1
|
Hu Q, He L, Lan R, Feng C, Pei X. Recent advances in phosphate removal from municipal wastewater by electrocoagulation process: A review. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
2
|
Lü X, Xu T, Zhou Y, Peng Q, Ou J, Hu B, Xie Z, Lei X, Yu G. Effect of iron ion configurations on Ni 2+ removal in electrocoagulation. J Environ Sci (China) 2023; 124:823-834. [PMID: 36182186 DOI: 10.1016/j.jes.2022.01.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 06/16/2023]
Abstract
Electrocoagulation (EC) has been widely used to treat the heavy metal wastewater in industry. A novel process of sinusoidal alternating current electrocoagulation (SACC) is adopted to remove Ni2+ in wastewater in this study. The morphology of precipitates and the distribution of the main functional iron configurations were investigated. Ferron timed complex spectroscopy can identify the monomeric iron configurations [Fe(a)], oligomeric iron configurations [Fe(b)] and polymeric iron configurations [Fe(c)]. The optimal operating conditions of SACC process were determined through single-factor experiments. The maximum Ni2+ removal efficiency [Re(Ni2+)] was achieved under the conditions of pH0=7, current density (j) = 7 A/m2, electrolysis time (t) = 25 min, c0(Ni2+) = 100 mg/L. At pH=7, the proportion of Fe(b) and Fe(c) in the system was 50.4 at.% and 23.1 at.%, respectively. In the SACC process, Fe(b) and Fe(c) are the main iron configurations in solution, while Fe(c) are the vast majority of the iron configurations in the direct current electrocoagulation (DCC) process. Re(Ni2+) is 99.56% for SACC and 98.75% for DCC under the same optimum conditions, respectively. The precipitates produced by SACC have a high proportion of Fe(b) configurations with spherical α-FeOOH and γ-FeOOH structures which contain abundant hydroxyl groups. Moreover, it is demonstrated that Fe(b) has better adsorption capacity than Fe(c) through adsorption experiments of methyl orange (MO) dye. Fe(a) configurations in the homogeneous solution had no effect on the removal of nickel.
Collapse
Affiliation(s)
- Xiaoliu Lü
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Tao Xu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yihui Zhou
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Qingjuan Peng
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jinhua Ou
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China; Research Institute of New Building Materials, Hunan Institute of Technology, Hengyang 421008, China
| | - Bonian Hu
- Research Institute of New Building Materials, Hunan Institute of Technology, Hengyang 421008, China.
| | - Zhihui Xie
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Xiping Lei
- Hunan Zihong Ecology Technology Co., Ltd., Changsha 410000, China
| | - Gang Yu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
3
|
Abdollahi J, Alavi Moghaddam MR, Habibzadeh S. The role of the current waveform in mitigating passivation and enhancing electrocoagulation performance: A critical review. CHEMOSPHERE 2023; 312:137212. [PMID: 36395897 DOI: 10.1016/j.chemosphere.2022.137212] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Electrocoagulation (EC) can be an efficient alternative to existing water and wastewater treatment methods due to its eco-friendly nature, low footprint, and facile operation. However, the electrodes applied in the EC process suffer from passivation or fouling, an issue resulting from the buildup of poorly conducting materials on the electrode surface. Indeed, such passivation gives rise to various operational problems and restricts the practical implementation of EC on a large scale. Therefore, it has been suggested that using pulsed direct current (PDC), alternating pulse current (APC), and sinusoidal alternating current (AC) waveforms in EC as alternatives to conventional direct current (DC) can help mitigate passivation and alleviate its associated detrimental effects. This paper presents a critical review of the impact of the current waveform on the EC process towards the capabilities of the PDC, APC, and AC waveforms in de-passivation and performance enhancement while comparing them to the conventional DC. Additionally, current waveform parameters influencing the surface passivation of electrodes and process efficiency are elaborately discussed. Meanwhile, the performance of the EC process is evaluated under different current waveforms based on pollutant removal efficiency, energy consumption, electrode usage, sludge production, and operating cost. The proper current waveforms for treating various water and wastewater matrices are also explained. Finally, concluding remarks and outlooks for future research are provided.
Collapse
Affiliation(s)
- Javad Abdollahi
- Department of Civil & Environmental Engineering, Amirkabir University of Technology (Tehran Polytechnic), Iran
| | | | - Sajjad Habibzadeh
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Iran
| |
Collapse
|
4
|
Rajoria S, Vashishtha M, Sangal VK. Treatment of electroplating industry wastewater: a review on the various techniques. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:72196-72246. [PMID: 35084684 DOI: 10.1007/s11356-022-18643-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Water pollution by recalcitrant compounds is an increasingly important problem due to the continuous introduction of new chemicals into the environment. Choosing appropriate measures and developing successful strategies for eliminating hazardous wastewater contaminants from industrial processes is currently a primary goal. Electroplating industry wastewater involves highly toxic cyanide (CN), heavy metal ions, oils and greases, organic solvents, and the complicated composition of effluents and may also contain biological oxygen demand (BOD), chemical oxygen demand (COD), SS, DS, TS, and turbidity. The availability of these metal ions in electroplating industry wastewater makes the water so toxic and corrosive. Because these heavy metals are harmful to living things, they must be removed to prevent them from being absorbed by plants, animals, and humans. As a result, exposure to electroplating wastewater can induce necrosis and nephritis in humans and lung cancer, digestive system cancer, anemia, hepatitis, and maxillary sinus cancer with prolonged exposure. For the safe discharge of electroplating industry effluents, appropriate wastewater treatment has to be provided. This article examines and assesses new approaches such as coagulation and flocculation, chemical precipitation, ion exchange, membrane filtration, adsorption, electrochemical treatment, and advanced oxidation process (AOP) for treating the electroplating industry wastewater. On the other hand, these physicochemical approaches have significant drawbacks, including a high initial investment and operating cost due to costly chemical reagents, the production of metal complexes sludge that needs additional treatment, and a long recovery process. At the same time, advanced techniques such as electrochemical treatment can remove various kinds of organic and inorganic contaminants such as BOD, COD, and heavy metals. The electrochemical treatment process has several advantages over traditional technologies, including complete removal of persistent organic pollutants, environmental friendliness, ease of integration with other conventional technologies, less sludge production, high separation, and shorter residence time. The effectiveness of the electrochemical treatment process depends on various parameters, including pH, electrode material, operation time, electrode gap, and current density. This review mainly emphasizes the removal of heavy metals and another pollutant such as CN from electroplating discharge. This paper will be helpful in the selection of efficient techniques for treatment based on the quantity and characteristics of the effluent produced.
