1
|
Xu F, Li Y, Zhao X, Liu G, Pang B, Liao N, Li H, Shi J. Diversity of fungus-mediated synthesis of gold nanoparticles: properties, mechanisms, challenges, and solving methods. Crit Rev Biotechnol 2024; 44:924-940. [PMID: 37455417 DOI: 10.1080/07388551.2023.2225131] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 05/21/2023] [Indexed: 07/18/2023]
Abstract
Fungi-mediated synthesis of Gold nanoparticles (AuNPs) has advantages in: high efficiency, low energy consumption, no need for extra capping and stabilizing agents, simple operation, and easy isolation and purification. Many fungi have been found to synthesize AuNPs inside cells or outside cells, providing different composition and properties of particles when different fungi species or reaction conditions are used. This is good to produce AuNPs with different properties, but may cause challenges to precisely control the particle shape, size, and activities. Besides, low concentrations of substrate and fungal biomass are needed to synthesize small-size particles, limiting the yield of AuNPs in a large scale. To find clues for the development methods to solve these challenges, the reported mechanisms of the fungi-mediated synthesis of AuNPs were summarized. The mechanisms of intracellular AuNPs synthesis are dependent on gold ions absorption by the fungal cell wall via proteins, polysaccharides, or electric absorption, and the reduction of gold ions via enzymes, proteins, and other cytoplasmic redox mediators in the cytoplasm or cell wall. The extracellular synthesis of AuNPs is mainly due to the metabolites outside fungal cells, including proteins, peptides, enzymes, and phenolic metabolites. These mechanisms cause the great diversity of the produced AuNPs in functional groups, element composition, shapes, sizes, and properties. Many methods have been developed to improve the synthesis efficiency by changing: chloroauric acid concentrations, reaction temperature, pH, fungal mass, and reaction time. However, future studies are still required to precisely control the: shape, size, composition, and properties of fungal AuNPs.
Collapse
Affiliation(s)
- Fengqin Xu
- The Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
| | - Yinghui Li
- The Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
| | - Xixi Zhao
- The Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
| | - Guanwen Liu
- The Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
| | - Bing Pang
- The Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
| | - Ning Liao
- The Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
| | - Huixin Li
- The Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
| | - Junling Shi
- The Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
2
|
Mohammadjani N, Ashengroph M, Abdollahzadeh J. Untargeted metabolomics and molecular docking studies on green silver nanoparticles synthesized by Sarocladium subulatum: Exploring antibacterial and antioxidant properties. CHEMOSPHERE 2024; 355:141836. [PMID: 38561160 DOI: 10.1016/j.chemosphere.2024.141836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
The biological synthesis of silver nanoparticles (Ag-NPs) with fungi has shown promising results in antibacterial and antioxidant properties. Fungi generate metabolites (both primary and secondary) and proteins, which aid in the formation of metal nanoparticles as reducing or capping agents. While several studies have been conducted on the biological production of Ag-NPs, the exact mechanisms still need to be clarified. In this study, Ag-NPs are synthesized greenly using an unstudied fungal strain, Sarocladium subulatum AS4D. Three silver salts were used to synthesize the Ag-NPs for the first time, optimized using a cell-free extract (CFE) strategy. Additionally, these NPs were assessed for their antimicrobial and antioxidant properties. Various spectroscopic and microscopy techniques were utilized to confirm Ag-NP formation and analyze their morphology, crystalline properties, functional groups, size, stability, and concentrations. Untargeted metabolomics and proteome disruption were employed to explore the synthesis mechanism. Computational tools were applied to predict metabolite toxicity and antibacterial activity. The study identified 40 fungal metabolites capable of reducing silver ions, with COOH and OH functional groups playing a pivotal role. The silver salt type impacted the NPs' size and stability, with sizes ranging from 40 to 52 nm and zeta potentials from -0.9 to -30.4 mV. Proteome disruption affected size and stability but not shape. Biosynthesized Ag-NPs using protein-free extracts ranged from 55 to 62 nm, and zeta potentials varied from -18 to -27 mV. Molecular docking studies and PASS results found no role for the metabolome in antibacterial activity. This suggests the antibacterial activity comes from Ag-NPs, not capping or reducing agents. Overall, the research affirmed the vital role of specific reducing metabolites in the biosynthesis of Ag-NPs, while proteins derived from biological extracts were found to solely affect their size and stability.
Collapse
Affiliation(s)
- Navid Mohammadjani
- Department of Biological Science, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - Morahem Ashengroph
- Department of Biological Science, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Iran.
| | - Jafar Abdollahzadeh
- Department of Plant Protection, Agriculture Faculty, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| |
Collapse
|
3
|
Chen N, Yao P, Zhang W, Zhang Y, Xin N, Wei H, Zhang T, Zhao C. Selenium nanoparticles: Enhanced nutrition and beyond. Crit Rev Food Sci Nutr 2023; 63:12360-12371. [PMID: 35848122 DOI: 10.1080/10408398.2022.2101093] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Selenium is a trace nutrient that has both nutritional and nutraceutical functions, whereas narrow nutritional range of selenium intake limits its use. Selenium nanoparticles (SeNPs) are less toxic and more bioavailable than traditional forms of selenium, suggesting that SeNPs have the potential to replace traditional selenium in food industries and/or biomedical fields. From the perspective of how SeNPs can be applied in health area, this review comprehensively discusses SeNPs in terms of its preparation, nutritional aspect, detoxification effect of heavy metals, nutraceutical functions and anti-pathogenic microorganism effects. By physical, chemical, or biological methods, inorganic selenium can be transformed into SeNPs which have increased stability and bioavailability as well as low toxicity. SeNPs are more effective than traditional selenium form in synthesizing selenoproteins like glutathione peroxidases. SeNPs can reshape the digestive system to facilitate digestion and absorption of nutrients. SeNPs have shown excellent potential to adjunctively treat cancer patients, enhance immune system, control diabetes, and prevent rheumatoid arthritis. Additionally, SeNPs have good microbial anti-pathogenic effects and can be used with other antimicrobial agents to fight against pathogenic bacteria, fungi, or viruses. Development of novel SeNPs with enhanced functions can greatly benefit the food-, nutraceutical-, and biomedical industries.
Collapse
Affiliation(s)
- Nan Chen
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Peng Yao
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Wei Zhang
- Weihai Baihe Biology Technological Co., Ltd, Rongcheng, Shandong, China
| | - Yutong Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Naicheng Xin
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Hongdi Wei
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
- Jilin Engineering Technology Research Center for High Value Utilization of Animal By-Products, Jilin University, Changchun, China
| | - Changhui Zhao
- College of Food Science and Engineering, Jilin University, Changchun, China
- Jilin Engineering Technology Research Center for High Value Utilization of Animal By-Products, Jilin University, Changchun, China
| |
Collapse
|
4
|
Tomah AA, Zhang Z, Alamer ISA, Khattak AA, Ahmed T, Hu M, Wang D, Xu L, Li B, Wang Y. The Potential of Trichoderma-Mediated Nanotechnology Application in Sustainable Development Scopes. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2475. [PMID: 37686983 PMCID: PMC10490099 DOI: 10.3390/nano13172475] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
The environmental impact of industrial development has been well-documented. The use of physical and chemical methods in industrial development has negative consequences for the environment, raising concerns about the sustainability of this approach. There is a growing need for advanced technologies that are compatible with preserving the environment. The use of fungi products for nanoparticle (NP) synthesis is a promising approach that has the potential to meet this need. The genus Trichoderma is a non-pathogenic filamentous fungus with a high degree of genetic diversity. Different strains of this genus have a variety of important environmental, agricultural, and industrial applications. Species of Trichoderma can be used to synthesize metallic NPs using a biological method that is environmentally friendly, low cost, energy saving, and non-toxic. In this review, we provide an overview of the role of Trichoderma metabolism in the synthesis of metallic NPs. We discuss the different metabolic pathways involved in NP synthesis, as well as the role of metabolic metabolites in stabilizing NPs and promoting their synergistic effects. In addition, the future perspective of NPs synthesized by extracts of Trichoderma is discussed, as well as their potential applications in biomedicine, agriculture, and environmental health.
