 266101, PR China
| | - Xiaohui Xu
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province, 266101, PR China
| | - Meng Dai
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province, 266101, PR China
| | - Lin Wang
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province, 266101, PR China
| | - Xiaoshuang Shi
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province, 266101, PR China
| | - Rongbo Guo
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province, 266101, PR China.
| |
Collapse
|
18
|
Kostrzewa-Susłow E, Dymarska M, Guzik U, Wojcieszyńska D, Janeczko T. Stenotrophomonas maltophilia: A Gram-Negative Bacterium Useful for Transformations of Flavanone and Chalcone. Molecules 2017; 22:molecules22111830. [PMID: 29077064 PMCID: PMC6150369 DOI: 10.3390/molecules22111830] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/22/2017] [Indexed: 11/16/2022] Open
Abstract
A group of flavones, isoflavones, flavanones, and chalcones was subjected to small-scale biotransformation studies with the Gram-negative Stenotrophomonas maltophilia KB2 strain in order to evaluate the capability of this strain to transform flavonoid compounds and to investigate the relationship between compound structure and transformation type. The tested strain transformed flavanones and chalcones. The main type of transformation of compounds with a flavanone moiety was central heterocyclic C ring cleavage, leading to chalcone and dihydrochalcone structures, whereas chalcones underwent reduction to dihydrochalcones and cyclisation to a benzo-γ-pyrone moiety. Substrates with a C-2–C-3 double bond (flavones and isoflavones) were not transformed by Stenotrophomonas maltophilia KB2.
Collapse
Affiliation(s)
- Edyta Kostrzewa-Susłow
- Department of Chemistry, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - Monika Dymarska
- Department of Chemistry, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - Urszula Guzik
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland.
| | - Danuta Wojcieszyńska
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland.
| | - Tomasz Janeczko
- Department of Chemistry, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| |
Collapse
|
19
|
Marchlewicz A, Guzik U, Smułek W, Wojcieszyńska D. Exploring the Degradation of Ibuprofen by Bacillus thuringiensis B1(2015b): The New Pathway and Factors Affecting Degradation. Molecules 2017; 22:molecules22101676. [PMID: 28991215 PMCID: PMC6151734 DOI: 10.3390/molecules22101676] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/06/2017] [Indexed: 11/29/2022] Open
Abstract
Ibuprofen is one of the most often detected pollutants in the environment, particularly at landfill sites and in wastewaters. Contamination with pharmaceuticals is often accompanied by the presence of other compounds which may influence their degradation. This work describes the new degradation pathway of ibuprofen by Bacillus thuringiensis B1(2015b), focusing on enzymes engaged in this process. It is known that the key intermediate which transformation limits the velocity of the degradation process is hydroxyibuprofen. As the degradation rate also depends on various factors, the influence of selected heavy metals and aromatic compounds on ibuprofen degradation by the B1(2015b) strain was examined. Based on the values of non-observed effect concentration (NOEC) it was found that the toxicity of tested metals increases from Hg(II) < Cu(II) < Cd(II) < Co(II) < Cr(VI). Despite the toxic effect of metals, the biodegradation of ibuprofen was observed. The addition of Co2+ ions into the medium significantly extended the time necessary for the complete removal of ibuprofen. It was shown that Bacillus thuringiensis B1(2015b) was able to degrade ibuprofen in the presence of phenol, benzoate, and 2-chlorophenol. Moreover, along with the removal of ibuprofen, degradation of phenol and benzoate was observed. Introduction of 4-chlorophenol into the culture completely inhibits degradation of ibuprofen.
