1
|
Gui X, Wang Z, Li K, Li Z, Mao X, Geng J, Pan Y. Enhanced nitrogen removal in sewage treatment is achieved by using kitchen waste hydrolysate without a significant increase in nitrous oxide emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167108. [PMID: 37777127 DOI: 10.1016/j.scitotenv.2023.167108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/25/2023] [Accepted: 09/13/2023] [Indexed: 10/02/2023]
Abstract
Kitchen waste hydrolysate (KWH) is an effective replacement for commonly used carbon sources such as sodium acetate (NaAc) and glucose (Glu), in wastewater treatment plants (WWTPs) to enhance the total nitrogen (TN) removal efficiency in sewage and reduce the operating cost of WWTPs. However, KWH utilization introduces complex organic matter that may lead to increased nitrous oxide (N2O) emissions, compared with that of NaAc and Glu, causing significant damage to the atmosphere. Therefore, this study aims to compare the effects of KWH, Glu, and NaAc on N2O emissions in sewage treatment. The results indicated that KWH introduction did not lead to a significant increase in N2O emissions, with a conversion rate of only 5.61 %. Compared with raw sludge, the addition of only Glu and NaAc significantly increased the abundance of the nar G gene, indicating that the readily degradable carbon sources initiated denitrification at a faster rate than KWH. When KWH was added, there was a notable increase in the abundance of genes associated with partial nitrification and denitrification (nir K, hzo, and nos Z). In contrast, Glu and NaAc did not have a significant effect on the nos Z gene. The results suggested that KWH supplementation was more effective to reduce N2O to N2. Moreover, the KWH addition significantly increased the microbial diversity in the sludge and promoted the presence of shortcut nitrification and denitrification bacteria (Comamonadaceae) and denitrification bacteria (Rhodobacteraceae), further indicating the potential of KWH for enhanced denitrification and reduced N2O emissions. Overall, to the best of our knowledge, this is the first study that demonstrated KWH, as a novel and complex organic carbon source, can be safely used in sewage treatment processes to improve the pollutant removal efficiency without causing a significant increase in N2O emissions.
Collapse
Affiliation(s)
- Xuwei Gui
- Chongqing Key Lab of Soil Multi-Scale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Zhengjiang Wang
- Chongqing Key Lab of Soil Multi-Scale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Kaili Li
- School of chemical engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Zhenlun Li
- Chongqing Key Lab of Soil Multi-Scale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing 400716, China.
| | - Xinyu Mao
- Chongqing Key Lab of Soil Multi-Scale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Jinzhao Geng
- Chongqing Key Lab of Soil Multi-Scale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Yan Pan
- Chongqing Key Lab of Soil Multi-Scale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing 400716, China
| |
Collapse
|
2
|
Liu S, Wu F, Guo M, Zeng M, Liu W, Wang Z, Wu N, Cao J. A comprehensive literature mining and analysis of nitrous oxide emissions from different innovative mainstream anammox-based biological nitrogen removal processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166295. [PMID: 37586540 DOI: 10.1016/j.scitotenv.2023.166295] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
The biological nitrogen removal (BNR) process in wastewater treatment plants generates a substantial volume of nitrous oxide (N2O), which possesses a potent greenhouse gas effect. A limited number of studies have systematically investigated the N2O emissions of anammox-based systems with different BNR processes under mainstream conditions. Based on extensive big data statistical analysis, it had been revealed that simultaneous nitritation, anammox and denitrification (SNAD), partial nitritation anammox (PNA) and partial denitrification anammox (PDA), exhibit significantly lower N2O emission factors when compared to traditional BNR processes. The median values for N2O emission factors were determined to be 1.01 %, 1.15 % and 1.43 % for SNAD, PNA and PDA, respectively. Based on nitrogen removal data and N2O emission factors, the N2O emissions from PNA, SNAD and PDA processes were calculated to be 0.016 g·d-1, 0.037 g·d-1 and 0.008 g·d-1, respectively. Furthermore, the machine learning models (SVM and ANN) exhibited excellent predictive performance for N2O emissions in the BNR processes. However, after removing environmental factors, the R2 value of the SVM model sharply decreased. The SHAP feature analysis demonstrated the significant impact of environmental factors on the accuracy of predictive performance in machine learning models. Spearman correlation analysis was employed to investigate the relationship between N2O emissions and operational factors as well as microbial communities. The results demonstrated a negative correlation between HRT, temperature and C/N with N2O emissions. Moreover, strong associations were observed between Nitrosomonas, Nitrospira, Denitratisoma, Thauera species and N2O emissions. The contribution of N2O production via AOB pathways played a key role that was quantitatively calculated to be 93 %, 80 % and 48 % in the PNA, SNAD and PDA processes, respectively. These findings highlight the potential of these innovative BNR processes in mitigating N2O emissions.
Collapse
Affiliation(s)
- Shuang Liu
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Fan Wu
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Mingzhu Guo
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Ming Zeng
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, 300457 Tianjin, China.
| | - Wei Liu
- Department F.A. Forel for Environmental and Aquatic Sciences, Faculty of Sciences, University of Geneva, Carl-Vogt 66, CH-1211 Geneva, Switzerland.
| | - Zhiqiang Wang
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300384, China
| | - Nan Wu
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300384, China
| | - Jingguo Cao
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, 300457 Tianjin, China
| |
Collapse
|
3
|
Wei Q, Zhang J, Luo F, Shi D, Liu Y, Liu S, Zhang Q, Sun W, Yuan J, Fan H, Wang H, Qi L, Liu G. Molecular mechanisms through which different carbon sources affect denitrification by Thauera linaloolentis: Electron generation, transfer, and competition. ENVIRONMENT INTERNATIONAL 2022; 170:107598. [PMID: 36395558 DOI: 10.1016/j.envint.2022.107598] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/24/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Characterizing the molecular mechanism through which different carbon sources affect the denitrification process would provide a basis for the proper selection of carbon sources, thus avoiding excessive carbon source dosing and secondary pollution while also improving denitrification efficiency. Here, we selected Thauera linaloolentis as a model organism of denitrification, whose genomic information was elucidated by draft genome sequencing and KEGG annotations, to investigate the growth kinetics, denitrification performances and characteristics of metabolic pathways under diverse carbon source conditions. We reconstructed a metabolic network of Thauera linaloolentis based on genomic analysis to help develop a systematic method of researching electron pathways. Our findings indicated that carbon sources with simple metabolic pathways (e.g., ethanol and sodium acetate) promoted the reproduction of Thauera linaloolentis, and its maximum growth density reached OD600 = 0.36 and maximum specific growth rate reached 0.145 h-1. These carbon sources also accelerated the denitrification process without the accumulation of intermediates. Nitrate could be reduced completely under any carbon source condition; but in the "glucose group", the maximum accumulation of nitrite was 117.00 mg/L (1.51 times more than that in the "ethanol group", which was 77.41 mg/L), the maximum accumulation of nitric oxide was 363.02 μg/L (7.35 times more than that in the "ethanol group", which was 49.40 μg/L), and the maximum accumulation of nitrous oxide was 22.58 mg/L (26.56 times more than that in the "ethanol group", which was 0.85 mg/L). Molecular biological analyses demonstrated that diverse types of carbon sources directly induced different carbon metabolic activities, resulting in variations in electron generation efficiency. Furthermore, the activities of the electron transport system were positively correlated with different carbon metabolic activities. Finally, these differences were reflected in the phenomenon of electronic competition between denitrifying reductases. Thus we concluded that this was the main molecular mechanism through which the carbon source type affected the denitrification process. In brief, carbon sources with simple metabolic pathways induced higher efficiency of electron generation, transfer, and competition, which promoted rapid proliferation and complete denitrification; otherwise Thauera linaloolentis would grow slowly and intermediate products would accumulate seriously. Our study established a method to evaluate and optimize carbon source utilization efficiency based on confirmed molecular mechanisms.
Collapse
Affiliation(s)
- Qi Wei
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Jinsen Zhang
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Fangzhou Luo
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Dinghuan Shi
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Yuchen Liu
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Shuai Liu
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Qian Zhang
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Wenzhuo Sun
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Junli Yuan
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Haitao Fan
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Hongchen Wang
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China.
| | - Lu Qi
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China.
| | - Guohua Liu
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| |
Collapse
|
4
|
Hong Y, Tu Q, Cheng H, Huangfu X, Chen Z, He Q. Chronic high-dose silver nanoparticle exposure stimulates N 2O emissions by constructing anaerobic micro-environment. WATER RESEARCH 2022; 225:119104. [PMID: 36155009 DOI: 10.1016/j.watres.2022.119104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/05/2022] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Silver nanoparticles (Ag-NPs) were found to be responsible for nitrous oxide (N2O) generation; however, the mechanism of Ag-NP induced N2O production remains controversial and needs to be elucidated. In this study, chronic Ag-NP exposure experiments were conducted in five independent sequencing batch biofilm reactors to systematically assess the effects of Ag-NPs on N2O emission. The results indicated that a low dose of Ag-NPs (< 1 mg/L) slightly suppressed N2O generation by less than 22.99% compared with the no-Ag-NP control method. In contrast, a high dose (5 mg/L) of Ag-NPs stimulated N2O emission by 67.54%. ICP-MS and SEM-EDS together revealed that high Ag-NP content accumulated on the biofilm surface when exposed to 5 mg/L Ag-NPs. N2O and DO microelectrodes, as well as N2O isotopic composition analyses, further demonstrated that the accumulated Ag-NPs construct the anaerobic zone in the biofilm, which is the primary factor for the stimulation of the nitrite reduction pathway to release N2O. A metagenomic analysis further attributed the higher N2O emissions under exposure to a high dose of Ag-NPs to the higher relative abundance of narB and nirK genes (i.e. 1.52- and 1.29-fold higher, respectively). These findings collectively suggest that chronic exposure to high doses of Ag-NPs could enhance N2O emissions by forming anaerobic micro-environments in biofilms.