Collapse
Affiliation(s)
- Sonal Rajoria
- Department of Chemical Engineering, Malaviya National Institute of Technology, Jaipur-302017, Rajasthan, India
| | - Manish Vashishtha
- Department of Chemical Engineering, Malaviya National Institute of Technology, Jaipur-302017, Rajasthan, India.
| | - Vikas K Sangal
- Department of Chemical Engineering, Malaviya National Institute of Technology, Jaipur-302017, Rajasthan, India.
| |
Collapse
|
5
|
Zhou Y, Chen S, Qiu J, Zhu C, Xu T, Zeng M, He X, Hu B, Zhang X, Yu G. Removal of phosphorus in wastewater by sinusoidal alternating current coagulation: performance and mechanism. ENVIRONMENTAL TECHNOLOGY 2022; 43:3161-3174. [PMID: 33843473 DOI: 10.1080/09593330.2021.1916093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
The effects of initial total phosphorus (TP) concentration, current density, conductivity and initial pH value on the removal rate of TP and energy consumption, as well as the behaviour and mechanism of phosphorus removal, were investigated by sinusoidal alternating current coagulation (SACC). The flocs produced by SACC were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy FTIR and X-ray photo electron spectroscopy. The thermodynamic and kinetic behaviours of phosphorus removal by iron sol adsorption were also studied in detail. In a self-made SACC reactor equipped with five sets of parallel iron electrodes spacing 10 mm, the removal rate of TP reached 90.9% for a pH 7.0 wastewater with 5 mg dm-3 TP (κ = 800 μS cm-1) after being treated for 60 min by applying 2.12 mA cm-2 sinusoidal alternating current. Compared with direct current coagulation (DCC), SACC exhibits a higher removal efficiency of phosphorus due to the stronger adsorption of the produced flocs. It was found that the adsorption in the SACC process follows pseudo-second-order kinetic with the involvement of the intra-particle model. The adsorption of iron sol to phosphorus was an endothermic and spontaneous process, and its adsorption behaviour can be characterized with Langmuir and Redlich-Peterson isothermal adsorption models. SACC may be employed for the treatment of more complex wastewater combined with biological and/or electrochemical techniques.
Collapse
Affiliation(s)
- Yihui Zhou
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, People's Republic of China
| | - Shuaiqi Chen
- Aerospace Kaitian Environmental Technology Co., Ltd, Changsha, People's Republic of China
| | - Jingxian Qiu
- Aerospace Kaitian Environmental Technology Co., Ltd, Changsha, People's Republic of China
| | - Chunyou Zhu
- Aerospace Kaitian Environmental Technology Co., Ltd, Changsha, People's Republic of China
| | - Tao Xu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, People's Republic of China
| | - Muping Zeng
- Aerospace Kaitian Environmental Technology Co., Ltd, Changsha, People's Republic of China
| | - Xi He
- Aerospace Kaitian Environmental Technology Co., Ltd, Changsha, People's Republic of China
| | - Bonian Hu
- Department of Materials and Chemical Engineering, Hunan Institute of Technology, Hengyang, People's Republic of China
| | - Xueyuan Zhang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, People's Republic of China
| | - Gang Yu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, People's Republic of China
| |
Collapse
|
6
|
Das PP, Sharma M, Purkait MK. Recent progress on electrocoagulation process for wastewater treatment: A review. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Gong C, Ren X, Zhang Z, Sun Y, Huang H. Electrocoagulation pretreatment of pulp and paper wastewater for low pressure reverse osmosis membrane fouling control. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:36897-36910. [PMID: 35064492 DOI: 10.1007/s11356-021-18045-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Low pressure reverse osmosis (LPRO) has been increasingly used in advanced treatment of pulp and paper wastewater (PPWW) for the purpose of water reuse. However, membrane fouling is a major problem encountered by full-scale RO systems due to the organic and inorganic contents of the feedwater. Electrocoagulation (EC) as an effective treatment for foulants removal can be applied in pre-filtration. Therefore, the LPRO membrane fouling mechanism and the membrane fouling control performance by EC treatment were investigated in this study. EC pretreatment could reduce the membrane fouling and improve the membrane flux by 31%, by effectively removing and/or decomposing the organic pollutants in PPWW. Fluorescent spectrometry analyses of the feedwater and the permeate revealed that humic acid-like and fulvic acid-like organics in PPWW were the major foulants for the LPRO membranes. Fourier transformation infrared spectrometry results confirmed that the organic foulants contained benzoic rings and carboxylic groups, which were typical for organic substances. EC effectively removed organic pollutants containing functional groups such as carboxylic acid COH out-of-plane bending, olefin (trans), and NH3+ symmetrical angle-changing. Moreover, the extended Derjaguin-Landau-Verwey-Overbeek model suggested that the membrane filtered 30-min EC-treated PPWW had the strong repulsion force to foulants due to the higher cohesion energy (12.1 mJ/m2) and the lower critical load, which theoretically explained the reason of EC pretreatment on membrane fouling control.
Collapse
Affiliation(s)
- Chenhao Gong
- Environmental Protection Research Institute of Light Industry, Beijing Academy of Science and Technology, No. 1 Gao Li Zhang Road, Beijing, 100095, China.
- School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, 100875, China.
| | - Xiaojing Ren
- Environmental Protection Research Institute of Light Industry, Beijing Academy of Science and Technology, No. 1 Gao Li Zhang Road, Beijing, 100095, China
| | - Zhongguo Zhang
- Environmental Protection Research Institute of Light Industry, Beijing Academy of Science and Technology, No. 1 Gao Li Zhang Road, Beijing, 100095, China
| | - Yuwei Sun
- Environmental Protection Research Institute of Light Industry, Beijing Academy of Science and Technology, No. 1 Gao Li Zhang Road, Beijing, 100095, China
| | - Haiou Huang
- School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, 100875, China
| |
Collapse
|
8
|
Adsorption isotherm, kinetic, and optimization studies for copper (II) removal from aqueous solutions by banana leaves and derived activated carbon. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1016/j.sajce.2022.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
9
|
Karapınar HS. Adsorption performance of activated carbon synthesis by ZnCl 2, KOH, H 3PO 4 with different activation temperatures from mixed fruit seeds. ENVIRONMENTAL TECHNOLOGY 2022; 43:1417-1435. [PMID: 34429039 DOI: 10.1080/09593330.2021.1968507] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
In this study, new activated carbons (ACs) were synthesized from a mixture of lemon and orange seeds (LOS) for toxic metal removal from aqueous solutions. Adsorbents have been produced by chemical activation with different activation agents (with H3PO4, ZnCl2 and KOH) and activation temperature (600°C, 700°C, 800°C). The elemental analysis, FT-IR, XRD and SEM analyses were performed to determine the characterization of the ACs. A series of batch adsorption experiments were done to research the influence of various parameters such as pH, adsorbent dosage, contact time, temperature, the complexing agents on the toxic metal ions (Cu(II), Cr(III) and Ni(II)) removal capacity of ACs. Adsorption equilibration time was 60 min, the adsorption capacity was 118.02 mg/g for Ni(II) ions, 146.03 mg/g for Cr(III) ions and 150.45 mg/g for Cu(II) ions. The adsorption of toxic metal ions was observed as a maximum at pH = 5 on AC-ZnCl2 (600°C) produced under N2 atmosphere. The adsorption process was fitted with a Langmuir isotherm model and a pseudo-second-order kinetic equation, showing the metal ions adsorption on AC was monolayer coverage. Thermodynamic studies show that the adsorption is endothermic and spontaneous in nature. AC produced from the LOS mixture has not been encountered in the literature. A simple, easy-to-apply method has been developed for a new adsorbent prepared from a mixture of LOS with environmentally friendly, easy to produce, reusable, cost-effective, non-toxic and with good adsorption-desorption capacity. Therefore, this study will contribute to the world economy in terms of environmental and wastewater cleaning.
