1
|
Zebral YD, Righi BDP, Anni ISA, Escarrone ALV, Guillante T, Vieira CED, Costa PG, Bianchini A. Organic contamination and multi-biomarker assessment in watersheds of the southern Brazil: an integrated approach using fish from the Astyanax genus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30543-30554. [PMID: 38607488 DOI: 10.1007/s11356-024-33181-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/28/2024] [Indexed: 04/13/2024]
Abstract
We aimed to examine the responses of pollution biomarkers in feral fish from Astyanax genus collected at three hydrographic regions in southern Brazil and the capacity of these tools to differentiate between various levels of contamination. To achieve this, levels of organochlorine pesticides (liver), as well as the biomarkers AChE (muscle and brain), TBARS (liver), and EROD (liver) were assessed. Collections were conducted in four municipalities (Alegrete, Caraá, Lavras, and Santa Vitória) during 1 year, encompassing winter and summer. Fish from Alegrete were the most contaminated overall, but animals sampled in Caraá, and Lavras also displayed elevated levels of current-use pesticides. Elevated levels of endosulfans, DDTs, HCHs, and current-use pesticides were accompanied by elevated levels of TBARS in the liver. Conversely, fish from Santa Vitória exhibited the highest levels of PAHs, accompanied by elevated levels of EROD in the liver and reduced levels of AChE in muscle and brain. TBARS proved to be a reliable biomarker for assessing impacts arising from pesticide accumulation, while EROD and AChE served as valuable indicators of impacts resulting from PAHs accumulation. Ultimately, the results obtained in this study demonstrate the reliable use of the proposed biomarkers for tracking biological impacts stemming from aquatic pollution using feral Astyanax as biomonitoring species.
Collapse
Affiliation(s)
- Yuri Dornelles Zebral
- Postgraduate Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Bruna Duarte Pereira Righi
- Postgraduate Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Iuri Salim Abou Anni
- Postgraduate Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Ana Laura Venquiaruti Escarrone
- Postgraduate Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Tainá Guillante
- Postgraduate Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Carlos Eduardo Delfino Vieira
- Postgraduate Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Patrícia Gomes Costa
- Postgraduate Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Adalto Bianchini
- Postgraduate Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil.
| |
Collapse
|
2
|
Alvarez-Mora I, Bolliet V, Lopez-Herguedas N, Castro L, Anakabe E, Monperrus M, Etxebarria N. Prioritization based on risk assessment to study the bioconcentration and biotransformation of pharmaceuticals in glass eels (Anguilla anguilla) from the Adour estuary (Basque Country, France). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:120016. [PMID: 36007789 DOI: 10.1016/j.envpol.2022.120016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/08/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
The presence of contaminants of emerging concern in the aquatic environment directly impacts water-living organisms and can alter their living functions. These compounds are often metabolized and excreted, but they can also be accumulated and spread through the food chain. The metabolized contaminants can also lead to the formation of new compounds with unknown toxicity and bioaccumulation potential. In this work, we have studied the occurrence, bioconcentration, and biotransformation of CECs in glass eels (Anguilla anguilla) using UHPLC-HRMS. To select the target CECs, we first carried out an environmental risk assessment of the WWTP effluent that releases directly into the Adour estuary (Bayonne, Basque Country, France). The risk quotients of every detected contaminant were calculated and three ecotoxicologically relevant contaminants were chosen to perform the exposure experiment: propranolol, diazepam, and irbesartan. An experiment of 14 days consisting of 7 days of exposure and 7 days of depuration was carried out to measure the bioconcentration of the chosen compounds. The quantitative results of the concentrations in glass eel showed that diazepam and irbesartan reached BCF ≈10 on day 7, but both compounds were eliminated after 7 days of depuration. On the other hand, propranolol's concentration remains constant all along with the experiment, and its presence can be detected even in the non-exposed control group, which might suggest environmental contamination. Two additional suspect screening strategies were used to identify metabolization products of the target compounds and other xenobiotics already present in wild glass eels. Only one metabolite was identified, nordiazepam, a well-known diazepam metabolite, probably due to the low metabolic rate of glass eels at this stage. The xenobiotic screening confirmed the presence of more xenobiotics in wild glass eels, prominent among them, the pharmaceuticals exemestane, primidone, iloprost, and norethandrolone.
Collapse
Affiliation(s)
- Iker Alvarez-Mora
- Department of Analytical Chemistry, University of the Basque Country, 48080 Leioa (Biscay), Basque Country, Spain; Plentzia Marine Station, University of the Basque Country, 48620 Plentzia (Biscay), Basque Country, Spain.
| | - Valérie Bolliet
- Université de Pau et des Pays de l'Adour, E2S UPPA, ECOBIOP, Aquapôle INRAE, MIRA, F64310, Saint-Pée-sur-Nivelle, France
| | - Naroa Lopez-Herguedas
- Department of Analytical Chemistry, University of the Basque Country, 48080 Leioa (Biscay), Basque Country, Spain; Plentzia Marine Station, University of the Basque Country, 48620 Plentzia (Biscay), Basque Country, Spain
| | - Lyen Castro
- Plentzia Marine Station, University of the Basque Country, 48620 Plentzia (Biscay), Basque Country, Spain
| | - Eneritz Anakabe
- Department of Organic and Inorganic Chemistry, University of the Basque Country, 48080 Leioa (Biscay), Basque Country, Spain
| | - Mathilde Monperrus
- Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Université de Pau et des Pays de l'Adour, 64000 Anglet, Basque Country, Spain
| | - Nestor Etxebarria
- Department of Analytical Chemistry, University of the Basque Country, 48080 Leioa (Biscay), Basque Country, Spain; Plentzia Marine Station, University of the Basque Country, 48620 Plentzia (Biscay), Basque Country, Spain
| |
Collapse
|
3
|
Nzau Matondo B, Delrez N, Bardonnet A, Vanderplasschen A, Joaquim-Justo C, Rives J, Benitez JP, Dierckx A, Séleck E, Rollin X, Ovidio M. A complete check-up of European eel after eight years of restocking in an upland river: Trends in growth, lipid content, sex ratio and health status. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151020. [PMID: 34662625 DOI: 10.1016/j.scitotenv.2021.151020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
By combining field research and careful laboratory analysis of samples over the course of an eight-year study, we met the challenge of assessing the life history traits and health status of eels restocked in freshwater ecosystems. We found that restocked eels exhibited good growth performance; moreover, the stocks were female-dominated, showed a good Fulton's condition factor (K) and lipid stores and had high survival probability estimated using the best model of Jolly-Seber stock assessment method for open populations. A necropsy revealed the absence of internal lesions. A swim bladder examination revealed the absence of the parasite Anguillicola crassus. Polymerase chain reaction (PCR) analyses revealed an increase of Anguillid herpesvirus-1 (AngHV-1) prevalence throughout the study. Most positive subjects expressed viral loads compatible with a latent infection and correlated positively with K. All restocked eels were contaminated by at least one of the organic pollutant congeners studied, but the pollution loads corresponded to the lowest range of pollutant concentrations reported in the available literature for European eels and did not exceed the maximum residue and contaminant limits in food and feed of several national and international regulations. Pollutant loads were negatively correlated with K, lipid content and eel density for polychlorinated biphenyls PCB 138, 153 and 180 and K for pesticides p.p'-DDE, p.p'-DDD, p.p'-DDT and PBDE47. This study highlights the potential role played by upland aquatic ecosystems in enhancing riverine silver eel production from the perspective of species conservation. To be successful, restocking must be accompanied by improved ecosystem quality and migration routes for eels in inland freshwaters. We also provide some recommendations for future research to improve the management of restocking programmes.
