1
|
Chakraborty N, Holmes-Hampton GP, Gautam A, Kumar R, Hritzo B, Legesse B, Dimitrov G, Ghosh SP, Hammamieh R. Early to sustained impacts of lethal radiation on circulating miRNAs in a minipig model. Sci Rep 2023; 13:18496. [PMID: 37898651 PMCID: PMC10613244 DOI: 10.1038/s41598-023-45250-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023] Open
Abstract
Early diagnosis of lethal radiation is imperative since its intervention time windows are considerably short. Hence, ideal diagnostic candidates of radiation should be easily accessible, enable to inform about the stress history and objectively triage subjects in a time-efficient manner. Therefore, the small molecules such as metabolites and microRNAs (miRNAs) from plasma are legitimate biomarker candidate for lethal radiation. Our objectives were to comprehend the radiation-driven molecular pathogenesis and thereby determine biomarkers of translational potential. We investigated an established minipig model of LD70/45 total body irradiation (TBI). In this pilot study, plasma was collected pre-TBI and at multiple time points post-TBI. The majority of differentially expressed miRNAs and metabolites were perturbed immediately after TBI that potentially underlined the severity of its acute impact. The integrative network analysis of miRNA and metabolites showed a cohesive response; the early and consistent perturbations of networks were linked to cancer and the shift in musculoskeletal atrophy synchronized with the comorbidity-networks associated with inflammation and bioenergy synthesis. Subsequent comparative pipeline delivered 92 miRNAs, which demonstrated sequential homology between human and minipig, and potentially similar responses to lethal radiation across these two species. This panel promised to retrospectively inform the time since the radiation occurred; thereby could facilitate knowledge-driven interventions.
Collapse
Affiliation(s)
- Nabarun Chakraborty
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Gregory P Holmes-Hampton
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20889, USA
| | - Aarti Gautam
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Raina Kumar
- The Geneva Foundation, US Army Center for Environmental Health Research, Fort Detrick, MD, 21702-5010, USA
| | - Bernadette Hritzo
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20889, USA
| | - Betre Legesse
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20889, USA
| | - George Dimitrov
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- The Geneva Foundation, US Army Center for Environmental Health Research, Fort Detrick, MD, 21702-5010, USA
| | - Sanchita P Ghosh
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20889, USA.
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| |
Collapse
|
2
|
Singh VK, Srivastava M, Seed TM. Protein biomarkers for radiation injury and testing of medical countermeasure efficacy: promises, pitfalls, and future directions. Expert Rev Proteomics 2023; 20:221-246. [PMID: 37752078 DOI: 10.1080/14789450.2023.2263652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
INTRODUCTION Radiological/nuclear accidents, hostile military activity, or terrorist strikes have the potential to expose a large number of civilians and military personnel to high doses of radiation resulting in the development of acute radiation syndrome and delayed effects of exposure. Thus, there is an urgent need for sensitive and specific assays to assess the levels of radiation exposure to individuals. Such radiation exposures are expected to alter primary cellular proteomic processes, resulting in multifaceted biological responses. AREAS COVERED This article covers the application of proteomics, a promising and fast developing technology based on quantitative and qualitative measurements of protein molecules for possible rapid measurement of radiation exposure levels. Recent advancements in high-resolution chromatography, mass spectrometry, high-throughput, and bioinformatics have resulted in comprehensive (relative quantitation) and precise (absolute quantitation) approaches for the discovery and accuracy of key protein biomarkers of radiation exposure. Such proteome biomarkers might prove useful for assessing radiation exposure levels as well as for extrapolating the pharmaceutical dose of countermeasures for humans based on efficacy data generated using animal models. EXPERT OPINION The field of proteomics promises to be a valuable asset in evaluating levels of radiation exposure and characterizing radiation injury biomarkers.
Collapse
Affiliation(s)
- Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Meera Srivastava
- Department of Anatomy, Physiology and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | |
Collapse
|
3
|
Liu HX, Liu QJ. Logistic role of carnitine shuttle system on radiation-induced L-carnitine and acylcarnitines alteration. Int J Radiat Biol 2022; 98:1-14. [PMID: 35384773 DOI: 10.1080/09553002.2022.2063430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE With the development of radiation metabolomics, a large number of radiation-related metabolic biomarkers have been identified and validated. The L-carnitine and acylcarnitines have the potential to be the new promising candidate indicators of radiation exposure. This review summarizes the effect of carnitine shuttle system on the profile of acylcarnitines and correlates the radiation effects on upstream regulators of carnitine shuttle system with the change characteristics of L-carnitine and acylcarnitines after irradiation across different animal models as well as a few humans. CONCLUSIONS Studies report that acylcarnitines were ubiquitously elevated after irradiation, especially the free L-carnitine and short-chain acylcarnitines (C2-C5). However, the molecular mechanism underlying acylcarnitine alterations after irradiation is not fully investigated, and further studies are needed to explore the biological effect and its mechanism. The activity of the carnitine shuttle system plays a key role in the alteration of L-carnitine and acylcarnitines, and the upstream regulators of the system are known to be affected by irradiation. These evidences indicate that that there is a logistic role of carnitine shuttle system on radiation-induced L-carnitine and acylcarnitines alteration.
Collapse
Affiliation(s)
- Hai-Xiang Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Qing-Jie Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| |
Collapse
|
4
|
Maan K, Baghel R, Bakhshi R, Dhariwal S, Tyagi R, Rana P. An integrative chemometric approach and correlative metabolite networking of LC-MS and 1H NMR based urine metabolomics for radiation signatures. Mol Omics 2022; 18:214-225. [PMID: 34982087 DOI: 10.1039/d1mo00399b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The increasing threat of nuclear terrorism or radiological accident has made high throughput radiation biodosimetry a requisite for the immediate response for triage. Owing to detection of subtle alterations in biological pathways before the onset of clinical conditions, metabolomics has become an important tool for studying biomarkers and the related mechanisms for radiation induced damage. Here, we have attempted to combine two detection techniques, LC-MS and 1H NMR spectroscopy, to obtain a comprehensive metabolite profile of urine at 24 h following lethal (7.5 Gy) and sub-lethal (5 Gy) irradiation in mice. Integrated data analytics using multiblock-OPLSDA (MB-OPLSDA), correlation networking and pathway analysis was used to identify metabolic disturbances associated with radiation exposure. MB-OPLSDA revealed better clustering and separation of irradiated groups compared with controls without overfitting (p-value of CV-ANOVA: 1.5 × 10-3). Metabolites identified through MB-OPLSDA, namely, taurine, creatine, citrate and 2-oxoglutarate, were found to be dose independent markers and further support and validate our earlier findings as potential radiation injury biomarkers. Integrated analysis resulted in the enhanced coverage of metabolites and better correlation networking in energy, taurine, gut flora, L-carnitine and nucleotide metabolism observed post irradiation in urine. Our study thus emphasizes the major advantage of using the two detection techniques along with integrated analysis for better detection and comprehensive understanding of disturbed metabolites in biological pathways.
