1
|
Ma X, Cooper P, Shi H, Osprey M, Riach D, Paton GI, Xiong Q, Zhou X, Zhang Z. Temporal trends of polycyclic aromatic hydrocarbons in soils amended with sludge, compost, and manure in a Scotland pasture: An 8-year field experiment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124614. [PMID: 39059699 DOI: 10.1016/j.envpol.2024.124614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
To optimize the effective utilization of organic waste in agricultural practices, a comprehensive assessment of associated risks and benefits is crucial. This study investigated the impact of three types of organic wastes (sludge, compost, and manure) on polycyclic aromatic hydrocarbons (PAHs) in contaminated soil in a Scottish pasture. The experimental setup comprised 16 plots with four treatments (compost, manure, sludge, and inorganic fertilizer) and four replicates. After eight years of this study, notable disparities in ΣPAH16 concentrations were observed among the different treatments, with compost-amended soil at 378 μg kg-1, sludge-amended soil at 331 μg kg-1, and manure-amended soil at 223 μg kg-1. The concentrations of ΣPAH16 in soil amended with compost and sludge exhibited a linear increase with extended sampling time. Significant changes in ΣPAH16 concentration were evident in the compost treatment plot, with an increase of 20% in the first year and 82% in the eighth year. Risk assessment suggested a low level of health risk from exposure to PAHs at the measured concentrations in the three organic wastes. In conclusion, this study highlights the importance of considering the effects of organic waste amendments on soil PAH levels to make informed decisions in sustainable agricultural practices. It also underscores the need for ongoing research to fully understand the implications of different organic waste applications on soil health and environmental quality.
Collapse
Affiliation(s)
- Xiao Ma
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK; College of Urban and Environmental Sciences, Hubei Normal University, 11 Cihu Road, Huangshi, 435002, PR China
| | - Patricia Cooper
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Heliang Shi
- School of Biological Sciences, University of Aberdeen, St. Machar Drive, Aberdeen, AB24 3UU, UK
| | - Mark Osprey
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - David Riach
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Graeme I Paton
- School of Biological Sciences, University of Aberdeen, St. Machar Drive, Aberdeen, AB24 3UU, UK
| | - Qiao Xiong
- College of Urban and Environmental Sciences, Hubei Normal University, 11 Cihu Road, Huangshi, 435002, PR China
| | - Xiangjun Zhou
- College of Urban and Environmental Sciences, Hubei Normal University, 11 Cihu Road, Huangshi, 435002, PR China
| | - Zulin Zhang
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK.
| |
Collapse
|
2
|
Ai J, Wang B, Gao X, Yuan Y, Zhou S, Yin X, Wang J, Jia H, Sun H. Effect of biosurfactants on the transport of polyethylene microplastics in saturated porous media. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176636. [PMID: 39357764 DOI: 10.1016/j.scitotenv.2024.176636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/11/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
Microplastic (MP) pollution has become a significant global environmental issue, and the potential application of biosurfactants in soil remediation has attracted considerable attention. However, the effects of biosurfactants on the transport and environmental risks of MPs are not fully understood. This study investigated the transport of polyethylene (PE) in the presence of two types of biosurfactants: typical anionic biosurfactant (rhamnolipids) and non-ionic biosurfactant (sophorolipids) using column experiments. We explored the potential mechanisms involving PE surface roughness and the influence of dissolved organic matter (DOM) on PE transport in the column under the action of biosurfactants, utilizing the Wenzel equation and fluorescence analysis. The results revealed that both the concentration of biosurfactants and the surface roughness of PE were advantageous for the adhesion of biosurfactants to the PE surface, thereby enhancing the mobility of PE in the column. The proportion of hydrophobic substances in various DOM sources is a critical factor that enhances PE transport in the column. However, the biosurfactant-mediated enhancement of PE transport was inhibited by the biosurfactant-DOM mixture. This was mainly due to DOM occupying the adhesion sites of biosurfactants on PE surfaces. Moreover, the mobility of PE in the presence of sophorolipids is higher than that in the presence of rhamnolipids because the combined hydrophobic and electrostatic forces between PE and sophorolipids create synergistic effects that improve PE stability. Additionally, the mobility of PE increased with rising pH and decreasing ionic strength. These findings provide a more comprehensive understanding of MP transport when using biosurfactants for soil remediation.