Collapse
Affiliation(s)
- Billy Nzau Matondo
- Laboratory of Fish Demography and Hydroecology, Management of Aquatic Resources and Aquaculture Unit, Freshwater and Oceanic science Unit of Research-FOCUS, University of Liège, 22 Quai E. Van Beneden, B-4020 Liège, Belgium.
| | - Natacha Delrez
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
| | - Agnès Bardonnet
- Behavioural Ecology and Fish Population Biology-ECOBIOP (French National Institute for Agriculture, Food and Environment-INRAE, Saint-Pée-sur-Nivelle, France).
| | - Alain Vanderplasschen
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
| | - Célia Joaquim-Justo
- Laboratory of Animal Ecology and Ecotoxicology, Freshwater and Oceanic science Unit of Research-FOCUS, University of Liège, Belgium.
| | - Jacques Rives
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
| | - Jean-Philippe Benitez
- Laboratory of Fish Demography and Hydroecology, Management of Aquatic Resources and Aquaculture Unit, Freshwater and Oceanic science Unit of Research-FOCUS, University of Liège, 22 Quai E. Van Beneden, B-4020 Liège, Belgium.
| | - Arnaud Dierckx
- Laboratory of Fish Demography and Hydroecology, Management of Aquatic Resources and Aquaculture Unit, Freshwater and Oceanic science Unit of Research-FOCUS, University of Liège, 22 Quai E. Van Beneden, B-4020 Liège, Belgium.
| | - Emilie Séleck
- Laboratory of Animal Ecology and Ecotoxicology, Freshwater and Oceanic science Unit of Research-FOCUS, University of Liège, Belgium
| | - Xavier Rollin
- SPWARNE-DNF-Public Service of Wallonia - Agriculture, Natural Ressources & Environnement, Wildlife & Forestry Department, 15 Avenue Prince de Liège, B-5100 Jambes, Belgium.
| | - Michaël Ovidio
- Laboratory of Fish Demography and Hydroecology, Management of Aquatic Resources and Aquaculture Unit, Freshwater and Oceanic science Unit of Research-FOCUS, University of Liège, 22 Quai E. Van Beneden, B-4020 Liège, Belgium.
| |
Collapse
|
4
|
Morão IFC, Lemos MFL, Félix R, Vieira S, Barata C, Novais SC. Stress response markers in the blood of São Tomé green sea turtles (Chelonia mydas) and their relation with accumulated metal levels. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118490. [PMID: 34780755 DOI: 10.1016/j.envpol.2021.118490] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Metals are persistent worldwide being harmful for diverse organisms and having complex and combined effects with other contaminants in the environment. Sea turtles accumulate these contaminants being considered good bioindicator species for marine pollution. However, very little is known on how this is affecting these charismatic animals. São Tomé and Príncipe archipelago harbours important green sea turtle (Chelonia mydas) nesting and feeding grounds. The main goal of this study was to determine metal and metalloid accumulation in the blood of females C. mydas nesting in São Tomé Island, and evaluate the possible impacts of this contamination by addressing molecular stress responses. Gene expression analysis was performed in blood targeting genes involved in detoxification/sequestration and metal transport (mt, mtf and fer), and in antioxidant and oxidative stress responses (cat, sod, gr, tdx, txrd, selp and gclc). Micronuclei analysis in blood was also addressed as a biomarker of genotoxicity. Present results showed significant correlations between different gene expressions with the metals evaluated. The best GLM models and significant relationships were found for mt expression, for which 78% of the variability was attributed to metal levels (Al, Cu, Fe, Hg, Pb and Zn), followed by micronuclei count (65% - Cr, Cu, Fe, Hg, Mn and Zn), tdx expression (52% - Cd, Fe, Mn, Pb and Se), and cat expression (52% - As, Fe, Se and Cd x Hg). Overall, this study demonstrates that these green sea turtles are trying to adapt to the oxidative stress and damage produced by metals through the increased expression of antioxidants and other protectors, which raises concerns about the impacts on these endangered organisms' fitness. Furthermore, promising biomarker candidates associated to metal stress were identified in this species that may be used in future biomonitoring studies using C. mydas' blood, allowing for a temporal follow-up of the organisms.
Collapse
Affiliation(s)
- Inês F C Morão
- MARE - Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, Portugal
| | - Marco F L Lemos
- MARE - Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, Portugal
| | - Rafael Félix
- MARE - Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, Portugal
| | - Sara Vieira
- Associação Programa Tatô, Avenida Marginal 12 de Julho, Cidade de São Tomé, São Tomé e Príncipe, Portugal
| | - Carlos Barata
- Environmental Chemistry Department, IDAEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Sara C Novais
- MARE - Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, Portugal.
| |
Collapse
|
5
|
Weichert FG, Axén C, Förlin L, Inostroza PA, Kammann U, Welling A, Sturve J, Asker N. A multi-biomarker study on Atlantic salmon (Salmo salar L.) affected by the emerging Red Skin Disease in the Baltic Sea. JOURNAL OF FISH DISEASES 2021; 44:429-440. [PMID: 33103251 PMCID: PMC7984219 DOI: 10.1111/jfd.13288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
For half a decade, the Atlantic salmon in the Baltic Sea has been facing severe health issues. Clinical signs like haemorrhage, erosions and ulcerative/necrotic skin conditions in returning adults have been reported from different Swedish rivers. These primary disease signs precede a secondary, terminal fungal infection. As initial investigations of the disease did not provide conclusive answers regarding the pathogenesis, this study was initiated to gain insight into a possible link between this so-called Red Skin Disease and anthropogenic influences. Therefore, returning salmon were caught in rivers along the Swedish coast and different tissues were sampled. The focus was put on the measurements of a battery of biomarkers as well as biochemical and haematological parameters, which were analysed using multivariate statistics. The main findings were a severe osmotic haemodilution, an immune response and an alteration of the carbohydrate metabolism in diseased fish. Furthermore, oxidative stress does not seem to be a likely factor in the pathogenesis. Concluding, certain changes in physiological parameters were shown to be indicative for the disease patterns, while others were ruled out as significant factors. Thus, this study contributes to the understanding of the Red Skin Disease and may act as a hypothesis generator for future studies.
Collapse
Affiliation(s)
- Fabian G. Weichert
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
| | - Charlotte Axén
- Swedish National Veterinary Institute (SVA)UppsalaSweden
| | - Lars Förlin
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
| | - Pedro A. Inostroza
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
| | | | | | - Joachim Sturve
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
| | - Noomi Asker
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
| |
Collapse
|
6
|
De Novo assembly and characterisation of the greentail prawn (Metapenaeus bennettae) hepatopancreas transcriptome – identification of stress response and detoxification transcripts. Mar Genomics 2019; 47:100677. [DOI: 10.1016/j.margen.2019.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/15/2019] [Accepted: 04/05/2019] [Indexed: 11/19/2022]
|
7
|
Molbert N, Alliot F, Santos R, Chevreuil M, Mouchel JM, Goutte A. Multiresidue Methods for the Determination of Organic Micropollutants and Their Metabolites in Fish Matrices. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:1866-1878. [PMID: 31107990 DOI: 10.1002/etc.4500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/04/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
Two analytical methods were developed for the determination of 48 organic compounds and 20 of their main by-products in fish matrices. The targeted compounds belong to various chemical classes of metabolizable (phthalates, polycyclic aromatic hydrocarbons, insecticides [pyrethroids and N,N-diethyl-meta-toluamide]) and legacy (organochlorine pesticides, polychlorinated biphenyls, polybrominated diphenyl ethers) pollutants. Analyses were performed by gas and liquid chromatography-tandem mass spectrometry in multiple reaction monitoring (MRM) and dynamic MRM, respectively. Method performances were satisfactory, with results meeting the validation criteria because they achieved good linearity responses, recovery, precision, and accuracy for most of the 68 investigated compounds. The methods were then applied on 3 feral chub (Squalius cephalus) collected from the Marne hydrographic network (France). Twenty-six parent compounds and 5 metabolites were systematically detected in fish matrices, with substantial concentration variability within and among individuals. Phthalates and pyrethroids accounted for most of the pollutant load. Metabolite concentrations in liver samples exceeded those of parent molecules in fish muscle. The present study presents 2 reliable methods for the determination of a wide range of contaminants and underlines the importance of metabolite analysis for a more comprehensive understanding of pollutant bioaccumulation and fate in aquatic organisms. Environ Toxicol Chem 2019;38:1866-1878. © 2019 SETAC.