Collapse
Affiliation(s)
- Yiyihui Hong
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Qianqian Tu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China; China TieGong Investment & Construction Group Co., Ltd, Beijing 101300, China
| | - Hong Cheng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| | - Xiaoliu Huangfu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Ziwei Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Qiang He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| |
Collapse
|
5
|
Liu H, Li Y, Pan B, Zheng X, Yu J, Ding H, Zhang Y. Pathways of soil N 2O uptake, consumption, and its driving factors: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30850-30864. [PMID: 35092587 DOI: 10.1007/s11356-022-18619-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Nitrous oxide (N2O) is an important greenhouse gas that plays a significant role in atmospheric photochemical reactions and contributes to stratospheric ozone depletion. Soils are the main sources of N2O emissions. In recent years, it has been demonstrated that soil is not only a source but also a sink of N2O uptake and consumption. N2O emissions at the soil surface are the result of gross N2O production, uptake, and consumption, which are co-occurring processes. Soil N2O uptake and consumption are complex biological processes, and their mechanisms are still worth an in-depth systematic study. This paper aimed to systematically address the current research progress on soil N2O uptake and consumption. Based on a bibliometric perspective, this study has highlighted the pathways of soil N2O uptake and consumption and their driving factors and measurement techniques. This systematic review of N2O uptake and consumption will help to further understand N transformations and soil N2O emissions.
Collapse
Affiliation(s)
- Hongshan Liu
- College of Earth Sciences, Jilin University, Chao'yang, Changchun, 130061, Jilin, People's Republic of China
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Plant Nutrition and Fertilizer, Jin'an, Fuzhou, 350013, Fujian, People's Republic of China
| | - Yuefen Li
- College of Earth Sciences, Jilin University, Chao'yang, Changchun, 130061, Jilin, People's Republic of China.
| | - Baobao Pan
- School of Agriculture and Food, The University of Melbourne, Parkville, 3010, VIC, Australia
| | - Xiangzhou Zheng
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Plant Nutrition and Fertilizer, Jin'an, Fuzhou, 350013, Fujian, People's Republic of China
| | - Juhua Yu
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Plant Nutrition and Fertilizer, Jin'an, Fuzhou, 350013, Fujian, People's Republic of China
| | - Hong Ding
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Plant Nutrition and Fertilizer, Jin'an, Fuzhou, 350013, Fujian, People's Republic of China
| | - Yushu Zhang
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Plant Nutrition and Fertilizer, Jin'an, Fuzhou, 350013, Fujian, People's Republic of China.
| |
Collapse
|
6
|
Yan X, Yang J, Guo D, Ma J, Su X, Sun J. Effect of carbon source on nitrous oxide emission characteristics and sludge properties during anoxic/aerobic wastewater treatment process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:57557-57568. [PMID: 34091848 DOI: 10.1007/s11356-021-14713-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Carbon sources are an important parameter in wastewater treatment processes and are closely related to treatment efficiency and nitrous oxide (N2O) emissions. In this study, three parallel sequencing batch reactors (SBRs) were processed with acetic acid, propionic acid, and a 1:1 mixture of both acids (calculated in COD) to study the effect of carbon sources on N2O generation and sludge properties (including intracellular polymer content, extracellular polymeric substance (EPS) composition, particle size distribution, settleability, and microbial community structure). The results showed that the highest COD, NH4+-N, and TP removal efficiencies (92.2%, 100%, and 82.3%, respectively) were achieved by the reactor with mixed acid as the carbon source, whereas the reactor using acetic acid had the highest TN removal rate (82.6%) and the lowest N2O-N conversion rate (1.4%, based on TN removal). The reactor with the carbon source of mixed acid produced the highest polyhydroxyalkanoate (PHA) content, which led to an increase in N2O generation from the aerobic denitrification pathway. The SBR with mixed acid carbon source also had the highest concentration of EPS, which resulted in the largest particle size and the lowest settleability of sludge flocs among the SBRs. Microbial analysis results revealed that the difference in carbon sources resulted in a variation in the microbial community as well as in the relative abundances of functional microbes involved in biological nitrogen removal processes. The mixed acid promoted the development of ammonia-oxidizing bacteria (AOB), which conducted the primary N2O generation pathway of aerobic denitrification bioreactions. The carbon source of acetic acid promoted the growth of denitrifying bacteria (DNB), which led to the highest TN removal rate. This study provides a comprehensive understanding of the effects of carbon sources on N2O generation and sludge properties for WWTPs.
Collapse
Affiliation(s)
- Xu Yan
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, Henan, China.
| | - Jie Yang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Dongli Guo
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Jiahui Ma
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Xianfa Su
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Jianhui Sun
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, Henan, China
| |
Collapse
|
7
|
Fei X, Li S, Wang L, Wang L, Chen F. Impact of light on anoxic/oxic reactors: performance, quorum sensing, and metagenomic characteristics. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:1452-1463. [PMID: 34559079 DOI: 10.2166/wst.2021.338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The effect of light has raised attention on wastewater treatment. However, little research has concentrated on the influences of light on activated sludge. In this study, the influences of light on the performance, quorum sensing (QS) and metagenomic characteristics of anoxic/oxic reactors were investigated. The reactor without light (AO1) showed higher total nitrogen (TN) removal (79.15 ± 1.69%) than the reactor with light (AO2) (74.54 ± 1.30%), and significant differences were observed. It was observed that light facilitated the production of protein-like and tryptophan-like substances by employing parallel factor analysis for extracellular polymeric substance (EPS), resulting in more EPS production in AO2, indicating light was beneficial to EPS production. The concentrations of N-acyl-homoserine lactones (AHLs) were various in the two reactors, so the AHLs-mediated QS behaviors in both reactors were also different. These results revealed that light significantly influenced nitrogen removal, EPS, and QS. Metagenomic analysis based on Tax4Fun demonstrated that light reduced the denitrification, stimulated the polysaccharide and protein biosynthesis pathways and down-regulated the AHLs synthesis pathway, resulting in lower TN removal, more EPS production, and lower AHLs concentrations. Based on the above, the likely mechanism was proposed for the influences of light on the reactor.
Collapse
Affiliation(s)
- Xuening Fei
- School of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Songya Li
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, Henan 467036, China E-mail:
| | - Linpei Wang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, Henan 467036, China E-mail:
| | - Le Wang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, Henan 467036, China E-mail:
| | - Fuqiang Chen
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| |
Collapse
|
8
|
Xu R, Fan F, Lin Q, Yuan S, Meng F. Overlooked Ecological Roles of Influent Wastewater Microflora in Improving Biological Phosphorus Removal in an Anoxic/Aerobic MBR Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6270-6280. [PMID: 33830745 DOI: 10.1021/acs.est.0c07891] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The ecological roles of influent microflora in activated sludge communities have not been well investigated. Herein, parallel lab-scale anoxic/aerobic (A/O) membrane bioreactors (MBRs), which were fed with raw (MBR-C) and sterilized (MBR-T) municipal wastewater, were operated. The MBRs showed comparable nitrogen removal but superior phosphorus removal in MBR-C than MBR-T over the long-term operation. The MBR-C sludge community had higher diversity and deterministic assembly than the MBR-T sludge community as revealed by 16S rRNA gene sequencing and null model analysis. Moreover, the MBR-C sludge community had higher abundance of polyphosphate accumulating organisms (PAOs) and hydrolytic/fermentative bacteria (HFB) but lower abundance of glycogen-accumulating organisms (GAOs), in comparison with MBR-T sludge. Intriguingly, the results of both the net growth rate and Sloan's neutral model demonstrated that HFB in the sludge community were generally slow-growing or nongrowing and their consistent presence in activated sludge was primarily attributed to the HFB immigration from influent microflora. Positive correlations between PAOs and HFB and potential competitions between HFB and GAOs were observed, as revealed by the putative species-species associations in the ecological networks. Taken together, this work deciphers the positive ecological roles of influent microflora, particularly HFB, in system functioning and highlights the necessity of incorporating influent microbiota for the design and modeling of A/O MBR plants.
