1
|
Zuo J, Zheng W, Shi N, Song R, Han F, Yang C, Li J, Peng C, Li B, Chen Y. Study on the Thermal Stability of the Sweet-Tasting Protein Brazzein Based on Its Structure-Sweetness Relationship. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7374-7382. [PMID: 38526016 DOI: 10.1021/acs.jafc.3c09616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Brazzein (Brz) is a sweet-tasting protein composed of 54 amino acids and is considered as a potential sugar substitute. The current methods for obtaining brazzein are complicated, and limited information is available regarding its thermal stability. In this study, we successfully expressed recombinant brazzein, achieving a sweetness threshold of 15.2 μg/mL. Subsequently, we conducted heat treatments at temperatures of 80, 90, 95, and 100 °C for a duration of 2 h to investigate the structural changes in the protein. Furthermore, we employed hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) to analyze the effect of heating on the protein structure-sweetness relationships. Our results indicated that the thermal inactivation process primarily affects residues 6-14 and 36-45 of brazzein, especially key residues Tyr8, Tyr11, Ser14, Glu36, and Arg43, which are closely associated with its sweetness. These findings have significant implications for improving the thermal stability of brazzein.
Collapse
Affiliation(s)
- Jingnan Zuo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Zheng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Nian Shi
- Xianning Vocational Technical College, Xianning 437100, China
| | - Rong Song
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fei Han
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chen Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingwen Li
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yijie Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
2
|
Nicholas Chua B, Mei Guo W, Teng Wong H, Siak-Wei Ow D, Leng Ho P, Koh W, Koay A, Tian Wong F. A sweeter future: Using protein language models for exploring sweeter brazzein homologs. Food Chem 2023; 426:136580. [PMID: 37331142 DOI: 10.1016/j.foodchem.2023.136580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/23/2023] [Accepted: 06/06/2023] [Indexed: 06/20/2023]
Abstract
With growing concerns over the health impact of sugar, brazzein offers a viable alternative due to its sweetness, thermostability, and low risk profile. Here, we demonstrated the ability of protein language models to design new brazzein homologs with improved thermostability and potentially higher sweetness, resulting in new diverse optimized amino acid sequences that improve structural and functional features beyond what conventional methods could achieve. This innovative approach resulted in the identification of unexpected mutations, thereby generating new possibilities for protein engineering. To facilitate the characterization of the brazzein mutants, a simplified procedure was developed for expressing and analyzing related proteins. This process involved an efficient purification method using Lactococcus lactis (L. lactis), a generally recognized as safe (GRAS) bacterium, as well as taste receptor assays to evaluate sweetness. The study successfully demonstrated the potential of computational design in producing a more heat-resistant and potentially more palatable brazzein variant, V23.
Collapse
Affiliation(s)
- Bryan Nicholas Chua
- Molecular Engineering Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, #07-06, Proteos, Singapore 138673, Republic of Singapore
| | - Wei Mei Guo
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #02-01, Nanos, Singapore 138669, Republic of Singapore
| | - Han Teng Wong
- Molecular Engineering Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, #07-06, Proteos, Singapore 138673, Republic of Singapore
| | - Dave Siak-Wei Ow
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01, Centros, Singapore 138668, Republic of Singapore
| | - Pooi Leng Ho
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01, Centros, Singapore 138668, Republic of Singapore
| | - Winston Koh
- Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #07-01, Nanos, Singapore 138669, Republic of Singapore; Bioinformatics Institute (BII), Agency of Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Republic of Singapore.
| | - Ann Koay
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #02-01, Nanos, Singapore 138669, Republic of Singapore.
| | - Fong Tian Wong
- Molecular Engineering Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, #07-06, Proteos, Singapore 138673, Republic of Singapore; Institute of Sustainability for Chemicals, Energy and Environment (ISCE(2)), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros, #07-01, Singapore 138665, Republic of Singapore.