Collapse
Affiliation(s)
- Ali Athafah Tomah
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (A.A.T.); (Z.Z.)
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.A.A.); (A.A.K.); (T.A.); (B.L.)
- Plant Protection, College of Agriculture, University of Misan, Al-Amarah 62001, Iraq
| | - Zhen Zhang
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (A.A.T.); (Z.Z.)
| | - Iman Sabah Abd Alamer
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.A.A.); (A.A.K.); (T.A.); (B.L.)
- Plant Protection, Agriculture Directorate, Al-Amarah 62001, Iraq
| | - Arif Ali Khattak
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.A.A.); (A.A.K.); (T.A.); (B.L.)
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.A.A.); (A.A.K.); (T.A.); (B.L.)
- Xianghu Laboratory, Hangzhou 311231, China
| | - Minjun Hu
- Agricultural Technology Extension Center of Fuyang District, Hangzhou 311400, China;
| | - Daoze Wang
- Hangzhou Rural Revitalization Service Center, Hangzhou 310020, China;
| | - Lihui Xu
- Institute of Eco-Environmental Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.A.A.); (A.A.K.); (T.A.); (B.L.)
| | - Yanli Wang
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (A.A.T.); (Z.Z.)
| |
Collapse
|
5
|
Wen H, Shi H, Jiang N, Qiu J, Lin F, Kou Y. Antifungal mechanisms of silver nanoparticles on mycotoxin producing rice false smut fungus. iScience 2022; 26:105763. [PMID: 36582831 PMCID: PMC9793317 DOI: 10.1016/j.isci.2022.105763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/03/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Ustilaginoidea virens, which causes rice false smut disease, is a destructive filamentous fungal pathogen, attracting more attention to search for effective fungicides against U. virens. Here, the results showed that the inhibition of 2 nm AgNPs on U. virens growth and virulence displayed concentration-dependent manner. Abnormalities of fungal morphology were observed upon exposure to AgNPs. RNA-sequencing (RNA-seq) analysis revealed that AgNPs treatment up-regulated 1185 genes and down-regulated 937 genes, which significantly overlapped with the methyltransferase UvKmt6-regulated genes. Furthermore, we found that AgNPs reduced the UvKmt6-mediated H3K27me3 modification, resulting in the up-regulation of ustilaginoidin biosynthetic genes The decrease of H3K27me3 level was associated with the inhibition of mycelial growth by AgNPs treatment. These results suggested that AgNPs are an effective nano-fungicide for the control of rice false smut disease, but when using AgNPs, it needs to be combined with mycotoxin-reducing fungicides to reduce the risk of toxin pollution.
Collapse
Affiliation(s)
- Hui Wen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Huanbin Shi
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Nan Jiang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Jiehua Qiu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Fucheng Lin
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yanjun Kou
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
- Corresponding author
| |
Collapse
|
6
|
Zhang L, Zhang H. Silver Halide-Based Nanomaterials in Biomedical Applications and Biosensing Diagnostics. NANOSCALE RESEARCH LETTERS 2022; 17:114. [PMID: 36437419 PMCID: PMC9702141 DOI: 10.1186/s11671-022-03752-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
In recent years, silver halide (AgX, X = Cl, Br, I)-based photocatalytic materials have received increasing research attention owing to their excellent visible-light-driven photocatalytic performance for applications in organic pollutant degradation, HER, OER, and biomedical engineering. Ag as a noble metal has a surface plasma effect and can form Schottky junctions with AgX, which significantly promotes electron transport and increases photocatalytic efficiency. Therefore, Ag/AgX can reduce the recombination rate of electrons and holes more than pure AgX, leading to using AgX as a photocatalytic material in biomedical applications. The use of AgX-based materials in photocatalytic fields can be classified into three categories: AgX (Ag/AgX), AgX composites, and supported AgX materials. In this review, we introduce recent developments made in biomedical applications and biosensing diagnostics of AgX (Ag/AgX) photocatalytic materials. In addition, this review also discusses the photocatalytic mechanism and applications of AgX (Ag/AgX) and supported AgX materials.
Collapse
Affiliation(s)
- Lin Zhang
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, No. 16369, Jingshi Road, Jinan, 250014 Shandong People’s Republic of China
| | - Hong Zhang
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, No. 16369, Jingshi Road, Jinan, 250014 Shandong People’s Republic of China
| |
Collapse
|
7
|
Tsivileva OM, Perfileva AI. Mushroom-Derived Novel Selenium Nanocomposites’ Effects on Potato Plant Growth and Tuber Germination. Molecules 2022; 27:molecules27144438. [PMID: 35889308 PMCID: PMC9321743 DOI: 10.3390/molecules27144438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022] Open
Abstract
Multicomponent materials, where nanosized selenium (Se) is dispersed in polymer matrices, present as polymer nanocomposites (NCs), namely, selenium polymer nanocomposites (SeNCs). Selenium as an inorganic nanofiller in NCs has been extensively studied for its biological activity. More ecologically safe and beneficial approaches to obtain Se-based products are the current challenge. Biopolymers have attained great attention with perspective multifunctional and high-performance NCs exhibiting low environmental impact with unique properties, being abundantly available, renewable, and eco-friendly. Composites based on polysaccharides, including beta-glucans from edible and medicinal mushrooms, are bioactive, biocompatible, biodegradable, and have exhibited innovative potential. We synthesized SeNCs on the basis of the extracellular polysaccharides of several medicinal mushrooms. The influence of bio-composites from mushrooms on potato plant growth and tuber germination were studied in two potato cultivars: Lukyanovsky and Lugovskoi. Bio-composites based on Grifola umbellata demonstrated the strongest positive effect on the number of leaves and plant height in both cultivars, without negative effect on biomass of the vegetative part. Treatment of the potato tubers with SeNC from Gr. umbellata also significantly increased germ length. Potato plants exposed to Se-bio-composite from Ganoderma lucidum SIE1303 experienced an increase in the potato vegetative biomass by up to 55% versus the control. We found earlier that this bio-composite was the most efficient against biofilm formation by the potato ring rot causative agent Clavibacter sepedonicus (Cms). Bio-composites based on Pleurotus ostreatus promoted increase in the potato root biomass in the Lugovskoi cultivar by up to 79% versus the control. The phytostimulating ability of mushroom-based Se-containing bio-composites, together with their anti-phytopathogenic activity, testifies in favor of the bifunctional mode of action of these Se-biopreparations. The application of stimulatory green SeNCs for growth enhancement could be used to increase crop yield. Thus, by combining myco-nanotechnology with the intrinsic biological activity of selenium, an unexpectedly efficient tool for possible applications of SeNCs could be identified.
