1
|
Mellid-Carballal R, Gutierrez-Gutierrez S, Rivas C, Garcia-Fuentes M. Viral protein nanoparticles (Part 1): Pharmaceutical characteristics. Eur J Pharm Sci 2023; 187:106460. [PMID: 37156338 DOI: 10.1016/j.ejps.2023.106460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/21/2023] [Accepted: 05/06/2023] [Indexed: 05/10/2023]
Abstract
Viral protein nanoparticles fill the gap between viruses and synthetic nanoparticles. Combining advantageous properties of both systems, they have revolutionized pharmaceutical research. Virus-like particles are characterized by a structure identical to viruses but lacking genetic material. Another type of viral protein nanoparticles, virosomes, are similar to liposomes but include viral spike proteins. Both systems are effective and safe vaccine candidates capable of overcoming the disadvantages of both traditional and subunit vaccines. Besides, their particulate structure, biocompatibility, and biodegradability make them good candidates as vectors for drug and gene delivery, and for diagnostic applications. In this review, we analyze viral protein nanoparticles from a pharmaceutical perspective and examine current research focused on their development process, from production to administration. Advances in synthesis, modification and formulation of viral protein nanoparticles are critical so that large-scale production of viral protein nanoparticle products becomes viable and affordable, which ultimately will increase their market penetration in the future. We will discuss their expression systems, modification strategies, formulation, biopharmaceutical properties, and biocompatibility.
Collapse
Affiliation(s)
- Rocio Mellid-Carballal
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, Spain
| | - Sara Gutierrez-Gutierrez
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, Spain
| | - Carmen Rivas
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Universidad de Santiago de Compostela, Spain; Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología (CNB)-CSIC, Spain
| | - Marcos Garcia-Fuentes
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Universidad de Santiago de Compostela, Spain.
| |
Collapse
|
2
|
Kim KR, Lee AS, Kim SM, Heo HR, Kim CS. Virus-like nanoparticles as a theranostic platform for cancer. Front Bioeng Biotechnol 2023; 10:1106767. [PMID: 36714624 PMCID: PMC9878189 DOI: 10.3389/fbioe.2022.1106767] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/31/2022] [Indexed: 01/15/2023] Open
Abstract
Virus-like nanoparticles (VLPs) are natural polymer-based nanomaterials that mimic viral structures through the hierarchical assembly of viral coat proteins, while lacking viral genomes. VLPs have received enormous attention in a wide range of nanotechnology-based medical diagnostics and therapies, including cancer therapy, imaging, and theranostics. VLPs are biocompatible and biodegradable and have a uniform structure and controllable assembly. They can encapsulate a wide range of therapeutic and diagnostic agents, and can be genetically or chemically modified. These properties have led to sophisticated multifunctional theranostic platforms. This article reviews the current progress in developing and applying engineered VLPs for molecular imaging, drug delivery, and multifunctional theranostics in cancer research.
Collapse
Affiliation(s)
- Kyeong Rok Kim
- Graduate School of Biochemistry, Yeungnam University, Gyeongsan, South Korea
| | - Ae Sol Lee
- Graduate School of Biochemistry, Yeungnam University, Gyeongsan, South Korea
| | - Su Min Kim
- Graduate School of Biochemistry, Yeungnam University, Gyeongsan, South Korea
| | - Hye Ryoung Heo
- Senotherapy-Based Metabolic Disease Control Research Center, Yeungnam University, Gyeongsan, South Korea,*Correspondence: Chang Sup Kim, ; Hye Ryoung Heo,
| | - Chang Sup Kim
- Graduate School of Biochemistry, Yeungnam University, Gyeongsan, South Korea,School of Chemistry and Biochemistry, Yeungnam University, Gyeongsan, South Korea,*Correspondence: Chang Sup Kim, ; Hye Ryoung Heo,
| |
Collapse
|
3
|
Wijesundara YH, Herbert FC, Kumari S, Howlett T, Koirala S, Trashi O, Trashi I, Al-Kharji NM, Gassensmith JJ. Rip it, stitch it, click it: A Chemist's guide to VLP manipulation. Virology 2022; 577:105-123. [PMID: 36343470 DOI: 10.1016/j.virol.2022.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/09/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Viruses are some of nature's most ubiquitous self-assembled molecular containers. Evolutionary pressures have created some incredibly robust, thermally, and enzymatically resistant carriers to transport delicate genetic information safely. Virus-like particles (VLPs) are human-engineered non-infectious systems that inherit the parent virus' ability to self-assemble under controlled conditions while being non-infectious. VLPs and plant-based viral nanoparticles are becoming increasingly popular in medicine as their self-assembly properties are exploitable for applications ranging from diagnostic tools to targeted drug delivery. Understanding the basic structure and principles underlying the assembly of higher-order structures has allowed researchers to disassemble (rip it), reassemble (stitch it), and functionalize (click it) these systems on demand. This review focuses on the current toolbox of strategies developed to manipulate these systems by ripping, stitching, and clicking to create new technologies in the biomedical space.
Collapse
Affiliation(s)
- Yalini H Wijesundara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, TX, 75080, USA
| | - Fabian C Herbert
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, TX, 75080, USA
| | - Sneha Kumari
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, TX, 75080, USA
| | - Thomas Howlett
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, TX, 75080, USA
| | - Shailendra Koirala
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, TX, 75080, USA
| | - Orikeda Trashi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, TX, 75080, USA
| | - Ikeda Trashi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, TX, 75080, USA
| | - Noora M Al-Kharji
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, TX, 75080, USA
| | - Jeremiah J Gassensmith
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, TX, 75080, USA; Department of Biomedical Engineering, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, TX, 75080, USA.
| |
Collapse
|
4
|
Almeida AV, Carvalho AJ, Pereira AS. Encapsulin nanocages: Protein encapsulation and iron sequestration. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
5
|
Wu Y, Li J, Shin HJ. Self-assembled Viral Nanoparticles as Targeted Anticancer Vehicles. BIOTECHNOL BIOPROC E 2021; 26:25-38. [PMID: 33584104 PMCID: PMC7872722 DOI: 10.1007/s12257-020-0383-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/31/2022]
Abstract
Viral nanoparticles (VNPs) comprise a variety of mammalian viruses, plant viruses, and bacteriophages, that have been adopted as building blocks and supra-molecular templates in nanotechnology. VNPs demonstrate the dynamic, monodisperse, polyvalent, and symmetrical architectures which represent examples of such biological templates. These programmable scaffolds have been exploited for genetic and chemical manipulation for displaying of targeted moieties together with encapsulation of various payloads for diagnosis or therapeutic intervention. The drug delivery system based on VNPs offer diverse advantages over synthetic nanoparticles, including biocompatibility, biodegradability, water solubility, and high uptake capability. Here we summarize the recent progress of VNPs especially as targeted anticancer vehicles from the encapsulation and surface modification mechanisms, involved viruses and VNPs, to their application potentials.