Collapse
Affiliation(s)
- Ronghua Xu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, P. R. China
| | - Fuqiang Fan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, P. R. China
| | - Qining Lin
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, P. R. China
| | - Shasha Yuan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, P. R. China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, P. R. China
| |
Collapse
|
9
|
Zhang L, Zhao T, Shi E, Zhang Z, Zhang Y, Chen Y. The non-negligibility of greenhouse gas emission from a combined pre-composting and vermicomposting system with maize stover and cow dung. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:19412-19423. [PMID: 33394443 DOI: 10.1007/s11356-020-12172-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
The acceptance of combined pre-composting and vermicomposting systems is increasing because of the advantage in rapidly stabilizing organic wastes and reducing emission of greenhouse gasses (GHG). However, GHG emission during the pre-composting phase is often neglected when evaluating the system. This study aimed to quantify GHG emission from a combined pre-composting and vermicomposting system and to investigate the effects of earthworms on GHG emission. A combined system using Eisenia fetida was employed to stabilize maize stover and cow dung (mixing ratio 60:40). The inoculating densities were 60 (T1), 120 (T2), and 180 (T3) earthworms per kilogram of substrate. A traditional composting system without earthworms was set as a control (T0). The results indicated that earthworms increased CO2 while decreased CH4 and N2O emissions compared to the control. Higher emission of CO2 suggested that the earthworms promoted the degradation of the substrates. Lower emission of CH4 and N2O showed the advantage of the combined system because CH4 and N2O possess extremely higher global warming potential than that of CO2. T2 is recommended for stabilizing maize stover and cow dung when making a tradeoff between stabilization rate and reduction of GHG. The percentages of GHG emission during pre-composting relative to total GHG emission in T1, T2, and T3 were 34%, 35%, and 30%, respectively. GHG emission is non-negligible when using a combined system, especially the emission of GHG during the pre-composting phase cannot be ignored.
Collapse
Affiliation(s)
- Lei Zhang
- College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, China
| | - Tingting Zhao
- College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, China
| | - Enhui Shi
- College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, China
| | - Zunhao Zhang
- The Electron Microscopy Center, Jilin University, Changchun, 130000, China
| | - Yan Zhang
- Costal Research and Extension Center, Mississippi State University, Starkville, MS, 39567, USA
| | - Yuxiang Chen
- College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, China.
| |
Collapse
|
10
|
Zhang L, Cui B, Yuan B, Zhang A, Feng J, Zhang J, Han X, Pan L, Li L. Denitrification mechanism and artificial neural networks modeling for low-pollution water purification using a denitrification biological filter process. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117918] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Pan X, Chen M, Wang F, Li Q. Effect of biochar addition on the removal of organic and nitrogen pollutants from leachate treated with a semi-aerobic aged refuse biofilter. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2020; 38:1176-1184. [PMID: 32964808 DOI: 10.1177/0734242x20957411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The effect of biochar on the removal of organic and nitrogen contaminants from leachate in a semi-aerobic aged refuse biofilter (SAARB) was investigated. A preset amount of biochar was mixed with the aged refuse to explore the enhancement ability of pollutant removal by characterizing the leachate effluent and gas. The results showed that biochar contributed to the removal of organic and nitrogen pollutants from the leachate and that increasing the amount of biochar added led to higher colour number, chemical oxygen demand, ammonia nitrogen, and total nitrogen removal efficiencies. Furthermore, the addition of biochar significantly increased the removal of large molecule organic pollutants from the leachate. The improved removal of organics was due to the considerable number of surface functional groups and the large surface area of the biochar, which effectively absorbed and removed a significant amount of the organic matter from the leachate. Biochar elevated the dissolved oxygen concentration in the semi-aerobic system, which facilitated the completion of the nitrification reaction. It also promoted denitrification by acting as a supplementary carbon source. The nitrous oxide (N2O) emissions decreased as the amount of biochar added increased. When the biochar proportion reached 3%, the N2O emission was only 1.11% of the original total nitrogen and the di-nitrogen emission was 19.61%. The findings of this study can be used to improve the treatment of leachate using biochar combined with a SAARB.
Collapse
Affiliation(s)
- Xuqin Pan
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, China
| | - Maonan Chen
- SWJTU-Leeds Joint School, Southwest Jiaotong University, China
| | - Fan Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, China
| | - Qibin Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, China
| |
Collapse
|
12
|
Zhou X, Song J, Wang G, Yin Z, Cao X, Gao J. Unravelling nitrogen removal and nitrous oxide emission from mainstream integrated nitrification-partial denitrification-anammox for low carbon/nitrogen domestic wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 270:110872. [PMID: 32507736 DOI: 10.1016/j.jenvman.2020.110872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/05/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Stable supply of nitrite is often a major obstacle for achieving mainstream anammox due to washout failure of nitrite oxidizers (NOB) at low influent ammonia of municipal wastewater. In this study, an integrated nitrification, partial denitrification and anammox (INPDA) as a one-stage mainstream nitrogen removal alternative was established in a low-oxygen sequencing batch biofilm reactor treating synthetic sewage. The overall nitrogen removal and nitrous oxide (N2O) emission were mainly investigated at 50 mg/L NH4+-N influent with a low carbon/nitrogen (C/N) of 2.5. Continuous operation demonstrated that as high as 98.8% NH4+-N and 94.1% TN were removed in SBBR system. Cyclic experiment verified sequential completion of nitrification, partial denitrification and anammox were responsible for high-rate TN removal. During one typical cycle, the trend of N2O emission was characterized by firstly rapid rise, then fluctuant decrease followed by rapid decrease and finally slow disappearance. The maximum N2O emission rate reached up to 6.7 μg/(L·min) occurred at 75 min. High-throughput sequencing revealed the co-existence of nitrifying, denitrifying and anammox species and large detection of key functional genes (Hzs, Hdh, Hao, Nor) in an oxygen-limited SBBR, thereby highly correlating nitrogen removal and N2O emission characteristics. Nitrogen metabolic pathways analysis further suggest denitratation(NO3--N to NO2--N)-based anammox is a main route for mainstream nitrogen removal. Moreover, N2O might be generated by both hydroxylamine oxidation step in nitrification and also heterotrophic denitrification pathway. The research findings provide more deep understandings of enhanced nitrogen removal and mitigated N2O footprint from a single mainstream anammox-based system.
Collapse
Affiliation(s)
- Xin Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province,Taiyuan, 030024, China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China.
| | - Jingjing Song
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province,Taiyuan, 030024, China
| | - Gonglei Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province,Taiyuan, 030024, China
| | - Zeyang Yin
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province,Taiyuan, 030024, China
| | - Xiwei Cao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province,Taiyuan, 030024, China
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
13
|
Ye J, Gao H, Wu J, Chang Y, Chen Z, Yu R. Responses of nitrogen transformation processes and N 2O emissions in biological nitrogen removal system to short-term ZnO nanoparticle stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135916. [PMID: 31822409 DOI: 10.1016/j.scitotenv.2019.135916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/01/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
Although the adverse effects of ZnO nanoparticles (ZnO NPs) on biological nitrogen removal (BNR) processes have widely been reported, the impacts of ZnO NPs on the whole nitrogen transformation processes, especially the production of nitrous oxide (N2O), a typical greenhouse gas in a BNR system have rarely been systematically studied yet. In this study, the performances of both the nitrification and denitrification processes were investigated and the N2O emission was simultaneously monitored in a sequencing batch reactor (SBR) when exposed to 1, 25 or 50 mg/L ZnO NPs for one cycle. The dose-dependent ZnO NP depression effects were generally observed on denitrification processes, total nitrogen (TN) removal efficiency and N2O emissions but not nitrification process. Meanwhile, the N2O emission was positively correlated with NO2--N accumulation in the oxic stage. Further investigation showed that the expressions of nitrate (NO3-) reduction associated narG gene were down-regulated with the increase of NP stress, and the transcript ratios of NO2-/NO reduction gene to N2O reduction one (nirK/nosZ and norB/nosZ) decreased. The released Zn2+ from ZnO NPs took an important role in the inhibition of denitrification processes. ZnO NPs addition also induced the dose-dependent variations in the superoxide dismutase (SOD) and catalase (CAT) activities, which probably contributed to the suppression of the excess reactive oxygen species (ROS) generations to mitigate nanotoxicity. The excessive secretion of protein (PN) in tightly bound EPS (TB-EPS) when ZnO NPs were no <25 mg/L further supported the system's potential self-regulation mechanism for nanotoxicity resistance. CAPSULE: The effects of ZnO NPs on the whole nitrogen transformation processes in a biological nitrogen removal sequencing batch reactor, including the N2O emissions were investigated. The system's potential self-regulation mechanism for nanotoxicity resistance was addressed.