Collapse
Affiliation(s)
- Ariel Marchlewicz
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland.
| | - Urszula Guzik
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland.
| | - Wojciech Smułek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| | - Danuta Wojcieszyńska
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland.
| |
Collapse
|
20
|
Xu B, Xiong C, Deng M, Li J, Tang X, Wu Q, Zhou J, Yang Y, Ding J, Han N, Huang Z. Genetic diversity of catechol 1,2-dioxygenase in the fecal microbial metagenome. J Basic Microbiol 2017; 57:883-895. [PMID: 28745827 DOI: 10.1002/jobm.201700106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/25/2017] [Accepted: 06/06/2017] [Indexed: 11/07/2022]
Abstract
Catechol 1,2-dioxygenase is the key enzyme that catalyzes the cleavage of the aromatic ring of catechol. We explored the genetic diversity of catechol 1,2-dioxygenase in the fecal microbial metagenome by PCR with degenerate primers. A total of 35 gene fragments of C12O were retrieved from microbial DNA in the feces of pygmy loris. Based on phylogenetic analysis, most sequences were closely related to C12O sequences from Acinetobacter. A full-length C12O gene was directly cloned, heterologously expressed in Escherichia coli, and biochemically characterized. Purified catPL12 had optimum pH and temperature pH 8.0 and 25 °C and retained 31 and 50% of its maximum activity when assayed at 0 and 35 °C, respectively. The enzyme was stable at 25 and 37 °C, retaining 100% activity after pre-incubation for 1 h. The kinetic parameters of catPL12 were determined. The enzyme had apparent Km of 67 µM, Vmax of 7.3 U/mg, and kcat of 4.2 s-1 for catechol, and the cleavage activities for 3-methylcatechol, 4-methylcatechol, and 4-chlorocatechol were much less than for catechol, and no activity with hydroquinone or protocatechuate was detected. This study is the first to report the molecular and biochemical characterizations of a cold-adapted catechol 1,2-dioxygenase from a fecal microbial metagenome.
Collapse
Affiliation(s)
- Bo Xu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, Yunnan, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan, China
- School of Life Science, Yunnan Normal University, Kunming, Yunnan, China
| | - Caiyun Xiong
- School of Life Science, Yunnan Normal University, Kunming, Yunnan, China
| | - Meng Deng
- School of Life Science, Yunnan Normal University, Kunming, Yunnan, China
| | - Junjun Li
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, Yunnan, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan, China
- School of Life Science, Yunnan Normal University, Kunming, Yunnan, China
| | - Xianghua Tang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, Yunnan, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan, China
- School of Life Science, Yunnan Normal University, Kunming, Yunnan, China
| | - Qian Wu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, Yunnan, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan, China
- School of Life Science, Yunnan Normal University, Kunming, Yunnan, China
| | - Junpei Zhou
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, Yunnan, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan, China
- School of Life Science, Yunnan Normal University, Kunming, Yunnan, China
| | - Yunjuan Yang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, Yunnan, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan, China
- School of Life Science, Yunnan Normal University, Kunming, Yunnan, China
| | - Junmei Ding
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, Yunnan, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan, China
- School of Life Science, Yunnan Normal University, Kunming, Yunnan, China
| | - Nanyu Han
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, Yunnan, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan, China
- School of Life Science, Yunnan Normal University, Kunming, Yunnan, China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, Yunnan, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan, China
- School of Life Science, Yunnan Normal University, Kunming, Yunnan, China
| |
Collapse
|
21
|
Marchlewicz A, Guzik U, Hupert-Kocurek K, Nowak A, Wilczyńska S, Wojcieszyńska D. Toxicity and biodegradation of ibuprofen by Bacillus thuringiensis B1(2015b). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:7572-7584. [PMID: 28116629 PMCID: PMC5383686 DOI: 10.1007/s11356-017-8372-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 01/03/2017] [Indexed: 05/02/2023]
Abstract
In recent years, the increased intake of ibuprofen has resulted in the presence of the drug in the environment. This work presents results of a study on degradation of ibuprofen at 25 mg L-1 in the presence of glucose, as an additional carbon source by Bacillus thuringiensis B1(2015b). In the cometabolic system, the maximum specific growth rate of the bacterial strain was 0.07 ± 0.01 mg mL-1 h-1 and K sμ 0.27 ± 0.15 mg L-1. The maximum specific ibuprofen removal rate and the value of the half-saturation constant were q max = 0.24 ± 0.02 mg mL-1 h-1 and K s = 2.12 ± 0.56 mg L-1, respectively. It has been suggested that monooxygenase and catechol 1,2-dioxygenase are involved in ibuprofen degradation by B. thuringiensis B1(2015b). Toxicity studies showed that B. thuringiensis B1(2015b) is more resistant to ibuprofen than other tested organisms. The EC50 of ibuprofen on the B1 strain is 809.3 mg L-1, and it is 1.5 times higher than the value of the microbial toxic concentration (MTCavg). The obtained results indicate that B. thuringiensis B1(2015b) could be a useful tool in biodegradation/bioremediation processes.