Collapse
Affiliation(s)
- Yuanzheng Wu
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, Jinan, 250103 China
| | - Jishun Li
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, Jinan, 250103 China
| | - Hyun-Jae Shin
- Department of Biochemical and Polymer Engineering, Chosun University, Gwangju, 61452 Korea
| |
Collapse
|
6
|
Demchuk AM, Patel TR. The biomedical and bioengineering potential of protein nanocompartments. Biotechnol Adv 2020; 41:107547. [PMID: 32294494 DOI: 10.1016/j.biotechadv.2020.107547] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 03/21/2020] [Accepted: 04/03/2020] [Indexed: 12/18/2022]
Abstract
Protein nanocompartments (PNCs) are self-assembling biological nanocages that can be harnessed as platforms for a wide range of nanobiotechnology applications. The most widely studied examples of PNCs include virus-like particles, bacterial microcompartments, encapsulin nanocompartments, enzyme-derived nanocages (such as lumazine synthase and the E2 component of the pyruvate dehydrogenase complex), ferritins and ferritin homologues, small heat shock proteins, and vault ribonucleoproteins. Structural PNC shell proteins are stable, biocompatible, and tolerant of both interior and exterior chemical or genetic functionalization for use as vaccines, therapeutic delivery vehicles, medical imaging aids, bioreactors, biological control agents, emulsion stabilizers, or scaffolds for biomimetic materials synthesis. This review provides an overview of the recent biomedical and bioengineering advances achieved with PNCs with a particular focus on recombinant PNC derivatives.
Collapse
Affiliation(s)
- Aubrey M Demchuk
- Department of Neuroscience, University of Lethbridge, 4401 University Drive West, Lethbridge, AB, Canada.
| | - Trushar R Patel
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AB, Canada; Department of Microbiology, Immunology and Infectious Diseases, Cumming, School of Medicine, University of Calgary, 2500 University Dr. N.W., Calgary, AB T2N 1N4, Canada; Li Ka Shing Institute of Virology and Discovery Lab, Faculty of Medicine & Dentistry, University of Alberta, 6-010 Katz Center for Health Research, Edmonton, AB T6G 2E1, Canada.
| |
Collapse
|
7
|
Sengupta S, Chandrasekaran S. Modifications of amino acids using arenediazonium salts. Org Biomol Chem 2019; 17:8308-8329. [DOI: 10.1039/c9ob01471c] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aryl transfer reactions from arenediazonium salts have started to make their impact in chemical biology with initial forays in the arena of arylative modifications and bio-conjugations of amino acids, peptides and proteins.
Collapse
Affiliation(s)
- Saumitra Sengupta
- Department of Organic Chemistry
- Indian Institute of Science
- Bangalore
- India
| | | |
Collapse
|
8
|
Jain A, Singh SK, Arya SK, Kundu SC, Kapoor S. Protein Nanoparticles: Promising Platforms for Drug Delivery Applications. ACS Biomater Sci Eng 2018; 4:3939-3961. [DOI: 10.1021/acsbiomaterials.8b01098] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Annish Jain
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh 160 014, India
| | - Sumit K. Singh
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh 160 014, India
| | - Shailendra K. Arya
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh 160 014, India
| | - Subhas C. Kundu
- 3B’s Research Group, I3Bs − Biomaterials, Biodegradables and Biomimetics, University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | - Sonia Kapoor
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh 160 014, India
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida 201 313, Uttar Pradesh, India
| |
Collapse
|
9
|
Chen Z, Boyd SD, Calvo JS, Murray KW, Mejia GL, Benjamin CE, Welch RP, Winkler DD, Meloni G, D'Arcy S, Gassensmith JJ. Fluorescent Functionalization across Quaternary Structure in a Virus-like Particle. Bioconjug Chem 2017; 28:2277-2283. [PMID: 28787574 DOI: 10.1021/acs.bioconjchem.7b00305] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Proteinaceous nanomaterials and, in particular, virus-like particles (VLPs) have emerged as robust and uniform platforms that are seeing wider use in biomedical research. However, there are a limited number of bioconjugation reactions for functionalizing the capsids, and very few of those involve functionalization across the supramolecular quaternary structure of protein assemblies. In this work, we exploit the recently described dibromomaleimide moiety as part of a bioconjugation strategy on VLP Qβ to break and rebridge the exposed and structurally important disulfides in good yields. Not only was the stability of the quaternary structure retained after the reaction, but the newly functionalized particles also became brightly fluorescent and could be tracked in vitro using a commercially available filter set. Consequently, we show that this highly efficient bioconjugation reaction not only introduces a new functional handle "between" the disulfides of VLPs without compromising their thermal stability but also can be used to create a fluorescent probe.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Chemistry and Biochemistry, ‡Department of Biological Sciences, and §School of Behavioral and Brain Sciences, University of Texas at Dallas , Richardson, Texas 75080, United States
| | - Stefanie D Boyd
- Department of Chemistry and Biochemistry, ‡Department of Biological Sciences, and §School of Behavioral and Brain Sciences, University of Texas at Dallas , Richardson, Texas 75080, United States
| | - Jenifer S Calvo
- Department of Chemistry and Biochemistry, ‡Department of Biological Sciences, and §School of Behavioral and Brain Sciences, University of Texas at Dallas , Richardson, Texas 75080, United States
| | - Kyle W Murray
- Department of Chemistry and Biochemistry, ‡Department of Biological Sciences, and §School of Behavioral and Brain Sciences, University of Texas at Dallas , Richardson, Texas 75080, United States
| | - Galo L Mejia
- Department of Chemistry and Biochemistry, ‡Department of Biological Sciences, and §School of Behavioral and Brain Sciences, University of Texas at Dallas , Richardson, Texas 75080, United States
| | - Candace E Benjamin
- Department of Chemistry and Biochemistry, ‡Department of Biological Sciences, and §School of Behavioral and Brain Sciences, University of Texas at Dallas , Richardson, Texas 75080, United States
| | - Raymond P Welch
- Department of Chemistry and Biochemistry, ‡Department of Biological Sciences, and §School of Behavioral and Brain Sciences, University of Texas at Dallas , Richardson, Texas 75080, United States
| | - Duane D Winkler
- Department of Chemistry and Biochemistry, ‡Department of Biological Sciences, and §School of Behavioral and Brain Sciences, University of Texas at Dallas , Richardson, Texas 75080, United States
| | - Gabriele Meloni
- Department of Chemistry and Biochemistry, ‡Department of Biological Sciences, and §School of Behavioral and Brain Sciences, University of Texas at Dallas , Richardson, Texas 75080, United States
| | - Sheena D'Arcy
- Department of Chemistry and Biochemistry, ‡Department of Biological Sciences, and §School of Behavioral and Brain Sciences, University of Texas at Dallas , Richardson, Texas 75080, United States
| | - Jeremiah J Gassensmith
- Department of Chemistry and Biochemistry, ‡Department of Biological Sciences, and §School of Behavioral and Brain Sciences, University of Texas at Dallas , Richardson, Texas 75080, United States
| |
Collapse
|
10
|
Rohovie MJ, Nagasawa M, Swartz JR. Virus-like particles: Next-generation nanoparticles for targeted therapeutic delivery. Bioeng Transl Med 2017; 2:43-57. [PMID: 29313023 PMCID: PMC5689521 DOI: 10.1002/btm2.10049] [Citation(s) in RCA: 223] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/23/2016] [Accepted: 11/30/2016] [Indexed: 12/12/2022] Open
Abstract
Most drug therapies distribute the agents throughout the entire body, even though the drugs are typically only needed at specific tissues. This often limits dosage and causes discomfort and harmful side‐effects. Significant research has examined nanoparticles (NPs) for use as targeted delivery vehicles for therapeutic cargo, however, major clinical success has been limited. Current work focuses mainly on liposomal and polymer‐based NPs, but emerging research is exploring the engineering of viral capsids as noninfectious protein‐based NPs—termed virus‐like particles (VLPs). This review covers the research that has been performed thus far and outlines the potential for these VLPs to become highly effective delivery vehicles that overcome the many challenges encountered for targeted delivery of therapeutic cargo.