Collapse
Affiliation(s)
- Noëlie Molbert
- UMR METIS (Milieux Environnementaux, Transferts et Interactions dans les hydrosystèmes et les Sols), Sorbonne Université, CNRS (Centre national de la recherche scientifique), Ecole Pratique des Hautes Etudes, Paris, France
| | - Fabrice Alliot
- UMR METIS (Milieux Environnementaux, Transferts et Interactions dans les hydrosystèmes et les Sols), Sorbonne Université, CNRS (Centre national de la recherche scientifique), Ecole Pratique des Hautes Etudes, Paris, France
- EPHE (Ecole Pratique des Hautes Etudes), UMR METIS (Milieux Environnementaux, Transferts et Interactions dans les hydrosystèmes et les Sols), PSL Research University, Paris, France
| | - Raphaël Santos
- HEPIA (Haute école du paysage, d'ingenierie et d'architecture de Geneve), Ecology and Engineering of Aquatic Systems Research Group, University of Applied Sciences Western Switzerland, Geneva, Switzerland
| | - Marc Chevreuil
- UMR METIS (Milieux Environnementaux, Transferts et Interactions dans les hydrosystèmes et les Sols), Sorbonne Université, CNRS (Centre national de la recherche scientifique), Ecole Pratique des Hautes Etudes, Paris, France
- EPHE (Ecole Pratique des Hautes Etudes), UMR METIS (Milieux Environnementaux, Transferts et Interactions dans les hydrosystèmes et les Sols), PSL Research University, Paris, France
| | - Jean-Marie Mouchel
- UMR METIS (Milieux Environnementaux, Transferts et Interactions dans les hydrosystèmes et les Sols), Sorbonne Université, CNRS (Centre national de la recherche scientifique), Ecole Pratique des Hautes Etudes, Paris, France
| | - Aurélie Goutte
- UMR METIS (Milieux Environnementaux, Transferts et Interactions dans les hydrosystèmes et les Sols), Sorbonne Université, CNRS (Centre national de la recherche scientifique), Ecole Pratique des Hautes Etudes, Paris, France
- EPHE (Ecole Pratique des Hautes Etudes), UMR METIS (Milieux Environnementaux, Transferts et Interactions dans les hydrosystèmes et les Sols), PSL Research University, Paris, France
| |
Collapse
|
8
|
de Albergaria-Barbosa ACR, da Silva DAM, da Silva Rocha AJ, Taniguchi S, Patire VF, Dias JF, Fernandez WS, Bícego MC. Evaluation of polycyclic aromatic hydrocarbons bioavailability on Santos Bay (Brazil) through levels of biliary metabolites. MARINE POLLUTION BULLETIN 2018; 129:822-828. [PMID: 29032809 DOI: 10.1016/j.marpolbul.2017.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 09/27/2017] [Accepted: 10/05/2017] [Indexed: 06/07/2023]
Abstract
This study evaluated the PAH bioavailability from Santos Bay (Brazil) in 4 species of fish, using PAH biliary metabolites. The collection was done monthly, between July and December, in three different regions of Santos Bay. The metabolites were analyzed through a high performance liquid chromatograph with fluorescence detectors. Total metabolites concentrations ranged from 65.5 to 589μgg-1 of bile, evidencing PAH bioavailability on Santos Bay. Levels of phenanthrene and benzo[a]pyrene metabolites were in the classification range of areas moderate contaminated. Those concentrations were lower in Nebris microps and higher in Sphoeroides testudineus (p<0.05). Naphthalene metabolites concentrations did not differ significantly among fish species and were in the classification range of low contaminated areas. There were no significant spatial and temporal differences in levels among sampled areas. These results are environmentally important given the high levels of urbanization and the absence of biomonitoring data in this area.
Collapse
Affiliation(s)
- Ana Cecília Rizzatti de Albergaria-Barbosa
- Laboratory of Marine Geochemistry, Geoscience Institute, Federal University of Bahia, Rua Barão de Jeremoabo, s/n, 40170-020 Salvador, BA, Brazil; Laboratory of Marine Organic Chemistry, Oceanographic Institute, University of São Paulo, Praça do Oceanográfico, 191, 05508-900 São Paulo, SP, Brazil.
| | - Denis Albuquerque Moreira da Silva
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, WA 98112, United States.
| | - Arthur José da Silva Rocha
- Laboratory of Marine Life Ecophysiology, Oceanographic Institute, University of São Paulo, Praça do Oceanográfico, 191, 05508-900 São Paulo, SP, Brazil.
| | - Satie Taniguchi
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, University of São Paulo, Praça do Oceanográfico, 191, 05508-900 São Paulo, SP, Brazil.
| | - Vinicius Faria Patire
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, University of São Paulo, Praça do Oceanográfico, 191, 05508-900 São Paulo, SP, Brazil
| | - June Ferraz Dias
- Laboratory of Reproductive Ecology and Recruitment of Marine Organisms, Oceanographic Institute, University of São Paulo, Praça do Oceanográfico, 191, 05508-900 São Paulo, SP, Brazil.
| | - Wellington Silva Fernandez
- Laboratory of Reproductive Ecology and Recruitment of Marine Organisms, Oceanographic Institute, University of São Paulo, Praça do Oceanográfico, 191, 05508-900 São Paulo, SP, Brazil.
| | - Marcia Caruso Bícego
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, University of São Paulo, Praça do Oceanográfico, 191, 05508-900 São Paulo, SP, Brazil.
| |
Collapse
|
9
|
Freese M, Sühring R, Marohn L, Pohlmann JD, Wolschke H, Byer JD, Alaee M, Ebinghaus R, Hanel R. Maternal transfer of dioxin-like compounds in artificially matured European eels. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 227:348-356. [PMID: 28482314 DOI: 10.1016/j.envpol.2017.04.096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/24/2017] [Accepted: 04/30/2017] [Indexed: 06/07/2023]
Abstract
Several eel species of the genus Anguilla are considered endangered due to a severe decline in recruitment. Up to now, the reasons for this threatening development are not fully understood. The eel's highly specialized biology can lead to explicitly high accumulation of globally distributed organic lipophilic contaminants during its continental life. Because of this and due the particular toxicological sensitivity of early life stages of oviparous organisms towards dioxin-like compounds, it is crucial to improve our understanding concerning toxicokinetics and maternal transfer of organic contaminants in eels. This study presents analytical data on maternal transfer of dioxin-like (dl) compounds in relevant tissue samples taken from artificially matured and non-matured European silver eels (Anguilla anguilla) from German inland waters using gas chromatography coupled with mass spectrometry (GC/MS) and high-resolution mass spectrometry (GC/HRMS). Detected concentrations revealed a lipid-driven transfer of targeted compounds from muscle-fat-reserves to gonads and eggs respectively, with no distinct preferences concerning the chlorination degree of targeted compounds. Dl-PCBs were shown to contribute the major share of toxicity equivalents found in analysed eel tissues. Maternal muscle tissue to egg concentration ratios in wet weight-based samples had a mean of 6.95 ± 1.49 in accordance with the differences in total lipid content in the respective body matrices. Dioxins and furans in analysed samples were (from a toxicological point of view) of less relevance. Furthermore it was shown that muscle concentrations in silver eels could be used in future assessments to make conservative predictions for expected egg concentrations in female eels.