Collapse
Affiliation(s)
- Olga M. Tsivileva
- Laboratory of Microbiology, Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, 13 Prospekt Entuziastov, 410049 Saratov, Russia
- Correspondence:
| | - Alla I. Perfileva
- Laboratory of Plant-Microbe Interactions, Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia;
| |
Collapse
|
8
|
Bio-inspired Synthesis of Metal and Metal Oxide Nanoparticles: The Key Role of Phytochemicals. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02276-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Soleimani P, Mehrvar A, Michaud J, Vaez N. Optimization of silver nanoparticle biosynthesis by entomopathogenic fungi and assays of their antimicrobial and antifungal properties. J Invertebr Pathol 2022; 190:107749. [DOI: 10.1016/j.jip.2022.107749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/16/2022] [Accepted: 03/08/2022] [Indexed: 12/01/2022]
|
10
|
Ruby, Aryan, Mehata MS. Surface plasmon resonance allied applications of silver nanoflowers synthesized from Breynia vitis-idaea leaf extract. Dalton Trans 2022; 51:2726-2736. [PMID: 35080554 DOI: 10.1039/d1dt03592d] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An environmentally friendly, green synthesis process has been adopted to synthesize silver nanoparticles (AgNPs) in an aqueous solution from a new remedial plant. Breynia vitis-idaea leaves act like natural capping and reducing agents. The resulting AgNPs were characterized and analyzed using different characterization techniques, such as UV-Vis spectroscopy, X-ray diffraction, zeta potential, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The UV-Vis absorption spectrum showed high stability and a surface plasmon resonance (SPR) peak around 430 nm. The effects of several processing variables, such as reaction time, temperature, concentration and pH, were analyzed. High temperature and alkaline pH intensify the ability to form flower-shaped AgNPs with enhanced properties. AgNPs were investigated for antibacterial activity against Gram-negative E. coli bacterial strains with a 10 mm zone of inhibition. These AgNPs showed dye degradation up to 88% when an aqueous crystal violet dye solution was mixed with AgNPs as the catalyst. Further, AgNPs alone were effectively used in the detection of hydrogen peroxide (H2O2) in an aqueous medium with a LOD (limit of detection) of 21 μM, limit of quantification (LOQ) of 64 μM and a decrease in absorption intensity up to 89%. Based on these results, these AgNPs were effectively used in numerous fields, such as biomedical, water purification, antibacterial and sensing of H2O2.
Collapse
Affiliation(s)
- Ruby
- Laser-Spectroscopy Laboratory, Department of Applied Physics, Delhi Technological University, Bawana Road, Delhi 110042, India.
| | - Aryan
- Laser-Spectroscopy Laboratory, Department of Applied Physics, Delhi Technological University, Bawana Road, Delhi 110042, India.
| | - Mohan Singh Mehata
- Laser-Spectroscopy Laboratory, Department of Applied Physics, Delhi Technological University, Bawana Road, Delhi 110042, India.
| |
Collapse
|
11
|
Green Synthesis of Stable Spherical Monodisperse Silver Nanoparticles Using a Cell-Free Extract of Trichoderma reesei. MATERIALS 2022; 15:ma15020481. [PMID: 35057198 PMCID: PMC8781021 DOI: 10.3390/ma15020481] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 01/03/2023]
Abstract
In the current study, a green method for the preparation of silver nanoparticles (AgNPs) is presented as an alternative to conventional chemical and physical approaches. A biomass of Trichoderma reesei (T. reesei) fungus was used as a green and renewable source of reductase enzymes and metabolites, which are capable of transforming Ag+ ions into AgNPs with a small size (mainly 2-6 nm) and narrow size distribution (2-25 nm). Moreover, extracellular biosynthesis was carried out with a cell-free water extract (CFE) of T. reesei, which allows for facile monitoring of the bioreduction process using UV-Vis spectroscopy and investigation of the effect of experimental conditions on the transformation of Ag+ ions into AgNPs, as well as the simple isolation of as-prepared AgNPs for the study of their size, morphology and antibacterial properties. In continuation to our previous results about the influence of media on T. reesei cultivation, the amount of biomass used for CFE preparation and the concentration of Ag+ ion solution, herein, we present the impact of temperature (4, 20, 30 and 40 °C), agitation and time duration on the biosynthesis of AgNPs and their properties. A high stability of AgNPs in aqueous colloids was observed and attributed to the capping effect of the biomolecules as shown by the zeta potential (-49.0/-51.4 mV) and confirmed by the hydrodynamic size of 190.8/116.8 nm of AgNPs.
Collapse
|
12
|
Preethi PS, Suganya M, Narenkumar J, AlSalhi MS, Devanesan S, Nanthini AUR, Kamalakannan S, Rajasekar A. Macrolepiota-mediated synthesized silver nanoparticles as a green corrosive inhibitor for mild steel in re-circulating cooling water system. Bioprocess Biosyst Eng 2022; 45:493-501. [PMID: 34981182 DOI: 10.1007/s00449-021-02673-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/24/2021] [Indexed: 11/25/2022]
Abstract
A simple, cost effective and eco-friendly silver nanoparticle (AgNPs) was synthesized by wild edible Macrolepiota mushroom. Nanoparticles were characterized by UV-visible, FTIR, XRD analysis and TEM analysis. The characterized studies confirmed the spherical shape of AgNPs with 20-50 nm size. Biocorrosion efficacy of myco-synthesized AgNPs and the mushroom extract were tested against mild steel by corrosive bacteria Bacillus thuringiensis EN2, Terribacillus aidingensis EN3 and Bacillus oleronius EN9. Weight loss analysis, EIS, and surface analysis were used to evaluate the corrosion inhibition efficiency of mild steel in various experimental systems. Reduced corrosion rate (0.07 mm/y, 0.14 mm/y), reduced weight loss (0.006 ± 2, 0.011 ± 2) and increased corrosion inhibition efficiency (59%, 18%) were identified in both system II and system IV. Peak intensity was reduced in both surface analysis studies (FTIR and XRD) in the presence of mushroom extract and AgNPs. EIS studies reveal that the mushroom extract and AgNPs act as a corrosive green inhibitor and adsorbs on the mild steel surfaces in cooling water tower system, which are responsible for corrosion protection.
Collapse
Affiliation(s)
| | - Muthukumar Suganya
- Department of Biotechnology, Mother Teresa Women's University, Kodaikanal, 624101, Tamil Nadu, India
| | - Jayaraman Narenkumar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, 632115, India
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Selaiyur, Chennai, 600073, Tamil Nadu, India
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh KSA, P.O. Box -2455, Riyadh, 11451, Kingdom of Saudi Arabia.