Collapse
Affiliation(s)
- Marcus J Rohovie
- Dept. of Chemical Engineering Stanford University Stanford CA 94305
| | - Maya Nagasawa
- Dept. of Bioengineering Stanford University Stanford CA 94305
| | - James R Swartz
- Dept. of Chemical Engineering Stanford University Stanford CA 94305.,Dept. of Bioengineering Stanford University Stanford CA 94305
| |
Collapse
|
11
|
Sciore A, Marsh ENG. Symmetry-Directed Design of Protein Cages and Protein Lattices and Their Applications. Subcell Biochem 2017; 83:195-224. [PMID: 28271478 DOI: 10.1007/978-3-319-46503-6_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The assembly of individual protein subunits into large-scale structures is important in many biological contexts. Proteins may assemble into geometrical cages or extended lattices that are characterized by a high degree of symmetry; examples include viral capsids and bacterial S-layers. The precisely defined higher order structure exhibited by these assemblies has inspired efforts to design such structures de novo by applying the principles of symmetry evident in natural protein assemblies. Here we discuss progress towards this goal and also examples of natural protein cages and lattices that have been engineered to repurpose them towards a diverse range of applications in materials science and nano-medicine.
Collapse
Affiliation(s)
- Aaron Sciore
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - E Neil G Marsh
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
12
|
Bhaskar S, Lim S. Engineering protein nanocages as carriers for biomedical applications. NPG ASIA MATERIALS 2017; 9:e371. [PMID: 32218880 PMCID: PMC7091667 DOI: 10.1038/am.2016.128] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 01/26/2016] [Accepted: 04/12/2016] [Indexed: 05/02/2023]
Abstract
Protein nanocages have been explored as potential carriers in biomedicine. Formed by the self-assembly of protein subunits, the caged structure has three surfaces that can be engineered: the interior, the exterior and the intersubunit. Therapeutic and diagnostic molecules have been loaded in the interior of nanocages, while their external surfaces have been engineered to enhance their biocompatibility and targeting abilities. Modifications of the intersubunit interactions have been shown to modulate the self-assembly profile with implications for tuning the molecular release. We review natural and synthetic protein nanocages that have been modified using chemical and genetic engineering techniques to impart non-natural functions that are responsive to the complex cellular microenvironment of malignant cells while delivering molecular cargos with improved efficiencies and minimal toxicity.
Collapse
Affiliation(s)
- Sathyamoorthy Bhaskar
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Sierin Lim
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
13
|
Pumpens P, Renhofa R, Dishlers A, Kozlovska T, Ose V, Pushko P, Tars K, Grens E, Bachmann MF. The True Story and Advantages of RNA Phage Capsids as Nanotools. Intervirology 2016; 59:74-110. [DOI: 10.1159/000449503] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/30/2016] [Indexed: 11/19/2022] Open
|
14
|
Wen AM, Steinmetz NF. Design of virus-based nanomaterials for medicine, biotechnology, and energy. Chem Soc Rev 2016; 45:4074-126. [PMID: 27152673 PMCID: PMC5068136 DOI: 10.1039/c5cs00287g] [Citation(s) in RCA: 254] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review provides an overview of recent developments in "chemical virology." Viruses, as materials, provide unique nanoscale scaffolds that have relevance in chemical biology and nanotechnology, with diverse areas of applications. Some fundamental advantages of viruses, compared to synthetically programmed materials, include the highly precise spatial arrangement of their subunits into a diverse array of shapes and sizes and many available avenues for easy and reproducible modification. Here, we will first survey the broad distribution of viruses and various methods for producing virus-based nanoparticles, as well as engineering principles used to impart new functionalities. We will then examine the broad range of applications and implications of virus-based materials, focusing on the medical, biotechnology, and energy sectors. We anticipate that this field will continue to evolve and grow, with exciting new possibilities stemming from advancements in the rational design of virus-based nanomaterials.
Collapse
Affiliation(s)
- Amy M Wen
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Nicole F Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA. and Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA and Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA and Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
15
|
Chen Z, Li N, Li S, Dharmarwardana M, Schlimme A, Gassensmith JJ. Viral chemistry: the chemical functionalization of viral architectures to create new technology. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 8:512-34. [DOI: 10.1002/wnan.1379] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 08/31/2015] [Accepted: 09/15/2015] [Indexed: 01/04/2023]
Affiliation(s)
- Zhuo Chen
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTXUSA
| | - Na Li
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTXUSA
| | - Shaobo Li
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTXUSA
| | | | - Anna Schlimme
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTXUSA
| | - Jeremiah J Gassensmith
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTXUSA
| |
Collapse
|
16
|
Abstract
Nanoscale engineering is revolutionizing the way we prevent, detect, and treat diseases. Viruses have played a special role in these developments because they can function as prefabricated nanoscaffolds that have unique properties and are easily modified. The interiors of virus particles can encapsulate and protect sensitive compounds, while the exteriors can be altered to display large and small molecules in precisely defined arrays. These properties of viruses, along with their innate biocompatibility, have led to their development as actively targeted drug delivery systems that expand on and improve current pharmaceutical options. Viruses are naturally immunogenic, and antigens displayed on their surface have been used to create vaccines against pathogens and to break self-tolerance to initiate an immune response to dysfunctional proteins. Densely and specifically aligned imaging agents on viruses have allowed for high-resolution and noninvasive visualization tools to detect and treat diseases earlier than previously possible. These and future applications of viruses have created an exciting new field within the disciplines of both nanotechnology and medicine.