Collapse
Affiliation(s)
- Jinyu Ye
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China
| | - Huan Gao
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China
| | - Junkang Wu
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China
| | - Yan Chang
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China
| | - Zhoukai Chen
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China
| | - Ran Yu
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
14
|
Yan P, Li K, Guo JS, Zhu SX, Wang ZK, Fang F. Toward N 2O emission reduction in a single-stage CANON coupled with denitrification: Investigation on nitrite simultaneous production and consumption and nitrogen transformation. CHEMOSPHERE 2019; 228:485-494. [PMID: 31051351 DOI: 10.1016/j.chemosphere.2019.04.148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 04/09/2019] [Accepted: 04/20/2019] [Indexed: 06/09/2023]
Abstract
A dynamic analysis approach for determining nitrite production and consumption rates was established to systematically investigate the characteristics of nitrogen transformation and N2O emission of the completely autotrophic nitrogen removal over nitrite (CANON) process coupled with denitrification using a sequencing batch biofilm reactor (SBBR). The results indicate that anaerobic ammonium-oxidizing bacteria was not inhibited significantly by low C/N ratios. There were no obvious differences in the nitrite production rate, nitrite consumption rate or nitrogen removal among reactors operated with C/N ratios of 0, 0.67 and 1.00, which suggested that the certain carbon source did not significantly affect the nitrite conversion and nitrogen removal in the process. More than 60% of total N2O emission is generated during the initial phase of each period in the SBBR. More than 94.5% of N2O was generated by NO2--N consumption via denitrification in the process. Interestingly, total N2O production drops by 16.7%, when the C/N ratio increases from 0 to 1. This phenomenon may be caused by the inhibition of N2O production via AOB denitrification. Therefore, an appropriate carbon source (C/N = 1.00) has the beneficial effect of reducing N2O emission by CANON coupled with denitrification. The results of this study provide an important empirical foundation for the mitigation of N2O emission in the CANON process coupled with denitrification.
Collapse
Affiliation(s)
- Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, No. 174, Shazhen Street, Chongqing, 400045, China.
| | - Kai Li
- College of Eco-environment Engineering, Guizhou Minzu University, Huaxi District, Guiyang City, Guizhou, 550025, China
| | - Jin-Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, No. 174, Shazhen Street, Chongqing, 400045, China
| | - Si-Xi Zhu
- College of Eco-environment Engineering, Guizhou Minzu University, Huaxi District, Guiyang City, Guizhou, 550025, China
| | - Zhi-Kang Wang
- College of Eco-environment Engineering, Guizhou Minzu University, Huaxi District, Guiyang City, Guizhou, 550025, China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, No. 174, Shazhen Street, Chongqing, 400045, China.
| |
Collapse
|
15
|
Chai H, Deng S, Zhou X, Su C, Xiang Y, Yang Y, Shao Z, Gu L, Xu X, Ji F, He Q. Nitrous oxide emission mitigation during low-carbon source wastewater treatment: effect of external carbon source supply strategy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:23095-23107. [PMID: 31183761 DOI: 10.1007/s11356-019-05516-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
Nitrous oxide (N2O) generated during biological nitrogen removal in wastewater treatment processes has contributed an important proportion to the global warming effect. To evaluate the possibility of N2O emission mitigating by changing carbon source supply strategies, nitrogen transformation characteristics and N2O emissions with methanol one-time dosing and step dosing were investigated. Two sets of laboratory-scale sequencing batch biofilm reactors (SBBRs) were conducted to treat real domestic wastewater with low carbon source. The results revealed that reactors with methanol step dosing showed a lower N2O emission of 0.0402 ± 0.0016 mg/(L·h), together with a higher total nitrogen and ammonia nitrogen removal efficiencies of 83.30% ± 1.21 and 93.45% ± 1.20, respectively. While N2O emission from conventional one-time dosing reactors was 0.0741 ± 0.0025 mg/(L·h), total nitrogen and ammonia nitrogen removal efficiencies were 75.71% ± 0.54 and 88.45% ± 0.59, respectively. The N2O emission factor of SBBR was reduced from 6.26% ± 0.21 to 3.40% ± 0.14 with methanol step dosing. Moreover, nitrification rates in aerobic phases were reduced, while denitrification rates in anoxic phases were elevated. Hence, carbon source step dosing enhanced nitrogen removal and reduced N2O emission compared with one-time dosing, which is a simply achievable strategy for N2O emission reduction in highly automated systems like wastewater treatment plants.
Collapse
Affiliation(s)
- Hongxiang Chai
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, People's Republic of China.
- National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400045, People's Republic of China.
| | - Siping Deng
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, People's Republic of China
- National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Xiaoyuan Zhou
- College of Physics, Chongqing University, Chongqing, 401331, People's Republic of China
| | - Chuanrong Su
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, People's Republic of China
- National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Yu Xiang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, People's Republic of China
- National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Yan Yang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, People's Republic of China
- National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Zhiyu Shao
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, People's Republic of China
- National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Li Gu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, People's Republic of China
- National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Xuan Xu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, People's Republic of China
- National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Fangying Ji
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, People's Republic of China
- National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Qiang He
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, People's Republic of China
- National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400045, People's Republic of China
| |
Collapse
|
16
|
Wisniewski K, Kowalski M, Makinia J. Modeling nitrous oxide production by a denitrifying-enhanced biologically phosphorus removing (EBPR) activated sludge in the presence of different carbon sources and electron acceptors. WATER RESEARCH 2018; 142:55-64. [PMID: 29859392 DOI: 10.1016/j.watres.2018.05.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/04/2018] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
In this study, the IWA Activated Sludge Model No. 2d (ASM2d) was expanded to identify the most important mechanisms leading to the anoxic nitrous oxide (N2O) production in the combined nitrogen (N) and phosphorus (P) removal activated sludge systems. The new model adopted a three-stage denitrification concept and was evaluated against the measured data from one/two-phase batch experiments carried out with activated sludge withdrawn from a local, large-scale biological nutrient removal wastewater treatment plant. The experiments were focused on investigating the effects of different external carbon sources (acetate, ethanol) and electron acceptors (nitrite, nitrate) on the mechanisms of N2O production in enhanced biological P removal by polyphosphate accumulating organisms (PAOs) and external carbon-based denitrification by ordinary heterotrophic organisms (OHOs). The experimental results explicitly showed that N2O production was predominantly governed by the presence of nitrite in the reactor regardless of the examined carbon source and the ratio COD/N in the reactor. The model was capable of accurately predicting (with R2 > 0.9) the behavior of not only N2O-N, but also NO3-N, NO2-N, soluble COD, and PO4-P. The simulation results revealed that only OHOs were responsible for N2O production, whereas the present denitrifying PAOs reduced only nitrate to nitrite.
Collapse
Affiliation(s)
- K Wisniewski
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233, Gdansk, Poland.
| | - M Kowalski
- Deptartment of Civil Engineering, University of Manitoba, 15 Gillson Road, R3T 5V6, Winnipeg, Canada
| | - J Makinia
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233, Gdansk, Poland
| |
Collapse
|
17
|
He Z, Feng Y, Zhang S, Wang X, Wu S, Pan X. Oxygenic denitrification for nitrogen removal with less greenhouse gas emissions: Microbiology and potential applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 621:453-464. [PMID: 29195194 DOI: 10.1016/j.scitotenv.2017.11.280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/24/2017] [Accepted: 11/24/2017] [Indexed: 06/07/2023]
Abstract
Nitrogen pollution is a worldwide problem and has been extensively treated by canonical denitrification (CDN) process. However, the CDN process generates several issues such as intensive greenhouse gas (GHG) emissions. In the past years, a novel biological nitrogen removal (BNR) process of oxygenic denitrification (O2DN) has been proposed as a promising alternative to the CDN process. The classic denitrification four steps are simplified to three steps by O2DN bacteria without producing and releasing the intermediate nitrous oxide (N2O), a potent GHG. In this article, we summarized the findings in previous literatures as well as our results, including involved microorganisms and metabolic mechanisms, functional genes and microbial detection, kinetics and influencing factors and their potential applications in wastewater treatment. Based on our knowledge and experience, the benefits and limitations of the current O2DN process were analyzed. Since O2DN is a new field in wastewater treatment, more research and application is required, especially the development of integrated processes and the quantitative assessment of the contribution of O2DN process in natural habitats and engineered systems.