Collapse
Affiliation(s)
- Kiran Maan
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K Mazumdar Road, Timarpur, Delhi-54, India. .,Department of Biomedical Sciences, Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, Delhi, India
| | - Ruchi Baghel
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K Mazumdar Road, Timarpur, Delhi-54, India.
| | - Radhika Bakhshi
- Department of Biomedical Sciences, Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, Delhi, India
| | - Seema Dhariwal
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K Mazumdar Road, Timarpur, Delhi-54, India.
| | - Ritu Tyagi
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K Mazumdar Road, Timarpur, Delhi-54, India.
| | - Poonam Rana
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K Mazumdar Road, Timarpur, Delhi-54, India.
| |
Collapse
|
5
|
Pannkuk EL, Laiakis EC, Girgis M, Garty GY, Morton SR, Pujol-Canadell M, Ghandhi SA, Amundson SA, Brenner DJ, Fornace AJ. Biofluid Metabolomics of Mice Exposed to External Low-Dose Rate Radiation in a Novel Irradiation System, the Variable Dose-Rate External 137Cs Irradiator. J Proteome Res 2021; 20:5145-5155. [PMID: 34585931 DOI: 10.1021/acs.jproteome.1c00638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An important component of ionizing radiation (IR) exposure after a radiological incident may include low-dose rate (LDR) exposures either externally or internally, such as from 137Cs deposition. In this study, a novel irradiation system, VAriable Dose-rate External 137Cs irradiatoR (VADER), was used to expose male and female mice to a variable LDR irradiation over a 30 d time span to simulate fall-out-type exposures in addition to biofluid collection from a reference dose rate (0.8 Gy/min). Radiation markers were identified by untargeted metabolomics and random forests. Mice exposed to LDR exposures were successfully identified from control groups based on their urine and serum metabolite profiles. In addition to metabolites commonly perturbed after IR exposure, we identified and validated a novel metabolite (hexosamine-valine-isoleucine-OH) that increased up to 150-fold after LDR and 80-fold after conventional exposures in urine. A multiplex panel consisting of hexosamine-valine-isoleucine-OH with other urinary metabolites (N6,N6,N6-trimethyllysine, carnitine, 1-methylnicotinamide, and α-ketoglutaric acid) achieved robust classification performance using receiver operating characteristic curve analysis, irrespective of the dose rate or sex. These results show that in terms of biodosimetry, dysregulated energy metabolism is associated with IR exposure for both LDR and conventional IR exposures. These mass spectrometry data have been deposited to the NIH data repository via Metabolomics Workbench with study IDs ST001790, ST001791, ST001792, ST001793, and ST001806.
Collapse
Affiliation(s)
- Evan L Pannkuk
- Department of Oncology, Georgetown University Medical Center, Washington, D.C. 20057, United States.,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C. 20057, United States
| | - Evagelia C Laiakis
- Department of Oncology, Georgetown University Medical Center, Washington, D.C. 20057, United States.,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C. 20057, United States
| | - Michael Girgis
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C. 20057, United States
| | - Guy Y Garty
- Radiological Research Accelerator Facility, Columbia University, Irvington, New York 10032, United States.,Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Shad R Morton
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Monica Pujol-Canadell
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Shanaz A Ghandhi
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Sally A Amundson
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - David J Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Albert J Fornace
- Department of Oncology, Georgetown University Medical Center, Washington, D.C. 20057, United States.,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C. 20057, United States
| |
Collapse
|
6
|
Satyamitra MM, Cassatt DR, Hollingsworth BA, Price PW, Rios CI, Taliaferro LP, Winters TA, DiCarlo AL. Metabolomics in Radiation Biodosimetry: Current Approaches and Advances. Metabolites 2020; 10:metabo10080328. [PMID: 32796693 PMCID: PMC7465152 DOI: 10.3390/metabo10080328] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/01/2020] [Accepted: 08/06/2020] [Indexed: 12/11/2022] Open
Abstract
Triage and medical intervention strategies for unanticipated exposure during a radiation incident benefit from the early, rapid and accurate assessment of dose level. Radiation exposure results in complex and persistent molecular and cellular responses that ultimately alter the levels of many biological markers, including the metabolomic phenotype. Metabolomics is an emerging field that promises the determination of radiation exposure by the qualitative and quantitative measurements of small molecules in a biological sample. This review highlights the current role of metabolomics in assessing radiation injury, as well as considerations for the diverse range of bioanalytical and sampling technologies that are being used to detect these changes. The authors also address the influence of the physiological status of an individual, the animal models studied, the technology and analysis employed in interrogating response to the radiation insult, and variables that factor into discovery and development of robust biomarker signatures. Furthermore, available databases for these studies have been reviewed, and existing regulatory guidance for metabolomics are discussed, with the ultimate goal of providing both context for this area of radiation research and the consideration of pathways for continued development.
Collapse
Affiliation(s)
- Merriline M. Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), and National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD 20852, USA; (D.R.C.); (B.A.H.); (C.I.R.); (L.P.T.); (T.A.W.); (A.L.D.)
- Correspondence: ; Tel.: +1-240-669-5432
| | - David R. Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), and National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD 20852, USA; (D.R.C.); (B.A.H.); (C.I.R.); (L.P.T.); (T.A.W.); (A.L.D.)
| | - Brynn A. Hollingsworth
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), and National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD 20852, USA; (D.R.C.); (B.A.H.); (C.I.R.); (L.P.T.); (T.A.W.); (A.L.D.)
| | - Paul W. Price
- Office of Regulatory Affairs, Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD 20852, USA;
| | - Carmen I. Rios
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), and National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD 20852, USA; (D.R.C.); (B.A.H.); (C.I.R.); (L.P.T.); (T.A.W.); (A.L.D.)
| | - Lanyn P. Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), and National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD 20852, USA; (D.R.C.); (B.A.H.); (C.I.R.); (L.P.T.); (T.A.W.); (A.L.D.)
| | - Thomas A. Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), and National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD 20852, USA; (D.R.C.); (B.A.H.); (C.I.R.); (L.P.T.); (T.A.W.); (A.L.D.)
| | - Andrea L. DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), and National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD 20852, USA; (D.R.C.); (B.A.H.); (C.I.R.); (L.P.T.); (T.A.W.); (A.L.D.)
| |
Collapse
|
7
|
Hasan HF, Elgazzar EM, Mostafa DM. Diminazene aceturate extenuate the renal deleterious consequences of angiotensin-II induced by γ-irradiation through boosting ACE2 signaling cascade. Life Sci 2020; 253:117749. [PMID: 32380079 DOI: 10.1016/j.lfs.2020.117749] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/24/2020] [Accepted: 05/01/2020] [Indexed: 10/24/2022]
Abstract
AIM This work aims to explore the role of diminazene aceturate (DIZE) in the enhancement of angiotensin-converting enzyme-2 (ACE2) to prevent the inflammatory and fibrotic response induced by γ-irradiation through activating the protective axis ACE2/angiotensin (1-7)/Mas receptor (ACE2/Ang(1-7)/Mas). METHODS Male rats were injected i.p. with 15 mg/kg DIZE daily for 7 days pre and post-irradiation, where 7.5 Gy of γ-radiation as a single dose was used. KEY FINDINGS Gamma radiation induced a significant elevation of renal biochemical parameters: urea, creatinine and blood urea nitrogen (BUN) in serum with a significant disturbance in oxidative stress markers: elevation in malondialdehyde (MDA) associated with a depletion of reduced glutathione (GSH) and superoxide dismutase (SOD). Beside elevation in the level of angiotensin II (AngII) that lead to remarkably increases in the levels of the renal inflammatory mediators: tumor necrosis factor-α (TNF-α), nuclear factor kappa B (NF-κB) and interleukin-1β (IL-1β) as well as renal fibrogenic markers: transforming growth factor-β1 (TGF-β1), connective tissue growth factor (CTGF), and hydroxyproline content in the renal tissues. DIZE caused marked expansion in the expression of ACE2 consequently decreased the expression of AngII and increased the expression of Ang(1-7) which through its Mas receptor ameliorates the biochemical and histopathological damage induced by radiation. SIGNIFICANCE DIZE-induced stimulation of ACE2 subdues the renal deleterious consequences induced by γ-radiation via activation of ACE2/Ang(1-7)/Mas axis in rats.