Collapse
Affiliation(s)
- Ariel Marchlewicz
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Urszula Guzik
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Katarzyna Hupert-Kocurek
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Agnieszka Nowak
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Sylwia Wilczyńska
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Danuta Wojcieszyńska
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland.
| |
Collapse
|
22
|
Enhanced dephenolization using sequential biological and photocatalytic treatment. Polym Bull (Berl) 2016. [DOI: 10.1007/s00289-016-1654-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Musilova L, Ridl J, Polivkova M, Macek T, Uhlik O. Effects of Secondary Plant Metabolites on Microbial Populations: Changes in Community Structure and Metabolic Activity in Contaminated Environments. Int J Mol Sci 2016; 17:E1205. [PMID: 27483244 PMCID: PMC5000603 DOI: 10.3390/ijms17081205] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/20/2016] [Accepted: 07/15/2016] [Indexed: 12/19/2022] Open
Abstract
Secondary plant metabolites (SPMEs) play an important role in plant survival in the environment and serve to establish ecological relationships between plants and other organisms. Communication between plants and microorganisms via SPMEs contained in root exudates or derived from litter decomposition is an example of this phenomenon. In this review, the general aspects of rhizodeposition together with the significance of terpenes and phenolic compounds are discussed in detail. We focus specifically on the effect of SPMEs on microbial community structure and metabolic activity in environments contaminated by polychlorinated biphenyls (PCBs) and polyaromatic hydrocarbons (PAHs). Furthermore, a section is devoted to a complex effect of plants and/or their metabolites contained in litter on bioremediation of contaminated sites. New insights are introduced from a study evaluating the effects of SPMEs derived during decomposition of grapefruit peel, lemon peel, and pears on bacterial communities and their ability to degrade PCBs in a long-term contaminated soil. The presented review supports the "secondary compound hypothesis" and demonstrates the potential of SPMEs for increasing the effectiveness of bioremediation processes.
Collapse
Affiliation(s)
- Lucie Musilova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technicka 3, 166 28 Prague, Czech Republic.
| | - Jakub Ridl
- Department of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic.
| | - Marketa Polivkova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technicka 3, 166 28 Prague, Czech Republic.
| | - Tomas Macek
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technicka 3, 166 28 Prague, Czech Republic.
| | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technicka 3, 166 28 Prague, Czech Republic.
| |
Collapse
|
24
|
Wojcieszyńska D, Domaradzka D, Hupert-Kocurek K, Guzik U. Enzymes Involved in Naproxen Degradation by Planococcus sp. S5. Pol J Microbiol 2016; 65:177-182. [PMID: 30015441 DOI: 10.5604/17331331.1204477] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2016] [Indexed: 11/13/2022] Open
Abstract
Naproxen is a one of the most popular non-steroidal anti-inflammatory drugs (NSAIDs) entering the environment as a result of high consumption. For this reason, there is an emerging need to recognize mechanisms of its degradation and enzymes engaged in this process. Planococcus sp. S5 is a gram positive strain able to degrade naproxen in monosubstrate culture (27%). However, naproxen is not a suf-ficient growth substrate for this strain. In the presence of benzoate, 4-hydroxybenzoic acid, 3,4-dihydroxybenzoic acid or vanillic acid as growth substrates, the degradation of 21.5%, 71.71%, 14.75% and 8.16% of naproxen was observed respectively. It was shown that the activity of monooxygenase, hydroxyquinol 1,2-dioxygenase, protocatechuate 3,4-dioxygenase and protocatechuate 4,5-dioxyegnase in strain S5 was induced after growth of the strain with naproxen and 4-hydroxybenzoate. Moreover, in the presence of naproxen activity of gentisate 1,2-dioxygenase, enzyme engaged in 4-hydroxybenzoate metabolism, was completely inhibited. The obtained results suggest that monooxygenase and hydroxyquinol 1,2-dioxygenase are the main enzymes in naproxen degradation by Planococcus sp. S5.