Collapse
Affiliation(s)
- Hacer Sibel Karapınar
- Scientific and Technological Research & Application Center, Karamanoğlu Mehmetbey University, Karaman, Turkey
| |
Collapse
|
10
|
Bajpai M, Katoch SS, Kadier A, Singh A. A review on electrocoagulation process for the removal of emerging contaminants: theory, fundamentals, and applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:15252-15281. [PMID: 34978675 DOI: 10.1007/s11356-021-18348-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Electrocoagulation (EC) is an excellent and promising technology in wastewater treatment, as it combines the benefits of coagulation, flotation, and electrochemistry. During the last decade, extensive researches have focused on removal of emerging contaminants by using electrocoagualtion, due to its several advantages like compactness, cost-effectiveness, efficiency, low sludge production, and eco-friendness. Emerging contaminants (ECs) are micropollutants found in trace amounts that discharging into conventional wastewater treatment (WWT) plants entering surface waters and imposing a high threat to human and aquatic life. Various studies reveal that about 90% of emerging contaminants are disposed unscientifically into water bodies, creating problems to public health and environment. The studies on removal of emerging contaminants from wastewater are by global researchers are critically reviewed. The core findings proved that still more research required into optimization of parameters, system design, and economic feasibility to explore the potential of EC combined systems. This review has introduced an innovative collection of current knowledge on electro-coagulation for the removal of emerging contaminants.
Collapse
Affiliation(s)
- Mukul Bajpai
- Environmental Engineering Laboratory, Civil Engineering Department, National Institute of Technology Hamirpur, Hamirpur, Himachal Pradesh, 177005, India.
| | - Surjit Singh Katoch
- Environmental Engineering Laboratory, Civil Engineering Department, National Institute of Technology Hamirpur, Hamirpur, Himachal Pradesh, 177005, India
| | - Abudukeremu Kadier
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Adarsh Singh
- Civil Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
11
|
Nidheesh PV, Behera B, Babu DS, Scaria J, Kumar MS. Mixed industrial wastewater treatment by the combination of heterogeneous electro-Fenton and electrocoagulation processes. CHEMOSPHERE 2022; 290:133348. [PMID: 34922960 DOI: 10.1016/j.chemosphere.2021.133348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Mixed industrial wastewater treatment efficiency of combined electro-Fenton (EF) and electrocoagulation (EC) processes was investigated in the present study. Alkali modified laterite soil was used as a heterogeneous EF catalyst and found superior performance than the raw laterite soil. Initially, the effect of catalyst dosage, initial pH, and applied voltage on the performance of EF process was carried out. A total of 54.57% COD removal was observed after 60 min of the EF treatment. Further treatment was carried out with EC process at different voltages. A total of 85.27% COD removal after 2 h treatment was observed by combining two electrochemical processes. Performance of EF followed by EC (EF + EC) process was compared with EC followed by EF (EC + EF) process. Even though efficiency is the same, EF + EC is a better strategy than EC + EF as it nullifies the neutralization requirement after EF process in addition to high mineralization efficiency, enhanced biodegradability, and lesser sludge generation.
Collapse
Affiliation(s)
- P V Nidheesh
- CSIR- National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| | - Bibhudutta Behera
- CSIR- National Environmental Engineering Research Institute, Nagpur, Maharashtra, India; Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - D Syam Babu
- CSIR- National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| | - Jaimy Scaria
- CSIR- National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| | - M Suresh Kumar
- CSIR- National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| |
Collapse
|
12
|
Al-Raad AA, Hanafiah MM. Removal of inorganic pollutants using electrocoagulation technology: A review of emerging applications and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113696. [PMID: 34509809 DOI: 10.1016/j.jenvman.2021.113696] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 08/31/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Electrocoagulation (ECoag) technique has shown considerable potential as an effective method in separating different types of pollutants (including inorganic pollutants) from various sources of water at a lower cost, and that is environmentally friendly. The EC method's performance depends on several significant parameters, including current density, reactor geometry, pH, operation time, the gap between electrodes, and agitation speed. There are some challenges related to the ECoag technique, for example, energy consumption, and electrode passivation as well as its implementation at a larger scale. This review highlights the recent studies published about ECoag capacity to remove inorganic pollutants (including salts), the emerging reactors, and the effect of reactor geometry designs. In addition, this paper highlights the integration of the ECoag technique with other advanced technologies such as microwave and ultrasonic to achieve higher removal efficiencies. This paper also presents a critical discussion of the major and minor reactions of the electrocoagulation technique with several significant operational parameters, emerging designs of the ECoag cell, operating conditions, and techno-economic analysis. Our review concluded that optimizing the operating parameters significantly enhanced the efficiency of the ECoag technique and reduced overall operating costs. Electrodes geometry has been recommended to minimize the passivation phenomenon, promote the conductivity of the cell, and reduce energy consumption. In this review, several challenges and gaps were identified, and insights for future development were discussed. We recommend that future studies investigate the effect of other emerging parameters like perforated and ball electrodes on the ECoag technique.
Collapse
Affiliation(s)
- Abbas A Al-Raad
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, 43600, Malaysia; Ababil School, Al-Muthanna Education Directorate, Samawa, 66001, Iraq
| | - Marlia M Hanafiah
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, 43600, Malaysia; Centre for Tropical Climate Change System, Institute of Climate Change, Universiti Kebangsaan Malaysia, Bangi, Selangor, 43600, Malaysia.
| |
Collapse
|
13
|
Payami Shabestar M, Alavi Moghaddam MR, Karamati-Niaragh E. Evaluation of energy and electrode consumption of Acid Red 18 removal using electrocoagulation process through RSM: alternating and direct current. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:67214-67223. [PMID: 34247355 DOI: 10.1007/s11356-021-15345-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
This study aims to evaluate energy and electrode consumption for Acid Red 18 (AR18) removal and the operating costs employing alternating current (AC) and direct current (DC) in an electrocoagulation (EC) system. As the novelty of this study, the effects of AC/DC mode and electrode type were scrutinized through a series of designed experiments in a batch EC reactor to remove a globally used Azo dye from wastewater. In this regard, by designing the experiments with response surface methodology (RSM), four series of 30 experiments were separately conducted employing DC and AC for iron (Fe) and aluminum (Al) electrodes. In each series, quadratic models were achieved for the removal efficiency and operating costs; by confirming the accuracy of the models, two responses were simultaneously optimized accordingly. As a result, the AR18 removal efficiency with Al electrodes had no significant difference using AC and DC (on average 0.2% difference); however, for Fe electrode, the EC performance in DC was more significant than AC (on average 13.8% difference). Also, the operating costs of Fe electrode were more economical in comparison with the Al; on average, the operating costs in the case of applying DC for Fe and Al were achieved 14.6 and 39.8 (US$/kg dye removed), respectively; whereas, for AC, this amount was calculated 9.3 and 36.0 (US$/kg dye removed) for Fe and Al, respectively.