Collapse
Affiliation(s)
- Zhanfei He
- College of Environment, Zhejiang University of Technology, Hangzhou, China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| | - Yudong Feng
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Shijie Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Xiaonan Wang
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Shuyun Wu
- College of Environment, Zhejiang University of Technology, Hangzhou, China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou, China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
18
|
Wang J, Gong B, Wang Y, Wen Y, Zhou J, He Q. The potential multiple mechanisms and microbial communities in simultaneous nitrification and denitrification process treating high carbon and nitrogen concentration saline wastewater. BIORESOURCE TECHNOLOGY 2017; 243:708-715. [PMID: 28710998 DOI: 10.1016/j.biortech.2017.06.131] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 06/20/2017] [Accepted: 06/22/2017] [Indexed: 06/07/2023]
Abstract
A simultaneous nitrification and denitrification (SND) process in sequencing batch biofilm reactor (SBBR) was established to treat high carbon and nitrogen saline wastewater in this study. Acetate, glucose and an organic mixture were applied as organic sources in three SBBRs, achieving average total nitrogen removal efficiency of 97.15%, 63.94% and 94.99% during 120days' operation, respectively. The underlying nitrogen removal mechanisms were investigated by 16S rRNA sequencing and batch tests. Results showed different carbon sources had great impact on microbial communities, and led to different nitrogen removal mechanism. Autotrophic and heterotrophic nitrification together contributed to the well performance of nitrification process. And denitrification was carried out by a combined anoxic and aerobic denitrificans. Furthermore, the SND process was mainly via nitrite not nitrate. Compared with ammonia-oxidizing bacteria, ammonia-oxidizing archaea with a much higher abundance contributed more to autotrophic nitrification. Pseudomonas_stutzeri and Bacillus_cereus were the predominant detected heterotrophic nitrification-aerobic denitrification bacterium.
Collapse
Affiliation(s)
- Jiale Wang
- Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400045, PR China
| | - Benzhou Gong
- Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400045, PR China
| | - Yingmu Wang
- Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400045, PR China
| | - Yuhui Wen
- Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400045, PR China
| | - Jian Zhou
- Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400045, PR China; Key Laboratory of the Three Gorges Reservoir's Eco-Environments, Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| | - Qiang He
- Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400045, PR China; Key Laboratory of the Three Gorges Reservoir's Eco-Environments, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
19
|
Massara TM, Malamis S, Guisasola A, Baeza JA, Noutsopoulos C, Katsou E. A review on nitrous oxide (N 2O) emissions during biological nutrient removal from municipal wastewater and sludge reject water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 596-597:106-123. [PMID: 28426987 DOI: 10.1016/j.scitotenv.2017.03.191] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 03/19/2017] [Accepted: 03/19/2017] [Indexed: 05/20/2023]
Abstract
Nitrous oxide (N2O) is an important pollutant which is emitted during the biological nutrient removal (BNR) processes of wastewater treatment. Since it has a greenhouse effect which is 265 times higher than carbon dioxide, even relatively small amounts can result in a significant carbon footprint. Biological nitrogen (N) removal conventionally occurs with nitrification/denitrification, yet also through advanced processes such as nitritation/denitritation and completely autotrophic N-removal. The microbial pathways leading to the N2O emission include hydroxylamine oxidation and nitrifier denitrification, both activated by ammonia oxidizing bacteria, and heterotrophic denitrification. In this work, a critical review of the existing literature on N2O emissions during BNR is presented focusing on the most contributing parameters. Various factors increasing the N2O emissions either per se or combined are identified: low dissolved oxygen, high nitrite accumulation, low chemical oxygen demand to nitrogen ratio, slow growth of denitrifying bacteria, uncontrolled pH and temperature. However, there is no common pattern in reporting the N2O generation amongst the cited studies, a fact that complicates its evaluation. When simulating N2O emissions, all microbial pathways along with the potential contribution of abiotic N2O production during wastewater treatment at different dissolved oxygen/nitrite levels should be considered. The undeniable validation of the robustness of such models calls for reliable quantification techniques which simultaneously describe dissolved and gaseous N2O dynamics. Thus, the choice of the N-removal process, the optimal selection of operational parameters and the establishment of validated dynamic models combining multiple N2O pathways are essential for studying the emissions mitigation.
Collapse
Affiliation(s)
- Theoni Maria Massara
- Department of Mechanical, Aerospace and Civil Engineering, Brunel University London, Uxbridge Campus, Middlesex, UB8 3PH, Uxbridge, UK; Institute of Environment, Health and Societies, Brunel University London, Kingston Lane, Middlesex, UB8 3PH, Uxbridge, UK
| | - Simos Malamis
- Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 5 Iroon Polytechniou St., Zographou Campus, 15780 Athens, Greece
| | - Albert Guisasola
- GENOCOV, Departament d'Enginyeria Química, Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallés (Barcelona), 08193 Barcelona, Spain
| | - Juan Antonio Baeza
- GENOCOV, Departament d'Enginyeria Química, Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallés (Barcelona), 08193 Barcelona, Spain
| | - Constantinos Noutsopoulos
- Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 5 Iroon Polytechniou St., Zographou Campus, 15780 Athens, Greece
| | - Evina Katsou
- Department of Mechanical, Aerospace and Civil Engineering, Brunel University London, Uxbridge Campus, Middlesex, UB8 3PH, Uxbridge, UK; Institute of Environment, Health and Societies, Brunel University London, Kingston Lane, Middlesex, UB8 3PH, Uxbridge, UK.
| |
Collapse
|
20
|
Li H, Zuo W, Tian Y, Zhang J, Di S, Li L, Su X. Simultaneous nitrification and denitrification in a novel membrane bioelectrochemical reactor with low membrane fouling tendency. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:5106-5117. [PMID: 26856866 DOI: 10.1007/s11356-016-6084-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 01/08/2016] [Indexed: 06/05/2023]
Abstract
Microbial fuel cells (MFCs) can use nitrate as a cathodic electron acceptor for electrochemical denitrification, yet there is little knowledge about how to apply them into current wastewater treatment process to achieve efficient nitrogen removal. In this study, two dual-chamber MFCs were integrated with an aerobic membrane bioreactor to construct a novel membrane bioelectrochemical reactor (MBER) for simultaneous nitrification and denitrification under specific aeration. The effects of chemical oxygen demand (COD) loading rate, COD/N ratio, hydraulic retention time (HRT), and external resistance on the system performance were investigated. High effluent quality was obtained in the MBER in terms of COD and ammonium. During the operation, denitrification simultaneously occurred with nitrification at the bio-cathode of the MBER, achieving a maximal nitrogen removal efficiency of 84.3 %. A maximum power density of 1.8 W/m3 and a current density of 8.5 A/m3 were achieved with a coulombic efficiency of 12.1 %. Furthermore, compared to the control system, the MBER exhibited lower membrane fouling tendency due to mixed liquor volatile suspended solids (MLVSSs) and extracellular polymeric substance (EPS) reductions, EPSp/EPSc ratio decrease, and particle size increase of the sludge. These results suggest that the MBER holds potential for efficient nitrogen removal, electricity production, and membrane fouling mitigation.
Collapse
Affiliation(s)
- Hui Li
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Wei Zuo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, China
| | - Yu Tian
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China.
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, China.
| | - Jun Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, China
| | - Shijing Di
- Research Center for Eco-Environmental Science in Shanxi, Taiyuan, 030009, China
| | - Lipin Li
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Xinying Su
- School of Food Engineering, Harbin University of Commerce, Harbin, 150076, China
| |
Collapse
|
21
|
Zhang X, Wang X, Zhang J, Huang X, Wei D, Lan W, Hu Z. Reduction of nitrous oxide emissions from partial nitrification process by using innovative carbon source (mannitol). BIORESOURCE TECHNOLOGY 2016; 218:789-795. [PMID: 27423546 DOI: 10.1016/j.biortech.2016.07.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/04/2016] [Accepted: 07/09/2016] [Indexed: 06/06/2023]
Abstract
The purpose of this study was to evaluate the effect of mannitol as carbon source on nitrogen removal and nitrous oxide (N2O) emission during partial nitrification (PN) process. Laboratory-scale PN sequencing batch reactors (SBRs) were operated with mannitol and sodium acetate as carbon sources, respectively. Results showed that mannitol could remarkably reduce N2O-N emission by 41.03%, without influencing the removal efficiency of NH4(+)-N. However, it has a significant influence on nitrite accumulation ratio (NAR) and TN removal, which were 19.97% and 13.59% lower than that in PN with sodium acetate, respectively. Microbial analysis showed that the introduction of mannitol could increase the abundance of bacteria encoding nosZ genes. In addition, anti-oxidant enzymes (T-SOD, POD and CAT) activities were significantly reduced and the dehydrogenase activity had an obvious increase in mannitol system, indicating that mannitol could alleviate the inhibition of N2O reductase (N2OR) activities caused by high NO2(-)-N concentration.