Collapse
Affiliation(s)
- Marko Freese
- Thünen Institute of Fisheries Ecology, Palmaille 9, 22767 Hamburg, Germany.
| | - Roxana Sühring
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Lowestoft, Suffolk NR33 0HT, United Kingdom
| | - Lasse Marohn
- Thünen Institute of Fisheries Ecology, Palmaille 9, 22767 Hamburg, Germany
| | - Jan-Dag Pohlmann
- Thünen Institute of Fisheries Ecology, Palmaille 9, 22767 Hamburg, Germany
| | - Hendrik Wolschke
- Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Institute of Coastal Research, Department for Environmental Chemistry, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - Jonathan D Byer
- Life Science and Chemical Analysis, LECO Corporation, St. Joseph, MI, United States
| | - Mehran Alaee
- Water Science and Technology Directorate, Environment Canada, Burlington, Ontario L7R4A6, Canada
| | - Ralf Ebinghaus
- Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Institute of Coastal Research, Department for Environmental Chemistry, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - Reinhold Hanel
- Thünen Institute of Fisheries Ecology, Palmaille 9, 22767 Hamburg, Germany
| |
Collapse
|
10
|
Kammann U, Akcha F, Budzinski H, Burgeot T, Gubbins MJ, Lang T, Le Menach K, Vethaak AD, Hylland K. PAH metabolites in fish bile: From the Seine estuary to Iceland. MARINE ENVIRONMENTAL RESEARCH 2017; 124:41-45. [PMID: 26970879 DOI: 10.1016/j.marenvres.2016.02.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 02/26/2016] [Accepted: 02/27/2016] [Indexed: 06/05/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAH) are environmental contaminants that pose significant risk to health of fish. The International Workshop on Integrated Assessment of Contaminant Impacts on the North Sea (ICON) provided the framework to investigate biomarker responses as well as contaminant concentrations side by side in marine ecosystems. Concentrations of the main PAH metabolites 1-hydroxypyrene, 1-hydroxyphenanthren and 3-hydroxybenzo(a)pyrene were determined in bile by HPLC with fluorescence detection. Fish species under investigation were dab (Limanda limanda), flounder (Platichthys flesus) and haddock (Melanogrammus aeglefinus). A contamination gradient was demonstrated from the low contaminated waters of Iceland and off-shore regions of the North Sea towards higher concentrations in coastal areas. Concentrations of PAH metabolites differed primarily according to sampling region and secondarily to species.
Collapse
Affiliation(s)
- U Kammann
- Thünen Institut of Fisheries Ecology, Palmaille 9, D-22767, Hamburg & Deichstr. 12, 27472 Cuxhaven, Germany.
| | - F Akcha
- Ifremer, Department of Biogeochemistry and Ecotoxicology, BP 21105, 44311 Nantes Cedex 03, France
| | - H Budzinski
- Université Bordeaux 1, Laboratory of Physico- and Toxico-Chemistry of the Environment (LPTC), Molecular Sciences Institute (ISM), UMR 5255 CNRS, 33405 Talence, France
| | - T Burgeot
- Ifremer, Department of Biogeochemistry and Ecotoxicology, BP 21105, 44311 Nantes Cedex 03, France
| | - M J Gubbins
- FRS Marine Laboratory, 375 Victoria Road, Aberdeen, AB11 9DB Scotland, UK
| | - T Lang
- Thünen Institut of Fisheries Ecology, Palmaille 9, D-22767, Hamburg & Deichstr. 12, 27472 Cuxhaven, Germany
| | - K Le Menach
- Université Bordeaux 1, Laboratory of Physico- and Toxico-Chemistry of the Environment (LPTC), Molecular Sciences Institute (ISM), UMR 5255 CNRS, 33405 Talence, France
| | - A D Vethaak
- Institute for Environmental Studies (IVM), VU University Amsterdam, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | - K Hylland
- Department of Biology, University of Oslo, Pb 1066, Blindern, N-0316 Oslo, Norway; Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo, Norway
| |
Collapse
|
11
|
Sühring R, Ortiz X, Pena-Abaurrea M, Jobst KJ, Freese M, Pohlmann JD, Marohn L, Ebinghaus R, Backus S, Hanel R, Reiner EJ. Evidence for High Concentrations and Maternal Transfer of Substituted Diphenylamines in European Eels Analyzed by Two-Dimensional Gas Chromatography-Time-of-Flight Mass Spectrometry and Gas Chromatography-Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:12678-12685. [PMID: 27791360 DOI: 10.1021/acs.est.6b04382] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Chemical pollution is hypothesized to be one of the factors driving the strong decline of the critically endangered European eel population. Specifically, the impact of contaminants on the quality of spawning eels and subsequent embryo survival and development has been discussed as crucial investigation point. However, so far, only very limited information on potential negative effects of contaminants on the reproduction of eels is available. Through the combination of nontargeted ultrahigh-resolution mass spectrometry and multidimensional gas chromatography, combined with more-conventional targeted analytical approaches and multimedia mass-balance modeling, compounds of particular relevance, and their maternal transfer in artificially matured European eels from the German river Ems have been identified. Substituted diphenylamines were, unexpectedly, found to be the primary organic contaminants in the eel samples, with concentrations in the μg g-1 wet weight range. Furthermore, it could be shown that these contaminants, as well as polychlorinated biphenyls (PCBs), organochlorine pesticides, and polyaromatic hydrocarbons (PAHs), are not merely stored in lipid rich tissue of eels but maternally transferred into gonads and eggs. The results of this study provide unique information on both the fate and behavior of substituted diphenylamines in the environment as well as their relevance as contaminants in European eels.
Collapse
Affiliation(s)
- Roxana Sühring
- Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research , Max-Planck-Strasse 1, 21502 Geesthacht, Germany
- Centre for Environment, Fisheries and Aquaculture Science (Cefas) , Lowestoft, Suffolk, NR33 0HT United Kingdom
| | - Xavier Ortiz
- Ontario Ministry of the Environment and Climate Change , 125 Resources Road, Toronto, Ontario M9P 3 V6, Canada
| | - Miren Pena-Abaurrea
- Ontario Ministry of the Environment and Climate Change , 125 Resources Road, Toronto, Ontario M9P 3 V6, Canada
| | - Karl J Jobst
- Ontario Ministry of the Environment and Climate Change , 125 Resources Road, Toronto, Ontario M9P 3 V6, Canada
| | - Marko Freese
- Thünen Institute of Fisheries Ecology , Palmaille 9, 22767 Hamburg, Germany
| | - Jan-Dag Pohlmann
- Thünen Institute of Fisheries Ecology , Palmaille 9, 22767 Hamburg, Germany
| | - Lasse Marohn
- Thünen Institute of Fisheries Ecology , Palmaille 9, 22767 Hamburg, Germany
| | - Ralf Ebinghaus
- Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research , Max-Planck-Strasse 1, 21502 Geesthacht, Germany
| | - Sean Backus
- Canada Centre for Inland Waters, Environment Canada , 867 Lakeshore Road, Burlington, Ontario L7R 4A6, Canada
| | - Reinhold Hanel
- Thünen Institute of Fisheries Ecology , Palmaille 9, 22767 Hamburg, Germany
| | - Eric J Reiner
- Ontario Ministry of the Environment and Climate Change , 125 Resources Road, Toronto, Ontario M9P 3 V6, Canada
| |
Collapse
|
12
|
Baali A, Kammann U, Hanel R, El Qoraychy I, Yahyaoui A. Bile metabolites of polycyclic aromatic hydrocarbons (PAHs) in three species of fish from Morocco. ENVIRONMENTAL SCIENCES EUROPE 2016; 28:25. [PMID: 27867806 PMCID: PMC5093182 DOI: 10.1186/s12302-016-0093-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/25/2016] [Indexed: 05/26/2023]
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAH) are environmental contaminants that pose significant risk to health of fish. Environmental pollution of fish is a topic of rising attention in Morocco. However, only few studies have been carried out so far, describing the potential threat of organic pollution to Moroccan aquatic ecosystem. Two polycyclic aromatic hydrocarbon (PAH) metabolites, 1-hydroxypyrene (1-OH-Pyr) and 1-hydroxyphenanthrene (1-OH-Phen), were identified and quantified from the bile of 18 European eels (Anguilla anguilla), 7 Moray (Muraenidae), and 28 Conger eels (Conger conger) collected from Moulay Bousselham lagoon and Boujdour coast. The bile metabolites were separated by high-performance liquid chromatography with fluorescence detection. The present study aims to compare the levels of PAH metabolites in fish from the lagoon and the open sea and to compare levels of PAH metabolites in different fish species. RESULTS The major metabolite present in all fish was 1-hydroxypyrene (<LOD-15.56 ng/mL) with lower concentration of 1-hydroxyphenanthrene (<LOD-9.6 ng/mL). These concentrations of PAH metabolites are low compared to studies published before. CONCLUSION The data confirm the importance of 1-hydroxypyrene as the key PAH metabolite in fish bile and suggest that the European eel is an ideal species for monitoring PAHs in Moroccan waters. The present study provides valuable information on concentrations of PAH metabolites in fish from Morocco, especially for the first time for Conger eels and Moray.