Collapse
Affiliation(s)
- Mahsa Payami Shabestar
- Civil and Environmental Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave, Tehran, 15875-4413, Iran
| | - Mohammad Reza Alavi Moghaddam
- Civil and Environmental Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave, Tehran, 15875-4413, Iran.
| | - Elnaz Karamati-Niaragh
- Civil and Environmental Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave, Tehran, 15875-4413, Iran
| |
Collapse
|
14
|
Masoumbeigi H, Gholami F, Yahyapour SA, Ghanizadeh G. Optimization of the electrochemical reduction process and ORP effects in nitrate removal. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 94:e1662. [PMID: 34783105 DOI: 10.1002/wer.1662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Nitrate contaminated water resources, a huge environmental problem for countries, including our own. This research aims to evaluate the efficiency of the electrochemical process for the removal of nitrate from the aqueous solution by direct and alternating current. Experiments were done by the Taguchi method, including electrode array, time exposure, voltage, pH, and the initial concentration of nitrate. Minitab 17 and SPSS 18 software were utilized to design and data analysis. In detail, the connection of the electrodes was monopolar, and the direct current (DC) has a greater efficiency as alternating current (AC) in the nitrate removal (p > 0.001). In AC, the nitrate initial concentration, voltage, electrodes material, contact time, and pH have the most effect on the nitrate removal. The optimized conditions for nitrate removal include Al-Al electrode, pH of 7, a voltage of 30 V, and nitrate initial concentration of 100 mg/L with the contact of time 150 min. Selection of appropriate materials for electrodes construction, adequate voltage, and removal of intervention agents from aqueous solution led to greater removal efficiencies. The optimized conditions that can reduce the aqueous solution ORP with high speed and the electrochemical reactor efficiency for nitrate removal were increased. PRACTITIONER POINTS: Electrochemichal (EC) process is evaluated for treatment of nitrate wastewater for the first time. High removal efficiency (over 95%) from nitrate wastewater was obtained. Minimizing energy consumption and maximizing nitrate removal were simultaneously achieved in the integrated single EC process.
Collapse
Affiliation(s)
- Hossein Masoumbeigi
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Foad Gholami
- Environmental Research Center, Department of Applied Chemistry, Razi University, Kermanshah, Iran
| | - Seid Ali Yahyapour
- Department of Environmental Health Engineering, School of Public Health, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Students' Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ghader Ghanizadeh
- Health Management Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Chow H, Pham ALT. Mitigating Electrode Fouling in Electrocoagulation by Means of Polarity Reversal: The Effects of Electrode Type, Current Density, and Polarity Reversal Frequency. WATER RESEARCH 2021; 197:117074. [PMID: 33784607 DOI: 10.1016/j.watres.2021.117074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
One of the biggest issues in electrocoagulation (EC) water treatment processes is electrode fouling, which can cause decreased coagulant production, increased ohmic resistance and energy consumption, and reduced contaminant removal efficiency, among other operational problems. While it has been suggested that switching the current direction intermittently (i.e., polarity reversal, PR) can help mitigate electrode fouling, conflicting results about the utility of this approach have been reported in the literature. The objective of this study was to systematically investigate the effects of PR frequency and current density on the performance of Fe-EC and Al-EC. It was found that operating Fe-EC under the PR mode reduced neither electrode fouling nor energy consumption. Notably, the Faradaic efficiency (ϕ) in Fe-EC decreased with increasing PR frequency; ϕ was as low as 10% when a PR frequency of 0.5 minutes was employed. Unlike Fe-EC, operating Al-EC under the PR mode resulted in high coagulant production efficiencies, reduced energy consumption, and diminished electrode fouling. In addition to comparing PR-EC and DC-EC, a novel strategy to minimize electrode fouling was investigated. This strategy involved operating Fe DC-EC and Al DC-EC with a Ti-IrO2 cathode, whose fouling by Ca- and Mg-containing minerals could be readily avoided by periodically switching the current direction.
Collapse
Affiliation(s)
- Héline Chow
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Anh Le-Tuan Pham
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
16
|
Ingelsson M, Yasri N, Roberts EPL. Electrode passivation, faradaic efficiency, and performance enhancement strategies in electrocoagulation-a review. WATER RESEARCH 2020; 187:116433. [PMID: 33002774 DOI: 10.1016/j.watres.2020.116433] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/30/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
Treating water and wastewater is energy-intensive, and traditional methods that require large amounts of chemicals are often still used. Electrocoagulation (EC), an electrochemical treatment technology, has been proposed as a more economically and environmentally sustainable alternative. In EC, sacrificial metal electrodes are used to produce coagulant in-situ, which offers many benefits over conventional chemical coagulation. However, material precipitation on the electrodes during long term operation induces a passivating effect that decreases treatment performance and increases power requirements. Overcoming this problem is considered to be the greatest challenge facing the development of EC. In this critical review, the studies that have examined the nature of electrode passivation, and its effect on treatment performance are considered. A fundamental approach is used to examine the association between passivation and faradaic efficiency, a surrogate for EC performance. In addition, the strategies that have been proposed to remove or avoid passivation are reviewed, including aggressive ion addition, AC current operation, polarity reversal, ultrasonication, and mechanical cleaning of the electrodes. It is concluded that the success of implementing each method is dependent on critical operating parameters, and careful consideration should be taken when designing an EC system based on the phenomena discussed in this article. In conclusion, this review provides insight into passivation mechanisms, delivers guidelines for sustaining high treatment performance, and offers an outlook for the future development of EC.