Collapse
Affiliation(s)
- Danuta Wojcieszyńska
- Department of Biochemistry, Faculty of Biology and Environment Protection, University of Silesia in Katowice, Katowice, Poland
| | - Dorota Domaradzka
- Department of Biochemistry, Faculty of Biology and Environment Protection, University of Silesia in Katowice, Katowice, Poland
| | - Katarzyna Hupert-Kocurek
- Department of Biochemistry, Faculty of Biology and Environment Protection, University of Silesia in Katowice, Katowice, Poland
| | - Urszula Guzik
- Department of Biochemistry, Faculty of Biology and Environment Protection, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
25
|
Nowak A, Mrozik A. Facilitation of Co-Metabolic Transformation and Degradation of Monochlorophenols by Pseudomonas sp. CF600 and Changes in Its Fatty Acid Composition. WATER, AIR, AND SOIL POLLUTION 2016; 227:83. [PMID: 26917860 PMCID: PMC4752961 DOI: 10.1007/s11270-016-2775-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/31/2016] [Indexed: 06/05/2023]
Abstract
In this study, co-metabolic degradation of monochlorophenols (2-CP, 3-CP, and 4-CP) by the Pseudomonas sp. CF600 strain in the presence of phenol, sodium benzoate, and 4-hydroxybenzoic acid as an additional carbon source as well as the survival of bacteria were investigated. Moreover, the changes in cellular fatty acid profiles of bacteria depending on co-metabolic conditions were analyzed. It was found that bacteria were capable of degrading 4-CP completely in the presence of phenol, and in the presence of all substrates, they degraded 2-CP and 3-CP partially. The highest 2-CP and 3-CP removal was observed in the presence of sodium benzoate. Bacteria exhibited three various dioxygenases depending on the type of growth substrate. It was also demonstrated that bacteria exposed to aromatic growth substrates earlier degraded monochlorophenols more effectively than unexposed cells. The analysis of fatty acid profiles of bacteria indicated the essential changes in their composition, involving alterations in fatty acid saturation, hydroxylation, and cyclopropane ring formation. The most significant change in bacteria exposed to sodium benzoate and degrading monochlophenols was the appearance of branched fatty acids. The knowledge from this study indicates that Pseudomonas sp. CF600 could be a suitable candidate for the bioaugmentation of environments contaminated with phenolic compounds.
Collapse
Affiliation(s)
- Agnieszka Nowak
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
| | - Agnieszka Mrozik
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
| |
Collapse
|
26
|
Domaradzka D, Guzik U, Hupert-Kocurek K, Wojcieszyńska D. Cometabolic Degradation of Naproxen by Planococcus sp. Strain S5. WATER, AIR, AND SOIL POLLUTION 2015; 226:297. [PMID: 26300571 PMCID: PMC4534501 DOI: 10.1007/s11270-015-2564-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/27/2015] [Indexed: 05/24/2023]
Abstract
Naproxen is a non-steroidal anti-inflammatory drug frequently detected in the influent and effluent of sewage treatment plants. The Gram-positive strain Planococcus sp. S5 was able to remove approximately 30 % of naproxen after 35 days of incubation in monosubstrate culture. Under cometabolic conditions, with glucose or phenol as a growth substrate, the degradation efficiency of S5 increased. During 35 days of incubation, 75.14 ± 1.71 % and 86.27 ± 2.09 % of naproxen was degraded in the presence of glucose and phenol, respectively. The highest rate of naproxen degradation observed in the presence of phenol may be connected with the fact that phenol is known to induce enzymes responsible for aromatic ring cleavage. The activity of phenol monooxygenase, naphthalene monooxygenase, and hydroxyquinol 1,2-dioxygenase was indicated in Planococcus sp. S5 culture with glucose or phenol as a growth substrate. It is suggested that these enzymes may be engaged in naproxen degradation.