Collapse
Affiliation(s)
| | | | - Marianne Manchester
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093
| | - Nicole F Steinmetz
- Departments of 2Biomedical Engineering
- Radiology
- Materials Science and Engineering, and
- Macromolecular Science and Engineering, Case Western Reserve University, Schools of Medicine and Engineering, Cleveland, Ohio 44106;
| |
Collapse
|
17
|
Affiliation(s)
- Mahmoud Elsabahy
- Department of Chemistry, Department of Chemical Engineering, Department of Materials Science & Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. Box 30012, 3255 TAMU, College Station, Texas 77842-3012, United States
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut International Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University, 71515 Assiut, Egypt, and Misr University for Science and Technology, 6 of October City, Egypt
| | - Gyu Seong Heo
- Department of Chemistry, Department of Chemical Engineering, Department of Materials Science & Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. Box 30012, 3255 TAMU, College Station, Texas 77842-3012, United States
| | - Soon-Mi Lim
- Department of Chemistry, Department of Chemical Engineering, Department of Materials Science & Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. Box 30012, 3255 TAMU, College Station, Texas 77842-3012, United States
| | - Guorong Sun
- Department of Chemistry, Department of Chemical Engineering, Department of Materials Science & Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. Box 30012, 3255 TAMU, College Station, Texas 77842-3012, United States
| | - Karen L. Wooley
- Department of Chemistry, Department of Chemical Engineering, Department of Materials Science & Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. Box 30012, 3255 TAMU, College Station, Texas 77842-3012, United States
| |
Collapse
|
18
|
Shukla S, Steinmetz NF. Virus-based nanomaterials as positron emission tomography and magnetic resonance contrast agents: from technology development to translational medicine. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 7:708-21. [PMID: 25683790 PMCID: PMC4620044 DOI: 10.1002/wnan.1335] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/15/2014] [Indexed: 01/17/2023]
Abstract
Viruses have recently emerged as ideal protein scaffolds for a new class of contrast agents that can be used in medical imaging procedures such as positron emission tomography (PET) and magnetic resonance imaging (MRI). Whereas synthetic nanoparticles are difficult to produce as homogeneous formulations due to the inherently stochastic nature of the synthesis process, virus-based nanoparticles are genetically encoded and are therefore produced as homogeneous and monodisperse preparations with a high degree of quality control. Because the virus capsids have a defined chemical structure that has evolved to carry cargoes of nucleic acids, they can be modified to carry precisely defined cargoes of contrast agents and can be decorated with spatially defined contrast reagents on the internal or external surfaces. Viral nanoparticles can also be genetically programed or conjugated with targeting ligands to deliver contrast agents to specific cells, and the natural biocompatibility of viruses means that they are cleared rapidly from the body. Nanoparticles based on bacteriophages and plant viruses are safe for use in humans and can be produced inexpensively in large quantities as self-assembling recombinant proteins. Based on these considerations, a new generation of contrast agents has been developed using bacteriophages and plant viruses as scaffolds to carry positron-emitting radioisotopes such as [(18) F] fluorodeoxyglucose for PET imaging and iron oxide or Gd(3+) for MRI. Although challenges such as immunogenicity, loading efficiency, and regulatory compliance remain to be address, virus-based nanoparticles represent a promising new enabling technology for a new generation of highly biocompatible and biodegradable targeted imaging reagents.
Collapse
Affiliation(s)
- Sourabh Shukla
- Department of Biomedical Engineering, Case Western Reserve University, Schools of Medicine and Engineering, Cleveland OH 44106
| | - Nicole F. Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University, Schools of Medicine and Engineering, Cleveland OH 44106
- Department of Radiology, Case Western Reserve University, Schools of Medicine and Engineering, Cleveland OH 44106
- Department of Materials Science and Engineering, Case Western Reserve University, Schools of Medicine and Engineering, Cleveland OH 44106
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Schools of Medicine and Engineering, Cleveland OH 44106
| |
Collapse
|
19
|
Schoonen L, van Hest JCM. Functionalization of protein-based nanocages for drug delivery applications. NANOSCALE 2014; 6:7124-41. [PMID: 24860847 DOI: 10.1039/c4nr00915k] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Traditional drug delivery strategies involve drugs which are not targeted towards the desired tissue. This can lead to undesired side effects, as normal cells are affected by the drugs as well. Therefore, new systems are now being developed which combine targeting functionalities with encapsulation of drug cargo. Protein nanocages are highly promising drug delivery platforms due to their perfectly defined structures, biocompatibility, biodegradability and low toxicity. A variety of protein nanocages have been modified and functionalized for these types of applications. In this review, we aim to give an overview of different types of modifications of protein-based nanocontainers for drug delivery applications.
Collapse
Affiliation(s)
- Lise Schoonen
- Institute of Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | | |
Collapse
|
20
|
Production and applications of engineered viral capsids. Appl Microbiol Biotechnol 2014; 98:5847-58. [PMID: 24816622 DOI: 10.1007/s00253-014-5787-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 10/25/2022]
Abstract
As biological agents, viruses come in an astounding range of sizes, with varied shapes and surface morphologies. The structures of viral capsids are generally assemblies of hundreds of copies of one or a few proteins which can be harnessed for use in a wide variety of applications in biotechnology, nanotechnology, and medicine. Despite their complexity, many capsid types form as homogenous populations of precise geometrical assemblies. This is important in both medicine, where well-defined therapeutics are critical for drug performance and federal approval, and nanotechnology, where precise placement affects the properties of the desired material. Here we review the production of viruses and virus-like particles with methods for selecting and manipulating the size, surface chemistry, assembly state, and interior cargo of capsid. We then discuss many of the applications used in research today and the potential commercial and therapeutic products from engineered viral capsids.
Collapse
|
21
|
Du YQ, Yang XX, Li WL, Wang J, Huang CZ. A cancer-targeted drug delivery system developed with gold nanoparticle mediated DNA–doxorubicin conjugates. RSC Adv 2014. [DOI: 10.1039/c4ra06298a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A targeted drug delivery system based on AuNPs and DNA was developed to treat neuroblastoma cancer. This system exhibits excellent specificity in delivering and releasing doxorubicin, and has great prospects in clinical applications.
Collapse
Affiliation(s)
- Yu Qing Du
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Pharmaceutical Sciences
- Southwest University
- 400715 Chongqing, PR China
| | - Xiao Xi Yang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Pharmaceutical Sciences
- Southwest University
- 400715 Chongqing, PR China
| | - Wen Long Li
- College of Chemistry and Chemical Engineering
- Southwest University
- 400715 Chongqing, PR China
| | - Jian Wang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Pharmaceutical Sciences
- Southwest University
- 400715 Chongqing, PR China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Pharmaceutical Sciences
- Southwest University
- 400715 Chongqing, PR China
| |
Collapse
|
22
|
Dedeo MT, Finley DT, Francis MB. Viral capsids as self-assembling templates for new materials. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 103:353-92. [PMID: 22000000 DOI: 10.1016/b978-0-12-415906-8.00002-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The self-assembling protein shells of viruses have provided convenient scaffolds for the construction of many new materials with well-defined nanoscale architectures. In some cases, the native amino acid functional groups have served as nucleation sites for the deposition of metals and semiconductors, leading to organic-inorganic composites with interesting electronic, magnetic, optical, and catalytic properties. Other approaches have involved the covalent modification of the protein monomers, typically with the goal of generating targeting delivery vehicles for drug and imaging cargo. Covalently modified capsid proteins have also been used to generate periodic arrays of chromophores for use in light harvesting and photocatalytic applications. All of these research areas have taken advantage of the low polydispersity, high chemical stability, and intrinsically multivalent properties that are uniquely offered by these biological building blocks.