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh KSA, P.O. Box -2455, Riyadh, 11451, Kingdom of Saudi Arabia
| | | | - Seralathan Kamalakannan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, 54596, South Korea
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, 632115, India.
| |
Collapse
|
13
|
Yuan J, Cao J, Yu F, Ma J, Zhang D, Tang Y, Zheng J. Microbial biomanufacture of metal/metallic nanomaterials and metabolic engineering: design strategies, fundamental mechanisms, and future opportunities. J Mater Chem B 2021; 9:6491-6506. [PMID: 34296734 DOI: 10.1039/d1tb01000j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Biomanufacturing metal/metallic nanomaterials with ordered micro/nanostructures and controllable functions is of great importance in both fundamental studies and practical applications due to their low toxicity, lower pollution production, and energy conservation. Microorganisms, as efficient biofactories, have a significant ability to biomineralize and bioreduce metal ions that can be obtained as nanocrystals of varying morphologies and sizes. The development of nanoparticle biosynthesis maximizes the safety and sustainability of the nanoparticle preparation. Significant efforts and progress have been made to develop new green and environmentally friendly methods for biocompatible metal/metallic nanomaterials. In this review, we mainly focus on the microbial biomanufacture of different metal/metallic nanomaterials due to their unique advantages of wide availability, environmental acceptability, low cost, and circular sustainability. Specifically, we summarize recent and important advances in the synthesis strategies and mechanisms for different types of metal/metallic nanomaterials using different microorganisms. Finally, we highlight the current challenges and future research directions in this growing multidisciplinary field of biomaterials science, nanoscience, and nanobiotechnology.
Collapse
Affiliation(s)
- Jianhua Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
14
|
Tsivileva O, Pozdnyakov A, Ivanova A. Polymer Nanocomposites of Selenium Biofabricated Using Fungi. Molecules 2021; 26:3657. [PMID: 34203966 PMCID: PMC8232642 DOI: 10.3390/molecules26123657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 12/13/2022] Open
Abstract
Nanoparticle-reinforced polymer-based materials effectively combine the functional properties of polymers and unique characteristic features of NPs. Biopolymers have attained great attention, with perspective multifunctional and high-performance nanocomposites exhibiting a low environmental impact with unique properties, being abundantly available, renewable, and eco-friendly. Nanocomposites of biopolymers are termed green biocomposites. Different biocomposites are reported with numerous inorganic nanofillers, which include selenium. Selenium is a micronutrient that can potentially be used in the prevention and treatment of diseases and has been extensively studied for its biological activity. SeNPs have attracted increasing attention due to their high bioavailability, low toxicity, and novel therapeutic properties. One of the best routes to take advantage of SeNPs' properties is by mixing these NPs with polymers to obtain nanocomposites with functionalities associated with the NPs together with the main characteristics of the polymer matrix. These nanocomposite materials have markedly improved properties achieved at low SeNP concentrations. Composites based on polysaccharides, including fungal beta-glucans, are bioactive, biocompatible, biodegradable, and have exhibited an innovative potential. Mushrooms meet certain obvious requirements for the green entity applied to the SeNP manufacturing. Fungal-matrixed selenium nanoparticles are a new promising biocomposite material. This review aims to give a summary of what is known by now about the mycosynthesized selenium polymeric nanocomposites with the impact on fungal-assisted manufactured ones, the mechanisms of the involved processes at the chemical reaction level, and problems and challenges posed in this area.
Collapse
Affiliation(s)
- Olga Tsivileva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, 410049 Saratov, Russia
| | - Alexander Pozdnyakov
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia; (A.P.); (A.I.)
| | - Anastasiya Ivanova
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia; (A.P.); (A.I.)
| |
Collapse
|
15
|
Zheng X, Zhang P, Fu Z, Meng S, Dai L, Yang H. Applications of nanomaterials in tissue engineering. RSC Adv 2021; 11:19041-19058. [PMID: 35478636 PMCID: PMC9033557 DOI: 10.1039/d1ra01849c] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/13/2021] [Indexed: 12/19/2022] Open
Abstract
Recent advancement in nanotechnology has brought prominent benefits in tissue engineering, which has been used to repair or reconstruct damaged tissues or organs and design smart drug delivery systems. With numerous applications of nanomaterials in tissue engineering, it is vital to choose appropriate nanomaterials for different tissue engineering applications because of the tissue heterogeneity. Indeed, the use of nanomaterials in tissue engineering is directly determined by the choice. In this review, we mainly introduced the use of nanomaterials in tissue engineering. First, the basic characteristics, preparation and characterization methods of the types of nanomaterials are introduced briefly, followed by a detailed description of the application and research progress of nanomaterials in tissue engineering and drug delivery. Finally, the existing challenges and prospects for future applications of nanomaterials in tissue engineering are discussed.
Collapse
Affiliation(s)
- Xinmin Zheng
- School of Life Sciences, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Pan Zhang
- School of Life Sciences, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Zhenxiang Fu
- Institute of Medical Research, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Siyu Meng
- Institute of Medical Research, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Liangliang Dai
- Institute of Medical Research, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University Xi'an 710072 P. R. China
| |
Collapse
|
16
|
Karimadom BR, Kornweitz H. Mechanism of Producing Metallic Nanoparticles, with an Emphasis on Silver and Gold Nanoparticles, Using Bottom-Up Methods. Molecules 2021; 26:2968. [PMID: 34067624 PMCID: PMC8156005 DOI: 10.3390/molecules26102968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/09/2021] [Accepted: 05/14/2021] [Indexed: 11/16/2022] Open
Abstract
Bottom-up nanoparticle (NP) formation is assumed to begin with the reduction of the precursor metallic ions to form zero-valent atoms. Studies in which this assumption was made are reviewed. The standard reduction potential for the formation of aqueous metallic atoms-E0(Mn+aq/M0aq)-is significantly lower than the usual standard reduction potential for reducing metallic ions Mn+ in aqueous solution to a metal in solid state. E0(Mn+aq/M0solid). E0(Mn+aq/M0aq) values are negative for many typical metals, including Ag and Au, for which E0(Mn+aq/M0solid) is positive. Therefore, many common moderate reduction agents that do not have significantly high negative reduction standard potentials (e.g., hydrogen, carbon monoxide, citrate, hydroxylamine, formaldehyde, ascorbate, squartic acid, and BH4-), and cannot reduce the metallic cations to zero-valent atoms, indicating that the mechanism of NP production should be reconsidered. Both AgNP and AuNP formations were found to be multi-step processes that begin with the formation of clusters constructed from a skeleton of M+-M+ (M = Ag or Au) bonds that is followed by the reduction of a cation M+ in the cluster to M0, to form Mn0 via the formation of NPs. The plausibility of M+-M+ formation is reviewed. Studies that suggest a revised mechanism for the formation of AgNPs and AuNPs are also reviewed.
Collapse
Affiliation(s)
| | - Haya Kornweitz
- Chemical Sciences Department, Ariel University, Ariel 4077625, Israel;
| |
Collapse
|
17
|
Patil AG, Kounaina K, Aishwarya S, Harshitha N, Satapathy P, Hudeda SP, Reddy KR, Alrafas H, Yadav AN, Raghu AV, Zameer F. Myco-Nanotechnology for Sustainable Agriculture: Challenges and Opportunities. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60659-6_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Ndukwu MC, Ikechukwu-Edeh CE, Nwakuba NR, Okosa I, Horsefall IT, Orji FN. Nanomaterials application in greenhouse structures, crop processing machinery, packaging materials and agro-biomass conversion. MATERIALS SCIENCE FOR ENERGY TECHNOLOGIES 2020; 3:690-699. [PMID: 33604530 PMCID: PMC7416747 DOI: 10.1016/j.mset.2020.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 06/12/2023]
Abstract
The discovery of nanomaterials has flagged off crucial research and innovations in science and engineering. Its unique properties and diverse applications present it as the material for the future. The aim of this study is to presents the relative applications of nanomaterial in some aspects of agriculture production. The study discussed nanotechnology applicability in climate control and photosynthesis in the greenhouse farming, hydroponic systems, solar drying, fabrication of crop processing machine components, oxygen scavengers in crop packaging, and micro-organism stimulant in anaerobic digestion for agro biomass conversion. Some highlights from the review revealed that Nanotechnology can be applied to increase water surface area to volume ratio and heat transfer in the air moving into a greenhouse farming. Water cluster can be changed when treated with nanoparticles through ultraviolet absorption spectrum and nuclear magnetic resonance (NMR) spectroscopy resulting in lower micelles to manipulate water delivery in green house farming. Nano-fluids or Nano-composites can be used to recombine the reactive parts of thermal storage materials after broken at elevated temperature to recover the stored heat for drying purpose during the off-sunshine periods in solar drying of crops. Nanomaterials can be a source of electroluminescence light in hydroponic system and act as coatings and surface hardener in crop processing machinery for post-harvest machines. The reviewed work showed that nanotechnologies has good prospect in adding value in agricultural production in the aspects discussed.