Collapse
Affiliation(s)
- Hesham Farouk Hasan
- Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Egypt.
| | - Eman M Elgazzar
- Health Radiation Research Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Dalia M Mostafa
- Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Egypt
| |
Collapse
|
8
|
Vicente E, Vujaskovic Z, Jackson IL. A Systematic Review of Metabolomic and Lipidomic Candidates for Biomarkers in Radiation Injury. Metabolites 2020; 10:E259. [PMID: 32575772 PMCID: PMC7344731 DOI: 10.3390/metabo10060259] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/09/2020] [Accepted: 06/13/2020] [Indexed: 12/16/2022] Open
Abstract
A large-scale nuclear event has the ability to inflict mass casualties requiring point-of-care and laboratory-based diagnostic and prognostic biomarkers to inform victim triage and appropriate medical intervention. Extensive progress has been made to develop post-exposure point-of-care biodosimetry assays and to identify biomarkers that may be used in early phase testing to predict the course of the disease. Screening for biomarkers has recently extended to identify specific metabolomic and lipidomic responses to radiation using animal models. The objective of this review was to determine which metabolites or lipids most frequently experienced perturbations post-ionizing irradiation (IR) in preclinical studies using animal models of acute radiation sickness (ARS) and delayed effects of acute radiation exposure (DEARE). Upon review of approximately 65 manuscripts published in the peer-reviewed literature, the most frequently referenced metabolites showing clear changes in IR induced injury were found to be citrulline, citric acid, creatine, taurine, carnitine, xanthine, creatinine, hypoxanthine, uric acid, and threonine. Each metabolite was evaluated by specific study parameters to determine whether trends were in agreement across several studies. A select few show agreement across variable animal models, IR doses and timepoints, indicating that they may be ubiquitous and appropriate for use in diagnostic or prognostic biomarker panels.
Collapse
Affiliation(s)
| | | | - Isabel L. Jackson
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (E.V.); (Z.V.)
| |
Collapse
|
9
|
Chakraborty N, Gautam A, Holmes-Hampton GP, Kumar VP, Biswas S, Kumar R, Hamad D, Dimitrov G, Olabisi AO, Hammamieh R, Ghosh SP. microRNA and Metabolite Signatures Linked to Early Consequences of Lethal Radiation. Sci Rep 2020; 10:5424. [PMID: 32214144 PMCID: PMC7096415 DOI: 10.1038/s41598-020-62255-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/11/2020] [Indexed: 12/12/2022] Open
Abstract
Lethal total body irradiation (TBI) triggers multifactorial health issues in a potentially short time frame. Hence, early signatures of TBI would be of great clinical value. Our study aimed to interrogate microRNA (miRNA) and metabolites, two biomolecules available in blood serum, in order to comprehend the immediate impacts of TBI. Mice were exposed to a lethal dose (9.75 Gy) of Cobalt-60 gamma radiation and euthanized at four time points, namely, days 1, 3, 7 and 9 post-TBI. Serum miRNA libraries were sequenced using the Illumina small RNA sequencing protocol, and metabolites were screened using a mass spectrometer. The degree of early impacts of irradiation was underscored by the large number of miRNAs and metabolites that became significantly expressed during the Early phase (day 0 and 1 post-TBI). Radiation-induced inflammatory markers for bone marrow aplasia and pro-sepsis markers showed early elevation with longitudinal increment. Functional analysis integrating miRNA-protein-metabolites revealed inflammation as the overarching host response to lethal TBI. Early activation of the network linked to the synthesis of reactive oxygen species was associated with the escalated regulation of the fatty acid metabolism network. In conclusion, we assembled a list of time-informed critical markers and mechanisms of significant translational potential in the context of a radiation exposure event.
Collapse
Affiliation(s)
- Nabarun Chakraborty
- The Geneva Foundation, Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Fort Detrick, MD, 21702-5010, USA
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Fort Detrick, MD, 21702-5010, USA
| | - Aarti Gautam
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Fort Detrick, MD, 21702-5010, USA
| | - Gregory P Holmes-Hampton
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20889, USA
| | - Vidya P Kumar
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20889, USA
| | - Shukla Biswas
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20889, USA
| | - Raina Kumar
- The Geneva Foundation, Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Fort Detrick, MD, 21702-5010, USA
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Fort Detrick, MD, 21702-5010, USA
| | - Dana Hamad
- ORISE, Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Fort Detrick, MD, 21702-5010, USA
| | - George Dimitrov
- The Geneva Foundation, Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Fort Detrick, MD, 21702-5010, USA
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Fort Detrick, MD, 21702-5010, USA
| | - Ayodele O Olabisi
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20889, USA
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Fort Detrick, MD, 21702-5010, USA
| | - Sanchita P Ghosh
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20889, USA.
| |
Collapse
|
10
|
Pannkuk EL, Laiakis EC, Gill K, Jain SK, Mehta KY, Nishita D, Bujold K, Bakke J, Gahagen J, Authier S, Chang P, Fornace AJ. Liquid Chromatography-Mass Spectrometry-Based Metabolomics of Nonhuman Primates after 4 Gy Total Body Radiation Exposure: Global Effects and Targeted Panels. J Proteome Res 2019; 18:2260-2269. [PMID: 30843397 DOI: 10.1021/acs.jproteome.9b00101] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Rapid assessment of radiation signatures in noninvasive biofluids may aid in assigning proper medical treatments for acute radiation syndrome (ARS) and delegating limited resources after a nuclear disaster. Metabolomic platforms allow for rapid screening of biofluid signatures and show promise in differentiating radiation quality and time postexposure. Here, we use global metabolomics to differentiate temporal effects (1-60 d) found in nonhuman primate (NHP) urine and serum small molecule signatures after a 4 Gy total body irradiation. Random Forests analysis differentially classifies biofluid signatures according to days post 4 Gy exposure. Eight compounds involved in protein metabolism, fatty acid β oxidation, DNA base deamination, and general energy metabolism were identified in each urine and serum sample and validated through tandem MS. The greatest perturbations were seen at 1 d in urine and 1-21 d in serum. Furthermore, we developed a targeted liquid chromatography tandem mass spectrometry (LC-MS/MS) with multiple reaction monitoring (MRM) method to quantify a six compound panel (hypoxanthine, carnitine, acetylcarnitine, proline, taurine, and citrulline) identified in a previous training cohort at 7 d after a 4 Gy exposure. The highest sensitivity and specificity for classifying exposure at 7 d after a 4 Gy exposure included carnitine and acetylcarnitine in urine and taurine, carnitine, and hypoxanthine in serum. Receiver operator characteristic (ROC) curve analysis using combined compounds show excellent sensitivity and specificity in urine (area under the curve [AUC] = 0.99) and serum (AUC = 0.95). These results highlight the utility of MS platforms to differentiate time postexposure and acquire reliable quantitative biomarker panels for classifying exposed individuals.