Collapse
Affiliation(s)
- Xinwen Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, Shandong, PR China
| | - Xiaoqing Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, Shandong, PR China
| | - Jian Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, Shandong, PR China
| | - Xiaoyu Huang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, Shandong, PR China
| | - Dong Wei
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, Shandong, PR China
| | - Wei Lan
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, Shandong, PR China
| | - Zhen Hu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, Shandong, PR China.
| |
Collapse
|
22
|
Nie Y, Li L, Isoda R, Wang M, Hatano R, Hashidoko Y. Physiological and Genotypic Characteristics of Nitrous Oxide (N2O)-Emitting Pseudomonas Species Isolated from Dent Corn Andisol Farmland in Hokkaido, Japan. Microbes Environ 2016; 31:93-103. [PMID: 27109825 PMCID: PMC4912161 DOI: 10.1264/jsme2.me15155] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dent corn Andisol at the Hokkaido University Shizunai Livestock Experimental Farm actively emits nitrous oxide (N2O). In order to screen for culturable and active N2O emitters with high N2O emission potential, soft gel medium containing excess KNO3 was inoculated with soil suspensions from farm soil samples collected at different land managements. Dominant bacterial colonies were searched for among 20 of the actively N2O-emitting cultures from post-harvest soil and 19 from pre-tilled soil, and all isolates were subjected to the culture-based N2O emission assay. Ten active N2O-emitting bacteria, four from post-harvest soil and six from pre-tilled soil, out of 156 isolates were identified as genus Pseudomonas by 16S rRNA gene sequencing. These N2O emitters showed clear responses to NO3(-) within a neutral pH range (5.5-6.7), and accelerated N2O production with 1.5-15 mM sucrose supplementation, suggesting the production of N2O during the denitrification process. However, the negative responses of 6 active N2O emitters, 3 from post-harvest soil and 3 from pre-tilled soil, out of the 10 isolates in the acetylene-blocking assay suggest that these 6 N2O emitters are incomplete denitrifiers that have lost their N2O reductase (N2OR) activity. Although the PCR assay for the denitrification-associated genes, narG and nirK/S, was positive in all 10 Pseudomonas isolates, those negative in the acetylene-blocking assay were nosZ-negative. Therefore, these results imply that the high N2O emission potential of dent corn Andisol is partly attributed to saprophytic, nosZ gene-missing pseudomonad denitrifiers.
Collapse
Affiliation(s)
- Yanxia Nie
- Research Faculty and Graduate School of Agriculture, Hokkaido University
| | | | | | | | | | | |
Collapse
|
23
|
Wang H, Ji G, Bai X. Enhanced long-term ammonium removal and its ranked contribution of microbial genes associated with nitrogen cycling in a lab-scale multimedia biofilter. BIORESOURCE TECHNOLOGY 2015; 196:57-64. [PMID: 26231124 DOI: 10.1016/j.biortech.2015.07.055] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/15/2015] [Accepted: 07/17/2015] [Indexed: 06/04/2023]
Abstract
The multimedia biofilter achieved high and stable removal efficiencies for chemical oxygen demand (COD, 62-98%) and NH4(+) (68-98%) without costly aeration. Results revealed that lower CL (less than 13.9gCOD/m(3)d) and ACL (less than 2.8gNH4(+)-N/m(3)d) or a C/N ratio exceeding five was required to reduce NO3(-)-N accumulation and NO/N2O emission. Integrated analyses indicated that the coupling of simultaneous nitrification, anammox and denitrification processes (SNAD) were the primary reason accounted for the enhanced NH4(+)-N treatment performance. NH4(+)-N removal pathways can be ranked as follows: nitrification (amoA, archaeal) (54.6%)>partial denitrification (nirS, nirK) and anammox (37.8%)>anammox and partial denitrification (narG, napA) (12.6%). Specifically, NH4(+)-N removal was significantly inhibited by NO2(-)-N accumulation in the system (-21.6% inhibition). Results from stepwise regression analysis suggested that the NH4(+) removal rate was collectively controlled by amoA, archaeal, anammox, nirS, nirK, narG and napA.
Collapse
Affiliation(s)
- Honglei Wang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China.
| | - Xueyuan Bai
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| |
Collapse
|
24
|
Poh LS, Jiang X, Zhang Z, Liu Y, Ng WJ, Zhou Y. N2O accumulation from denitrification under different temperatures. Appl Microbiol Biotechnol 2015; 99:9215-26. [DOI: 10.1007/s00253-015-6742-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/28/2015] [Accepted: 05/30/2015] [Indexed: 11/30/2022]
|
25
|
Ren Y, Wang J, Xu L, Liu C, Zong R, Yu J, Liang S. Direct emissions of N2O, CO 2, and CH 4 from A/A/O bioreactor systems: impact of influent C/N ratio. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:8163-8173. [PMID: 25850740 DOI: 10.1007/s11356-015-4408-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 03/18/2015] [Indexed: 06/04/2023]
Abstract
Direct emissions of N2O, CO2, and CH4, three important greenhouse gases (GHGs), from biological sewage treatment process have attracted increasing attention worldwide, due to the increasing concern about climate change. Despite the tremendous efforts devoted to understanding GHG emission from biological sewage treatment process, the impact of influent C/N ratios, in terms of chemical oxygen demand (COD)/total nitrogen (TN), on an anaerobic/anoxic/oxic (A/A/O) bioreactor system has not been investigated. In this work, the direct GHG emission from A/A/O bioreactor systems fed with actual sewage was analyzed under different influent C/N ratios over a 6-month period. The results showed that the variation in influent carbon (160 to 500 mg/L) and nitrogen load (35 to 95 mg/L) dramatically influenced pollutant removal efficiency and GHG production from this process. In the A/A/O bioreactor systems, the GHG production increased from 26-39 to 112-173 g CO2-equivalent as influent C/N ratios decreased from 10.3/10.7 to 3.5/3.8. Taking consideration of pollutant removal efficiency and direct biogenic GHG (N2O, CO2, and CH4) production, the optimum influent C/N ratio was determined to be 7.1/7.5, at which a relatively high pollutant removal efficiency and meanwhile a low level of GHG production (30.4 g CO2-equivalent) can be achieved. Besides, mechanical aeration turned out to be the most significant factor influencing GHG emission from the A/A/O bioreactor systems.
Collapse
Affiliation(s)
- Yangang Ren
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
26
|
Chen J, Wang L, Zheng J, Chen J. N2O production in the FeII(EDTA)-NO reduction process: the effects of carbon source and pH. Bioprocess Biosyst Eng 2015; 38:1373-80. [DOI: 10.1007/s00449-015-1378-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 02/09/2015] [Indexed: 11/24/2022]
|
27
|
Jiang L, Zhu R, Mao Y, Chen J, Zhang L. Conversion characteristics and production evaluation of styrene/o-xylene mixtures removed by DBD pretreatment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:1334-50. [PMID: 25629961 PMCID: PMC4344669 DOI: 10.3390/ijerph120201334] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 11/26/2014] [Accepted: 12/30/2014] [Indexed: 11/16/2022]
Abstract
The combination of chemical oxidation methods with biotechnology to removal recalcitrant VOCs is a promising technology. In this paper, the aim was to identify the role of key process parameters and biodegradability of the degradation products using a dielectric barrier discharge (DBD) reactor, which provided the fundamental data to evaluate the possibilities of the combined system. Effects of various technologic parameters like initial concentration of mixtures, residence time and relative humidity on the decomposition and the degradation products were examined and discussed. It was found that the removal efficiency of mixed VOCs decreased with increasing initial concentration. The removal efficiency reached the maximum value as relative humidity was approximately 40%-60%. Increasing the residence time resulted in increasing the removal efficiency and the order of destruction efficiency of VOCs followed the order styrene > o-xylene. Compared with the single compounds, the removal efficiency of styrene and o-xylene in the mixtures of VOCs decreased significantly and o-xylene decreased more rapidly. The degradation products were analyzed by gas chromatography and gas chromatography-mass spectrometry, and the main compounds detected were O3, COx and benzene ring derivatives. The biodegradability of mixed VOCs was improved and the products had positive effect on biomass during plasma application, and furthermore typical results indicated that the biodegradability and biotoxicity of gaseous pollutant were quite depending on the specific input energy (SIE).
Collapse
Affiliation(s)
- Liying Jiang
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Runye Zhu
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Yubo Mao
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Jianmeng Chen
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Liang Zhang
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
28
|
Zhang X, Zhang J, Hu Z, Xie H, Wei D, Li W. Effect of influent COD/N ratio on performance and N2O emission of partial nitrification treating high-strength nitrogen wastewater. RSC Adv 2015. [DOI: 10.1039/c5ra08364h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The effect of influent chemical oxygen demand/nitrogen (COD/N) ratio on nitrogen removal and nitrous oxide (N2O) emission during partial nitrification treating high-strength nitrogen wastewater was investigated.
Collapse
Affiliation(s)
- Xinwen Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse
- School of Environmental Science and Engineering
- Shandong University
- Jinan 250100
- PR China
| | - Jian Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse
- School of Environmental Science and Engineering
- Shandong University
- Jinan 250100
- PR China
| | - Zhen Hu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse
- School of Environmental Science and Engineering
- Shandong University
- Jinan 250100
- PR China
| | - Huijun Xie
- Environmental Research Institute
- Shandong University
- Jinan 250100
- PR China
| | - Dong Wei
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse
- School of Environmental Science and Engineering
- Shandong University
- Jinan 250100
- PR China
| | - Wenkai Li
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse
- School of Environmental Science and Engineering
- Shandong University
- Jinan 250100
- PR China
| |
Collapse
|
29
|
Song K, Riya S, Hosomi M, Terada A. Effect of carbon sources on nitrous oxide emission in a modified Ludzak Ettinger process. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2015; 72:572-578. [PMID: 26247755 DOI: 10.2166/wst.2015.250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Effect of methanol and glycerol on nitrous oxide (N2O) emission in two laboratory-scale modified Ludzak Ettinger (MLE) processes was investigated during three distinct periods: dissolved oxygen (DO) control by intermittent aeration with a DO controller, and high and low aeration rates. N2O consumption rate in an anoxic tank and aeration mode influenced N2O emission rates from the MLE processes. In the DO control period, N2O emission rate from the glycerol-fed MLE process was higher than the methanol-fed counterpart, likely caused by a higher N2O consumption rate in an anoxic tank of the methanol-fed process. During the period of a higher aeration rate, N2O emission rates from both processes were comparable. In contrast, during the period of a lower aeration rate, N2O emission rate from the methanol-fed MLE process was higher than that from the glycerol-fed counterpart likely because of a higher degree of nitrite accumulation, corroborated by statistical analysis. N2O consumption activities of biomasses fed with the different carbon sources were distinct. However, the high activity did not necessarily result in a decrease in N2O emission rate from an aerobic tank and the effect of nitrite on the emission was stronger under the tested conditions.