Collapse
Affiliation(s)
- Michel T Dedeo
- Department of Chemistry, University of California, Berkeley, California, USA
| | | | | |
Collapse
|
23
|
Wen AM, Rambhia PH, French RH, Steinmetz NF. Design rules for nanomedical engineering: from physical virology to the applications of virus-based materials in medicine. J Biol Phys 2013; 39:301-25. [PMID: 23860875 PMCID: PMC3662409 DOI: 10.1007/s10867-013-9314-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 02/07/2013] [Indexed: 12/17/2022] Open
Abstract
Physical virology seeks to define the principles of physics underlying viral infections, traditionally focusing on the fundamental processes governing virus assembly, maturation, and disassembly. A detailed understanding of virus structure and assembly has facilitated the development and analysis of virus-based materials for medical applications. In this Physical Virology review article, we discuss the recent developments in nanomedicine that help us to understand how physical properties affect the in vivo fate and clinical impact of (virus-based) nanoparticles. We summarize and discuss the design rules that need to be considered for the successful development and translation of virus-based nanomaterials from bench to bedside.
Collapse
Affiliation(s)
- Amy M. Wen
- />Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Pooja H. Rambhia
- />Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Roger H. French
- />Materials Science and Engineering, School of Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 USA
| | - Nicole F. Steinmetz
- />Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
- />Materials Science and Engineering, School of Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 USA
- />Department of Radiology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
| |
Collapse
|
24
|
Capehart SL, Coyle MP, Glasgow JE, Francis MB. Controlled integration of gold nanoparticles and organic fluorophores using synthetically modified MS2 viral capsids. J Am Chem Soc 2013; 135:3011-6. [PMID: 23402352 DOI: 10.1021/ja3078472] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The placement of fluorophores in close proximity to metal nanoparticle surfaces is proposed to enhance several photophysical properties of the dyes, potentially leading to improved quantum yields and decreased photobleaching. It is difficult in practice, however, to establish and maintain the nanoscale distances that are required to maximize these effects. The type of metal, size, and shape of the nanoparticle, the physical distance separating the metal nanoparticle from the organic dye, and the spectral properties of the fluorophore itself are all proposed to influence the quantum yield and lifetime. This results in a complex behavior that can lead to either enhanced or quenched fluorescence in different contexts. In this report, we describe a well-defined system that can be used to explore these effects, while physically preventing the fluorophores from contacting the nanoparticle surfaces. The basis of this system is the spherical protein capsid of bacteriophage MS2, which was used to house gold particles within its interior volume. The exterior surface of each capsid was then modified with Alexa Fluor 488 (AF 488) labeled DNA strands. By placing AF 488 dyes at distances of 3, 12, and 24 bp from the surface of capsids containing 10 nm gold nanoparticles, fluorescence intensity enhancements of 2.2, 1.2, and 1.0 were observed, respectively. A corresponding decrease in fluorescence lifetime was observed for each distance. Because of its well-defined and modular nature, this architecture allows the rapid exploration of the many variables involved in metal-controlled fluorescence, leading to a better understanding of this phenomenon.
Collapse
Affiliation(s)
- Stacy L Capehart
- Department of Chemistry, University of California, Berkeley, California 94720-1460, USA
| | | | | | | |
Collapse
|
25
|
Farkas ME, Aanei IL, Behrens CR, Tong GJ, Murphy ST, O'Neil JP, Francis MB. PET Imaging and biodistribution of chemically modified bacteriophage MS2. Mol Pharm 2012; 10:69-76. [PMID: 23214968 DOI: 10.1021/mp3003754] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The fields of nanotechnology and medicine have merged in the development of new imaging and drug delivery agents based on nanoparticle platforms. As one example, a mutant of bacteriophage MS2 can be differentially modified on the exterior and interior surfaces for the concurrent display of targeting functionalities and payloads, respectively. In order to realize their potential for use in in vivo applications, the biodistribution and circulation properties of this class of agents must first be investigated. A means of modulating and potentially improving the characteristics of nanoparticle agents is the appendage of PEG chains. Both MS2 and MS2-PEG capsids possessing interior DOTA chelators were labeled with (64)Cu and injected intravenously into mice possessing tumor xenografts. Dynamic imaging of the agents was performed using PET-CT on a single animal per sample, and the biodistribution at the terminal time point (24 h) was assessed by gamma counting of the organs ex vivo for 3 animals per agent. Compared to other viral capsids of similar size, the MS2 agents showed longer circulation times. Both MS2 and MS2-PEG bacteriophage behaved similarly, although the latter agent showed significantly less uptake in the spleen. This effect may be attributed to the ability of the PEG chains to mask the capsid charge. Although the tumor uptake of the agents may result from the enhanced permeation and retention (EPR) effect, selective tumor imaging may be achieved in the future by using exterior targeting groups.
Collapse
Affiliation(s)
- Michelle E Farkas
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | | | | | | | | | | | | |
Collapse
|
26
|
Gavrilyuk J, Ban H, Nagano M, Hakamata W, Barbas CF. Formylbenzene diazonium hexafluorophosphate reagent for tyrosine-selective modification of proteins and the introduction of a bioorthogonal aldehyde. Bioconjug Chem 2012. [PMID: 23181702 DOI: 10.1021/bc300410p] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
4-Formylbenzene diazonium hexafluorophosphate (FBDP) is a novel bench-stable crystalline diazonium salt that reacts selectively with tyrosine to install a bioorthogonal aldehyde functionality. Model studies with N-acyl-tyrosine methylamide allowed us to identify conditions optimal for tyrosine ligation reactions with small peptides and proteins. FBDP-based conjugation was used for the facile introduction of small molecule tags, poly(ethylene glycol) chains (PEGylation), and functional small molecules onto model proteins and to label the surface of living cells.
Collapse
Affiliation(s)
- Julia Gavrilyuk
- Departments of Chemistry and Molecular Biology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
27
|
18FDG conjugated magnetic nanoparticle probes: synthesis and in vitro investigations on MCF-7 breast cancer cells. J Radioanal Nucl Chem 2012. [DOI: 10.1007/s10967-012-2248-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Carrico ZM, Farkas ME, Zhou Y, Hsiao SC, Marks JD, Chokhawala H, Clark DS, Francis MB. N-Terminal labeling of filamentous phage to create cancer marker imaging agents. ACS NANO 2012; 6:6675-80. [PMID: 22830952 PMCID: PMC3435507 DOI: 10.1021/nn301134z] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We report a convenient new technique for the labeling of filamentous phage capsid proteins. Previous reports have shown that phage coat protein residues can be modified, but the lack of chemically distinct amino acids in the coat protein sequences makes it difficult to attach high levels of synthetic molecules without altering the binding capabilities of the phage. To modify the phage with polymer chains, imaging groups, and other molecules, we have developed chemistry to convert the N-terminal amines of the ~4200 coat proteins into ketone groups. These sites can then serve as chemospecific handles for the attachment of alkoxyamine groups through oxime formation. Specifically, we demonstrate the attachment of fluorophores and up to 3000 molecules of 2 kDa poly(ethylene glycol) (PEG2k) to each of the phage capsids without significantly affecting the binding of phage-displayed antibody fragments to EGFR and HER2 (two important epidermal growth factor receptors). We also demonstrate the utility of the modified phage for the characterization of breast cancer cells using multicolor fluorescence microscopy. Due to the widespread use of filamentous phage as display platforms for peptide and protein evolution, we envision that the ability to attach large numbers of synthetic functional groups to their coat proteins will be of significant value to the biological and materials communities.