Collapse
Affiliation(s)
- M C Ndukwu
- Department of Agricultural and Bioresources Engineering, Michael Okpara University of Agriculture, Umuahia, Nigeria
| | - C E Ikechukwu-Edeh
- Department of Agricultural and Bioresources Engineering, Michael Okpara University of Agriculture, Umuahia, Nigeria
| | - N R Nwakuba
- Department of Agricultural and Bioresources Engineering, Federal University of Technology, Owerri, Nigeria
| | - I Okosa
- Department of Agricultural and Bioresources Engineering, Michael Okpara University of Agriculture, Umuahia, Nigeria
| | - I T Horsefall
- Department of Agricultural and Bioresources Engineering, Michael Okpara University of Agriculture, Umuahia, Nigeria
| | - F N Orji
- Department of Agricultural and Bioresources Engineering, Michael Okpara University of Agriculture, Umuahia, Nigeria
| |
Collapse
|
19
|
Qin W, Wang CY, Ma YX, Shen MJ, Li J, Jiao K, Tay FR, Niu LN. Microbe-Mediated Extracellular and Intracellular Mineralization: Environmental, Industrial, and Biotechnological Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907833. [PMID: 32270552 DOI: 10.1002/adma.201907833] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/09/2020] [Indexed: 06/11/2023]
Abstract
Microbe-mediated mineralization is ubiquitous in nature, involving bacteria, fungi, viruses, and algae. These mineralization processes comprise calcification, silicification, and iron mineralization. The mechanisms for mineral formation include extracellular and intracellular biomineralization. The mineral precipitating capability of microbes is often harnessed for green synthesis of metal nanoparticles, which are relatively less toxic compared with those synthesized through physical or chemical methods. Microbe-mediated mineralization has important applications ranging from pollutant removal and nonreactive carriers, to other industrial and biomedical applications. Herein, the different types of microbe-mediated biomineralization that occur in nature, their mechanisms, as well as their applications are elucidated to create a backdrop for future research.
Collapse
Affiliation(s)
- Wen Qin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Chen-Yu Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yu-Xuan Ma
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Min-Juan Shen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jing Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Kai Jiao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Franklin R Tay
- College of Graduate Studies, Augusta University, Augusta, GA, 30912, USA
| | - Li-Na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| |
Collapse
|
20
|
Omran BA, Nassar HN, Younis SA, El-Salamony RA, Fatthallah NA, Hamdy A, El-Shatoury EH, El-Gendy NS. Novel mycosynthesis of cobalt oxide nanoparticles using Aspergillus brasiliensis ATCC 16404-optimization, characterization and antimicrobial activity. J Appl Microbiol 2019; 128:438-457. [PMID: 31650655 DOI: 10.1111/jam.14498] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/18/2019] [Accepted: 10/13/2019] [Indexed: 11/28/2022]
Abstract
AIMS Investigate the capability of Aspergillus brasiliensis ATCC 16404 to mycosynthesize Co3 O4 -NPs. METHODS AND RESULTS Mycelial cell-free filtrate of A. brasiliensis ATCC 16404 was applied for mycosynthesis of Co3 O4 -NPs. The preliminary indication for the formation of Co3 O4 -NPs was the change in colour from yellow to reddish-brown. One-factor-at a time-optimization technique was applied to determine the optimum physicochemical conditions required for the mycosynthesis of Co3 O4 -NPs and they were found to be: 72 h for reaction time, pH 11, 30°C, 100 rev min-1 for shaking speed in the darkness using 4 mmol l-1 of CoSO4. 7H2 O and 5·5% of A. brasiliensis dry weight mycelium (w/v). The mycosynthesized Co3 O4 -NPs were characterized using various techniques: spectroscopy including UV/Vis spectrophotometry, dynamic light scattering (DLS), zeta potential measurement, energy-dispersive X-ray analysis, Fourier transform infrared spectroscopy and X-ray diffraction; and vibrating sample magnetometry and microscopy including field emission scanning electron microscopy and high-resolution transmission electron microscopy. Spectroscopic techniques confirmed the formation of Co3 O4 -NPs and the microscopic ones confirmed the shape and size of the mycosynthesized Co3 O4 -NPs as quasi-spherical shaped, monodispersed nanoparticles with a nano size range of 20-27 nm. The mycosynthesized Co3 O4 -NPs have excellent magnetic properties and exhibited a good antimicrobial activity against some pathogenic micro-organisms. CONCLUSION Ferromagnetic Co3 O4 -NPs with considerable antimicrobial activity were for the first time mycosynthesized. SIGNIFICANCE AND IMPACT OF THE STUDY The use of fungi as potential bionanofactories for mycosynthesis of nanoparticles is relatively a recent field of research with considerable prospects.
Collapse
Affiliation(s)
- B A Omran
- Department of Processes Design & Development, Egyptian Petroleum Research Institute, Nasr City, Cairo, Egypt
| | - H N Nassar
- Department of Processes Design & Development, Egyptian Petroleum Research Institute, Nasr City, Cairo, Egypt.,Department of Microbiology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October City, Egypt
| | - S A Younis
- Depratment of Analysis and Evaluation, Egyptian Petroleum Research Institute, Nasr City, Cairo, Egypt.,Department of Civil and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| | - R A El-Salamony
- Department of Processes Design & Development, Egyptian Petroleum Research Institute, Nasr City, Cairo, Egypt
| | - N A Fatthallah
- Department of Processes Design & Development, Egyptian Petroleum Research Institute, Nasr City, Cairo, Egypt
| | - A Hamdy
- Depratment of Analysis and Evaluation, Egyptian Petroleum Research Institute, Nasr City, Cairo, Egypt
| | - E H El-Shatoury
- Department of Microbiology, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt
| | - N Sh El-Gendy
- Department of Processes Design & Development, Egyptian Petroleum Research Institute, Nasr City, Cairo, Egypt.,Center of Excellence, October University for Modern Sciences and Arts (MSA), 6th of October City, Egypt
| |
Collapse
|
21
|
Joshi SM, De Britto S, Jogaiah S, Ito SI. Mycogenic Selenium Nanoparticles as Potential New Generation Broad Spectrum Antifungal Molecules. Biomolecules 2019; 9:E419. [PMID: 31466286 PMCID: PMC6769984 DOI: 10.3390/biom9090419] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/21/2019] [Accepted: 08/26/2019] [Indexed: 11/16/2022] Open
Abstract
The current challenges of sustainable agricultural development augmented by global climate change have led to the exploration of new technologies like nanotechnology, which has potential in providing novel and improved solutions. Nanotools in the form of nanofertilizers and nanopesticides possess smart delivery mechanisms and controlled release capacity for active ingredients, thus minimizing excess run-off to water bodies. This study aimed to establish the broad spectrum antifungal activity of mycogenic selenium nanoparticles (SeNPs) synthesized from Trichoderma atroviride, and characterize the bioactive nanoparticles using UV-Vis spectroscopy, dynamic light scattering (DLS), Fourier transform infrared (FT-IR), X-ray diffraction (XRD), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), and high-resolution transmission electron microscopy (HR-TEM). The synthesized nanoparticles displayed excellent in vitro antifungal activity against Pyricularia grisea and inhibited the infection of Colletotrichum capsici and Alternaria solani on chili and tomato leaves at concentrations of 50 and 100 ppm, respectively. The SEM-EDS analysis of the bioactive SeNPs revealed a spherical shape with sizes ranging from 60.48 nm to 123.16 nm. The nanoparticles also possessed the unique property of aggregating and binding to the zoospores of P. infestans at a concentration of 100 ppm, which was visualized using light microscope, atomic force microscopy, and electron microscopy. Thus, the present study highlights the practical application of SeNPs to manage plant diseases in an ecofriendly manner, due to their mycogenic synthesis and broad spectrum antifungal activity against different phytopathogens.