Collapse
Affiliation(s)
- Kang Song
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan E-mail:
| | - Shohei Riya
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan E-mail:
| | - Masaaki Hosomi
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan E-mail:
| | - Akihiko Terada
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan E-mail:
| |
Collapse
|
30
|
Deng B, Fu L, Zhang X, Zheng J, Peng L, Sun J, Zhu H, Wang Y, Li W, Wu X, Wu D. The denitrification characteristics of Pseudomonas stutzeri SC221-M and its application to water quality control in grass carp aquaculture. PLoS One 2014; 9:e114886. [PMID: 25489740 PMCID: PMC4260960 DOI: 10.1371/journal.pone.0114886] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 11/14/2014] [Indexed: 01/30/2023] Open
Abstract
To reduce ammonium and nitrite in aquaculture water, an isolate of the denitrifying bacterium Pseudomonas stutzeri, SC221-M, was obtained. The effects of various nitrogen and carbon sources, the ratio of carbon to nitrogen and temperature on bacterial growth, denitrification rates and the expression levels of nirS and nosZ in SC221-M were studied. The following conditions were determined to be optimal for growth and denitrification in SC221-M: NaNO2 as the nitrogen source, sodium citrate as the carbon source, a carbon to nitrogen ratio range of 4–8, and a temperature range of 20–35°C. Subsequently, SC221-M and the Bacillus cereus BSC24 strain were selected to generate microbial preparations. The results showed that addition of the microbial preparations decreased various hydrochemical parameters, including total dissolved solids, ammonium, nitrite, total nitrogen and the chemical oxygen demand. Nitrogen removal rates were highest on day 9; the removal rates of BSC24, SC221-M, a mixed preparation and a 3× mixed preparation were 24.5%, 26.6%, 53.9% and 53.4%, respectively. The mixed preparation (SC221-M+BSC24) was more effective at removing nitrogen than either the SC221-M or BSC24 preparation. Roche 454 pyrosequencing and subsequent analysis indicated that the control and other groups formed separate clusters, and the microbial community structure in the water changed significantly after the addition of microbial preparations. These results indicate that the addition of microbial preparations can improve both the water quality and microbial community structure in an experimental aquaculture system. P. stutzeri strain SC221-M and its related microbial preparations are potential candidates for the regulation of water quality in commercial aquaculture systems.
Collapse
Affiliation(s)
- Bin Deng
- Key Laboratory of Molecular Feed Science, Institute of Animal Nutrition and Feed Science, College of Animal Science, Zhejiang University, Hangzhou, China
- School of Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, China
| | - Luoqin Fu
- Key Laboratory of Molecular Feed Science, Institute of Animal Nutrition and Feed Science, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Xiaoping Zhang
- Key Laboratory of Molecular Feed Science, Institute of Animal Nutrition and Feed Science, College of Animal Science, Zhejiang University, Hangzhou, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- * E-mail: (WL); (XZ)
| | - Jiajia Zheng
- Key Laboratory of Molecular Feed Science, Institute of Animal Nutrition and Feed Science, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Lisha Peng
- Key Laboratory of Molecular Feed Science, Institute of Animal Nutrition and Feed Science, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Jiandong Sun
- Key Laboratory of Molecular Feed Science, Institute of Animal Nutrition and Feed Science, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Haiyan Zhu
- Key Laboratory of Molecular Feed Science, Institute of Animal Nutrition and Feed Science, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yibing Wang
- Key Laboratory of Molecular Feed Science, Institute of Animal Nutrition and Feed Science, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Weifen Li
- Key Laboratory of Molecular Feed Science, Institute of Animal Nutrition and Feed Science, College of Animal Science, Zhejiang University, Hangzhou, China
- * E-mail: (WL); (XZ)
| | - Xuexiang Wu
- College of Animal Science, Guizhou University, Guiyang, China
| | - Di Wu
- Center for Disease Control and Prevention, Deyang, China
| |
Collapse
|
31
|
Kong Q, Ngo HH, Shu L, Fu RS, Jiang CH, Miao MS. Enhancement of aerobic granulation by zero-valent iron in sequencing batch airlift reactor. JOURNAL OF HAZARDOUS MATERIALS 2014; 279:511-517. [PMID: 25108827 DOI: 10.1016/j.jhazmat.2014.07.036] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 07/16/2014] [Accepted: 07/19/2014] [Indexed: 06/03/2023]
Abstract
This study elucidates the enhancement of aerobic granulation by zero-valent iron (ZVI). A reactor augmented with ZVI had a start-up time of aerobic granulation (43 days) that was notably less than that for a reactor without augmentation (64 days). The former reactor also had better removal efficiencies for chemical oxygen demand and ammonium. Moreover, the mature granules augmented with ZVI had better physical characteristics and produced more extracellular polymeric substances (especially of protein). Three-dimensional-excitation emission matrix fluorescence showed that ZVI enhanced organic material diversity. Additionally, ZVI enhanced the diversity of the microbial community. Fe(2+) dissolution from ZVI helped reduce the start-up time of aerobic granulation and increased the extracellular polymeric substance content. Conclusively, the use of ZVI effectively enhanced aerobic granulation.
Collapse
Affiliation(s)
- Qiang Kong
- College of Life Science, Shandong Normal University, 88 Wenhua Donglu, Jinan 250014, Shandong, PR China.
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Li Shu
- School of Engineering, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, Victoria 3216, Australia
| | - Rong-Shu Fu
- College of Life Science, Shandong Normal University, 88 Wenhua Donglu, Jinan 250014, Shandong, PR China
| | - Chun-Hui Jiang
- College of Life Science, Shandong Normal University, 88 Wenhua Donglu, Jinan 250014, Shandong, PR China
| | - Ming-sheng Miao
- College of Life Science, Shandong Normal University, 88 Wenhua Donglu, Jinan 250014, Shandong, PR China.
| |
Collapse
|
32
|
Zhao Y, Xia Y, Li B, Yan X. Influence of environmental factors on net N₂ and N₂O production in sediment of freshwater rivers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:9973-9982. [PMID: 24781329 DOI: 10.1007/s11356-014-2908-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 04/14/2014] [Indexed: 06/03/2023]
Abstract
Denitrification is an important N removal process in aquatic systems but is also implicated as a potential source of global N₂O emissions. However, the key factors controlling this process as well as N₂O emissions remain unclear. In this study, we identified the main factors that regulate the production of net N₂ and N₂O in sediments collected from rivers with a large amount of sewage input in the Taihu Lake region. Net N₂ and N₂O production were strongly associated with the addition of NO₃(-)-N and NH₄(+)-N. Specifically, NO₃(-)-N controlled net N₂ production following Michaelis-Menten kinetics. The maximum rate of net N₂ production (V max) was 116.3 μmol N2-N m(-2) h(-1), and the apparent half-saturation concentration (k m) was 0.65 mg N L(-1). N₂O to N₂ ratios increased from 0.18 ± 0.03 to 0.68 ± 0.16 with the addition of NO₃(-)-N, suggesting that increasing NO₃(-)-N concentrations favored the production of N₂O more than N₂. The addition of acetate enhanced net N₂ production and N₂O to N₂ ratios, but the ratios decreased by about 59.5% when acetate concentrations increased from 50 to 100 mg C L(-1), suggesting that the increase of N₂O to N₂ ratios had more to do with the net N₂ production rate rather than acetate addition in this experiment. The addition of Cl(-) did not affect the net N₂ production rates, but significantly enhanced N₂O to N₂ ratios (the ratios increased from 0.02 ± 0.00 to 0.10 ± 0.00), demonstrating that the high salinity effect might have a significant regional effect on N₂O production. Our results suggest that the presence of N-enriching sewage discharges appear to stimulate N removal but also increase N₂O to N₂ ratios.