Collapse
Affiliation(s)
| | | | - Yu Zhou
- Department of Anesthesia and Pharmaceutical Chemistry, University of California, San Francisco, CA 94143
| | - Sonny C. Hsiao
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - James D. Marks
- Department of Anesthesia and Pharmaceutical Chemistry, University of California, San Francisco, CA 94143
| | - Harshal Chokhawala
- Department of Chemical Engineering, University of California, Berkeley, CA 94720
| | - Douglas S. Clark
- Department of Chemical Engineering, University of California, Berkeley, CA 94720
| | - Matthew B. Francis
- Department of Chemistry, University of California, Berkeley, CA 94720
- Corresponding author:
| |
Collapse
|
29
|
Shukla S, Ablack AL, Wen AM, Lee KL, Lewis JD, Steinmetz NF. Increased tumor homing and tissue penetration of the filamentous plant viral nanoparticle Potato virus X. Mol Pharm 2012; 10:33-42. [PMID: 22731633 DOI: 10.1021/mp300240m] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nanomaterials with elongated architectures have been shown to possess differential tumor homing properties compared to their spherical counterparts. Here, we investigate whether this phenomenon is mirrored by plant viral nanoparticles that are filamentous (Potato virus X) or spherical (Cowpea mosaic virus). Our studies demonstrate that Potato virus X (PVX) and Cowpea mosaic virus (CPMV) show distinct biodistribution profiles and differ in their tumor homing and penetration efficiency. Analogous to what is seen with inorganic nanomaterials, PVX shows enhanced tumor homing and tissue penetration. Human tumor xenografts exhibit higher uptake of PEGylated filamentous PVX compared to CPMV, particularly in the core of the tumor. This is supported by immunohistochemical analysis of the tumor sections, which indicates greater penetration and accumulation of PVX within the tumor tissues. The enhanced tumor homing and retention properties of PVX along with its higher payload carrying capacity make it a potentially superior platform for applications in cancer drug delivery and imaging applications.
Collapse
Affiliation(s)
- Sourabh Shukla
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | | | | | | | | | | |
Collapse
|
30
|
Wu Z, Chen K, Yildiz I, Dirksen A, Fischer R, Dawson PE, Steinmetz NF. Development of viral nanoparticles for efficient intracellular delivery. NANOSCALE 2012; 4:3567-76. [PMID: 22508503 PMCID: PMC3563001 DOI: 10.1039/c2nr30366c] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Viral nanoparticles (VNPs) based on plant viruses such as Cowpea mosaic virus (CPMV) can be used for a broad range of biomedical applications because they present a robust scaffold that allows functionalization by chemical conjugation and genetic modification, thereby offering an efficient drug delivery platform that can target specific cells and tissues. VNPs such as CPMV show natural affinity to cells; however, cellular uptake is inefficient. Here we show that chemical modification of the CPMV surface with a highly reactive, specific and UV-traceable hydrazone linker allows bioconjugation of polyarginine (R5) cell penetrating peptides (CPPs), which can overcome these limitations. The resulting CPMV-R5 particles were taken up into a human cervical cancer cell line (HeLa) more efficiently than native particles. Uptake efficiency was dependent on the density of R5 peptides on the surface of the VNP; particles displaying 40 R5 peptides per CPMV (denoted as CPMV-R5H) interact strongly with the plasma membrane and are taken up into the cells via an energy-dependent mechanism whereas particles displaying 10 R5 peptides per CPMV (CPMV-R5L) are only slowly taken up. The fate of CPMV-R5 versus native CPMV particles within cells was evaluated in a co-localization time course study. It was indicated that the intracellular localization of CPMV-R5 and CPMV differs; CPMV remains trapped in Lamp-1 positive endolysosomes over long time frames; in contrast, 30-50% of the CPMV-R5 particles transitioned from the endosome into other cellular vesicles or compartments. Our data provide the groundwork for the development of efficient drug delivery formulations based on CPMV-R5.
Collapse
Affiliation(s)
- Zhuojun Wu
- Department of Cell Biology and Chemistry, Center for Integrative Molecular Biosciences, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
- Institute of Biology VII, Molecular Biotechnology, RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany
| | - Kevin Chen
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106-5056, USA
| | - Ibrahim Yildiz
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106-5056, USA
| | - Anouk Dirksen
- Department of Cell Biology and Chemistry, Center for Integrative Molecular Biosciences, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Rainer Fischer
- Institute of Biology VII, Molecular Biotechnology, RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany
| | - Philip E. Dawson
- Department of Cell Biology and Chemistry, Center for Integrative Molecular Biosciences, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Nicole F. Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106-5056, USA
- Department of Radiology, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106-5056, USA
- Department of Materials Science and Engineering, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106-5056, USA
| |
Collapse
|
31
|
Algar WR, Prasuhn DE, Stewart MH, Jennings TL, Blanco-Canosa JB, Dawson PE, Medintz IL. The controlled display of biomolecules on nanoparticles: a challenge suited to bioorthogonal chemistry. Bioconjug Chem 2011; 22:825-58. [PMID: 21585205 DOI: 10.1021/bc200065z] [Citation(s) in RCA: 352] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Interest in developing diverse nanoparticle (NP)-biological composite materials continues to grow almost unabated. This is motivated primarily by the desire to simultaneously exploit the properties of both NP and biological components in new hybrid devices or materials that can be applied in areas ranging from energy harvesting and nanoscale electronics to biomedical diagnostics. The utility and effectiveness of these composites will be predicated on the ability to assemble these structures with control over NP/biomolecule ratio, biomolecular orientation, biomolecular activity, and the separation distance within the NP-bioconjugate architecture. This degree of control will be especially critical in creating theranostic NP-bioconjugates that, as a single vector, are capable of multiple functions in vivo, including targeting, image contrast, biosensing, and drug delivery. In this review, a perspective is given on current and developing chemistries that can provide improved control in the preparation of NP-bioconjugates. The nanoscale properties intrinsic to several prominent NP materials are briefly described to highlight the motivation behind their use. NP materials of interest include quantum dots, carbon nanotubes, viral capsids, liposomes, and NPs composed of gold, lanthanides, silica, polymers, or magnetic materials. This review includes a critical discussion on the design considerations for NP-bioconjugates and the unique challenges associated with chemistry at the biological-nanoscale interface-the liabilities of traditional bioconjugation chemistries being particularly prominent therein. Select bioorthogonal chemistries that can address these challenges are reviewed in detail, and include chemoselective ligations (e.g., hydrazone and Staudinger ligation), cycloaddition reactions in click chemistry (e.g., azide-alkyne cyclyoaddition, tetrazine ligation), metal-affinity coordination (e.g., polyhistidine), enzyme driven modifications (e.g., HaloTag, biotin ligase), and other site-specific chemistries. The benefits and liabilities of particular chemistries are discussed by highlighting relevant NP-bioconjugation examples from the literature. Potential chemistries that have not yet been applied to NPs are also discussed, and an outlook on future developments in this field is given.