Collapse
Affiliation(s)
- Juehao Ai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Binying Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiaolong Gao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yunning Yuan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Shi Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, PR China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, PR China
| | - Hongtao Jia
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, PR China
| | - Huimin Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
3
|
Kariyawasam T, Prenzler PD, Howitt JA, Doran GS. Eucalyptus saponin- and sophorolipid-mediated desorption of polycyclic aromatic hydrocarbons from contaminated soil and sediment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:21638-21653. [PMID: 36271995 PMCID: PMC9938058 DOI: 10.1007/s11356-022-23562-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The potential for biosurfactant-mediated desorption of polyaromatic hydrocarbons (PAHs) was evaluated using PAH-spiked soil and sediment. PAH desorption behaviors and toxicity of novel saponin biosurfactant extracted from Eucalyptus camaldulensis leaves and sophoro-lipid biosurfactant were investigated. Their PAH desorption efficiencies were compared with rhamnolipid biosurfactant and the industrial-chemical surfactant, Tween 20. Based on the emulsification indices, the salt tolerance of surfactants up to 30 g/L NaCl followed the order of saponin > Tween 20 > sophorolipid > rhamnolipid, while the thermal stability over the range of 15 to 50 °C was in the order of sophorolipid > rhamnolipid > saponin > Tween 20. The saponin biosurfactant emulsion demonstrated the highest stability under a wide range of acidic to basic pHs. PAH extraction percentages of saponin and sophorolipid under the optimized surfactant concentration, volume, and incubation time were 30-50% and 30-70%, respectively. PAH desorption capacities of saponin and sophorolipid were comparable to that of rhamnolipid and Tween 20 for all matrices. Sophorolipid more efficiently desorbed low molecular weight PAHs in soil and sediment compared to the other three surfactants. Microbial respiration was used to determine biosurfactant toxicity to the soil/sediment microbiome and indicated no inhibition of respiration during 60 days of incubation, suggesting that sophorolipid- and saponin-mediated remediation may be sustainable approaches to remove PAHs from contaminated soils and sediments.
Collapse
Affiliation(s)
- Thiloka Kariyawasam
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - Paul D Prenzler
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - Julia A Howitt
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - Gregory S Doran
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia.
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia.
| |
Collapse
|
4
|
Kariyawasam T, Doran GS, Howitt JA, Prenzler PD. Polycyclic aromatic hydrocarbon contamination in soils and sediments: Sustainable approaches for extraction and remediation. CHEMOSPHERE 2022; 291:132981. [PMID: 34826448 DOI: 10.1016/j.chemosphere.2021.132981] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic environmental pollutants that are extremely hydrophobic in nature and resistant to biological degradation. Extraction of PAHs from environmental matrices is the first and most crucial step in PAH quantification. Extraction followed by quantification is essential to understand the extent of contamination prior to the application of remediation approaches. Due to their non-polar structures, PAHs can be adsorbed tightly to the organic matter in soils and sediments, making them more difficult to be extracted. Extraction of PAHs can be achieved by a variety of methods. Techniques such as supercritical and subcritical fluid extraction, microwave-assisted solvent extraction, plant oil-assisted extraction and some microextraction techniques provide faster PAH extraction using less organic solvents, while providing a more environmentally friendly and safer process with minimum matrix interferences. More recently, more environmentally friendly methods for soil and sediment remediation have been explored. This often involves using natural chemicals, such as biosurfactants, to solubilize PAHs in contaminated soils and sediments to allow subsequent microbial degradation. Vermiremediation and microbial enzyme-mediated remediation are emerging approaches, which require further development. The following summarises the existing literature on traditional PAH extraction and bioremediation methods and contrasts them to newer, more environmentally friendly ways.
Collapse
Affiliation(s)
- Thiloka Kariyawasam
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia; Institute for Land, Water and Society, Charles Sturt University, Albury, NSW, 2702, Australia
| | - Gregory S Doran
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia; Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia.
| | - Julia A Howitt
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia; Institute for Land, Water and Society, Charles Sturt University, Albury, NSW, 2702, Australia
| | - Paul D Prenzler
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia; Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| |
Collapse
|
5
|
Schweitzer HD, Smith HJ, Barnhart EP, McKay LJ, Gerlach R, Cunningham AB, Malmstrom RR, Goudeau D, Fields MW. Subsurface hydrocarbon degradation strategies in low- and high-sulfate coal seam communities identified with activity-based metagenomics. NPJ Biofilms Microbiomes 2022; 8:7. [PMID: 35177633 PMCID: PMC8854433 DOI: 10.1038/s41522-022-00267-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 01/05/2022] [Indexed: 11/18/2022] Open
Abstract
Environmentally relevant metagenomes and BONCAT-FACS derived translationally active metagenomes from Powder River Basin coal seams were investigated to elucidate potential genes and functional groups involved in hydrocarbon degradation to methane in coal seams with high- and low-sulfate levels. An advanced subsurface environmental sampler allowed the establishment of coal-associated microbial communities under in situ conditions for metagenomic analyses from environmental and translationally active populations. Metagenomic sequencing demonstrated that biosurfactants, aerobic dioxygenases, and anaerobic phenol degradation pathways were present in active populations across the sampled coal seams. In particular, results suggested the importance of anaerobic degradation pathways under high-sulfate conditions with an emphasis on fumarate addition. Under low-sulfate conditions, a mixture of both aerobic and anaerobic pathways was observed but with a predominance of aerobic dioxygenases. The putative low-molecular-weight biosurfactant, lichysein, appeared to play a more important role compared to rhamnolipids. The methods used in this study—subsurface environmental samplers in combination with metagenomic sequencing of both total and translationally active metagenomes—offer a deeper and environmentally relevant perspective on community genetic potential from coal seams poised at different redox conditions broadening the understanding of degradation strategies for subsurface carbon.