Collapse
Affiliation(s)
- Markus Ingelsson
- Department of Chemical & Petroleum Engineering, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
| | - Nael Yasri
- Department of Chemical & Petroleum Engineering, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
| | - Edward P L Roberts
- Department of Chemical & Petroleum Engineering, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
17
|
Chakraborty S, Ravindran V, Nidheesh PV, Rayalu S. Optical Sensing of Copper and Its Removal by Different Environmental Technologies. ChemistrySelect 2020. [DOI: 10.1002/slct.202002113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shampa Chakraborty
- CSIR-National Environmental Engineering Research Institute Nagpur Maharashtra India
| | - Vyshakh Ravindran
- CSIR-National Environmental Engineering Research Institute Nagpur Maharashtra India
| | - P. V. Nidheesh
- CSIR-National Environmental Engineering Research Institute Nagpur Maharashtra India
| | - Sadhana Rayalu
- CSIR-National Environmental Engineering Research Institute Nagpur Maharashtra India
| |
Collapse
|
18
|
Hawari AH, Alkhatib AM, Hafiz M, Das P. A novel electrocoagulation electrode configuration for the removal of total organic carbon from primary treated municipal wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:23888-23898. [PMID: 32301085 PMCID: PMC7326825 DOI: 10.1007/s11356-020-08678-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
In this paper, the removal of total organic carbon (TOC) from a primary treated municipal wastewater using a new electrode configuration in electrocoagulation was evaluated. The used electrode configuration induces a dielectrophoretic (DEP) force by using an asymmetrical aluminum electrode with an alternating current power supply. The impact of applied current, electrolysis time, and interelectrode distance on the removal efficiency of TOC were evaluated. The experimental results showed that the maximum removal efficiency of TOC was obtained at 30 min electrolysis time, 600 mA applied current, and 0.5 cm interelectrode distance. Under these operating conditions, the TOC removal was 87.7% compared to 80.5% using symmetrical aluminum electrodes with no DEP effect. The energy consumption at the selected operating conditions was 3.92 kWh/m3. The experimental results were comparable with the simulation results done by COMSOL Multiphysics software.
Collapse
Affiliation(s)
- Alaa H Hawari
- Department of Civil and Architectural Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar.
| | - Afnan M Alkhatib
- Department of Civil and Architectural Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar
| | - MhdAmmar Hafiz
- Department of Civil and Architectural Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar
| | - Probir Das
- Algal Technologies Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| |
Collapse
|
19
|
Kong X, Zhou Y, Xu T, Hu B, Lei X, Chen H, Yu G. A novel technique of COD removal from electroplating wastewater by Fenton-alternating current electrocoagulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:15198-15210. [PMID: 32067174 DOI: 10.1007/s11356-020-07804-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
The present study employs a novel technique combining Fenton reaction with sinusoidal alternating current electrocoagulation (FSACEC), which is used to remove chemical oxygen demand (COD) in the simulated electroplating wastewater with the advantages of low energy consumption and small sludge. Fe2+, produced from the dissolution of Fe anodes in the FSACEC process, reacts with H2O2 to generate more ·OH and forms the iron hydroxide precipitates. The higher efficiency of COD removal is achieved through both effects of the oxidation reaction and the physical adsorption. The scanning electron microscopy (SEM) analysis shows that the particle size of FSACEC products is between 30 and 40 nm, which is less than the Fenton-direct current electrocoagulation products. The effect of the current concentration (IV), initial pH (pH0), and the addition of hydrogen peroxide (30% H2O2) was discussed on the optimal process parameters. In pH0 2.0 wastewater, applying current concentration of 1 A dm-3, the addition 20 cm3 dm-3 30% H2O2, the removal efficiency of COD reached 94.21% and the residual COD in wastewater was only 60 mg dm-3 after 90 min of operation. In order to investigate the maximum removal efficiency in a certain period of operation, the larger current concentration is applied to remove COD. The FSACEC process exhibits the higher removal COD efficiency and wider operation range of pH0 than the single Fenton technique. The FSACEC process is in accordance with the kinetic law of the pseudo-second-order kinetic adsorption model.
Collapse
Affiliation(s)
- Xiangyu Kong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yihui Zhou
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Tao Xu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Bonian Hu
- Departments of Materials and Chemical Engineering, Hunan Institute of Technology, Hengyang, 421008, China.
| | - Xiping Lei
- Hunan Zihong Ecology Technology Co., Ltd, Changsha, 410100, China
| | - Hong Chen
- School of Materials Science and Energy Engineering, Foshan University, Foshan, 528000, China.
| | - Gang Yu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
20
|
Syam Babu D, Nidheesh PV. A review on electrochemical treatment of arsenic from aqueous medium. CHEM ENG COMMUN 2020. [DOI: 10.1080/00986445.2020.1715956] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- D. Syam Babu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - P. V. Nidheesh
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| |
Collapse
|
21
|
A New Highly Efficient Algerian Clay for the Removal of Heavy Metals of Cu(II) and Pb(II) from Aqueous Solutions: Characterization, Fractal, Kinetics, and Isotherm Analysis. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-019-03985-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Zaidi S, Chaabane T, Sivasankar V, Darchen A, Maachi R, Msagati T. Electro-coagulation coupled electro-flotation process: Feasible choice in doxycycline removal from pharmaceutical effluents. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2015.06.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
23
|
Xu T, Zhou Y, Lei X, Hu B, Chen H, Yu G. Study on highly efficient Cr(VI) removal from wastewater by sinusoidal alternating current coagulation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 249:109322. [PMID: 31494517 DOI: 10.1016/j.jenvman.2019.109322] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/10/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
Cr(IV) pollution in water leads to serious environmental contamination and health risks. Among various wastewater treating methods, electrocoagulation (EC) is widely applied because of its high efficiency. However, there is still a problem of high energy consumption that has to be solved by direct current coagulation (DCC). In this paper, a sinusoidal alternating current coagulation (SACC) technique was used to reduce energy consumption and improve the efficiency of Cr(VI) removal. The effects of pH value, current density, initial concentration of Cr(VI) and reaction time are studied on the removal of Cr(VI). The response surface methodology (RSM) was used to optimize the parameters of SACC process. Compared with pulse direct current coagulation (PDCC) and DCC, SACC can greatly reduce the concentration polarization and prevent Fe electrodes from passivation so as to reduce energy consumption and improve the efficiency of Cr(VI) removal. When pH 5.6 wastewater containing 33.1 mg⋅dm-3 Cr(VI) was treated by applying 2.7 A⋅m-2 density for 20.5 min, the removal rate of Cr(VI) reached 99.73%, and the residual Cr(VI) in the effluent was <0.1 mg⋅dm-3. The power consumption of SACC process decreases by 14.98% compared to DCC process and the electrode loss is about 16.4% less than that of the DCC. The coagulation produced by SACC has a large specific surface area and better adsorption performance through analysis of SEM and EDS as well as adsorption dynamic analysis. FTIR and XRD patterns verified the strong interaction between Cr(VI) and iron sol. The Cr(VI) on the electrode can be deposited as a form of insoluble Cr(III) compounds. Langmuir adsorption isotherm model and the second-order kinetic model in SACC are more suitable to explain the adsorption behavior and characteristics of Cr(VI) in SACC.