Collapse
Affiliation(s)
- W Russ Algar
- Center for Bio/Molecular Science and Engineering, Optical Sciences Division, U.S. Naval Research Laboratory, 4555 Overlook Avenue S.W., Washington, DC 20375, United States
| | | | | | | | | | | | | |
Collapse
|
32
|
Witus LS, Francis MB. Using synthetically modified proteins to make new materials. Acc Chem Res 2011; 44:774-83. [PMID: 21812400 DOI: 10.1021/ar2001292] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The uniquely diverse structures and functions of proteins offer many exciting opportunities for creating new materials with advanced properties. Exploiting these capabilities requires a set of versatile chemical reactions that can attach nonnatural groups to specific locations on protein surfaces. Over the years, we and others have developed a series of new techniques for protein bioconjugation, with a particular emphasis on achieving high site selectivity and yield. Using these reactions, we have been able to prepare a number of new materials with functions that depend on both the natural and the synthetic components. In this Account, we discuss our progress in protein bioconjugation over the past decade, focusing on three distinct projects. We first consider our work to harness sunlight artificially by mimicking features of the photosynthetic apparatus, with its beautifully integrated system of chromophores, electron transfer groups, and catalytic centers. Central to these photosystems are light-harvesting antennae having hundreds of precisely aligned chromophores with positions that are dictated by the proteins within the arrays. Our approach to generating similar arrangements involves the self-assembly of tobacco mosaic virus coat proteins bearing synthetic chromophore groups. These systems offer efficient light collection, are easy to prepare, and can be used to build complex photocatalytic systems through the modification of multiple sites on the protein surfaces. We then discuss protein-based carriers that can deliver drugs and imaging agents to diseased tissues. The nanoscale agents we have built for this purpose are based on the hollow protein shell of bacteriophage MS2. These 27 nm capsids have 32 pores, which allow the entry of relatively large organic molecules into the protein shell without requiring disassembly. Our group has developed a series of chemical strategies that can install dyes, radiolabels, MRI contrast agents, and anticancer drugs on the inside surface of these capsids. We have also developed methods to decorate the external surfaces with binders for specific proteins on cancer cells. As a third research area, our group has developed protein-polymer hybrid materials for water remediation. To reduce the toxicity of heavy metals in living cells, Nature has evolved metallothioneins, which are sulfur-rich polypeptides that bind mercury, cadmium, and other toxic ions at sub-parts-per-billion concentrations. Unfortunately, these proteins are very difficult to incorporate into polymers, largely because typical protein modification reactions target the very cysteine, lysine, and carboxylate-containing residues that are required for their proper function. To address this challenge, we developed a new way to attach these (and many other) proteins to polymer chains by expressing them as part of an N- and C-terminal modification "cassette". The resulting materials retain their selectivity and can remove trace amounts of toxic metal ions from ocean water. Each of these examples has presented a new set of protein bioconjugation challenges that have been met through the development of new reaction methodology. Future progress in the generation of protein-based materials will require scalable synthetic techniques with improved yields and selectivities, inexpensive purification methods for bioconjugates, and theoretical and dynamical treatments for designing new materials through protein self-assembly.
Collapse
Affiliation(s)
- Leah S. Witus
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720-1460, United States
| | - Matthew B. Francis
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720-1460, United States
| |
Collapse
|
33
|
|
34
|
Yildiz I, Shukla S, Steinmetz NF. Applications of viral nanoparticles in medicine. Curr Opin Biotechnol 2011; 22:901-8. [PMID: 21592772 DOI: 10.1016/j.copbio.2011.04.020] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 04/21/2011] [Accepted: 04/25/2011] [Indexed: 12/31/2022]
Abstract
Several nanoparticle platforms are currently being developed for applications in medicine, including both synthetic materials and naturally occurring bionanomaterials such as viral nanoparticles (VNPs) and their genome-free counterparts, virus-like particles (VLPs). A broad range of genetic and chemical engineering methods have been established that allow VNP/VLP formulations to carry large payloads of imaging reagents or drugs. Furthermore, targeted VNPs and VLPs can be generated by including peptide ligands on the particle surface. In this article, we highlight state-of-the-art virus engineering principles and discuss recent advances that bring potential biomedical applications a step closer. Viral nanotechnology has now come of age and it will not be long before these formulations assume a prominent role in the clinic.
Collapse
Affiliation(s)
- Ibrahim Yildiz
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
35
|
Uchida M, Kosuge H, Terashima M, Willits DA, Liepold LO, Young MJ, McConnell MV, Douglas T. Protein cage nanoparticles bearing the LyP-1 peptide for enhanced imaging of macrophage-rich vascular lesions. ACS NANO 2011; 5:2493-502. [PMID: 21391720 PMCID: PMC3082619 DOI: 10.1021/nn102863y] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Cage-like protein nanoparticles are promising platforms for cell- and tissue-specific targeted delivery of imaging and therapeutic agents. Here, we have successfully modified the 12 nm small heat shock protein from Methanococcus jannaschii (MjHsp) to detect atherosclerotic plaque lesions in a mouse model system. As macrophages are centrally involved in the initiation and progression of atherosclerosis, targeted imaging of macrophages is valuable to assess the biologic status of the blood vessel wall. LyP-1, a nine residue peptide, has been shown to target tumor-associated macrophages. Thus, LyP-1 was genetically incorporated onto the exterior surface of MjHsp, while a fluorescent molecule (Cy5.5) was conjugated on the interior cavity. This bioengineered protein cage, LyP-Hsp, exhibited enhanced affinity to macrophage in vitro. Furthermore, in vivo injection of LyP-Hsp allowed visualization of macrophage-rich murine carotid lesions by in situ and ex vivo fluorescence imaging. These results demonstrate the potential of LyP-1-conjugated protein cages as nanoscale platforms for delivery of imaging agents for the diagnosis of atherosclerosis.
Collapse
Affiliation(s)
- Masaki Uchida
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, 59717
- Department of Plant Sciences, Montana State University, Bozeman, Montana, 59717
| | - Hisanori Kosuge
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Masahiro Terashima
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Deborah A. Willits
- Department of Plant Sciences, Montana State University, Bozeman, Montana, 59717
- Center for Bio-Inspired Nanomaterials (CBIN), Montana State University, Bozeman, Montana, 59717
| | - Lars O. Liepold
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, 59717
- Center for Bio-Inspired Nanomaterials (CBIN), Montana State University, Bozeman, Montana, 59717
| | - Mark J. Young
- Department of Plant Sciences, Montana State University, Bozeman, Montana, 59717
- Center for Bio-Inspired Nanomaterials (CBIN), Montana State University, Bozeman, Montana, 59717
| | - Michael V. McConnell
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Trevor Douglas
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, 59717
- Center for Bio-Inspired Nanomaterials (CBIN), Montana State University, Bozeman, Montana, 59717
- Corresponding author: Trevor Douglas, Professor of Chemistry, Montana State University, Department of Chemistry & Biochemistry, 113 Chemistry and Biochemistry Building, Bozeman, MT 59715, phone (406)994-6566, fax (406) 994-5407,
| |
Collapse
|
36
|
Abstract
Viral nanotechnology is an emerging and highly interdisciplinary field in which viral nanoparticles (VNPs) are applied in diverse areas such as electronics, energy and next-generation medical devices. VNPs have been developed as candidates for novel materials, and are often described as "programmable" because they can be modified and functionalized using a number of techniques. In this review, we discuss the concepts and methods that allow VNPs to be engineered, including (i) bioconjugation chemistries, (ii) encapsulation techniques, (iii) mineralization strategies, and (iv) film and hydrogel development. With all these techniques in hand, the potential applications of VNPs are limited only by the imagination.