Collapse
Affiliation(s)
- Dorota Domaradzka
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - Urszula Guzik
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - Katarzyna Hupert-Kocurek
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - Danuta Wojcieszyńska
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| |
Collapse
|
27
|
Sałek K, Kaczorek E, Guzik U, Zgoła-Grześkowiak A. Bacterial properties changing under Triton X-100 presence in the diesel oil biodegradation systems: from surface and cellular changes to mono- and dioxygenases activities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:4305-15. [PMID: 25292306 PMCID: PMC4342841 DOI: 10.1007/s11356-014-3668-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 09/26/2014] [Indexed: 05/15/2023]
Abstract
Triton X-100, as one of the most popular surfactants used in bioremediation techniques, has been reported as an effective agent enhancing the biodegradation of hydrocarbons. However efficient, the surfactant's role in different processes that together enable the satisfying biodegradation should be thoroughly analysed and verified. In this research, we present the interactions of Triton X-100 with the bacterial surfaces (hydrophobicity and zeta potential), its influence on the enzymatic properties (considering mono- and dioxygenases) and profiles of fatty acids, which then all together were compared with the biodegradation rates. The addition of various concentrations of Triton X-100 to diesel oil system revealed different cell surface hydrophobicity (CSH) of the tested strains. The results demonstrated that for Pseudomonas stutzeri strain 9, higher diesel oil biodegradation was correlated with hydrophilic properties of the tested strain and lower Triton X-100 biodegradation. Furthermore, an increase of the branched fatty acids was observed for this strain.
Collapse
Affiliation(s)
- Karina Sałek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Ewa Kaczorek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Urszula Guzik
- Faculty of Biology and Environment Protection, Department of Biochemistry, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
| | - Agnieszka Zgoła-Grześkowiak
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| |
Collapse
|
28
|
Zafra G, Moreno-Montaño A, Absalón ÁE, Cortés-Espinosa DV. Degradation of polycyclic aromatic hydrocarbons in soil by a tolerant strain of Trichoderma asperellum. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:1034-42. [PMID: 25106516 DOI: 10.1007/s11356-014-3357-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/17/2014] [Indexed: 05/15/2023]
Abstract
Trichoderma asperellum H15, a previously isolated strain characterized by its high tolerance to low (LMW) and high molecular weight (HMW) PAHs, was tested for its ability to degrade 3-5 ring PAHs (phenanthrene, pyrene, and benzo[a]pyrene) in soil microcosms along with a biostimulation treatment with sugarcane bagasse. T. asperellum H15 rapidly adapted to PAH-contaminated soils, producing more CO2 than uncontaminated microcosms and achieving up to 78 % of phenanthrene degradation in soils contaminated with 1,000 mg Kg(-1) after 14 days. In soils contaminated with 1,000 mg Kg(-1) of a three-PAH mixture, strain H15 was shown to degrade 74 % phenanthrene, 63 % pyrene, and 81 % of benzo[a]pyrene. Fungal catechol 1,2 dioxygenase, laccase, and peroxidase enzyme activities were found to be involved in the degradation of PAHs by T. asperellum. The results demonstrated the potential of T. asperellum H15 to be used in a bioremediation process. This is the first report describing the involvement of T. asperellum in LMW and HMW-PAH degradation in soils. These findings, along with the ability to remove large amounts of PAHs in soil found in the present work provide enough evidence to consider T. asperellum as a promising and efficient PAH-degrading microorganism.