Collapse
Affiliation(s)
- Evan L Pannkuk
- Department of Oncology, Lombardi Comprehensive Cancer Center , Georgetown University Medical Center , Washington, D.C. 20007 , United States
| | - Evagelia C Laiakis
- Department of Oncology, Lombardi Comprehensive Cancer Center , Georgetown University Medical Center , Washington, D.C. 20007 , United States.,Department of Biochemistry and Molecular & Cellular Biology , Georgetown University Medical Center , Washington, D.C. 20007 , United States
| | - Kirandeep Gill
- Department of Biochemistry and Molecular & Cellular Biology , Georgetown University Medical Center , Washington, D.C. 20007 , United States
| | - Shreyans K Jain
- Department of Biochemistry and Molecular & Cellular Biology , Georgetown University Medical Center , Washington, D.C. 20007 , United States
| | - Khyati Y Mehta
- Department of Oncology, Lombardi Comprehensive Cancer Center , Georgetown University Medical Center , Washington, D.C. 20007 , United States
| | - Denise Nishita
- SRI International , Menlo Park , California 94025 , United States
| | - Kim Bujold
- Citoxlab North America , Laval , QC H7V 4B3 , Canada
| | - James Bakke
- SRI International , Menlo Park , California 94025 , United States
| | - Janet Gahagen
- SRI International , Menlo Park , California 94025 , United States
| | - Simon Authier
- Citoxlab North America , Laval , QC H7V 4B3 , Canada
| | - Polly Chang
- SRI International , Menlo Park , California 94025 , United States
| | - Albert J Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center , Georgetown University Medical Center , Washington, D.C. 20007 , United States.,Department of Biochemistry and Molecular & Cellular Biology , Georgetown University Medical Center , Washington, D.C. 20007 , United States
| |
Collapse
|
11
|
Abstract
Metabolomics, the collective assessment and quantification of small molecules in a given biofluid or tissue sample, has provided new ways in evaluating an individual's exposure level to ionizing radiation or other genotoxic stressors. Protocols that are routinely utilized for the preparation of samples from rodents to patients are presented here in order to be analyzed by high-throughput liquid chromatography-mass spectrometry techniques. These protocols are based on established methods in our laboratory that have been used extensively in radiation biodosimetry through metabolomics. These protocols are focused on general profiling of samples and therefore do not concentrate on extraction of specific classes on metabolites (e.g., eicosanoids).
Collapse
Affiliation(s)
- Evagelia C Laiakis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA.
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA.
| |
Collapse
|
12
|
Chen Z, Coy SL, Pannkuk EL, Laiakis EC, Fornace AJ, Vouros P. Differential Mobility Spectrometry-Mass Spectrometry (DMS-MS) in Radiation Biodosimetry: Rapid and High-Throughput Quantitation of Multiple Radiation Biomarkers in Nonhuman Primate Urine. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1650-1664. [PMID: 29736597 PMCID: PMC6287943 DOI: 10.1007/s13361-018-1977-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/19/2018] [Accepted: 04/21/2018] [Indexed: 05/21/2023]
Abstract
High-throughput methods to assess radiation exposure are a priority due to concerns that include nuclear power accidents, the spread of nuclear weapon capability, and the risk of terrorist attacks. Metabolomics, the assessment of small molecules in an easily accessible sample, is the most recent method to be applied for the identification of biomarkers of the biological radiation response with a useful dose-response profile. Profiling for biomarker identification is frequently done using an LC-MS platform which has limited throughput due to the time-consuming nature of chromatography. We present here a chromatography-free simplified method for quantitative analysis of seven metabolites in urine with radiation dose-response using urine samples provided from the Pannkuk et al. (2015) study of long-term (7-day) radiation response in nonhuman primates (NHP). The stable isotope dilution (SID) analytical method consists of sample preparation by strong cation exchange-solid phase extraction (SCX-SPE) to remove interferences and concentrate the metabolites of interest, followed by differential mobility spectrometry (DMS) ion filtration to select the ion of interest and reduce chemical background, followed by mass spectrometry (overall SID-SPE-DMS-MS). Since no chromatography is used, calibration curves were prepared rapidly, in under 2 h (including SPE) for six simultaneously analyzed radiation biomarkers. The seventh, creatinine, was measured separately after 2500× dilution. Creatinine plays a dual role, measuring kidney glomerular filtration rate (GFR), and indicating kidney damage at high doses. The current quantitative method using SID-SPE-DMS-MS provides throughput which is 7.5 to 30 times higher than that of LC-MS and provides a path to pre-clinical radiation dose estimation. Graphical Abstract.
Collapse
Affiliation(s)
- Zhidan Chen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA
| | - Stephen L Coy
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA.
| | - Evan L Pannkuk
- Tumor Biology Program, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA
| | - Evagelia C Laiakis
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Albert J Fornace
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, 20057, USA
- Department of Oncology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Paul Vouros
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA.
- Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
13
|
Vera NB, Chen Z, Pannkuk E, Laiakis EC, Fornace AJ, Erion DM, Coy SL, Pfefferkorn JA, Vouros P. Differential mobility spectrometry (DMS) reveals the elevation of urinary acetylcarnitine in non-human primates (NHPs) exposed to radiation. JOURNAL OF MASS SPECTROMETRY : JMS 2018; 53:548-559. [PMID: 29596720 PMCID: PMC6030448 DOI: 10.1002/jms.4085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 05/21/2023]
Abstract
Acetylcarnitine has been identified as one of several urinary biomarkers indicative of radiation exposure in adult rhesus macaque monkeys (non-human primates, NHPs). Previous work has demonstrated an up-regulated dose-response profile in a balanced male/female NHP cohort. As a contribution toward the development of metabolomics-based radiation biodosimetry in human populations and other applications of acetylcarnitine screening, we have developed a quantitative, high-throughput method for the analysis of acetylcarnitine. We employed the Sciex SelexIon DMS-MS/MS QTRAP 5500 platform coupled to flow injection analysis (FIA), thereby allowing for fast analysis times of less than 0.5 minutes per injection with no chromatographic separation. Ethyl acetate is used as a DMS modifier to reduce matrix chemical background. We have measured NHP urinary acetylcarnitine from the male cohorts that were exposed to the following radiation levels: control, 2, 4, 6, 7, and 10 Gy. Biological variability, along with calibration accuracy of the FIA-DMS-MS/MS method, indicates LOQ of 20 μM, with observed biological levels on the order of 600 μM and control levels near 10 μM. There is an apparent onset of intensified response in the transition from 6 to 10 Gy. The results demonstrate that FIA-DMS-MS/MS is a rapid, quantitative technique that can be utilized for the analysis of urinary biomarker levels for radiation biodosimetry.