Collapse
Affiliation(s)
- Shreya M Joshi
- Laboratory of Plant Healthcare and Diagnostics, PG Department of Studies in Biotechnology and Microbiology, Karnatak University, Pavate Nagar, Dharwad 580 003, Karnataka, India
| | - Savitha De Britto
- Laboratory of Plant Healthcare and Diagnostics, PG Department of Studies in Biotechnology and Microbiology, Karnatak University, Pavate Nagar, Dharwad 580 003, Karnataka, India
- Division of Biological Sciences, School of Science and Technology, The University of Goroka, Goroka 441, Papua New Guinea
| | - Sudisha Jogaiah
- Laboratory of Plant Healthcare and Diagnostics, PG Department of Studies in Biotechnology and Microbiology, Karnatak University, Pavate Nagar, Dharwad 580 003, Karnataka, India.
| | - Shin-Ichi Ito
- Laboratory of Molecular Plant Pathology, Department of Biological and Environmental Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan.
- Research Center for Thermotolerant Microbial Resources (RCTMR), Yamaguchi University, Yamaguchi 753-8515, Japan.
| |
Collapse
|
22
|
Domka AM, Rozpaądek P, Turnau K. Are Fungal Endophytes Merely Mycorrhizal Copycats? The Role of Fungal Endophytes in the Adaptation of Plants to Metal Toxicity. Front Microbiol 2019; 10:371. [PMID: 30930857 PMCID: PMC6428775 DOI: 10.3389/fmicb.2019.00371] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/12/2019] [Indexed: 12/04/2022] Open
Abstract
The contamination of soil with toxic metals is a worldwide problem, resulting in the disruption of plant vegetation and subsequent crop production. Thus, remediation techniques for contaminated soil and water remain a constant interest of researchers. Phytoremediation, which utilizes plants to remove or stabilize contaminants, is perceived to be a promising strategy. However, phytoremediation's use to date is limited because of constraints associated with such factors as slow plant growth rates or metal toxicity. Microbial-assisted phytoremediation serves as an alternative solution, since the impact of the microbial symbionts on plant growth and stress tolerance has frequently been described. Endophytic fungi occur in almost every plant in the natural environment and contribute to plant growth and tolerance to environmental stress conditions. Although this group of symbiotic fungi was found to form association with a wide range of hosts, including the non-mycorrhizal Brassicaceae metallophytes, their role in the response of plants to metal toxicity has not been thoroughly elucidated to date. This review summarizes the current knowledge regarding the role of endophytic fungi in the tolerance of plants to toxic metals and highlights the similarities and differences between this group of symbiotic fungi and mycorrhizal associations in terms of the survival of the plant during heavy metal stress.
Collapse
Affiliation(s)
| | - Piotr Rozpaądek
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Katarzyna Turnau
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| |
Collapse
|
23
|
Ramadan MM, Asran-Amal, Almoammar H, Abd-Elsalam KA. Microbially Synthesized Biomagnetic Nanomaterials. NANOTECHNOLOGY IN THE LIFE SCIENCES 2019:49-75. [DOI: 10.1007/978-3-030-16439-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
24
|
Nasrollahzadeh M, Sajadi SM, Issaabadi Z, Sajjadi M. Biological Sources Used in Green Nanotechnology. INTERFACE SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1016/b978-0-12-813586-0.00003-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
El Enshasy HA, Joel D, Singh DP, Malek RA, Elsayed EA, Hanapi SZ, Kumar K. Mushrooms: New Biofactories for Nanomaterial Production of Different Industrial and Medical Applications. NANOTECHNOLOGY IN THE LIFE SCIENCES 2019:87-126. [DOI: 10.1007/978-3-030-16383-9_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
26
|
Nanotherapeutic Anti-influenza Solutions: Current Knowledge and Future Challenges. J CLUST SCI 2018. [DOI: 10.1007/s10876-018-1417-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
27
|
Vijayanandan AS, Balakrishnan RM. Biosynthesis of cobalt oxide nanoparticles using endophytic fungus Aspergillus nidulans. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 218:442-450. [PMID: 29709813 DOI: 10.1016/j.jenvman.2018.04.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 03/28/2018] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
Metallic oxide nanoparticles have profound applications in electrochemical devices, supercapacitors, biosensors and batteries. Though four fungi were isolated from Nothapodytes foetida, Aspergillus nidulans was found to be suitable for synthesis of cobalt oxide nanoparticles, as it has proficient tolerance towards metal under study. The broth containing precursor solution and organism Aspergillus nidulans had changed from pink to orange indicating the formation of nanoparticles. Characterization by x-ray diffraction analysis (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and energy dispersive x-ray analysis (EDX) confirmed the formation of spinel cobalt oxide nanoparticles at an average size of 20.29 nm in spherical shape with sulfur-bearing proteins acting as a capping agent for the synthesized nanoparticles. The nanoparticles could be applied in energy storage, as a specific capacitance of 389 F/g showed competence. The study was a greener attempt to synthesize cobalt oxide nanoparticles using endophytic fungus.