Collapse
Affiliation(s)
- Ayoub Baali
- Laboratory of Zoology and General Biology, Faculty of Science, Mohammed V University in Rabat, Rabat, Morocco
| | | | | | - Ikram El Qoraychy
- Laboratory of Zoology and General Biology, Faculty of Science, Mohammed V University in Rabat, Rabat, Morocco
| | - Ahmed Yahyaoui
- Laboratory of Zoology and General Biology, Faculty of Science, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
13
|
Asker N, Albertsson E, Wijkmark E, Bergek S, Parkkonen J, Kammann U, Holmqvist I, Kristiansson E, Strand J, Gercken J, Förlin L. Biomarker responses in eelpouts from four coastal areas in Sweden, Denmark and Germany. MARINE ENVIRONMENTAL RESEARCH 2016; 120:32-43. [PMID: 27423807 DOI: 10.1016/j.marenvres.2016.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/30/2016] [Accepted: 07/04/2016] [Indexed: 06/06/2023]
Abstract
To increase our understanding of possible chemical impacts on coastal fish populations in the Baltic Sea, Kattegat and Skagerrak, the viviparous eelpout (Zoarces viviparus) was used as sentinel species in two major sampling campaigns (spring and autumn) in 16 different coastal sites. Condition factor (CF), liver somatic index (LSI), gonad somatic index (GSI) were measured and the activity of the hepatic enzymes ethoxyresorufin-O-deethylase (EROD), glutathione reductase GR), glutathione S-transferase (GST), catalase (CAT) and muscular activity of acetylcholinesterase (AChE) were assessed. PAH metabolites in bile were also analyzed. The most notable finding in the data set was the low EROD activity in eelpouts collected at the relatively polluted region in Germany compared to the other regions, which could be due to an inhibition of the CYP1A-system or to adaptation to chronic exposure of pollutants in this area. Additionally, low AChE activity was noted in the German region in the autumn campaign and low AChE activity detected in the Danish region in the spring campaign. These differences suggest possible season-specific differences in the use and release of AChE-inhibiting chemicals in the Danish and German regions. Clustering of biomarkers on site level indicated a relationship between CF and GSI and suggested that sites with a high CF contained eelpout that put a larger effort into their larvae development. Clustering of the oxidative stress markers GR, GST and CAT on the individual level reflected a possible coordinated regulation of these enzymes. Overall, the results support the importance of taking into account general regional differences and seasonal variation in biomarker activity when monitoring and assessing the effects of pollution. Despite the expected seasonal variation for most of the measured endpoint, several markers (GSI, EROD and CF) vary similarly between all selected sites in both spring and autumn. This suggests that the differences between sites for these endpoints are independent of season.
Collapse
Affiliation(s)
- Noomi Asker
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30, Gothenburg, Sweden.
| | - Eva Albertsson
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Emma Wijkmark
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, SE-412 96, Gothenburg, Sweden
| | - Sara Bergek
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, SE-74242, Öregrund, Sweden; Department of Aquatic Resources, Swedish University of Agricultural Sciences, SE-178 93, Drottningholm, Sweden
| | - Jari Parkkonen
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Ulrike Kammann
- Thünen Institute of Fisheries Ecology, D-22767, Hamburg, Germany
| | - Inger Holmqvist
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Erik Kristiansson
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, SE-412 96, Gothenburg, Sweden
| | - Jakob Strand
- Department of Bioscience, Aarhus University, DK-4000, Roskilde, Denmark
| | - Jens Gercken
- Institute of Applied Ecology Ltd., D-18184, Neu Broderstorf, Germany
| | - Lars Förlin
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| |
Collapse
|
14
|
Karl H, Kammann U, Aust MO, Manthey-Karl M, Lüth A, Kanisch G. Large scale distribution of dioxins, PCBs, heavy metals, PAH-metabolites and radionuclides in cod (Gadus morhua) from the North Atlantic and its adjacent seas. CHEMOSPHERE 2016; 149:294-303. [PMID: 26874057 DOI: 10.1016/j.chemosphere.2016.01.052] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 06/05/2023]
Abstract
Regarding cod as sea food for human consumption and as bio indicator of the marine eco system, this study is the first approach to combine the analysis of organic and inorganic contaminants and radionuclides in cod muscle as well as PCDD/Fs and dl-PCBs in its livers from the same fishing areas. Concentrations of 1-hydroxypyrene, PCDD/Fs, PCBs, cesium-137 (Cs-137), cadmium and lead were determined in individual or pooled samples over a wide geographic area, including Greenland Seas, Barents Sea, North and Baltic Sea. Highest concentrations were found in samples from the Baltic Sea, lowest in the pristine areas of the Barents Sea and Greenland. Levels of contaminants in cod muscle were found to be far below the established EU maximum levels (ML), regardless of which fishing grounds. In contrast to this, most cod liver samples from the North and Baltic Sea showed PCDD/F and PCB contents exceeding the ML. In addition, new background assessment criteria (BAC) for 1-hydroxypyrene in cod of 4.6 ng mL(-1) bile and for Cs-137 a BAC of 0.16 Bq kg(-1) wet weight are proposed to be included in the European Marine Strategy Framework Directive for cod from the Northeast Atlantic.
Collapse
Affiliation(s)
- Horst Karl
- Max Rubner - Institut, Federal Research Centre of Nutrition and Food, Department of Safety and Quality of Milk and Fish Products, Palmaille 9, 22767 Hamburg, Germany.
| | - Ulrike Kammann
- Thünen-Institute of Fisheries Ecology, Palmaille 9, 22767 Hamburg, Germany
| | - Marc-Oliver Aust
- Thünen-Institute of Fisheries Ecology, Palmaille 9, 22767 Hamburg, Germany
| | - Monika Manthey-Karl
- Max Rubner - Institut, Federal Research Centre of Nutrition and Food, Department of Safety and Quality of Milk and Fish Products, Palmaille 9, 22767 Hamburg, Germany
| | - Anja Lüth
- Federal Institute for Risk Assessment, National Reference Laboratory for Dioxins and PCBs in Food and Feed, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Günter Kanisch
- Thünen-Institute of Fisheries Ecology, Palmaille 9, 22767 Hamburg, Germany
| |
Collapse
|
15
|
Förstner U, Hollert H, Brinkmann M, Eichbaum K, Weber R, Salomons W. Dioxin in the Elbe river basin: policy and science under the water framework directive 2000-2015 and toward 2021. ENVIRONMENTAL SCIENCES EUROPE 2016; 28:9. [PMID: 27752444 PMCID: PMC5044960 DOI: 10.1186/s12302-016-0075-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/17/2016] [Indexed: 05/30/2023]
Abstract
A critical review of the last 25 years of dioxin policy in the Elbe river catchment is presented along seven main theses of the River Basin Community (RBC)-Elbe background document "Pollutants" for the Management Plan 2016-2021. In this period, polychlorinated dibenzodioxins/-furans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (dl-PCBs) will play a major role: (i) as new priority substances for which environmental quality standards (EQSs) need to be derived (Directive 2013/39/EC); (ii) in the search for innovative solutions in sediment remediation (i.e., respecting the influence of mechanical processes; Flood Risk Directive 2007/60/EC); and (iii) as indicators at the land-sea interface (Marine Strategy Framework Directive 2008/56/EC). In the Elbe river catchment, aspects of policy and science are closely connected, which became particularly obvious in a classic example of dioxin hot spot contamination, the case of the Spittelwasser creek. Here, the "source-first principle" of the first cycle of the European Water Framework Directive (WFD) had to be confirmed in a controversy on the dioxin hot spots with Saxony-Anhalt's Agency for Contaminated Sites (LAF). At the Spittelwasser site, the move from "inside the creek" to "along the river banks" goes parallel to a general paradigm shift in retrospective risk assessment frameworks and remediation techniques for organic chemicals (Ortega-Calvo et al. 2015). With respect to dioxin, large-scale stabilization applying activated carbon additions is particularly promising. Another important aspect is the assessment of the ecotoxicology of dioxins and dl- PCBs in context of sediment mobility and flood risk assessment, which has been studied in the project framework FloodSearch. Currently, the quality goals of the WFD to reach a "good chemical status" are not met in many catchment areas because substances such as mercury do and others probably will (PCDD/Fs and dl-PCB) exceed biota-EQS values catchment area-wide. So far, relating biota-EQS values to sediment-EQSs is not possible. To overcome these limitations, the DioRAMA project was initiated, which has led to improved approaches for the assessment of dioxin-contaminated sediment using in vitro bioassays and to a robust dataset on the interrelation between dioxins and dioxin-like compounds in sediments and biota.