Collapse
Affiliation(s)
- Nicholas B Vera
- Pfizer Global Research and Development, Cambridge Laboratories, Pfizer Inc., Cambridge, MA, 02139, USA
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA
| | - Zhidan Chen
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA
| | - Evan Pannkuk
- Georgetown University, 3700 O Street NW, Washington, DC, 20057, USA
| | | | - Albert J Fornace
- Georgetown University, 3700 O Street NW, Washington, DC, 20057, USA
| | - Derek M Erion
- Pfizer Global Research and Development, Cambridge Laboratories, Pfizer Inc., Cambridge, MA, 02139, USA
| | - Stephen L Coy
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA
| | - Jeffrey A Pfefferkorn
- Pfizer Global Research and Development, Cambridge Laboratories, Pfizer Inc., Cambridge, MA, 02139, USA
| | - Paul Vouros
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA
| |
Collapse
|
14
|
Hoffman JF, Fan AX, Neuendorf EH, Vergara VB, Kalinich JF. Hydrophobic Sand Versus Metabolic Cages: A Comparison of Urine Collection Methods for Rats ( Rattus norvegicus). JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2018; 57:51-57. [PMID: 29402352 PMCID: PMC5875098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/24/2017] [Accepted: 10/11/2017] [Indexed: 06/07/2023]
Abstract
A common method for urine collection from rats requires the use of a metabolic cage, thus exposing animals to extended periods of isolation in an unfamiliar cage with a wire-mesh floor. A new method involving hydrophobic sand, a material more similar to bedding, has become available recently but has not been extensively compared with metabolic cages in regard to collection efficiency or stress. Using a within-subjects crossover design, we examined differences in stress markers, urinary markers, and urine volume of clinically healthy male Sprague-Dawley rats during 2-, 4-, and 6-h collection sessions in hydrophobic sand and metabolic cages. Stress response markers of weight loss, fecal pellet output, or corticosterone did not differ between hydrophobic sand and metabolic cages, and observed behavior suggested that sand may be less stressful than metabolic cages. All clinically relevant urinary markers examined were normal, with no differences between collection methods. Total urine volume collected was greater from the metabolic cage than sand in 3 of the 5 sessions, but the volume collected during the shortest session (2 h) did not differ between methods and accounted for 62% of the total volume collected during the longest session (6 h). Our results suggest that hydrophobic sand is a refinement of urine collection methods for rats that decreases isolation time, risk of injury, and stress and maintains the integrity of urine samples.
Collapse
Affiliation(s)
- Jessica F Hoffman
- Internal Contamination and Metal Toxicity Program, Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, Maryland;,
| | - Anya X Fan
- Internal Contamination and Metal Toxicity Program, Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, Maryland
| | - Elizabeth H Neuendorf
- Internal Contamination and Metal Toxicity Program, Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, Maryland
| | - Vernieda B Vergara
- Internal Contamination and Metal Toxicity Program, Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, Maryland
| | - John F Kalinich
- Internal Contamination and Metal Toxicity Program, Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, Maryland
| |
Collapse
|
15
|
Zhao M, Lau KK, Zhou X, Wu J, Yang J, Wang C. Urinary metabolic signatures and early triage of acute radiation exposure in rat model. MOLECULAR BIOSYSTEMS 2017; 13:756-766. [PMID: 28225098 DOI: 10.1039/c6mb00785f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
After a large-scale radiological accident, early-response biomarkers to assess radiation exposure over a broad dose range are not only the basis of rapid radiation triage, but are also the key to the rational use of limited medical resources and to the improvement of treatment efficiency. Because of its high throughput, rapid assays and minimally invasive sample collection, metabolomics has been applied to research into radiation exposure biomarkers in recent years. Due to the complexity of radiobiological effects, most of the potential biomarkers are both dose-dependent and time-dependent. In reality, it is very difficult to find a single biomarker that is both sensitive and specific in a given radiation exposure scenario. Therefore, a multi-parameters approach for radiation exposure assessment is more realistic in real nuclear accidents. In this study, untargeted metabolomic profiling based on gas chromatography-mass spectrometry (GC-MS) and targeted amino acid profiling based on LC-MS/MS were combined to investigate early urinary metabolite responses within 48 h post-exposure in a rat model. A few of the key early-response metabolites for radiation exposure were identified, which revealed the most relevant metabolic pathways. Furthermore, a panel of potential urinary biomarkers was selected through a multi-criteria approach and applied to early triage following irradiation. Our study suggests that it is feasible to use a multi-parameters approach to triage radiation damage, and the urinary excretion levels of the relevant metabolites provide insights into radiation damage and repair.
Collapse
Affiliation(s)
- Mingxiao Zhao
- School of Radiation Medicine and Protection, Medical College of Soochow University, School for Radiological and Interdisciplinary Sciences (RAD-X), Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou Industrial Park Ren'ai Road 199, Suzhou 215123, P. R. China.
| | - Kim Kt Lau
- Department of Applied Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou Industrial Park Ren'ai Road 111, Suzhou 215123, P. R. China
| | - Xian Zhou
- School of Radiation Medicine and Protection, Medical College of Soochow University, School for Radiological and Interdisciplinary Sciences (RAD-X), Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou Industrial Park Ren'ai Road 199, Suzhou 215123, P. R. China.
| | - Jianfang Wu
- Department of Applied Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou Industrial Park Ren'ai Road 111, Suzhou 215123, P. R. China
| | - Jun Yang
- Department of Entomology and Nematology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| | - Chang Wang
- School of Radiation Medicine and Protection, Medical College of Soochow University, School for Radiological and Interdisciplinary Sciences (RAD-X), Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou Industrial Park Ren'ai Road 199, Suzhou 215123, P. R. China.
| |
Collapse
|
16
|
Laiakis EC, Wang YW, Young EF, Harken AD, Xu Y, Smilenov L, Garty GY, Brenner DJ, Fornace AJ. Metabolic Dysregulation after Neutron Exposures Expected from an Improvised Nuclear Device. Radiat Res 2017; 188:21-34. [PMID: 28475424 PMCID: PMC5714588 DOI: 10.1667/rr14656.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The increased threat of terrorism across the globe has raised fears that certain groups will acquire and use radioactive materials to inflict maximum damage. In the event that an improvised nuclear device (IND) is detonated, a potentially large population of victims will require assessment for radiation exposure. While photons will contribute to a major portion of the dose, neutrons may be responsible for the severity of the biologic effects and cellular responses. We investigated differences in response between these two radiation types by using metabolomics and lipidomics to identify biomarkers in urine and blood of wild-type C57BL/6 male mice. Identification of metabolites was based on a 1 Gy dose of radiation. Compared to X rays, a neutron spectrum similar to that encountered in Hiroshima at 1-1.5 km from the epicenter induced a severe metabolic dysregulation, with perturbations in amino acid metabolism and fatty acid β-oxidation being the predominant ones. Urinary metabolites were able to discriminate between neutron and X rays on day 1 as well as day 7 postirradiation, while serum markers showed such discrimination only on day 1. Free fatty acids from omega-6 and omega-3 pathways were also decreased with 1 Gy of neutrons, implicating cell membrane dysfunction and impaired phospholipid metabolism, which should otherwise lead to release of those molecules in circulation. While a precise relative biological effectiveness value could not be calculated from this study, the results are consistent with other published studies showing higher levels of damage from neutrons, demonstrated here by increased metabolic dysregulation. Metabolomics can therefore aid in identifying global perturbations in blood and urine, and effectively distinguishing between neutron and photon exposures.