Collapse
Affiliation(s)
- Ajuy Sundar Vijayanandan
- Department of Chemical Engineering, National Institute of Technology Karnataka, Surathkal, Mangaluru, 575 025, India
| | - Raj Mohan Balakrishnan
- Department of Chemical Engineering, National Institute of Technology Karnataka, Surathkal, Mangaluru, 575 025, India.
| |
Collapse
|
28
|
Gopal J, Chun S, Anthonydhason V, Jung S, Mwang’ombe BN, Muthu M, Sivanesan I. Assays Evaluating Antimicrobial Activity of Nanoparticles: A Myth Buster. J CLUST SCI 2018. [DOI: 10.1007/s10876-018-1334-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Al-Dhabaan FA, Mostafa M, Almoammar H, Abd-Elsalam KA. Chitosan-Based Nanostructures in Plant Protection Applications. NANOTECHNOLOGY IN THE LIFE SCIENCES 2018:351-384. [DOI: 10.1007/978-3-319-91161-8_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
30
|
Fungi-assisted silver nanoparticle synthesis and their applications. Bioprocess Biosyst Eng 2017; 41:1-20. [DOI: 10.1007/s00449-017-1846-3] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/22/2017] [Indexed: 12/23/2022]
|
31
|
Maliszewska I, Tylus W, Chęcmanowski J, Szczygieł B, Pawlaczyk-Graja I, Pusz W, Baturo-Cieśniewska A. Biomineralization of gold by Mucor plumbeus: The progress in understanding the mechanism of nanoparticles' formation. Biotechnol Prog 2017; 33:1381-1392. [PMID: 28726315 DOI: 10.1002/btpr.2531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 05/17/2017] [Indexed: 12/23/2022]
Abstract
This contribution describes the deposition of gold nanoparticles by microbial reduction of Au(III) ions using the mycelium of Mucor plumbeus. Biosorption as the major mechanism of Au(III) ions binding by the fungal cells and the reduction of them to the form of Au(0) on/in the cell wall, followed by the transportation of the synthesized gold nanoparticles to the cytoplasm, is postulated. The probable mechanism behind the reduction of Au(III) ions is discussed, leading to the conclusion that this process is nonenzymatic one. Chitosan of the fungal cell wall is most likely to be the major molecule involved in biomineralization of gold by the mycelium of M. plumbeus. Separation of gold nanoparticles from the cells has been carried out by the ultrasonic disintegration and the obtained nanostructures were characterized by UV-vis spectroscopy and transmission electron micrograph analysis. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1381-1392, 2017.
Collapse
Affiliation(s)
- Irena Maliszewska
- Faculty of Chemistry, Division of Medicinal Chemistry and Microbiology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław, 50-370, Poland
| | - Włodzimierz Tylus
- Faculty of Chemistry, Division of Advanced Material Technologies, Wrocław University of Science and Technology, WybrzeżeWyspiańskiego 27, Wrocław, 50-370, Poland
| | - Jacek Chęcmanowski
- Faculty of Chemistry, Division of Advanced Material Technologies, Wrocław University of Science and Technology, WybrzeżeWyspiańskiego 27, Wrocław, 50-370, Poland
| | - Bogdan Szczygieł
- Faculty of Chemistry, Division of Advanced Material Technologies, Wrocław University of Science and Technology, WybrzeżeWyspiańskiego 27, Wrocław, 50-370, Poland
| | - Izabela Pawlaczyk-Graja
- Faculty of Chemistry, Department of Organic and Pharmaceutical Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław, 50-370, Poland
| | - Wojciech Pusz
- Department of Plant Protection, Division of Phytopathology and Mycology, Wrocław University of Environmental and Life Sciences, Grunwaldzki Sq 24a, Wrocław, 50-363, Poland
| | - Anna Baturo-Cieśniewska
- Department of Molecular Phytopathology, University of Technology and Life Sciences, Kordeckiego Str 20, Bydgoszcz, 85-225, Poland
| |
Collapse
|
32
|
EL-Moslamy SH, Elkady MF, Rezk AH, Abdel-Fattah YR. Applying Taguchi design and large-scale strategy for mycosynthesis of nano-silver from endophytic Trichoderma harzianum SYA.F4 and its application against phytopathogens. Sci Rep 2017; 7:45297. [PMID: 28349997 PMCID: PMC5368611 DOI: 10.1038/srep45297] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/14/2017] [Indexed: 11/26/2022] Open
Abstract
Development of reliable and low-cost requirement for large-scale eco-friendly biogenic synthesis of metallic nanoparticles is an important step for industrial applications of bionanotechnology. In the present study, the mycosynthesis of spherical nano-Ag (12.7 ± 0.8 nm) from extracellular filtrate of local endophytic T. harzianum SYA.F4 strain which have interested mixed bioactive metabolites (alkaloids, flavonoids, tannins, phenols, nitrate reductase (320 nmol/hr/ml), carbohydrate (25 μg/μl) and total protein concentration (2.5 g/l) was reported. Industrial mycosynthesis of nano-Ag can be induced with different characters depending on the fungal cultivation and physical conditions. Taguchi design was applied to improve the physicochemical conditions for nano-Ag production, and the optimum conditions which increased its mass weight 3 times larger than a basal condition were as follows: AgNO3 (0.01 M), diluted reductant (10 v/v, pH 5) and incubated at 30 °C, 200 rpm for 24 hr. Kinetic conversion rates in submerged batch cultivation in 7 L stirred tank bioreactor on using semi-defined cultivation medium was as follows: the maximum biomass production (Xmax) and maximum nano-Ag mass weight (Pmax) calculated (60.5 g/l and 78.4 g/l respectively). The best nano-Ag concentration that formed large inhibition zones was 100 μg/ml which showed against A.alternate (43 mm) followed by Helminthosporium sp. (35 mm), Botrytis sp. (32 mm) and P. arenaria (28 mm).
Collapse
Affiliation(s)
- Shahira H. EL-Moslamy
- Bioprocess development Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technology Applications, New Borg El-Arab City, Alexandria, Egypt
| | - Marwa F. Elkady
- Chemical and Petrochemical Engineering Department, Egypt-Japan University of Science and Technology, New Borg El-Arab City, Alexandria, Egypt
- Fabrication Technology Researches Department Advanced Technology and New Materials and Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab City, Alexandria, Egypt
| | - Ahmed H. Rezk
- Bioprocess development Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technology Applications, New Borg El-Arab City, Alexandria, Egypt
| | - Yasser R. Abdel-Fattah
- Bioprocess development Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technology Applications, New Borg El-Arab City, Alexandria, Egypt
| |
Collapse
|
33
|
|
34
|
Fungal Nanotechnology: A Pandora to Agricultural Science and Engineering. Fungal Biol 2017. [DOI: 10.1007/978-3-319-68424-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Synthesis and Applications of Nanofungicides: A Next-Generation Fungicide. Fungal Biol 2017. [DOI: 10.1007/978-3-319-68424-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
|
37
|
Mallmann EJJ, Cunha FA, Castro BNMF, Maciel AM, Menezes EA, Fechine PBA. Antifungal activity of silver nanoparticles obtained by green synthesis. Rev Inst Med Trop Sao Paulo 2016; 57:165-7. [PMID: 25923897 PMCID: PMC4435016 DOI: 10.1590/s0036-46652015000200011] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/14/2014] [Indexed: 01/20/2023] Open
Abstract
Silver nanoparticles (AgNPs) are metal structures at the nanoscale. AgNPs have exhibited antimicrobial activities against fungi and bacteria; however synthesis of AgNPs can generate toxic waste during the reaction process. Accordingly, new routes using non-toxic compounds have been researched. The proposal of the present study was to synthesize AgNPs using ribose as a reducing agent and sodium dodecyl sulfate (SDS) as a stabilizer. The antifungal activity of these particles against C. albicans and C. tropicalis was also evaluated. Stable nanoparticles 12.5 ± 4.9 nm (mean ± SD) in size were obtained, which showed high activity against Candida spp. and could represent an alternative for fungal infection treatment.