Collapse
Affiliation(s)
- Jonathan K. Pokorski
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Nicole F. Steinmetz
- Department of Biomedical Engineering, Case Center for Imaging Research, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
37
|
Stephanopoulos N, Liu M, Tong GJ, Li Z, Liu Y, Yan H, Francis MB. Immobilization and one-dimensional arrangement of virus capsids with nanoscale precision using DNA origami. NANO LETTERS 2010; 10:2714-20. [PMID: 20575574 PMCID: PMC3083853 DOI: 10.1021/nl1018468] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
DNA origami was used as a scaffold to arrange spherical virus capsids into one-dimensional arrays with precise nanoscale positioning. To do this, we first modified the interior surface of bacteriophage MS2 capsids with fluorescent dyes as a model cargo. An unnatural amino acid on the external surface was then coupled to DNA strands that were complementary to those extending from origami tiles. Two different geometries of DNA tiles (rectangular and triangular) were used. The capsids associated with tiles of both geometries with virtually 100% efficiency under mild annealing conditions, and the location of capsid immobilization on the tile could be controlled by the position of the probe strands. The rectangular tiles and capsids could then be arranged into one-dimensional arrays by adding DNA strands linking the corners of the tiles. The resulting structures consisted of multiple capsids with even spacing (approximately 100 nm). We also used a second set of tiles that had probe strands at both ends, resulting in a one-dimensional array of alternating capsids and tiles. This hierarchical self-assembly allows us to position the virus particles with unprecedented control and allows the future construction of integrated multicomponent systems from biological scaffolds using the power of rationally engineered DNA nanostructures.
Collapse
Affiliation(s)
- Nicholas Stephanopoulos
- Department of Chemistry, University of California, Berkeley, and Materials Sciences Division, Lawrence Berkeley National Labs, Berkeley, California 94720-1460
| | - Minghui Liu
- Department of Chemistry and Biochemistry and the Biodesign Institute, Arizona State University, Tempe AZ 85287
| | - Gary J. Tong
- Department of Chemistry, University of California, Berkeley, and Materials Sciences Division, Lawrence Berkeley National Labs, Berkeley, California 94720-1460
| | - Zhe Li
- Department of Chemistry and Biochemistry and the Biodesign Institute, Arizona State University, Tempe AZ 85287
| | - Yan Liu
- Department of Chemistry and Biochemistry and the Biodesign Institute, Arizona State University, Tempe AZ 85287
| | - Hao Yan
- Department of Chemistry and Biochemistry and the Biodesign Institute, Arizona State University, Tempe AZ 85287
| | - Matthew B. Francis
- Department of Chemistry, University of California, Berkeley, and Materials Sciences Division, Lawrence Berkeley National Labs, Berkeley, California 94720-1460
| |
Collapse
|
38
|
Modified natural nanoparticles as contrast agents for medical imaging. Adv Drug Deliv Rev 2010; 62:329-38. [PMID: 19900496 DOI: 10.1016/j.addr.2009.11.005] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 10/17/2009] [Indexed: 11/23/2022]
Abstract
The development of novel and effective contrast agents is one of the drivers of the ongoing improvement in medical imaging. Many of the new agents reported are nanoparticle-based. There are a variety of natural nanoparticles known, e.g. lipoproteins, viruses or ferritin. Natural nanoparticles have advantages as delivery platforms such as biodegradability. In addition, our understanding of natural nanoparticles is quite advanced, allowing their adaptation as contrast agents. They can be labeled with small molecules or ions such as Gd(3+) to act as contrast agents for magnetic resonance imaging, (18)F to act as positron emission tomography contrast agents or fluorophores to act as contrast agents for fluorescence techniques. Additionally, inorganic nanoparticles such as iron oxide, gold nanoparticles or quantum dots can be incorporated to add further contrast functionality. Furthermore, these natural nanoparticle contrast agents can be re-routed from their natural targets via the attachment of targeting molecules. In this review, we discuss the various modified natural nanoparticles that have been exploited as contrast agents.
Collapse
|
39
|
Wu W, Hsiao SC, Carrico ZM, Francis MB. Genome-free viral capsids as multivalent carriers for taxol delivery. Angew Chem Int Ed Engl 2010; 48:9493-7. [PMID: 19921725 DOI: 10.1002/anie.200902426] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wesley Wu
- Department of Chemistry, University of California, Berkeley and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-1460, USA
| | | | | | | |
Collapse
|
40
|
Wu W, Hsiao S, Carrico Z, Francis M. Genome-Free Viral Capsids as Multivalent Carriers for Taxol Delivery. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200902426] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Tong GJ, Hsiao SC, Carrico ZM, Francis MB. Viral capsid DNA aptamer conjugates as multivalent cell-targeting vehicles. J Am Chem Soc 2009; 131:11174-8. [PMID: 19603808 DOI: 10.1021/ja903857f] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nucleic acid aptamers offer significant potential as convenient and evolvable targeting groups for drug delivery. To attach them to the surface of a genome-free viral capsid carrier, an efficient oxidative coupling strategy has been developed. The method involves the periodate-mediated reaction of phenylene diamine substituted oligonucleotides with aniline groups installed on the outer surface of the capsid shells. Up to 60 DNA strands can be attached to each viral capsid with no apparent loss of base-pairing capabilities or protein stability. The ability of the capsids to bind specific cellular targets was demonstrated through the attachment of a 41-nucleotide sequence that targets a tyrosine kinase receptor on Jurkat T cells. After the installation of a fluorescent dye on the capsid interior, capsids bearing the cell-targeting sequence showed significant levels of binding to the cells relative to those of control samples. Colocalization experiments using confocal microscopy indicated that the capsids were endocytosed and trafficked to lysosomes for degradation. These observations suggest that aptamer-labeled capsids could be used for the targeted drug delivery of acid-labile prodrugs that would be preferentially released upon lysosomal acidification.
Collapse
Affiliation(s)
- Gary J Tong
- Department of Chemistry, University of California, Berkeley, and Materials Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720-1460, USA
| | | | | | | |
Collapse
|
42
|
Hooker JM. Modular strategies for PET imaging agents. Curr Opin Chem Biol 2009; 14:105-11. [PMID: 19880343 DOI: 10.1016/j.cbpa.2009.10.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 10/01/2009] [Accepted: 10/02/2009] [Indexed: 12/14/2022]
Abstract
In recent years, modular and simplified chemical and biological strategies have been developed for the synthesis and implementation of positron emission tomography (PET) radiotracers. New developments in bioconjugation and synthetic methodologies, in combination with advances in macromolecular delivery systems and gene-expression imaging, reflect a need to reduce radiosynthesis burden in order to accelerate imaging agent development. These new approaches, which are often mindful of existing infrastructure and available resources, are anticipated to provide a more approachable entry point for researchers interested in using PET to translate in vitro research to in vivo imaging.
Collapse
Affiliation(s)
- Jacob M Hooker
- Brookhaven National Laboratory, Medical Department, Building 555, Upton, NY 11973-5000, USA.
| |
Collapse
|