Collapse
Affiliation(s)
| | - Yi-Wen Wang
- Department of Infectious Diseases, The Scripps Research Institute, Jupiter, Florida
| | | | - Andrew D. Harken
- Radiological Research Accelerator Facility, Columbia University, Irvington, New York
| | - Yanping Xu
- Radiological Research Accelerator Facility, Columbia University, Irvington, New York
- Department of Physics, East Carolina University, Greenville, North Carolina
| | - Lubomir Smilenov
- Center for Radiological Research, Columbia University, New York, New York
| | - Guy Y. Garty
- Radiological Research Accelerator Facility, Columbia University, Irvington, New York
| | - David J. Brenner
- Center for Radiological Research, Columbia University, New York, New York
| | - Albert J. Fornace
- Department of Biochemistry and Molecular and Cellular Biology
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| |
Collapse
|
17
|
Iizuka D, Yoshioka S, Kawai H, Izumi S, Suzuki F, Kamiya K. Metabolomic screening using ESI-FT MS identifies potential radiation-responsive molecules in mouse urine. JOURNAL OF RADIATION RESEARCH 2017; 58:273-280. [PMID: 27974505 PMCID: PMC5619916 DOI: 10.1093/jrr/rrw112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/23/2016] [Indexed: 05/24/2023]
Abstract
The demand for establishment of high-throughput biodosimetric methods is increasing. Our aim in this study was to identify low-molecular-weight urinary radiation-responsive molecules using electrospray ionization Fourier transform mass spectrometry (ESI-FT MS), and our final goal was to develop a sensitive biodosimetry technique that can be applied in the early triage of a radiation emergency medical system. We identified nine metabolites by statistical comparison of mouse urine before and 8 h after irradiation. Time-course analysis showed that, of these metabolites, thymidine and either thymine or imidazoleacetic acid were significantly increased dose-dependently 8 h after radiation exposure; these molecules have already been reported as potential radiation biomarkers. Phenyl glucuronide was significantly decreased 8 h after radiation exposure, irrespective of the dose. Histamine and 1-methylhistamine were newly identified by MS/MS and showed significant, dose-dependent increases 72 h after irradiation. Quantification of 1-methylhistamine by enzyme-linked immunosorbent assay (ELISA) analysis also showed a significant increase 72 h after 4 Gy irradiation. These results suggest that urinary metabolomics screening using ESI-FT MS can be a powerful tool for identifying promising radiation-responsive molecules, and that urinary 1-methylhistamine is a potential radiation-responsive molecule for acute, high-dose exposure.
Collapse
Affiliation(s)
- Daisuke Iizuka
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-2, Kagamiyama, Higashi-Hiroshima 739-8511, Japan
| | - Susumu Yoshioka
- Department of Molecular Radiobiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Hidehiko Kawai
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-2, Kagamiyama, Higashi-Hiroshima 739-8511, Japan
| | - Shunsuke Izumi
- Department of Molecular Radiobiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Fumio Suzuki
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-2, Kagamiyama, Higashi-Hiroshima 739-8511, Japan
| | - Kenji Kamiya
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
18
|
Pannkuk EL, Fornace AJ, Laiakis EC. Metabolomic applications in radiation biodosimetry: exploring radiation effects through small molecules. Int J Radiat Biol 2017; 93:1151-1176. [PMID: 28067089 DOI: 10.1080/09553002.2016.1269218] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Exposure of the general population to ionizing radiation has increased in the past decades, primarily due to long distance travel and medical procedures. On the other hand, accidental exposures, nuclear accidents, and elevated threats of terrorism with the potential detonation of a radiological dispersal device or improvised nuclear device in a major city, all have led to increased needs for rapid biodosimetry and assessment of exposure to different radiation qualities and scenarios. Metabolomics, the qualitative and quantitative assessment of small molecules in a given biological specimen, has emerged as a promising technology to allow for rapid determination of an individual's exposure level and metabolic phenotype. Advancements in mass spectrometry techniques have led to untargeted (discovery phase, global assessment) and targeted (quantitative phase) methods not only to identify biomarkers of radiation exposure, but also to assess general perturbations of metabolism with potential long-term consequences, such as cancer, cardiovascular, and pulmonary disease. CONCLUSIONS Metabolomics of radiation exposure has provided a highly informative snapshot of metabolic dysregulation. Biomarkers in easily accessible biofluids and biospecimens (urine, blood, saliva, sebum, fecal material) from mouse, rat, and minipig models, to non-human primates and humans have provided the basis for determination of a radiation signature to assess the need for medical intervention. Here we provide a comprehensive description of the current status of radiation metabolomic studies for the purpose of rapid high-throughput radiation biodosimetry in easily accessible biofluids and discuss future directions of radiation metabolomics research.
Collapse
Affiliation(s)
- Evan L Pannkuk
- a Tumor Biology Program , Lombardi Comprehensive Cancer Center, Georgetown University , Washington DC , USA
| | - Albert J Fornace
- b Molecular Oncology , Lombardi Comprehensive Cancer Center, Georgetown University , Washington DC , USA.,c Department of Biochemistry and Molecular and Cellular Biology , Georgetown University , Washington DC , USA
| | - Evagelia C Laiakis
- c Department of Biochemistry and Molecular and Cellular Biology , Georgetown University , Washington DC , USA
| |
Collapse
|
19
|
Chen Z, Coy SL, Pannkuk EL, Laiakis EC, Hall AB, Fornace AJ, Vouros P. Rapid and High-Throughput Detection and Quantitation of Radiation Biomarkers in Human and Nonhuman Primates by Differential Mobility Spectrometry-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1626-36. [PMID: 27392730 PMCID: PMC5018447 DOI: 10.1007/s13361-016-1438-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/02/2016] [Accepted: 06/16/2016] [Indexed: 05/04/2023]
Abstract
Radiation exposure is an important public health issue due to a range of accidental and intentional threats. Prompt and effective large-scale screening and appropriate use of medical countermeasures (MCM) to mitigate radiation injury requires rapid methods for determining the radiation dose. In a number of studies, metabolomics has identified small-molecule biomarkers responding to the radiation dose. Differential mobility spectrometry-mass spectrometry (DMS-MS) has been used for similar compounds for high-throughput small-molecule detection and quantitation. In this study, we show that DMS-MS can detect and quantify two radiation biomarkers, trimethyl-L-lysine (TML) and hypoxanthine. Hypoxanthine is a human and nonhuman primate (NHP) radiation biomarker and metabolic intermediate, whereas TML is a radiation biomarker in humans but not in NHP, which is involved in carnitine synthesis. They have been analyzed by DMS-MS from urine samples after a simple strong cation exchange-solid phase extraction (SCX-SPE). The dramatic suppression of background and chemical noise provided by DMS-MS results in an approximately 10-fold reduction in time, including sample pretreatment time, compared with liquid chromatography-mass spectrometry (LC-MS). DMS-MS quantitation accuracy has been verified by validation testing for each biomarker. Human samples are not yet available, but for hypoxanthine, selected NHP urine samples (pre- and 7-d-post 10 Gy exposure) were analyzed, resulting in a mean change in concentration essentially identical to that obtained by LC-MS (fold-change 2.76 versus 2.59). These results confirm the potential of DMS-MS for field or clinical first-level rapid screening for radiation exposure. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Zhidan Chen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA
| | - Stephen L Coy
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA.
| | - Evan L Pannkuk
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Evagelia C Laiakis
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Adam B Hall
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA
| | - Albert J Fornace
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, 20057, USA
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, 22254, Saudi Arabia
| | - Paul Vouros
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA.
- Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
20
|
Laiakis EC, Strawn SJ, Brenner DJ, Fornace AJ. Assessment of Saliva as a Potential Biofluid for Biodosimetry: A Pilot Metabolomics Study in Mice. Radiat Res 2016; 186:92-7. [PMID: 27332953 DOI: 10.1667/rr14433.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metabolomic analysis of easily accessible biofluids has provided numerous biomarkers in urine and blood for biodosimetric purposes. In this pilot study we assessed saliva for its utility in biodosimetry using a mouse model. Mice were exposed to 0.5, 3 and 8 Gy total-body gamma irradiation and saliva was collected on day 1 and 7 postirradiation. Global metabolomic profiling was conducted through liquid chromatography mass spectrometry and metabolites were positively identified using tandem mass spectrometry. Multivariate data analysis revealed distinct metabolic profiles for all groups at day 1, whereas at day 7 the two lower dose profiles appeared to have minimal differences. Metabolites that were identified include amino acids and fatty acids, and intermediates of the nicotinate and nicotinamide metabolism. The specificity and sensitivity of the radiation signature, as expected, was higher for the 8 Gy dose at both time points, as determined through generation of receiver operating characteristic curves. To the best of our knowledge, this is the first metabolomics study in saliva of irradiated mice to demonstrate the utility of this biofluid as a potential matrix for identification of radiation and dose-specific biomarkers.
Collapse
Affiliation(s)
- Evagelia C Laiakis
- a Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC
| | | | | | - Albert J Fornace
- a Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC.,d Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| |
Collapse
|
21
|
Laiakis EC, Pannkuk EL, Diaz-Rubio ME, Wang YW, Mak TD, Simbulan-Rosenthal CM, Brenner DJ, Fornace AJ. Implications of genotypic differences in the generation of a urinary metabolomics radiation signature. Mutat Res 2016; 788:41-9. [PMID: 27040378 PMCID: PMC4887295 DOI: 10.1016/j.mrfmmm.2016.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 03/04/2016] [Accepted: 03/24/2016] [Indexed: 02/04/2023]
Abstract
The increased threat of radiological terrorism and accidental nuclear exposures, together with increased usage of radiation-based medical procedures, has made necessary the development of minimally invasive methods for rapid identification of exposed individuals. Genetically predisposed radiosensitive individuals comprise a significant number of the population and require specialized attention and treatments after such events. Metabolomics, the assessment of the collective small molecule content in a given biofluid or tissue, has proven effective in the rapid identification of radiation biomarkers and metabolic perturbations. To investigate how the genotypic background may alter the ionizing radiation (IR) signature, we analyzed urine from Parp1(-/-) mice, as a model radiosensitive genotype, exposed to IR by utilizing the analytical power of liquid chromatography coupled with mass spectrometry (LC-MS), as urine has been thoroughly investigated in wild type (WT) mice in previous studies from our laboratory. Samples were collected at days one and three after irradiation, time points that are important for the early and efficient triage of exposed individuals. Time-dependent perturbations in metabolites were observed in the tricarboxylic acid pathway (TCA). Other differentially excreted metabolites included amino acids and metabolites associated with dysregulation of energy metabolism pathways. Time-dependent apoptotic pathway activation between WT and mutant mice following IR exposure may explain the altered excretion patterns, although the origin of the metabolites remains to be determined. This first metabolomics study in urine from radiation exposed genetic mutant animal models provides evidence that this technology can be used to dissect the effects of genotoxic agents on metabolism by assessing easily accessible biofluids and identify biomarkers of radiation exposure. Applications of metabolomics could be incorporated in the future to further elucidate the effects of IR on the metabolism of Parp1(-/-) genotype by assessing individual tissues.
Collapse
Affiliation(s)
- Evagelia C Laiakis
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington DC, USA.
| | - Evan L Pannkuk
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington DC, USA
| | - Maria Elena Diaz-Rubio
- Pediatrics, Division of Developmental Nutrition, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Yi-Wen Wang
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington DC, USA
| | - Tytus D Mak
- Mass Spectrometry Data Center, National Institute of Standards and Technology (NIST), Gaithersburg MD, USA
| | | | | | - Albert J Fornace
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington DC, USA; Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, USA; Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah 22254, Saudi Arabia
| |
Collapse
|
22
|
Pannkuk EL, Laiakis EC, Authier S, Wong K, Fornace AJ. Targeted Metabolomics of Nonhuman Primate Serum after Exposure to Ionizing Radiation: Potential Tools for High-throughput Biodosimetry. RSC Adv 2016; 6:51192-51202. [PMID: 28367319 PMCID: PMC5373493 DOI: 10.1039/c6ra07757a] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
There is a need for research to rapidly determine an individual's absorbed dose and its potential health effects after a potential radiological or nuclear event that could expose large portions of a population to ionizing radiation (IR). Studies on biomarker identification after radiation exposure could aid in biodosimetry, identifying individual dose absorbed, as well as biologic response, and administering immediate and proper medical care. Metabolomics on easily accessible biofluids is an emerging field with potential for high-throughput biodosimetry. While tremendous effort has been put into obtaining discovery based global radiation signatures from a number of biofluids and model organisms, quantitative targeted analysis on a subset of known radiation biomarkers is required to develop an optimized panel of biomarkers for future clinical applications. The current study analyzes levels of several known broad chemical groups (acylcarnitines, amino acids, phosphatidylcholines, and biogenic amines) affected by IR in serum from nonhuman primates (NHP) 7 days after exposure through multiple reaction monitoring (MRM) analysis with a triple quadrupole mass spectrometry (MS) platform. We identified several novel metabolites affected by IR exposure through univariate and unsupervised multivariate analyses. Levels of acylcarnitines, amino acids, and phospholipids were perturbed indicating altered protein metabolism, fatty acid β-oxidation, and inflammation. Fold changes in carnitine and short-chain acylcarnitines (acetylcarnitine, propionylcarnitine, butyrylcarnitine, and valerylcarnitine) complement previous global radiation signatures on NHP; notably, the levels of change were lower than previously observed in urine. Decreased levels of glutamate, citrulline, and arginine after IR are biomarkers indicating gastrointestinal syndrome and perturbations to the urea cycle. Sex differences were also assessed and were more prevalent in circulating acylcarnitines and phospholipids after IR exposure. These biomarkers may be combined with previously described compounds from DNA damage to develop a defined metabolomic biodosimetry panel to be analyzed by MS platforms, which are increasingly available in clinical laboratories.