Collapse
Affiliation(s)
- German Zafra
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Carretera Estatal Santa Ines Tecuexcomac-Tepetitla Km 1.5, Tepetitla, Tlaxcala, México, C.P. 70900
| | | | | | | |
Collapse
|
29
|
Wojcieszyńska D, Domaradzka D, Hupert-Kocurek K, Guzik U. Bacterial degradation of naproxen--undisclosed pollutant in the environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2014; 145:157-61. [PMID: 25026371 DOI: 10.1016/j.jenvman.2014.06.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/17/2014] [Accepted: 06/24/2014] [Indexed: 05/13/2023]
Abstract
The presence of non-steroidal anti-inflammatory drugs (NSAIDs) in the environment is an emerging problem due to their potential influence on human health and biocenosis. This is the first report on the biotransformation of naproxen, a polycyclic NSAID, by a bacterial strain. Stenotrophomonas maltophilia KB2 transformed naproxen within 35 days with about 28% degradation efficiency. Under cometabolic conditions with glucose or phenol as a carbon source degradation efficiency was 78% and 40%, respectively. Moreover, in the presence of naproxen phenol monooxygenase, naphthalene dioxygenase, hydroxyquinol 1,2-dioxygenase and gentisate 1,2-dioxygenase were induced. This suggests that degradation of naproxen occurs by its hydroxylation to 5,7,8-trihydroxynaproxen, an intermediate that can be cleaved by hydroxyquinol 1,2-dioxygenase. The cleavage product is probably further oxidatively cleaved by gentisate 1,2-dioxygenase. The obtained results provide the basis for the use of cometabolic systems in the bioremediation of polycyclic NSAID-contaminated environments.
Collapse
Affiliation(s)
- Danuta Wojcieszyńska
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland.
| | - Dorota Domaradzka
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland.
| | - Katarzyna Hupert-Kocurek
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland.
| | - Urszula Guzik
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland.
| |
Collapse
|
30
|
Guzik U, Hupert-Kocurek K, Sitnik M, Wojcieszyńska D. Protocatechuate 3,4-dioxygenase: a wide substrate specificity enzyme isolated from Stenotrophomonas maltophilia KB2 as a useful tool in aromatic acid biodegradation. J Mol Microbiol Biotechnol 2014; 24:150-60. [PMID: 24970342 DOI: 10.1159/000362791] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Protocatechuate 3,4-dioxygenases (P34Os) catalyze the reaction of the ring cleavage of aromatic acid derivatives. It is a key reaction in many xenobiotic metabolic pathways. P34Os characterize narrow substrate specificity. This property is an unfavorable feature in the biodegradation process because one type of pollution is rarely present in the environment. Thus, the following study aimed at the characterization of a P34O from Stenotrophomonas maltophilia KB2, being able to utilize a wide spectrum of aromatic carboxylic acids. A total of 3 mM vanillic acid and 4-hydroxybenzoate were completely degraded during 8 and 4.5 h, respectively. When cells of strain KB2 were grown on 9 mM 4-hydroxybenzoate, P34O was induced. Biochemical analysis revealed that the examined enzyme was similar to other known P34Os, but showed untypical wide substrate specificity. A high activity of P34O against 2,4- and 3,5-dihydroxybenzoate was observed. As these substrates do not possess ortho configuration hydroxyl groups, it is postulated that their cleavage could be connected with their monodentate binding of substrate to the active site. Since this enzyme characterizes untypical wide substrate specificity it makes it a useful tool in applications for environmental clean-up purposes.
Collapse
Affiliation(s)
- Urszula Guzik
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | | | | | | |
Collapse
|
31
|
Guzik U, Hupert-Kocurek K, Marchlewicz A, Wojcieszyńska D. Enhancement of biodegradation potential of catechol 1,2-dioxygenase through its immobilization in calcium alginate gel. ELECTRON J BIOTECHN 2014. [DOI: 10.1016/j.ejbt.2014.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
32
|
Degradation potential of protocatechuate 3,4-dioxygenase from crude extract of Stenotrophomonas maltophilia strain KB2 immobilized in calcium alginate hydrogels and on glyoxyl agarose. BIOMED RESEARCH INTERNATIONAL 2014; 2014:138768. [PMID: 24693536 PMCID: PMC3944718 DOI: 10.1155/2014/138768] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 12/19/2013] [Indexed: 11/18/2022]
Abstract
Microbial intradiol dioxygenases have been shown to have a great potential for bioremediation; however, their structure is sensitive to various environmental and chemical agents. Immobilization techniques allow for the improvement of enzyme properties. This is the first report on use of glyoxyl agarose and calcium alginate as matrixes for the immobilization of protocatechuate 3,4-dioxygenase. Multipoint attachment of the enzyme to the carrier caused maintenance of its initial activity during the 21 days. Immobilization of dioxygenase in calcium alginate or on glyoxyl agarose resulted in decrease in the optimum temperature by 5 °C and 10 °C, respectively. Entrapment of the enzyme in alginate gel shifted its optimum pH towards high-alkaline pH while immobilization of the enzyme on glyoxyl agarose did not influence pH profile of the enzyme. Protocatechuate 3,4-dioygenase immobilized in calcium alginate showed increased activity towards 2,5-dihydroxybenzoate, caffeic acid, 2,3-dihydroxybenzoate, and 3,5-dihydroxybenzoate. Slightly lower activity of the enzyme was observed after its immobilization on glyoxyl agarose. Entrapment of the enzyme in alginate gel protected it against chelators and aliphatic alcohols while its immobilization on glyoxyl agarose enhanced enzyme resistance to inactivation by metal ions.