Collapse
Affiliation(s)
- Ulrich Förstner
- Institute of Environmental Technology and Energy Economics, University of Technology Hamburg-Harburg, Eissendorfer Street, 21071 Hamburg, Germany
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Markus Brinkmann
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Kathrin Eichbaum
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Roland Weber
- POPs Environmental Consulting, Lindenfirststrasse 23, 73527 Schwäbisch Gmünd, Germany
| | - Wim Salomons
- Kromme Elleboog 21, 9751 RB, Haren, Groningen Netherlands
| |
Collapse
|
16
|
Koglin S, Kammann U, Eichbaum K, Reininghaus M, Eisner B, Wiseman S, Hecker M, Buchinger S, Reifferscheid G, Hollert H, Brinkmann M. Toward understanding the impacts of sediment contamination on a native fish species: transcriptional effects, EROD activity, and biliary PAH metabolites. ENVIRONMENTAL SCIENCES EUROPE 2016; 28:28. [PMID: 28003950 PMCID: PMC5136570 DOI: 10.1186/s12302-016-0096-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/27/2016] [Indexed: 05/06/2023]
Abstract
BACKGROUND Both frequency and intensity of flood events are expected to increase as a result of global climate change in the upcoming decades, potentially resulting in increased re-suspension of sediments in fluvial systems. Contamination of these re-suspended sediments with legacy contaminants, including dioxins and dioxin-like compounds (DLCs), as well as polycyclic aromatic hydrocarbons (PAHs) is of great ecotoxicological concern. DLCs, and to some extent also PAHs, exhibit their toxicity through activation of the aryl hydrocarbon receptor (AhR). However, interactions of DLCs with pathways other than those known to be mediated through the AhR are not fully understood to date. METHODS This study aimed to investigate molecular and biochemical effects in roach (Rutilus rutilus) during a 10 days exposure to suspensions of three natural sediments that differed in the level of DLC contamination. Concentrations of biliary PAH metabolites and hepatic 7-ethoxyresorufin-O-deethylase activity were quantified in exposed fish. Furthermore, the abundance of transcripts of several genes related to energy metabolism, response to oxidative stress, and apoptosis, as well as cytochrome P450 1A (cyp1a) was quantified. RESULTS Biliary PAH metabolites and activation of the AhR were confirmed as suitable early warning biomarkers of exposure to suspended sediments containing DLCs and PAHs that corresponded well with analytically determined concentrations of those contaminants. Although the abundances of transcripts of superoxide dismutase (sod), protein kinase c delta (pkcd), and ATP-binding cassette transporter c9 (abcc9) were altered by the treatment compared with unexposed control fish, none of these showed a time- or concentration-dependent response. The abundance of transcripts of pyruvate carboxylase (pc) and transferrin variant d (tfd) remained unaltered by the treatments. CONCLUSIONS We have shown that contaminated sediments can become a risk for fish during re-suspension events (e.g., flooding and dredging). We have also demonstrated that roach, which are native to most European freshwater systems, are suitable sentinel species due to their great sensitivity and ecological relevance. Roach may be particularly suitable in future field studies to assess the toxicological concerns associated with the release of DLCs and PAHs during sediment re-suspension.
Collapse
Affiliation(s)
- Sven Koglin
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Ulrike Kammann
- Thünen-Institute of Fisheries Ecology, Palmaille 9, 22767 Hamburg, Germany
| | - Kathrin Eichbaum
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Mathias Reininghaus
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Bryanna Eisner
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3 Canada
| | - Steve Wiseman
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3 Canada
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4 Canada
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3 Canada
- School of Environment and Sustainability, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3 Canada
| | - Sebastian Buchinger
- Department G3: Biochemistry, Ecotoxicology, Federal Institute of Hydrology (BFG), Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Georg Reifferscheid
- Department G3: Biochemistry, Ecotoxicology, Federal Institute of Hydrology (BFG), Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- College of Resources and Environmental Science, Chongqing University, 1 Tiansheng Road Beibei, Chongqing, 400715 China
- College of Environmental Science and Engineering and State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Markus Brinkmann
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- School of Environment and Sustainability, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3 Canada
| |
Collapse
|
17
|
Freese M, Sühring R, Pohlmann JD, Wolschke H, Magath V, Ebinghaus R, Hanel R. A question of origin: dioxin-like PCBs and their relevance in stock management of European eels. ECOTOXICOLOGY (LONDON, ENGLAND) 2016; 25:41-55. [PMID: 26477019 DOI: 10.1007/s10646-015-1565-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/02/2015] [Indexed: 06/05/2023]
Abstract
The stock of European Eel (Anguilla anguilla L.) has reached an all-time low in 2011. Spawner quality of mature eels in terms of health status and fitness is considered one of the key elements for successful migration and reproduction. Dioxin-like Polychlorinated Biphenyls (dl-PCBs) are known persistent organic pollutants potentially affecting the reproductive capability and health status of eels throughout their entire lifetime. In this study, muscle tissue samples of 192 European eels of all continental life stages from 6 different water bodies and 13 sampling sites were analyzed for contamination with lipophilic dl-PCBs to investigate the potential relevance of the respective habitat in light of eel stock management. Results of this study reveal habitat-dependent and life history stage-related accumulation of targeted PCBs. Sum concentrations of targeted PCBs differed significantly between life stages and inter-habitat variability in dl-PCB levels and -profiles was observed. Among all investigated life stages, migrant silver eels were found to be the most suitable life history stage to represent their particular water system due to habitat dwell-time and their terminal contamination status. With reference to a possible negative impact of dl-PCBs on health and the reproductive capability of eels, it was hypothesized that those growing up in less polluted habitats have a better chance to produce healthy offspring than those growing up in highly polluted habitats. We suggest that the contamination status of water systems is fundamental for the life cycle of eels and needs to be considered in stock management and restocking programs.