Collapse
Affiliation(s)
- Evan L. Pannkuk
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
| | - Evagelia C. Laiakis
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
| | | | | | - Albert J. Fornace
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
23
|
Goudarzi M, Chauthe S, Strawn SJ, Weber WM, Brenner DJ, Fornace AJ. Quantitative Metabolomic Analysis of Urinary Citrulline and Calcitroic Acid in Mice after Exposure to Various Types of Ionizing Radiation. Int J Mol Sci 2016; 17:ijms17050782. [PMID: 27213362 PMCID: PMC4881599 DOI: 10.3390/ijms17050782] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/23/2016] [Accepted: 05/10/2016] [Indexed: 01/08/2023] Open
Abstract
With the safety of existing nuclear power plants being brought into question after the Fukushima disaster and the increased level of concern over terrorism-sponsored use of improvised nuclear devices, it is more crucial to develop well-defined radiation injury markers in easily accessible biofluids to help emergency-responders with injury assessment during patient triage. Here, we focused on utilizing ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) to identify and quantitate the unique changes in the urinary excretion of two metabolite markers, calcitroic acid and citrulline, in mice induced by different forms of irradiation; external γ irradiation at a low dose rate (LDR) of 3.0 mGy/min and a high dose rate (HDR) of 1.1 Gy/min, and internal exposure to Cesium-137 ((137)Cs) and Strontium-90 ((90)Sr). The multiple reaction monitoring analysis showed that, while exposure to (137)Cs and (90)Sr induced a statistically significant and persistent decrease, similar doses of external γ beam at the HDR had the opposite effect, and the LDR had no effect on the urinary levels of these two metabolites. This suggests that the source of exposure and the dose rate strongly modulate the in vivo metabolomic injury responses, which may have utility in clinical biodosimetry assays for the assessment of exposure in an affected population. This study complements our previous investigations into the metabolomic profile of urine from mice internally exposed to (90)Sr and (137)Cs and to external γ beam radiation.
Collapse
Affiliation(s)
- Maryam Goudarzi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, 3970 Reservoir Road NW, Washington, DC 20057, USA.
| | - Siddheshwar Chauthe
- Lombardi Comprehensive Cancer Center, Georgetown University, 3800 Reservoir Road NW, Washington, DC 20057, USA.
| | - Steven J Strawn
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, 3970 Reservoir Road NW, Washington, DC 20057, USA.
| | - Waylon M Weber
- Lovelace Respiratory Research Institute, 2425 Ridgecrest Dr. SE, Albuquerque, NM 87108, USA.
| | - David J Brenner
- Center for Radiological Research, Columbia University, 630 West 168th Street, VC11-240, New York, NY 10032, USA.
| | - Albert J Fornace
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, 3970 Reservoir Road NW, Washington, DC 20057, USA.
- Lombardi Comprehensive Cancer Center, Georgetown University, 3800 Reservoir Road NW, Washington, DC 20057, USA.
| |
Collapse
|
24
|
Singh VK, Newman VL, Romaine PL, Hauer-Jensen M, Pollard HB. Use of biomarkers for assessing radiation injury and efficacy of countermeasures. Expert Rev Mol Diagn 2015; 16:65-81. [PMID: 26568096 PMCID: PMC4732464 DOI: 10.1586/14737159.2016.1121102] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Several candidate drugs for acute radiation syndrome (ARS) have been identified that have low toxicity and significant radioprotective and radiomitigative efficacy. Inasmuch as exposing healthy human volunteers to injurious levels of radiation is unethical, development and approval of new radiation countermeasures for ARS are therefore presently based on animal studies and Phase I safety study in healthy volunteers. The Animal Efficacy Rule, which underlies the Food and Drug Administration approval pathway, requires a sound understanding of the mechanisms of injury, drug efficacy, and efficacy biomarkers. In this context, it is important to identify biomarkers for radiation injury and drug efficacy that can extrapolate animal efficacy results, and can be used to convert drug doses deduced from animal studies to those that can be efficacious when used in humans. Here, we summarize the progress of studies to identify candidate biomarkers for the extent of radiation injury and for evaluation of countermeasure efficacy.
Collapse
Affiliation(s)
- Vijay K Singh
- a F. Edward Hébert School of Medicine 'America's Medical School' , Uniformed Services University of the Health Sciences , Bethesda , MD , USA.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | - Victoria L Newman
- a F. Edward Hébert School of Medicine 'America's Medical School' , Uniformed Services University of the Health Sciences , Bethesda , MD , USA.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | - Patricia Lp Romaine
- a F. Edward Hébert School of Medicine 'America's Medical School' , Uniformed Services University of the Health Sciences , Bethesda , MD , USA.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | - Martin Hauer-Jensen
- c Departments of Pharmaceutical Sciences, Surgery, and Pathology , University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare Systems , Little Rock , AR , USA
| | - Harvey B Pollard
- a F. Edward Hébert School of Medicine 'America's Medical School' , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| |
Collapse
|
25
|
Pannkuk EL, Laiakis EC, Authier S, Wong K, Fornace AJ. Global Metabolomic Identification of Long-Term Dose-Dependent Urinary Biomarkers in Nonhuman Primates Exposed to Ionizing Radiation. Radiat Res 2015; 184:121-33. [PMID: 26230079 DOI: 10.1667/rr14091.1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Due to concerns surrounding potential large-scale radiological events, there is a need to determine robust radiation signatures for the rapid identification of exposed individuals, which can then be used to guide the development of compact field deployable instruments to assess individual dose. Metabolomics provides a technology to process easily accessible biofluids and determine rigorous quantitative radiation biomarkers with mass spectrometry (MS) platforms. While multiple studies have utilized murine models to determine radiation biomarkers, limited studies have profiled nonhuman primate (NHP) metabolic radiation signatures. In addition, these studies have concentrated on short-term biomarkers (i.e., <72 h). The current study addresses the need for biomarkers beyond 72 h using a NHP model. Urine samples were collected at 7 days postirradiation (2, 4, 6, 7 and 10 Gy) and processed with ultra-performance liquid chromatography (UPLC) quadrupole time-of-flight (QTOF) MS, acquiring global metabolomic radiation signatures. Multivariate data analysis revealed clear separation between control and irradiated groups. Thirteen biomarkers exhibiting a dose response were validated with tandem MS. There was significantly higher excretion of l-carnitine, l-acetylcarnitine, xanthine and xanthosine in males versus females. Metabolites validated in this study suggest perturbation of several pathways including fatty acid β oxidation, tryptophan metabolism, purine catabolism, taurine metabolism and steroid hormone biosynthesis. In this novel study we detected long-term biomarkers in a NHP model after exposure to radiation and demonstrate differences between sexes using UPLC-QTOF-MS-based metabolomics technology.
Collapse
Affiliation(s)
- Evan L Pannkuk
- a Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
| | - Evagelia C Laiakis
- a Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
| | | | | | - Albert J Fornace
- a Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC;,c Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC; and.,d Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| |
Collapse
|