| |
Collapse
|
3
|
Zhao X, Wang C, Zheng Y, Liu B. New Insight Into the Structure-Activity Relationship of Sweet-Tasting Proteins: Protein Sector and Its Role for Sweet Properties. Front Nutr 2021; 8:691368. [PMID: 34222309 PMCID: PMC8249704 DOI: 10.3389/fnut.2021.691368] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/18/2021] [Indexed: 12/28/2022] Open
Abstract
Sweet-tasting protein is a kind of biomacromolecule that has remarkable sweetening power and is regarded as the promising sugar replacer in the future. Some sweet-tasting proteins has been used in foods and beverages. However, the structure and function relationship of these proteins is still elusive, and guidelines for their protein engineering is limited. It is well-known that the sweet-tasting proteins bind to and activate the sweet taste receptor T1R2/T1R3, thus eliciting their sweetness. The “wedge-model” for describing the interaction between sweet-tasting proteins and sweet taste receptor to elucidate their sweetness has been reported. In this perspective article, we revealed that the intramolecular interaction forces in sweet-tasting proteins is directly correlated to their properties (sweetness and stability). This intramolecular interaction pattern, named as “protein sector,” refers to a small subset of residues forming physically connections, which cooperatively affect the function of the proteins. Based on the analysis of previous experimental data, we suggest that “protein sector” of sweet-tasting proteins is pivotal for their sweet properties, which are meaningful guidelines for the future protein engineering.
Collapse
Affiliation(s)
- Xiangzhong Zhao
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Congrui Wang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yue Zheng
- Shandong Aojing Biotechnology Co., Ltd., Zoucheng, China
| | - Bo Liu
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
4
|
Plasmid Replicons for the Production of Pharmaceutical-Grade pDNA, Proteins and Antigens by Lactococcus lactis Cell Factories. Int J Mol Sci 2021; 22:ijms22031379. [PMID: 33573129 PMCID: PMC7866527 DOI: 10.3390/ijms22031379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/16/2022] Open
Abstract
The Lactococcus lactis bacterium found in different natural environments is traditionally associated with the fermented food industry. But recently, its applications have been spreading to the pharmaceutical industry, which has exploited its probiotic characteristics and is moving towards its use as cell factories for the production of added-value recombinant proteins and plasmid DNA (pDNA) for DNA vaccination, as a safer and industrially profitable alternative to the traditional Escherichia coli host. Additionally, due to its food-grade and generally recognized safe status, there have been an increasing number of studies about its use in live mucosal vaccination. In this review, we critically systematize the plasmid replicons available for the production of pharmaceutical-grade pDNA and recombinant proteins by L. lactis. A plasmid vector is an easily customized component when the goal is to engineer bacteria in order to produce a heterologous compound in industrially significant amounts, as an alternative to genomic DNA modifications. The additional burden to the cell depends on plasmid copy number and on the expression level, targeting location and type of protein expressed. For live mucosal vaccination applications, besides the presence of the necessary regulatory sequences, it is imperative that cells produce the antigen of interest in sufficient yields. The cell wall anchored antigens had shown more promising results in live mucosal vaccination studies, when compared with intracellular or secreted antigens. On the other side, engineering L. lactis to express membrane proteins, especially if they have a eukaryotic background, increases the overall cellular burden. The different alternative replicons for live mucosal vaccination, using L. lactis as the DNA vaccine carrier or the antigen producer, are critically reviewed, as a starting platform to choose or engineer the best vector for each application.
Collapse
|
5
|
Sampaio de Oliveira KB, Leite ML, Rodrigues GR, Duque HM, da Costa RA, Cunha VA, de Loiola Costa LS, da Cunha NB, Franco OL, Dias SC. Strategies for recombinant production of antimicrobial peptides with pharmacological potential. Expert Rev Clin Pharmacol 2020; 13:367-390. [PMID: 32357080 DOI: 10.1080/17512433.2020.1764347] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION The need to develop new drugs for the control of pathogenic microorganisms has redoubled efforts to prospect for antimicrobial peptides (AMPs) from natural sources and to characterize its structure and function. These molecules present a broad spectrum of action against different microorganisms and frequently present promiscuous action, with anticancer and immunomodulatory activities. Furthermore, AMPs can be used as biopharmaceuticals in the treatment of hospital-acquired infections and other serious diseases with relevant social and economic impacts.Areas covered: The low yield and the therefore difficult extraction and purification process in AMPs are problems that limit their industrial application and scientific research. Thus, optimized heterologous expression systems were developed to significantly boost AMP yields, allow high efficiency in purification and structural optimization for the increase of therapeutic activity.Expert opinion: This review provides an update on recent developments in the recombinant production of ribosomal and non-ribosomal synthesis of AMPs and on strategies to increase the expression of genes encoding AMPs at the transcriptional and translational levels and regulation of the post-translational modifications. Moreover, there are detailed reports of AMPs that have already reached marketable status or are in the pipeline under advanced stages of preclinical testing.