Collapse
|
33
|
Pal Basak S, Sarkar P, Pal P. Isolation and characterization of phenol utilizing bacteria from industrial effluent-contaminated soil and kinetic evaluation of their biodegradation potential. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2014; 49:67-77. [PMID: 24117085 DOI: 10.1080/10934529.2013.824304] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Microbial degradation of phenol by pure bacterial species is a well-known approach towards alleviation of environmental pollution. In this study, five phenol-degrading bacterial species designated as CUPS-1 to CUPS-5 were isolated from the oil-effluent dumped sites of Haldia Industrial area of West Bengal, India. Detailed morphological, biochemical and molecular characterization identified CUPS-3 as a novel strain- Stenotrophomonas maltophilia (GU358076), while the others could be identified as Pseudomonas (CUPS-2, 5), Delftia (CUPS-1) and Micrococcus (CUPS-4) genera, respectively. Although all of these strains utilized phenol as their sole carbon source supporting growth, three among them, CUPS-2, CUPS-3 and CUPS-5 proved potential phenol degraders and hence used for further biodegradation studies. Degradation experiments were carried out for several initial phenol concentrations of 500 mg/L, 750 mg/L, 1000 mg/L, 1250 mg/L and 1500 mg/L. The novel strain, CUPS-3 could completely degrade 500 mg/L phenol within 48 h, with 0.0937/h substrate degradation rate and 16.34 mg/L/h substrate consumption rate. The strains degraded phenol via meta-cleavage pathway. Prediction of kinetic parameters of the biodegradation was accomplished Haldane model using the experimental data of degradation rate and phenol concentration as function of time.
Collapse
Affiliation(s)
- Sreela Pal Basak
- a Department of Polymer Science & Technology , University of Calcutta , Kolkata , India
| | | | | |
Collapse
|
34
|
Qiu G, Song YH, Zeng P, Duan L, Xiao S. Characterization of bacterial communities in hybrid upflow anaerobic sludge blanket (UASB)-membrane bioreactor (MBR) process for berberine antibiotic wastewater treatment. BIORESOURCE TECHNOLOGY 2013; 142:52-62. [PMID: 23735790 DOI: 10.1016/j.biortech.2013.04.077] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/19/2013] [Accepted: 04/19/2013] [Indexed: 06/02/2023]
Abstract
Biodegradation of berberine antibiotic was investigated in upflow anaerobic sludge blanket (UASB)-membrane bioreactor (MBR) process. After 118days of operation, 99.0%, 98.0% and 98.0% overall removals of berberine, COD and NH4(+)-N were achieved, respectively. The detailed composition of the established bacterial communities was studied by using 16S rDNA clone library. Totally, 400 clones were retrieved and grouped into 186 operational taxonomic units (OTUs). UASB was dominated by Firmicutes and Bacteroidetes, while Proteobacteria, especially Alpha- and Beta-proteobacteria were prevalent in the MBRs. Clostridium, Eubacterium and Synergistes in the UASB, as well as Hydrogenophaga, Azoarcus, Sphingomonas, Stenotrophomonas, Shinella and Alcaligenes in the MBRs were identified as potential functional species in biodegradation of berberine and/or its metabolites. The bacterial community compositions in two MBRs were significantly discrepant. However, the identical functions of the functional species ensured the comparable pollutant removal performances in two bioreactors.