Collapse
Affiliation(s)
- Yongqiang Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| | | | | | | |
Collapse
|
33
|
Ni SQ, Yang N. Evaluation of granular anaerobic ammonium oxidation process for the disposal of pre-treated swine manure. PeerJ 2014; 2:e336. [PMID: 24765570 PMCID: PMC3994615 DOI: 10.7717/peerj.336] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 03/17/2014] [Indexed: 11/20/2022] Open
Abstract
With rising environmental concerns on potable water safety and eutrophication, increased media attention and tighter environmental regulations, managing animal waste in an environmentally responsible and economically feasible way can be a challenge. In this study, the possibility of using granular anammox process for ammonia removal from swine waste treatment water was investigated. A rapid decrease of NO2−–N and NH4+–N was observed during incubation with wastewater from an activated sludge deodorization reactor and anaerobic digestion-partial oxidation treatment process treating swine manure and its corresponding control artificial wastewaters. Ammonium removal dropped from 98.0 ± 0.6% to 66.9 ± 2.7% and nearly absent when the organic load in the feeding increased from 232 mg COD/L to 1160 mg COD/L and 2320 mg COD/L. The presence of organic carbon had limited effect on nitrite and total nitrogen removal. At a COD to N ratio of 0.9, COD inhibitory organic load threshold concentration was 727 mg COD/L. Mass balance indicated that denitrifiers played an important role in nitrite, nitrate and organic carbon removal. These results demonstrated that anammox system had the potential to effectively treat swine manure that can achieve high nitrogen standards at reduced costs.
Collapse
Affiliation(s)
- Shou-Qing Ni
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University , Jinan , China
| | - Ning Yang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University , Jinan , China
| |
Collapse
|
34
|
Chourey K, Nissen S, Vishnivetskaya T, Shah M, Pfiffner S, Hettich RL, Löffler FE. Environmental proteomics reveals early microbial community responses to biostimulation at a uranium- and nitrate-contaminated site. Proteomics 2013; 13:2921-30. [DOI: 10.1002/pmic.201300155] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 12/29/2022]
Affiliation(s)
- Karuna Chourey
- Chemical Sciences Division; Oak Ridge National Laboratory; Oak Ridge TN USA
| | - Silke Nissen
- Biosciences Division; Oak Ridge National Laboratory; Oak Ridge TN USA
- Department of Microbiology; University of Tennessee; Knoxville TN USA
| | | | - Manesh Shah
- Chemical Sciences Division; Oak Ridge National Laboratory; Oak Ridge TN USA
| | - Susan Pfiffner
- Center for Environmental Biotechnology; University of Tennessee; Knoxville TN USA
| | - Robert L. Hettich
- Chemical Sciences Division; Oak Ridge National Laboratory; Oak Ridge TN USA
- Department of Microbiology; University of Tennessee; Knoxville TN USA
| | - Frank E. Löffler
- Biosciences Division; Oak Ridge National Laboratory; Oak Ridge TN USA
- Department of Microbiology; University of Tennessee; Knoxville TN USA
- Center for Environmental Biotechnology; University of Tennessee; Knoxville TN USA
- Department of Civil and Environmental Engineering; University of Tennessee; Knoxville TN USA
| |
Collapse
|
35
|
Tsutsui H, Fujiwara T, Matsukawa K, Funamizu N. Nitrous oxide emission mechanisms during intermittently aerated composting of cattle manure. BIORESOURCE TECHNOLOGY 2013; 141:205-211. [PMID: 23561956 DOI: 10.1016/j.biortech.2013.02.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 02/19/2013] [Accepted: 02/20/2013] [Indexed: 06/02/2023]
Abstract
To investigate the mechanisms of nitrous oxide (N₂O) emission during intermittent aeration in the composting process, a laboratory scale experiment with continuous measurement of N₂O emission was conducted with cattle manure. A low oxygen mode (2.5% oxygen in the inlet for 1 day), anaerobic mode (0.13% oxygen for 0.25 day), and aerated mode (20.5% oxygen for 2 days) were sequentially set up three times after 22 days of continuous aeration to replicate intermittent aeration. The total N₂O emission was 0.26-0.35 mmol, 0.27-0.32 mmol, and 0.14-0.23 mmol during the low oxygen, anaerobic, and aerated modes, respectively. Denitrification was indicated as the main N₂O emission pathway in the anaerobic and low-oxygen modes, while nitrification was indicated as the main pathway in the aerated mode and under continuous aeration. Results from this study suggest that nitrification is an important pathway for N₂O emission as well as denitrification.
Collapse
Affiliation(s)
- Hirofumi Tsutsui
- Research and Education Faculty, Natural Sciences Cluster, Agriculture Unit, Kochi University, B200 Monobe, Nankoku, Kochi, Japan.
| | | | | | | |
Collapse
|
36
|
Vilar-Sanz A, Puig S, García-Lledó A, Trias R, Balaguer MD, Colprim J, Bañeras L. Denitrifying bacterial communities affect current production and nitrous oxide accumulation in a microbial fuel cell. PLoS One 2013; 8:e63460. [PMID: 23717427 PMCID: PMC3662693 DOI: 10.1371/journal.pone.0063460] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 04/03/2013] [Indexed: 11/22/2022] Open
Abstract
The biocathodic reduction of nitrate in Microbial Fuel Cells (MFCs) is an alternative to remove nitrogen in low carbon to nitrogen wastewater and relies entirely on microbial activity. In this paper the community composition of denitrifiers in the cathode of a MFC is analysed in relation to added electron acceptors (nitrate and nitrite) and organic matter in the cathode. Nitrate reducers and nitrite reducers were highly affected by the operational conditions and displayed high diversity. The number of retrieved species-level Operational Taxonomic Units (OTUs) for narG, napA, nirS and nirK genes was 11, 10, 31 and 22, respectively. In contrast, nitrous oxide reducers remained virtually unchanged at all conditions. About 90% of the retrieved nosZ sequences grouped in a single OTU with a high similarity with Oligotropha carboxidovorans nosZ gene. nirS-containing denitrifiers were dominant at all conditions and accounted for a significant amount of the total bacterial density. Current production decreased from 15.0 A·m−3 NCC (Net Cathodic Compartment), when nitrate was used as an electron acceptor, to 14.1 A·m−3 NCC in the case of nitrite. Contrarily, nitrous oxide (N2O) accumulation in the MFC was higher when nitrite was used as the main electron acceptor and accounted for 70% of gaseous nitrogen. Relative abundance of nitrite to nitrous oxide reducers, calculated as (qnirS+qnirK)/qnosZ, correlated positively with N2O emissions. Collectively, data indicate that bacteria catalysing the initial denitrification steps in a MFC are highly influenced by main electron acceptors and have a major influence on current production and N2O accumulation.
Collapse
Affiliation(s)
- Ariadna Vilar-Sanz
- Molecular Microbial Ecology Group, Institute of Aquatic Ecology, Universitat de Girona, Girona, Spain
| | - Sebastià Puig
- LEQUIA, Institute of the Environment, Universitat de Girona, Girona, Spain
| | - Arantzazu García-Lledó
- Molecular Microbial Ecology Group, Institute of Aquatic Ecology, Universitat de Girona, Girona, Spain
| | - Rosalia Trias
- Molecular Microbial Ecology Group, Institute of Aquatic Ecology, Universitat de Girona, Girona, Spain
| | - M. Dolors Balaguer
- LEQUIA, Institute of the Environment, Universitat de Girona, Girona, Spain
| | - Jesús Colprim
- LEQUIA, Institute of the Environment, Universitat de Girona, Girona, Spain
| | - Lluís Bañeras
- Molecular Microbial Ecology Group, Institute of Aquatic Ecology, Universitat de Girona, Girona, Spain
- * E-mail:
| |
Collapse
|
37
|
Ciggin AS, Rossetti S, Majone M, Orhon D. Extent of intracellular storage in single and dual substrate systems under pulse feeding. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:1225-1238. [PMID: 23143297 DOI: 10.1007/s11356-012-1291-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 10/29/2012] [Indexed: 06/01/2023]
Abstract
The study investigated the effect of acetate/starch mixture on the formation of storage biopolymers as compared with the storage mechanism in systems fed with these compounds as single substrates. Experiments involved two sequencing batch reactor sets operated at steady state, at sludge ages of 8 and 2 days, respectively. Each set included three different runs, one fed with acetate, the other with starch and the last one with the acetate/starch mixture. In single substrate systems with pulse feeding, starch was fully converted to glycogen, whereas 25 % of acetate was utilized for direct microbial growth at sludge age of 8 days, together with polyhydroxybutyric acid (PHB) storage. The lower sludge age slightly increased this fraction to 30 %. Feeding of acetate/starch mixture induced a significant increase in acetate utilization for direct microbial growth; acetate fraction converted to PHB dropped down to 58 and 50 % at sludge ages of 8 and 2 days respectively, while starch remained fully converted to glycogen for both operating conditions. Parallel microbiological analyses based on FISH methodology confirmed that the biomass acclimated to the substrate mixture sustained microbial fractions capable of performing both glycogen and PHB storage.
Collapse
Affiliation(s)
- Asli S Ciggin
- Environmental Engineering Department, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey.
| | | | | | | |
Collapse
|