Collapse
Affiliation(s)
- Kamila Botelho Sampaio de Oliveira
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Michel Lopes Leite
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Gisele Regina Rodrigues
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Harry Morales Duque
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Rosiane Andrade da Costa
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Victor Albuquerque Cunha
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Lorena Sousa de Loiola Costa
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Nicolau Brito da Cunha
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Octavio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil.,Universidade de Brasília, Pós-graduação em Patologia Molecular, Campus Darcy Ribeiro , Brasília, Brazil.,S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco , Campo Grande, Mato Grosso do Sul, Brazil
| | - Simoni Campos Dias
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil.,Universidade de Brasília, Pós-graduação em Biologia Animal, Campus Darcy Ribeiro , Brasília, Brazil
| |
Collapse
|
6
|
Hung CY, Cheng LH, Yeh CM. Functional expression of recombinant sweet-tasting protein brazzein by Escherichia coli and Bacillus licheniformis. FOOD BIOTECHNOL 2019. [DOI: 10.1080/08905436.2019.1618323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Chien-Ya Hung
- Department of Management and Utilization, Fengshan Tropical Horticultural Experiment Branch, Taiwan Agricultural Research Institute, Kaohsiung, Taiwan
| | - Lee-Hao Cheng
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Chuan-Mei Yeh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
7
|
Joseph JA, Akkermans S, Nimmegeers P, Van Impe JFM. Bioproduction of the Recombinant Sweet Protein Thaumatin: Current State of the Art and Perspectives. Front Microbiol 2019; 10:695. [PMID: 31024485 PMCID: PMC6463758 DOI: 10.3389/fmicb.2019.00695] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/19/2019] [Indexed: 12/12/2022] Open
Abstract
There is currently a worldwide trend to reduce sugar consumption. This trend is mostly met by the use of artificial non-nutritive sweeteners. However, these sweeteners have also been proven to have adverse health effects such as dizziness, headaches, gastrointestinal issues, and mood changes for aspartame. One of the solutions lies in the commercialization of sweet proteins, which are not associated with adverse health effects. Of these proteins, thaumatin is one of the most studied and most promising alternatives for sugars and artificial sweeteners. Since the natural production of these proteins is often too expensive, biochemical production methods are currently under investigation. With these methods, recombinant DNA technology is used for the production of sweet proteins in a host organism. The most promising host known today is the methylotrophic yeast, Pichia pastoris. This yeast has a tightly regulated methanol-induced promotor, allowing a good control over the recombinant protein production. Great efforts have been undertaken for improving the yields and purities of thaumatin productions, but a further optimization is still desired. This review focuses on (i) the motivation for using and producing sweet proteins, (ii) the properties and history of thaumatin, (iii) the production of recombinant sweet proteins, and (iv) future possibilities for process optimization based on a systems biology approach.