Collapse
Affiliation(s)
- Tao Xu
- Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yihui Zhou
- Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xiping Lei
- Hunan Zihong Ecology Technology Co., Ltd, Changsha, 410082, China
| | - Bonian Hu
- Department of Materials and Chemical Engineering, Hunan Institute of Technology, Hengyang, 421008, China.
| | - Hong Chen
- School of Materials Science and Energy Engineering, Foshan University, Foshan, 528000, China.
| | - Gang Yu
- Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
24
|
Niu Y, Hu W, Guo M, Wang Y, Jia J, Hu Z. Preparation of cotton-based fibrous adsorbents for the removal of heavy metal ions. Carbohydr Polym 2019; 225:115218. [PMID: 31521284 DOI: 10.1016/j.carbpol.2019.115218] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/09/2019] [Accepted: 08/19/2019] [Indexed: 10/26/2022]
Abstract
Cotton fiber functionalized with tetraethylenepentamine and chitosan (CTPC) was prepared and used as absorbents for the removal of Cu(II), Pb(II) and Cr(III) ions from aqueous solution. The functionalized materials (CTPC) were characterized by SEM/EDX, FTIR, BET and XRD to confirm the characterization and structural changes of fibers before and after the modifying process. The adsorption performance of CTPC was investigated with different pH, contact time and initial concentration of three kinds of metal ions. Results showed that the maximum adsorption capacity was 81.97 mg g-1 for Cu(II), 123.46 mg g-1 for Pb(II) and 72.99 mg g-1 for Cr(III) based on the Langmuir isotherm model at optimal pH (5.0). Adsorption kinetics of CTPC fibers for Cu(II), Pb(II), and Cr(III) ions followed the pseudo-second-order model. The adsorption-desorption experiments demonstrated that CTPC showed better stability, and CTPC would be an effective and practical material for the treatment and recycling of heavy metal ions in the wastewater.
Collapse
Affiliation(s)
- Yaolan Niu
- Department of Building Environment and Energy Engineering, Guilin university of aerospace technology, Guilin 541004, China; School of Resources, Environment and Materials, GuangXi University, Nanning 530004, China
| | - Wei Hu
- Department of Building Environment and Energy Engineering, Guilin university of aerospace technology, Guilin 541004, China
| | - Mingming Guo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yalin Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinping Jia
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zhanbo Hu
- School of Resources, Environment and Materials, GuangXi University, Nanning 530004, China; Guangxi YiJiang Environmental Protection Technology Co.,Ltd., Nanning 530000, China.
| |
Collapse
|
25
|
López-Guzmán M, Alarcón-Herrera MT, Irigoyen-Campuzano JR, Torres-Castañón LA, Reynoso-Cuevas L. Simultaneous removal of fluoride and arsenic from well water by electrocoagulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 678:181-187. [PMID: 31075584 DOI: 10.1016/j.scitotenv.2019.04.400] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
The co-occurrence of fluoride and arsenic in groundwater presents a problem in many, mostly arid, regions of Latin America and the world. These pollutants cause significant health problems and are difficult to remove simultaneously from drinking water. In this study, the electrocoagulation process for the simultaneous removal of fluoride and arsenic was evaluated in well from the state of Durango, Mexico, in order to both solve the local problem and determine how to apply the method generally. Tests were carried out with different times, concentrations, initial pH values, and electric current densities, with iron and aluminum as electrode materials. The removal efficiencies in simultaneous presence were 85.68% for fluoride and approximately 100% for arsenic. The final concentrations for both pollutants were below the drinking water limits established by the World Health Organization (WHO) and Mexican regulations. The optimum conditions of the electrocoagulation process found were a current density of 4.5 mA/cm2, an initial pH of 5, and a treatment time of 15 min, considering initial fluoride and arsenic concentrations of 5 mg/L and 80 μg/L, respectively.
Collapse
Affiliation(s)
- M López-Guzmán
- Departamento de Ingeniería Sustentable, Centro de Investigación en Materiales Avanzados, S.C. Calle CIMAV 110, Colonia 15 de mayo, C.P. 34147 Durango, Dgo., Mexico
| | - M T Alarcón-Herrera
- Departamento de Ingeniería Sustentable, Centro de Investigación en Materiales Avanzados, S.C. Calle CIMAV 110, Colonia 15 de mayo, C.P. 34147 Durango, Dgo., Mexico
| | - J R Irigoyen-Campuzano
- Departamento de Energías Renovables, Universidad Tecnológica de Durango. Carretera Durango-Mezquital km 3.5, Gabino Santillán, C.P. 34308, Durango, Dgo., Mexico
| | - L A Torres-Castañón
- Departamento de Ingeniería Sustentable, Centro de Investigación en Materiales Avanzados, S.C. Calle CIMAV 110, Colonia 15 de mayo, C.P. 34147 Durango, Dgo., Mexico
| | - Liliana Reynoso-Cuevas
- Departamento de Ingeniería Sustentable, Centro de Investigación en Materiales Avanzados, S.C. Calle CIMAV 110, Colonia 15 de mayo, C.P. 34147 Durango, Dgo., Mexico; Investigador de Cátedras-CONACYT, comisionada a CIMAV.
| |
Collapse
|
26
|
Fouda AEAES, Zaki ESG, Khalifa MA. Evaluation of Some New Synthesized Surfactants Based on Maleic Acid as Inhibitors for Low Carbon Steel (LCS) Corrosion in 1.0 M HCl Solution. Z PHYS CHEM 2019. [DOI: 10.1515/zpch-2018-1361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Some surfactants were synthesized, its chemical structures were checked using Fourier transform infrared spectroscopic (FT-IR). The investigation of inhibition efficiency (IE%) for dissolution of (LCS) in 1.0 M HCl with and without various concentrations of these compounds were done using electrochemical and non-electrochemical methods. Measured data depends on temperature, concentration, and nature of the substance. These compounds were adsorbed on LCS surface following Temkin isotherm. Polarization studies illustrated that these surfactants act as mixed inhibitors (anodic and cathodic). The effect of these inhibitors on LCS surface morphology’s was detected by Scanning Electron Microscope (SEM), ATR-IR (Attenuated total reflection Infra-red) and Atomic Force Microscopy (AFM) techniques. The parameters in an activated state of LCS were studied and estimated. All data techniques were compatible and matched.