Collapse
|
18
|
Floehr T, Scholz-Starke B, Xiao H, Hercht H, Wu L, Hou J, Schmidt-Posthaus H, Segner H, Kammann U, Yuan X, Roß-Nickoll M, Schäffer A, Hollert H. Linking Ah receptor mediated effects of sediments and impacts on fish to key pollutants in the Yangtze Three Gorges Reservoir, China - A comprehensive perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 538:191-211. [PMID: 26298852 DOI: 10.1016/j.scitotenv.2015.07.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/08/2015] [Accepted: 07/08/2015] [Indexed: 06/04/2023]
Abstract
The Three Gorges Reservoir (TGR), created in consequence of the Yangtze River's impoundment by the Three Gorges Dam, faces numerous anthropogenic impacts that challenge its unique ecosystem. Organic pollutants, particularly aryl hydrocarbon receptor (AhR) agonists, have been widely detected in the Yangtze River, but only little research was yet done on AhR-mediated activities. Hence, in order to assess effects of organic pollution, with particular focus on AhR-mediated activities, several sites in the TGR area were examined applying the "triad approach". It combines chemical analysis, in vitro, in vivo and in situ investigations to a holistic assessment. Sediments and the benthic fish species Pelteobagrus vachellii were sampled in 2011/2012, respectively, to identify relevant endpoints. Sediment was tested in vitro with the ethoxyresorufin-O-deethylase (EROD) induction assay, and in vivo with the Fish Embryo Toxicity Test and Sediment Contact Assay with Danio rerio. Activities of phase I (EROD) and phase II (glutathione-S-transferase) biotransformation enzymes, pollutant metabolites and histopathological alterations were studied in situ in P. vachellii. EROD induction was tested in vitro and in situ to evaluate possible relationships. Two sites, near Chongqing and Kaixian city, were identified as regional hot-spots and further investigated in 2013. The sediments induced in the in vitro/in vivo bioassays AhR-mediated activities and embryotoxic/teratogenic effects - particularly on the cardiovascular system. These endpoints could be significantly correlated to each other and respective chemical data. However, particle-bound pollutants showed only low bioavailability. The in situ investigations suggested a rather poor condition of P. vachellii, with histopathological alterations in liver and excretory kidney. Fish from Chongqing city exhibited significant hepatic EROD induction and obvious parasitic infestations. The polycyclic aromatic hydrocarbon (PAH) metabolite 1-hydroxypyrene was detected in bile of fish from all sites. All endpoints in combination with the chemical data suggest a pivotal role of PAHs in the observed ecotoxicological impacts.
Collapse
Affiliation(s)
- Tilman Floehr
- Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany.
| | - Björn Scholz-Starke
- Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany.
| | - Hongxia Xiao
- Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany.
| | - Hendrik Hercht
- Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany.
| | - Lingling Wu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, PR China.
| | - Junli Hou
- East China Sea Fisheries Research Institute, Shanghai 200090, PR China.
| | | | - Helmut Segner
- Centre for Fish and Wildlife Health, University of Bern, 3001 Bern, Switzerland.
| | - Ulrike Kammann
- Thünen Institute of Fisheries Ecology, 22767 Hamburg, Germany.
| | - Xingzhong Yuan
- College of Resources and Environmental Science, Chongqing University, Chongqing 400030, PR China.
| | - Martina Roß-Nickoll
- Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany; College of Resources and Environmental Science, Chongqing University, Chongqing 400030, PR China.
| | - Andreas Schäffer
- Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany; College of Resources and Environmental Science, Chongqing University, Chongqing 400030, PR China; State Key Laboratory of Pollution Control and Research Reuse, School of the Environment, Nanjing University, Nanjing 210093, PR China.
| | - Henner Hollert
- Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, PR China; College of Resources and Environmental Science, Chongqing University, Chongqing 400030, PR China; State Key Laboratory of Pollution Control and Research Reuse, School of the Environment, Nanjing University, Nanjing 210093, PR China.
| |
Collapse
|
19
|
Wariaghli F, Kammann U, Hanel R, Yahyaoui A. PAH Metabolites in Bile of European Eel (Anguilla anguilla) from Morocco. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2015; 95:740-744. [PMID: 26109310 DOI: 10.1007/s00128-015-1586-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/19/2015] [Indexed: 06/04/2023]
Abstract
Environmental pollution of fish with organic contaminants is a topic of rising attention in Morocco. Polycyclic aromatic hydrocarbons (PAH) are prominent organic contaminants which are rapidly metabolized in fish. Their metabolites are accumulated in the bile fluid and can be used to assess PAH exposure. The two PAH metabolites 1-hydroxypyrene and 1-hydroxyphenanthrene were quantified in European eels (Anguilla anguilla) from two Moroccan river systems by high-performance liquid chromatography with fluorescence detection. Mean values ranged from 52 to 210 ng/mL 1-hydroxypyrene and from 61 to 73 ng/mL 1-hydroxyphenanthrene. The overall concentrations of PAH metabolites in eel from Morocco appeared moderate compared to eel from European rivers and coastal sites. The present study provides first information on concentrations of PAH metabolites in fish from Morocco.
Collapse
Affiliation(s)
- Fatima Wariaghli
- Laboratory of Zoology and General Biology, Faculty of Science, Mohammed V-Agdal University, Rabat, Morocco
| | - Ulrike Kammann
- Thünen Institute of Fisheries Ecology, Palmaille 9, 22767, Hamburg, Germany.
| | - Reinhold Hanel
- Thünen Institute of Fisheries Ecology, Palmaille 9, 22767, Hamburg, Germany
| | - Ahmed Yahyaoui
- Laboratory of Zoology and General Biology, Faculty of Science, Mohammed V-Agdal University, Rabat, Morocco
| |
Collapse
|
20
|
Altenburger R, Ait-Aissa S, Antczak P, Backhaus T, Barceló D, Seiler TB, Brion F, Busch W, Chipman K, de Alda ML, de Aragão Umbuzeiro G, Escher BI, Falciani F, Faust M, Focks A, Hilscherova K, Hollender J, Hollert H, Jäger F, Jahnke A, Kortenkamp A, Krauss M, Lemkine GF, Munthe J, Neumann S, Schymanski EL, Scrimshaw M, Segner H, Slobodnik J, Smedes F, Kughathas S, Teodorovic I, Tindall AJ, Tollefsen KE, Walz KH, Williams TD, Van den Brink PJ, van Gils J, Vrana B, Zhang X, Brack W. Future water quality monitoring--adapting tools to deal with mixtures of pollutants in water resource management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 512-513:540-551. [PMID: 25644849 DOI: 10.1016/j.scitotenv.2014.12.057] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/18/2014] [Accepted: 12/18/2014] [Indexed: 05/18/2023]
Abstract
Environmental quality monitoring of water resources is challenged with providing the basis for safeguarding the environment against adverse biological effects of anthropogenic chemical contamination from diffuse and point sources. While current regulatory efforts focus on monitoring and assessing a few legacy chemicals, many more anthropogenic chemicals can be detected simultaneously in our aquatic resources. However, exposure to chemical mixtures does not necessarily translate into adverse biological effects nor clearly shows whether mitigation measures are needed. Thus, the question which mixtures are present and which have associated combined effects becomes central for defining adequate monitoring and assessment strategies. Here we describe the vision of the international, EU-funded project SOLUTIONS, where three routes are explored to link the occurrence of chemical mixtures at specific sites to the assessment of adverse biological combination effects. First of all, multi-residue target and non-target screening techniques covering a broader range of anticipated chemicals co-occurring in the environment are being developed. By improving sensitivity and detection limits for known bioactive compounds of concern, new analytical chemistry data for multiple components can be obtained and used to characterise priority mixtures. This information on chemical occurrence will be used to predict mixture toxicity and to derive combined effect estimates suitable for advancing environmental quality standards. Secondly, bioanalytical tools will be explored to provide aggregate bioactivity measures integrating all components that produce common (adverse) outcomes even for mixtures of varying compositions. The ambition is to provide comprehensive arrays of effect-based tools and trait-based field observations that link multiple chemical exposures to various environmental protection goals more directly and to provide improved in situ observations for impact assessment of mixtures. Thirdly, effect-directed analysis (EDA) will be applied to identify major drivers of mixture toxicity. Refinements of EDA include the use of statistical approaches with monitoring information for guidance of experimental EDA studies. These three approaches will be explored using case studies at the Danube and Rhine river basins as well as rivers of the Iberian Peninsula. The synthesis of findings will be organised to provide guidance for future solution-oriented environmental monitoring and explore more systematic ways to assess mixture exposures and combination effects in future water quality monitoring.