Collapse
Affiliation(s)
- Guanglei Qiu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Dayangfang 8, Anwai Beiyuan, Beijing 100012, China
| | | | | | | | | |
Collapse
|
35
|
Wojcieszyńska D, Hupert-Kocurek K, Guzik U. Factors affecting activity of catechol 2,3-dioxygenase from 2-chlorophenol-degradingStenotrophomonas maltophiliastrain KB2. BIOCATAL BIOTRANSFOR 2013. [DOI: 10.3109/10242422.2013.796456] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
36
|
Guzik U, Hupert-Kocurek K, Sitnik M, Wojcieszyńska D. High activity catechol 1,2-dioxygenase from Stenotrophomonas maltophilia strain KB2 as a useful tool in cis,cis-muconic acid production. Antonie van Leeuwenhoek 2013; 103:1297-307. [PMID: 23536173 PMCID: PMC3656225 DOI: 10.1007/s10482-013-9910-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 03/22/2013] [Indexed: 10/31/2022]
Abstract
This is the first report of a catechol 1,2-dioxygenase from Stenotrophomonas maltophilia strain KB2 with high activity against catechol and its methyl derivatives. This enzyme was maximally active at pH 8.0 and 40 °C and the half-life of the enzyme at this temperature was 3 h. Kinetic studies showed that the value of K m and V max was 12.8 μM and 1,218.8 U/mg of protein, respectively. During our studies on kinetic properties of the catechol 1,2-dioxygenase we observed substrate inhibition at >80 μM. The nucleotide sequence of the gene encoding the S. maltophilia strain KB2 catechol 1,2-dioxygenase has high identity with other catA genes from members of the genus Pseudomonas. The deduced 314-residue sequence of the enzyme corresponds to a protein of molecular mass 34.5 kDa. This enzyme was inhibited by competitive inhibitors (phenol derivatives) only by ca. 30 %. High tolerance against condition changes is desirable in industrial processes. Our data suggest that this enzyme could be of use as a tool in production of cis,cis-muconic acid and its derivatives.
Collapse
Affiliation(s)
- Urszula Guzik
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032, Katowice, Poland.
| | | | | | | |
Collapse
|
37
|
Guzik U, Hupert-Kocurek K, Sałek K, Wojcieszyńska D. Influence of metal ions on bioremediation activity of protocatechuate 3,4-dioxygenase from Stenotrophomonas maltophilia KB2. World J Microbiol Biotechnol 2013; 29:267-73. [PMID: 23014843 PMCID: PMC3543765 DOI: 10.1007/s11274-012-1178-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 09/19/2012] [Indexed: 11/23/2022]
Abstract
The aim of this paper was to describe the effect of various metal ions on the activity of protocatechuate 3,4-dioxygenase from Stenotrophomonas maltophilia KB2. We also compared activity of different dioxygenases isolated from this strain, in the presence of metal ions, after induction by various aromatic compounds. S. maltophilia KB2 degraded 13 mM 3,4-dihydroxybenzoate, 10 mM benzoic acid and 12 mM phenol within 24 h of incubation. In the presence of dihydroxybenzoate and benzoate, the activity of protocatechuate 3,4-dioxygenase and catechol 1,2-dioxygenase was observed. Although Fe(3+), Cu(2+), Zn(2+), Co(2+), Al(3+), Cd(2+), Ni(2+) and Mn(2+) ions caused 20-80 % inhibition of protocatechuate 3,4-dioxygenase activity, the above-mentioned metal ions (with the exception of Ni(2+)) inhibited catechol 1,2-dioxygenase to a lesser extent or even activate the enzyme. Retaining activity of at least one of three dioxygenases from strain KB2 in the presence of metal ions makes it an ideal bacterium for bioremediation of contaminated areas.
Collapse
Affiliation(s)
- Urszula Guzik
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland.
| | | | | | | |
Collapse
|
38
|
Wojcieszyńska D, Hupert-Kocurek K, Jankowska A, Guzik U. Properties of catechol 2,3-dioxygenase from crude extract of Stenotrophomonas maltophilia strain KB2 immobilized in calcium alginate hydrogels. Biochem Eng J 2012. [DOI: 10.1016/j.bej.2012.04.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|