Collapse
Affiliation(s)
| | | | - Mohamed Ahmed Khalifa
- Department of Chemistry, Faculty of Science , Mansoura University , Mansoura -35516, Egypt
| |
Collapse
|
27
|
Naje AS, Ajeel MA, Mahdi RI, Alkhateeb RT, Al-Zubaidi HAM. Enhancement of ionic mass transfer coefficient using a unique electrocoagulation reactor with rotating impeller anode. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2019.1585875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Ahmed Samir Naje
- Department of Environment and Pollution, College of Sciences, Al Muthanna University, Al Muthanna Governorate, Iraq
| | - Mohammed A. Ajeel
- Department of Environment and Energy, Al Karkh University Of Science, Baghdad, Iraq
| | - Rahman Ismael Mahdi
- Nanotechnology and Advanced Materials Research Centre, University of Technology, Baghdad, Iraq
| | - Raid T. Alkhateeb
- Department of Environment and Pollution, College of Sciences, Al Muthanna University, Al Muthanna Governorate, Iraq
| | - Hussein A. M. Al-Zubaidi
- Department of Environmental Engineering, College of Engineering, University of Babylon, Babylon, Iraq
| |
Collapse
|
28
|
Karamati-Niaragh E, Alavi Moghaddam MR, Emamjomeh MM, Nazlabadi E. Evaluation of direct and alternating current on nitrate removal using a continuous electrocoagulation process: Economical and environmental approaches through RSM. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 230:245-254. [PMID: 30292013 DOI: 10.1016/j.jenvman.2018.09.091] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/05/2018] [Accepted: 09/25/2018] [Indexed: 06/08/2023]
Abstract
This study aims to investigate the effects of alternating current (AC) and direct current (DC) for nitrate removal and its operating costs by using a continuous electrocoagulation (CEC) process. For this purpose, two series of 31 experiments, which were designed by response surface method (RSM), were carried out in both cases of the AC and the DC modes. In each series, the effect of selected parameters, namely, initial nitrate concentration, inlet flow rate, current density and initial pH along with their interactions on the nitrate removal efficiency as well as its operating costs, as responses, were investigated separately. According to the analysis of variance (ANOVA), there is a reasonable agreement between achieving results and the experimental data for both responses. The nitrate removal in the AC mode was slightly more efficient than that of the DC mode. In addition, the average operating costs of the DC mode, including the energy and the electrode consumption for the CEC process were achieved 54 US$/(kg nitrate removed); whereas this amount was calculated 29 US$/(kg nitrate removed) for the AC mode. Therefore, the average of the operating costs was improved more than 40% using the AC mode, which was mainly related to reduction of aluminum electrode consumption.
Collapse
Affiliation(s)
- Elnaz Karamati-Niaragh
- Civil and Environmental Engineering Department, Amirkabir University of Technology (AUT), Hafez Ave., Tehran, 15875-4413, Iran.
| | - Mohammad Reza Alavi Moghaddam
- Civil and Environmental Engineering Department, Amirkabir University of Technology (AUT), Hafez Ave., Tehran, 15875-4413, Iran.
| | - Mohammad Mahdi Emamjomeh
- Social Determinant of Health Research Center, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Ebrahim Nazlabadi
- Civil and Environmental Engineering Department, Amirkabir University of Technology (AUT), Hafez Ave., Tehran, 15875-4413, Iran.
| |
Collapse
|
29
|
Suba V, Rathika G, Ranjith Kumar E, Saravanabhavan M, Badavath VN, Thangamani KS. Enhanced Adsorption and Antimicrobial Activity of Fabricated Apocynaceae Leaf Waste Activated Carbon by Cobalt Ferrite Nanoparticles for Textile Effluent Treatment. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-018-1030-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Elabbasy H, Zidan S, El-Aziz A. Inhibitive behavior of Ambrosia Maritima extract as an eco-friendly corrosion inhibitor for carbon steel in 1M HCI. ZASTITA MATERIJALA 2019; 60:129-146. [DOI: 10.5937/zasmat1902129e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
31
|
Al-Qodah Z, Al-Shannag M. On the Performance of Free Radicals Combined Electrocoagulation Treatment Processes. SEPARATION AND PURIFICATION REVIEWS 2018. [DOI: 10.1080/15422119.2018.1459700] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Zakaria Al-Qodah
- Chemical Engineering Department, Al-Balqa Applied University, Amman, Jordan
| | - Mohammad Al-Shannag
- Chemical Engineering Department, School of Engineering, The University of Jordan, Amman, Jordan
| |
Collapse
|
32
|
Suba V, Rathika G, Ranjith Kumar E, Saravanabhavan M. Influence of Magnetic Nanoparticles on Surface Changes in CoFe2O4/Nerium Oleander Leaf Waste Activated Carbon Nanocomposite for Water Treatment. J Inorg Organomet Polym Mater 2018. [DOI: 10.1007/s10904-018-0831-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
33
|
Yin Z, Hoffmann M, Jiang S. Sludge disinfection using electrical thermal treatment: The role of ohmic heating. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:262-271. [PMID: 28972902 PMCID: PMC5711000 DOI: 10.1016/j.scitotenv.2017.09.175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/17/2017] [Accepted: 09/17/2017] [Indexed: 05/04/2023]
Abstract
Electrical heating has been proposed as a potential method for pathogen inactivation in human waste sludge, especially in decentralized wastewater treatment systems. In this study, we investigated the heat production and E. coli inactivation in wastewater sludge using electrical thermal treatment. Various concentrations of NaCl and NH4Cl were tested as electrolyte to enhance conductivity in sludge mixtures. At same voltage input (18V), sludge treated with direct current (DC) exhibited slower ascent of temperature and lower energy efficiencies for heat production comparing to that using alternate current (AC). However, DC power showed better performance in E. coli inactivation due to electrochemical inactivation in addition to thermal inactivation. Greater than 6log10 removal of E. coli was demonstrated within 2h using 0.15M of NaCl as electrolyte by AC or DC power. The heat production in sludge was modeled using Maxwell-Eucken and effective medium theory based on the effective electrical conductivity in the two-phase (liquid and solid) sludge mixtures. The results showed that the water and heat loss is a critical consideration in modeling of sludge temperature using ohmic heating. The experimental data also suggested that the models are less applicable to DC power because the electrochemical reactions triggered by DC reduce the concentration of NH4+ and other ions that serve as electrolyte. The results of this study contribute to the development of engineering strategies for human waste sludge management.
Collapse
Affiliation(s)
- Ziqiang Yin
- Department of Civil and Environmental Engineering, University of California, Irvine, Irvine 92617, CA, United States
| | - Michael Hoffmann
- Division of Engineering and Applied Science, California Institution of Technology, Pasadena 91125, CA, United States
| | - Sunny Jiang
- Department of Civil and Environmental Engineering, University of California, Irvine, Irvine 92617, CA, United States.
| |
Collapse
|
34
|
Yao W, Wang J, Wang P, Wang X, Yu S, Zou Y, Hou J, Hayat T, Alsaedi A, Wang X. Synergistic coagulation of GO and secondary adsorption of heavy metal ions on Ca/Al layered double hydroxides. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 229:827-836. [PMID: 28760526 DOI: 10.1016/j.envpol.2017.06.084] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 06/20/2017] [Accepted: 06/24/2017] [Indexed: 06/07/2023]
Abstract
With the extensive application of graphene oxide (GO), it is noticeable that part of GO is directly/indirectly released into the environment and widespread research indicated that it had adverse influences on human health and ecological balance. In this work, a novel nanobelt-like Ca/Al layered double hydroxides (CA-LDH) was synthesized and applied as efficient coagulant for the removal of GO from aqueous solutions. The results indicated that neutral pH, co-existing cations and higher temperature were beneficial to the coagulation of GO. The sequence of cation effect for promoting of GO coagulation was Ca2+ > Mg2+ > K+ > Na+, whereas the effect of anions on GO coagulation was PO43- > CO32- > SO42- > Cl-. Comparing with anions, the cations showed more dominate effect for GO coagulation than anions. Hydrogen bonds and electrostatic interaction were the main coagulation mechanisms for GO coagulation, which were evidenced by FT-IR and XPS analysis. Specifically, for the first time, the reclaimed product of CA-LDH after GO coagulation (CA-LDH + GO) was applied as adsorbents for the secondary application in the removal of heavy metal ions from aqueous solutions. Interestingly, the CA-LDH + GO still had high adsorption capacities, i.e., the maximum adsorption capacities (qmax) for Cu(II), Pb(II), and Cr(VI) were 122.7 mg/g, 221.2 mg/g and 64.4 mg/g, respectively, higher than other similar materials. This paper highlighted the LDH-based nanomaterials are promising materials for the elimination of environmental pollutants and the migration and transformation of carbon nanomaterials in the natural environment.