Collapse
Affiliation(s)
- Rolf Altenburger
- UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany; RWTH Aachen University, Aachen, Germany
| | - Selim Ait-Aissa
- Institut National de l'Environnement Industriel et des Risques INERIS, BP2, 60550 Verneuil-en-Halatte, France
| | - Philipp Antczak
- Centre for Computational Biology and Modelling, University of Liverpool, L69 7ZB, UK
| | - Thomas Backhaus
- Department of Biological and Environmental Sciences, University of Gothenburg, Carl Skottbergs Gata 22b, 40530 Gothenburg, Sweden
| | - Damià Barceló
- Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | | | - Francois Brion
- Institut National de l'Environnement Industriel et des Risques INERIS, BP2, 60550 Verneuil-en-Halatte, France
| | - Wibke Busch
- UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Kevin Chipman
- School of Biosciences, The University of Birmingham, Birmingham B15 2TT, UK
| | - Miren López de Alda
- Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | | | - Beate I Escher
- National Research Centre for Environmental Toxicology (Entox), The University of Queensland, Brisbane, Australia; UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Francesco Falciani
- Centre for Computational Biology and Modelling, University of Liverpool, L69 7ZB, UK
| | - Michael Faust
- Faust & Backhaus Environmental Consulting, Fahrenheitstr. 1, 28359 Bremen, Germany
| | - Andreas Focks
- Alterra, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Klara Hilscherova
- Masaryk University, Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Juliane Hollender
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | | | - Felix Jäger
- Synchem UG & Co. KG, Am Kies 2, 34587 Felsberg-Altenburg, Germany
| | - Annika Jahnke
- UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Andreas Kortenkamp
- Brunel University, Institute of Environment, Health and Societies, Uxbridge UB8 3PH, United Kingdom
| | - Martin Krauss
- UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Gregory F Lemkine
- WatchFrog, Bâtiment Genavenir 3, 1 rue Pierre Fontaine, 91000 Evry, France
| | - John Munthe
- IVL Swedish Environmental Research Institute, P.O. Box 53021, 400 14 Göteborg, Sweden
| | - Steffen Neumann
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Emma L Schymanski
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Mark Scrimshaw
- Brunel University, Institute of Environment, Health and Societies, Uxbridge UB8 3PH, United Kingdom
| | - Helmut Segner
- University of Bern, Centre for Fish and Wildlife Health, PO Box 8466, CH-3001 Bern, Switzerland
| | | | - Foppe Smedes
- Masaryk University, Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Subramaniam Kughathas
- Brunel University, Institute of Environment, Health and Societies, Uxbridge UB8 3PH, United Kingdom
| | - Ivana Teodorovic
- University of Novi Sad, Faculty of Sciences¸ Trg Dositeja Obradovića, 321000 Novi Sad, Serbia
| | - Andrew J Tindall
- WatchFrog, Bâtiment Genavenir 3, 1 rue Pierre Fontaine, 91000 Evry, France
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research NIVA, Gaustadalléen 21, N-0349 Oslo, Norway
| | - Karl-Heinz Walz
- MAXX Mess- und Probenahmetechnik GmbH, Hechinger Straße 41, D-72414 Rangendingen, Germany
| | - Tim D Williams
- School of Biosciences, The University of Birmingham, Birmingham B15 2TT, UK
| | - Paul J Van den Brink
- Alterra, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Jos van Gils
- Foundation Deltares, Potbus 177, 277 MH Delft, The Netherlands
| | - Branislav Vrana
- Masaryk University, Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Collaborative Innovation Center for Regional Environmental Quality, Nanjing University, Nanjing 210023, PR China
| | - Werner Brack
- UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| |
Collapse
|
21
|
Dabrowska H, Kopko O, Góra A, Waszak I, Walkusz-Miotk J. DNA damage, EROD activity, condition indices, and their linkages with contaminants in female flounder (Platichthys flesus) from the southern Baltic Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 496:488-498. [PMID: 25108251 DOI: 10.1016/j.scitotenv.2014.07.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/11/2014] [Accepted: 07/20/2014] [Indexed: 06/03/2023]
Abstract
The Baltic Sea is considered as one of the marine areas most exposed to human impacts. A variety of chemical contaminants pose a threat to the habitants. Female flounder (Platichthys flesus) collected from three locations in the southern Baltic Sea in February 2010 were examined for biomarkers of exposure to genotoxic agents (DNA damage), AhR-active contaminants (ethoxyresorufin-O-deethylase, EROD activity), and somatic condition indexes. Organochlorine contaminants (OCs) and polycyclic aromatic hydrocarbon (PAH) metabolites were also measured in individual flounder to evaluate the biological responses in the context of contaminant burden. The genotoxicity, mildly exceeding a background level, revealed a significant relationship with mono-ortho substituted PCB (m-oPCB). Hepatic EROD activity was highly induced, yet showed no association with any of the contaminants measured other than biliary 1-OH pyrene normalized to pigment absorbance. Significant negative relationships were observed for lipid-based OCs and the gonado-somatic index (GSI) as well as for Ʃm-oPCB concentrations and the condition factor (CF). Principal component analysis (PCA) revealed an overall connection between somatic condition indexes, biomarkers, and chemical variables. Of the three locations, flounder inhabiting the Gulf of Gdańsk had the greatest contaminant burden and appeared to be the most affected. Of great concern is the reduced GSI in this location which can be attributed to the effects of contaminants and warrants further investigation.
Collapse
Affiliation(s)
- Henryka Dabrowska
- National Marine Fisheries Research Institute (NMFRI), Gdynia, Poland.
| | - Orest Kopko
- National Marine Fisheries Research Institute (NMFRI), Gdynia, Poland
| | - Agnieszka Góra
- National Marine Fisheries Research Institute (NMFRI), Gdynia, Poland
| | - Ilona Waszak
- National Marine Fisheries Research Institute (NMFRI), Gdynia, Poland
| | | |
Collapse
|
22
|
Szlinder-Richert J, Nermer T, Szatkowska U. PAH metabolites in European eels (Anguilla anguilla) as indicators of PAH exposure: different methodological approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 496:84-91. [PMID: 25064716 DOI: 10.1016/j.scitotenv.2014.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/10/2014] [Accepted: 07/10/2014] [Indexed: 06/03/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous contaminants of aquatic environments derived from pyrogenic and petrogenic sources. In fish, as in other vertebrates, PAHs are rapidly metabolized. However, the metabolites have been proven to induce multiple deleterious effects in fish. The concentrations of biliary polycyclic aromatic hydrocarbon metabolites in eels (Anguilla anguilla) caught in Polish waters were measured. The main objectives of the study were to provide information on the levels of PAH metabolites in eels inhabiting Polish waters and to discuss which methodological approach is appropriate for assessing PAH exposure in aquatic ecosystems. The non-normalized median concentration of 1-OH Pyr and 1-OH Phe measured in eels from Polish waters ranged from 11 to 1642 ng ml(-1) bile and from 83 to 929 ng ml(-1) bile, respectively, depending on the sampling site. Data normalization in relation to bile pigment content reduced inter-site variation, and the normalized median concentrations of 1-OH Pyr and 1-OH Phe ranged from 0.44 to 20.24 ng A(-1)380 and from 1.58 to 11.11 ng A(-1)380, respectively. Our study indicated that results were more consistent for the two species sampled in the same area (eel examined in the current study and flounder examined in our previous study) when the fluorescence response of diluted bile samples was compared than when concentrations of 1-OH Pyr determined with the mean of HPLC were compared.
Collapse
Affiliation(s)
- J Szlinder-Richert
- National Marine Fisheries Research Institute, Department of Food and Environment Chemistry, 1 Kołłątaja St., 81-332 Gdynia, Poland.
| | - T Nermer
- National Marine Fisheries Research Institute, Department of Monitoring and Logistics, Kollataja 1 Str., 81-332 Gdynia, Poland.
| | - U Szatkowska
- National Marine Fisheries Research Institute, Department of Food and Environment Chemistry, 1 Kołłątaja St., 81-332 Gdynia, Poland.
| |
Collapse
|