Collapse
Affiliation(s)
- Jewel Ann Joseph
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Leuven, Belgium
- Optimization in Engineering Center-of-Excellence, KU Leuven, Leuven, Belgium
- CPMF, Flemish Cluster Predictive Microbiology in Foods, Leuven, Belgium
| | - Simen Akkermans
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Leuven, Belgium
- Optimization in Engineering Center-of-Excellence, KU Leuven, Leuven, Belgium
- CPMF, Flemish Cluster Predictive Microbiology in Foods, Leuven, Belgium
| | - Philippe Nimmegeers
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Leuven, Belgium
- Optimization in Engineering Center-of-Excellence, KU Leuven, Leuven, Belgium
- CPMF, Flemish Cluster Predictive Microbiology in Foods, Leuven, Belgium
| | - Jan F. M. Van Impe
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Leuven, Belgium
- Optimization in Engineering Center-of-Excellence, KU Leuven, Leuven, Belgium
- CPMF, Flemish Cluster Predictive Microbiology in Foods, Leuven, Belgium
| |
Collapse
|
8
|
Liu H, Zhang Z, Li Y, Wang X, Zhang Y, Chu Y, Yuan X, Wang X. Preparation and evaluation of anti-renal fibrosis activity of novel truncated TGF-β receptor type II. Biotechnol Appl Biochem 2018; 65:834-840. [PMID: 30066965 DOI: 10.1002/bab.1667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/12/2018] [Indexed: 12/14/2022]
Abstract
Production of excessive transforming growth factor-beta 1 (TGF-β1) with elevated TGF-β1 activity has been implicated in renal fibrosis via renal epithelial cells activation and collagen deposition. As such, attenuating the binding of TGF-β1 to its receptor TGF-beta receptor type II (TGF-βRII) in TGF-β1-dependent signaling is an attractive target for the control of renal fibrosis. Here, we verified the interaction between novel truncated human TGF-βRII (thTβRII, Thr23-Gln166) and TGF-β1, prepared thTβRII in Escherichia coli, and assessed the effects of thTβRII on TGF-β1-induced human kidney epithelial cells (HK-2) and unilateral ureteral obstruction (UUO) model of renal fibrosis. Our data showed that thTβRII accounted for up to 20% of the total protein and 40% of the inclusion bodies of whole cell lysates under the optimal conditions (0.8 mM IPTG and 25°C for 6 H). Most of the expressed protein in inclusion body was refolded by dialysis refolding procedures and purified by Ni2+ -IDA affinity chromatography. Furthermore, thTβRII decreased type I collagen and α-smooth muscle actin protein expression in TGF-β1-induced HK-2 cells, and ameliorated kidney morphology and fibrotic responses in fibrosis animal. These findings indicate that thTβRII holds great promise for developing new treatments for renal fibrosis.
Collapse
Affiliation(s)
- Haifeng Liu
- Heilongjiang Province Key Laboratory for Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, People's Republic of China.,Laboratory of Medical Immunology and Pathogen Biology, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Zhongmin Zhang
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Yuting Li
- Laboratory of Medical Immunology and Pathogen Biology, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Xiaoli Wang
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Yufei Zhang
- Heilongjiang Province Key Laboratory for Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Yanhui Chu
- Heilongjiang Province Key Laboratory for Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Xiaohuan Yuan
- Heilongjiang Province Key Laboratory for Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Xiaohua Wang
- Heilongjiang Province Key Laboratory for Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, People's Republic of China.,Laboratory of Medical Immunology and Pathogen Biology, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| |
Collapse
|
9
|
Song AAL, In LLA, Lim SHE, Rahim RA. A review on Lactococcus lactis: from food to factory. Microb Cell Fact 2017; 16:55. [PMID: 28376880 PMCID: PMC5379754 DOI: 10.1186/s12934-017-0669-x] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 03/28/2017] [Indexed: 02/08/2023] Open
Abstract
Lactococcus lactis has progressed a long way since its discovery and initial use in dairy product fermentation, to its present biotechnological applications in genetic engineering for the production of various recombinant proteins and metabolites that transcends the heterologous species barrier. Key desirable features of this gram-positive lactic acid non-colonizing gut bacteria include its generally recognized as safe (GRAS) status, probiotic properties, the absence of inclusion bodies and endotoxins, surface display and extracellular secretion technology, and a diverse selection of cloning and inducible expression vectors. This have made L. lactis a desirable and promising host on par with other well established model bacterial or yeast systems such as Escherichia coli, Saccharomyces [corrected] cerevisiae and Bacillus subtilis. In this article, we review recent technological advancements, challenges, future prospects and current diversified examples on the use of L. lactis as a microbial cell factory. Additionally, we will also highlight latest medical-based applications involving whole-cell L. lactis as a live delivery vector for the administration of therapeutics against both communicable and non-communicable diseases.