Collapse
Affiliation(s)
- Eduardo José J Mallmann
- Grupo de Química de Materiais Avançados, Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Francisco Afrânio Cunha
- Grupo de Química de Materiais Avançados, Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Bruno N M F Castro
- Laboratório de Microbiologia de Leveduras, Departamento de Análises Clínicas e Toxicológicas, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Auberson Martins Maciel
- Grupo de Química de Materiais Avançados, Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Everardo Albuquerque Menezes
- Laboratório de Microbiologia de Leveduras, Departamento de Análises Clínicas e Toxicológicas, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Pierre Basílio Almeida Fechine
- Grupo de Química de Materiais Avançados, Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
38
|
Silva LP, Bonatto CC, Polez VLP. Green Synthesis of Metal Nanoparticles by Fungi: Current Trends and Challenges. ADVANCES AND APPLICATIONS THROUGH FUNGAL NANOBIOTECHNOLOGY 2016. [DOI: 10.1007/978-3-319-42990-8_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Maliszewska I. Effects of the biogenic gold nanoparticles on microbial community structure and activities. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1158-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
40
|
Fungi as an efficient mycosystem for the synthesis of metal nanoparticles: progress and key aspects of research. Biotechnol Lett 2015; 37:2099-120. [DOI: 10.1007/s10529-015-1901-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 06/29/2015] [Indexed: 02/01/2023]
|
41
|
Kashyap PL, Xiang X, Heiden P. Chitosan nanoparticle based delivery systems for sustainable agriculture. Int J Biol Macromol 2015; 77:36-51. [DOI: 10.1016/j.ijbiomac.2015.02.039] [Citation(s) in RCA: 252] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 02/03/2015] [Accepted: 02/16/2015] [Indexed: 12/20/2022]
|
42
|
Maddinedi SB, Mandal BK, Ranjan S, Dasgupta N. Diastase assisted green synthesis of size-controllable gold nanoparticles. RSC Adv 2015. [DOI: 10.1039/c5ra03117f] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The availability of S− groups with varying volume and pH of diastase tunes the size of AuNPs.
Collapse
Affiliation(s)
- Sireesh babu Maddinedi
- Trace Elements Speciation Research Laboratory
- Environmental and Analytical Chemistry Division
- School of Advanced Sciences
- VIT University
- Vellore 632014
| | - Badal Kumar Mandal
- Trace Elements Speciation Research Laboratory
- Environmental and Analytical Chemistry Division
- School of Advanced Sciences
- VIT University
- Vellore 632014
| | - Shivendu Ranjan
- Nano-food Research Group
- Instrumental and Food Analysis Laboratory
- School of Bio Sciences and Technology
- VIT University
- Vellore
| | - Nandita Dasgupta
- Nano-food Research Group
- Instrumental and Food Analysis Laboratory
- School of Bio Sciences and Technology
- VIT University
- Vellore
| |
Collapse
|
43
|
Durán N, Cuevas R, Cordi L, Rubilar O, Diez MC. Biogenic silver nanoparticles associated with silver chloride nanoparticles (Ag@AgCl) produced by laccase from Trametes versicolor. SPRINGERPLUS 2014; 3:645. [PMID: 25485188 PMCID: PMC4237688 DOI: 10.1186/2193-1801-3-645] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/17/2014] [Indexed: 11/10/2022]
Abstract
In the present study, semi-purified laccase from Trametes versicolor was applied for the synthesis of silver nanoparticles, and the properties of the produced nanoparticles were characterized. All of the analyses of the spectra indicated silver nanoparticle formation. A complete characterization of the silver nanoparticles showed that a complex of silver nanoparticles and silver ions was produced, with the majority of the particles having a Ag(2+) chemical structure. A hypothetical mechanistic scheme was proposed, suggesting that the main pathway that was used was the interaction of silver ions with the T1 site of laccase, producing silver nanoparticles with the concomitant inactivation of laccase activity and posterior complexing with silver ions.
Collapse
Affiliation(s)
- Nelson Durán
- Biological Chemistry Laboratory, Instituto Química, Universidade Estadual de Campinas, CP 6154, CEP 13083-970 Campinas, SP Brazil ; Laboratory on Nanostructures Synthesis and Biosystems Interactions (NanoBioss) (UNICAMP/SP), Campinas, SP Brazil
| | - Raphael Cuevas
- Doctoral Program of Science of Natural Resources, Universidad de La Frontera, Temuco, Chile ; Environmental Biotechnology Center Science Nucleus BIOREN, Universidad de La Frontera, Temuco, Chile
| | - Livia Cordi
- Institute of Biology, Universidade Estadual de Campinas, Campinas, SP Brazil
| | - Olga Rubilar
- Environmental Biotechnology Center Science Nucleus BIOREN, Universidad de La Frontera, Temuco, Chile ; Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile
| | - Maria Cristina Diez
- Environmental Biotechnology Center Science Nucleus BIOREN, Universidad de La Frontera, Temuco, Chile ; Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
44
|
Muhsin TM, Hachim AK. Mycosynthesis and characterization of silver nanoparticles and their activity against some human pathogenic bacteria. World J Microbiol Biotechnol 2014; 30:2081-90. [DOI: 10.1007/s11274-014-1634-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 03/07/2014] [Indexed: 10/25/2022]
|
45
|
Hamedi S, Shojaosadati SA, Shokrollahzadeh S, Hashemi-Najafabadi S. Extracellular biosynthesis of silver nanoparticles using a novel and non-pathogenic fungus, Neurospora intermedia: controlled synthesis and antibacterial activity. World J Microbiol Biotechnol 2013; 30:693-704. [PMID: 24068530 DOI: 10.1007/s11274-013-1417-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 06/23/2013] [Indexed: 11/29/2022]
Abstract
In the present study, the biosynthesis of silver nanoparticles (AgNPs) using Neurospora intermedia, as a new non-pathogenic fungus was investigated. For determination of biomass harvesting time, the effect of fungal incubation period on nanoparticle formation was investigated using UV-visible spectroscopy. Then, AgNPs were synthesized using both culture supernatant and cell-free filtrate of the fungus. Two different volume ratios (1:100 and 1:1) of the culture supernatant to the silver nitrate were employed for AgNP synthesis. In addition, cell-free filtrate and silver nitrate were mixed in presence and absence of light. Smallest average size and highest productivity were obtained when using equal volumes of the culture supernatant and silver nitrate solution as confirmed by UV-visible spectra of colloidal AgNPs. Comparing the UV-visible spectra revealed that using cell-free filtrate for AgNP synthesis resulted in the formation of particles with higher stability and monodispersity than using culture supernatant. The absence of light in cell-free filtrate mediated synthesis led to the formation of nanoparticles with the lowest rate and the highest monodispersity. The presence of elemental silver in all prepared samples was confirmed using EDX, while the crystalline nature of synthesized particles was verified by XRD. FTIR results showed the presence of functional groups which reduce Ag(+) and stabilize AgNPs. The presence of nitrate reductase was confirmed in the cell-free filtrate of the fungus suggesting the potential role of this enzyme in AgNP synthesis. Synthesized particles showed significant antibacterial activity against E. coli as confirmed by examining the growth curve of bacterial cells exposed to AgNPs.
Collapse
Affiliation(s)
- Sepideh Hamedi
- Biotechnology Group, Chemical Engineering Faculty, Tarbiat Modares University, P.O. Box: 14115-114, Tehran, Iran
| | | | | | | |
Collapse
|