Collapse
Affiliation(s)
- Wen Yao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Jian Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Pengyi Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Xiangxue Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Shujun Yu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Yidong Zou
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Jing Hou
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Tasawar Hayat
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences, Soochow University, 215123 Suzhou, PR China
| | - Ahmed Alsaedi
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences, Soochow University, 215123 Suzhou, PR China
| | - Xiangke Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences, Soochow University, 215123 Suzhou, PR China; NAAM Research Group, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
35
|
Al-Qodah Z, Al-Shannag M. Heavy metal ions removal from wastewater using electrocoagulation processes: A comprehensive review. SEP SCI TECHNOL 2017. [DOI: 10.1080/01496395.2017.1373677] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zakaria Al-Qodah
- Chemical Engineering Department, Faculty of Engineering Technology Al-Balqa Applied University, Amman, Jordan
| | - Mohammad Al-Shannag
- Chemical Engineering Department, School of Engineering, The University of Jordan, Amman, Jordan
| |
Collapse
|
36
|
Garcia-Segura S, Eiband MMS, de Melo JV, Martínez-Huitle CA. Electrocoagulation and advanced electrocoagulation processes: A general review about the fundamentals, emerging applications and its association with other technologies. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.07.047] [Citation(s) in RCA: 261] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
37
|
Recovery of trace Cu 2+ using a process of nano-adsorption coupled with flotation: SNP as an adsorbing carrier. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Nidheesh PV, Singh TSA. Arsenic removal by electrocoagulation process: Recent trends and removal mechanism. CHEMOSPHERE 2017; 181:418-432. [PMID: 28458217 DOI: 10.1016/j.chemosphere.2017.04.082] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/15/2017] [Accepted: 04/18/2017] [Indexed: 05/13/2023]
Abstract
Arsenic contamination in drinking water is a major issue in the present world. Arsenicosis is the disease caused by the regular consumption of arsenic contaminated water, even at a lesser contaminated level. The number of arsenicosis patients is increasing day-by-day. Decontamination of arsenic from the water medium is the only one way to regulate this and the arsenic removal can be fulfilled by water treatment methods based on separation techniques. Electrocoagulation (EC) process is a promising technology for the effective removal of arsenic from aqueous solution. The present review article analyzes the performance of the EC process for arsenic removal. Electrocoagulation using various sacrificial metal anodes such as aluminium, iron, magnesium, etc. is found to be very effective for arsenic decontamination. The performances of each anode are described in detail. A special focus has been made on the mechanism behind the arsenite and arsenate removal by EC process. Main trends in the disposal methods of sludge containing arsenic are also included. Comparison of arsenic decontamination efficiencies of chemical coagulation and EC is also reported.
Collapse
Affiliation(s)
- P V Nidheesh
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| | - T S Anantha Singh
- Department of Civil Engineering, School of Technology, Pandit Deendayal Petroleum University, Gandhinagar, Gujarat, India
| |
Collapse
|
39
|
Lobo FL, Wang H, Huggins T, Rosenblum J, Linden KG, Ren ZJ. Low-energy hydraulic fracturing wastewater treatment via AC powered electrocoagulation with biochar. JOURNAL OF HAZARDOUS MATERIALS 2016; 309:180-184. [PMID: 26894291 DOI: 10.1016/j.jhazmat.2016.02.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/18/2016] [Accepted: 02/06/2016] [Indexed: 06/05/2023]
Abstract
Produced and flowback waters are the largest byproducts associated with unconventional oil and gas exploration and production. Sustainable and low cost technologies are needed to treat and reuse this wastewater to avoid the environmental problems associated with current management practices (i.e., deep well injection). This study presents a new process to integrate AC-powered electrocoagulation (EC) with granular biochar to dramatically reduce energy use and electrode passivation while achieving high treatment efficiency. Results show achieving a 99% turbidity and TSS removal for the AC-EC-biochar system only used 0.079 kWh/m(3) or 0.15 kWh/kg TSS, which is 70% lower than traditional DC-EC systems and orders of magnitude lower than previous studies. The amount of biochar added positively correlates with energy saving, and further studies are needed to improve organic carbon and salt removal through system integration.
Collapse
Affiliation(s)
- Fernanda Leite Lobo
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309, United States
| | - Heming Wang
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309, United States
| | - Tyler Huggins
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309, United States
| | - James Rosenblum
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309, United States
| | - Karl G Linden
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309, United States
| | - Zhiyong Jason Ren
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309, United States.
| |
Collapse
|
40
|
Kamaraj R, Vasudevan S. Facile one-pot electrosynthesis of Al(OH)3 – kinetics and equilibrium modeling for adsorption of 2,4,5-trichlorophenoxyacetic acid from aqueous solution. NEW J CHEM 2016. [DOI: 10.1039/c5nj02407b] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanosized Al(OH)3 was prepared by a simple, cheap, and eco-friendly method. The electrocoagulant is active for the adsorption of herbicides from water.
Collapse
|
41
|
|
42
|
Kamaraj R, Davidson DJ, Sozhan G, Vasudevan S. Adsorption of herbicide 2-(2,4-dichlorophenoxy)propanoic acid by electrochemically generated aluminum hydroxides: an alternative to chemical dosing. RSC Adv 2015. [DOI: 10.1039/c5ra03339j] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Flow diagram of pilot plant scale studies for the removal of 2,4-DP.
Collapse
Affiliation(s)
- R. Kamaraj
- CSIR-Central Electrochemical Research Institute
- Karaikudi-630 006
- India
| | - D. J. Davidson
- CSIR-Central Electrochemical Research Institute
- Karaikudi-630 006
- India
| | - G. Sozhan
- CSIR-Central Electrochemical Research Institute
- Karaikudi-630 006
- India
| | - S. Vasudevan
- CSIR-Central Electrochemical Research Institute
- Karaikudi-630 006
- India
| |
Collapse
|
43
|
|
44
|
Kamaraj R, Davidson DJ, Sozhan G, Vasudevan S. Adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) from water by in situ generated metal hydroxides using sacrificial anodes. J Taiwan Inst Chem Eng 2014. [DOI: 10.1016/j.jtice.2014.08.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|