Collapse
Affiliation(s)
- Adelene Ai-Lian Song
- Department of Microbiology, Faculty of Biotechnology & Biomolecular Sciences, University Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Lionel L A In
- Functional Food Research Group, Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Swee Hua Erin Lim
- Perdana University-Royal College of Surgeons in Ireland, Perdana University, Block B and D, MAEPS Building, MARDI Complex, Jalan MAEPS Perdana, 43400, Serdang, Selangor, Malaysia
| | - Raha Abdul Rahim
- Department of Cell & Molecular Biology, Faculty of Biotechnology & Biomolecular Sciences, University Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
10
|
Landete JM. A review of food-grade vectors in lactic acid bacteria: from the laboratory to their application. Crit Rev Biotechnol 2016; 37:296-308. [PMID: 26918754 DOI: 10.3109/07388551.2016.1144044] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Lactic acid bacteria (LAB) have a long history of use in fermented foods and as probiotics. Genetic manipulation of these microorganisms has great potential for new applications in food safety, as well as in the development of improved food products and in health. While genetic engineering of LAB could have a major positive impact on the food and pharmaceutical industries, progress could be prevented by legal issues related to the controversy surrounding this technology. The safe use of genetically modified LAB requires the development of food-grade cloning systems containing only the DNA from homologous hosts or generally considered as safe organisms, and not dependent antibiotic markers. The rationale for the development of cloning vectors derived from cryptic LAB plasmids is the need for new genetic engineering tools, therefore a vision from cryptic plasmids to applications in food-grade vectors for LAB plasmids is shown in this review. Replicative and integrative vectors for the construction of food-grade vectors, and the relationship between resistance mechanism and expression systems, will be treated in depth in this paper. Finally, we will discuss the limited use of these vectors, and the problems arising from their use.
Collapse
Affiliation(s)
- José Maria Landete
- a Departamento De Tecnología De Alimentos , Instituto Nacional De Investigación Y Tecnología Agraria Y Alimentaria (INIA) , Madrid , Spain
| |
Collapse
|
11
|
Dong X, Tian B, Dai S, Li T, Guo L, Tan Z, Jiao Z, Jin Q, Wang Y, Hua Y. Expression of PprI from Deinococcus radiodurans Improves Lactic Acid Production and Stress Tolerance in Lactococcus lactis. PLoS One 2015; 10:e0142918. [PMID: 26562776 PMCID: PMC4643010 DOI: 10.1371/journal.pone.0142918] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 10/28/2015] [Indexed: 11/23/2022] Open
Abstract
PprI is a general switch protein that regulates the expression of certain proteins involved in pathways of cellular resistance in the extremophilic bacterium Deinococcus radiodurans. In this study, we transformed pprI into Lactococcus lactis strain MG1363 using the lactococcal shuttle vector pMG36e and investigated its effects on the tolerance and lactic acid production of L. lactis while under stress. PprI was stably expressed in L. lactis as confirmed by western blot assays. L. lactis expressing PprI exhibited significantly improved resistance to oxidative stress and high osmotic pressure. This enhanced cellular tolerance to stressors might be due to the regulation of resistance-related genes (e.g., recA, recO, sodA, and nah) by pprI. Moreover, transformed L. lactis demonstrated increased lactic acid production, attributed to enhanced lactate dehydrogenase activity. These results suggest that pprI can improve the tolerance of L. lactis to environmental stresses, and this transformed bacterial strain is a promising candidate for industrial applications of lactic acid production.
Collapse
Affiliation(s)
- Xiangrong Dong
- Henan Provincial Key Laboratory of Ion Beam Bio-engineering, Zhengzhou University, Zhengzhou, 450052, China
| | - Bing Tian
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Shang Dai
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Tao Li
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Linna Guo
- Henan Provincial Key Laboratory of Ion Beam Bio-engineering, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhongfang Tan
- Henan Provincial Key Laboratory of Ion Beam Bio-engineering, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhen Jiao
- Henan Provincial Key Laboratory of Ion Beam Bio-engineering, Zhengzhou University, Zhengzhou, 450052, China
| | - Qingsheng Jin
- Institute of Crops and Utilization of Nuclear Technology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yanping Wang
- Henan Provincial Key Laboratory of Ion Beam Bio-engineering, Zhengzhou University, Zhengzhou, 450052, China
- * E-mail: (YW); (YH)
| | - Yuejin Hua
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
- * E-mail: (YW); (YH)
| |
Collapse
|