Collapse
Affiliation(s)
- Hannah D Schweitzer
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA. .,Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT, 59717, USA. .,UiT-The Arctic University of Norway, 9019, Tromsø, Norway.
| | - Heidi J Smith
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA. .,Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT, 59717, USA.
| | - Elliott P Barnhart
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA.,US Geological Survey, Wyoming-Montana Water Science Center, Helena, MT, 59601, USA
| | - Luke J McKay
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA.,Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, 59717, USA
| | - Robin Gerlach
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA.,Energy Research Institute, Montana State University, Bozeman, MT, 59717, USA.,Department of Biological and Chemical Engineering, Montana State University, Bozeman, MT, 59717, USA
| | - Alfred B Cunningham
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA.,Energy Research Institute, Montana State University, Bozeman, MT, 59717, USA.,Department of Civil Engineering, Montana State University, Bozeman, MT, 59717, USA
| | | | | | - Matthew W Fields
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA. .,Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT, 59717, USA. .,Energy Research Institute, Montana State University, Bozeman, MT, 59717, USA.
| |
Collapse
|
6
|
Wang J, Bao H, Pan G, Zhang H, Li J, Li J, Cai J, Wu F. Combined application of rhamnolipid and agricultural wastes enhances PAHs degradation via increasing their bioavailability and changing microbial community in contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 294:112998. [PMID: 34126539 DOI: 10.1016/j.jenvman.2021.112998] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/17/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
Either biosurfactants or agricultural wastes were frequently used to enhance degradation of PAHs in soil, but there is still not clear whether combined application of biosurfactants and agricultural wastes is more efficient. Rhamnolipid and/or agricultural wastes (mushroom substrate or maize straw) were mixed with PAHs-contaminated soil to explore their performances in the removal of PAHs. The present study showed that rhamnolipid combined with mushroom substrate (MR, 30.36%) or maize straw (YR, 30.76%) significantly enhanced the degradation of soil PAHs compared with single application of mushroom substrate (M, 25.53%) or maize straw (Y, 25.77%) or no addition (19.38%). The addition of agricultural wastes significantly (p < 0.001) enhanced concentration of dissolved organic carbon (DOC) in soil. The combined application obviously improved the bioavailability of PAHs in soils and exhibited synergistic effects on concentration of organic acid-soluble HMW PAHs and the degradation rate of total HMW PAHs. Meanwhile, the combined application significantly (p < 0.01) enhanced the abundance of dominant bacterial and fungal genera being connected with PAHs degradation. The removal rate of PAHs was positively correlated with the dominant genera of bacteria (r = 0.539-0.886, p < 0.05) and fungi (r = 0.526-0.867, p < 0.05) related to PAHs degradation. Overall, the combined application exhibited a better performance in the removal of PAHs in contaminated soil via increasing their bioavailability and changing microbial communities in soil.
Collapse
Affiliation(s)
- Jinfeng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, PR China
| | - Huanyu Bao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, PR China
| | - Guodong Pan
- Jining Ecological Environment Monitoring Center of Shandong Province, Jining, 272100, PR China
| | - He Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, PR China
| | - Jia Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, PR China
| | - Jiao Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, PR China
| | - Jun Cai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, PR China
| | - Fuyong Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, PR China.
| |
Collapse
|
7
|
Kong W, Zhao C, Gao X, Wang L, Tian Q, Liu Y, Xue S, Han Z, Chen F, Wang S. Characterization and Transcriptome Analysis of a Long-Chain n-Alkane-Degrading Strain Acinetobacter pittii SW-1. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18126365. [PMID: 34208299 PMCID: PMC8296198 DOI: 10.3390/ijerph18126365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022]
Abstract
Strain sw-1, isolated from 7619-m seawater of the Mariana Trench, was identified as Acinetobacter pittii by 16S rRNA gene and whole-genome sequencing. A. pittii sw-1 was able to efficiently utilize long-chain n-alkanes (C18–C36), but not short- and medium-chain n-alkanes (C8–C16). The degradation rate of C20 was 91.25%, followed by C18, C22, C24, C32, and C36 with the degradation rates of 89.30%, 84.03%, 80.29%, 30.29%, and 13.37%, respectively. To investigate the degradation mechanisms of n-alkanes for this strain, the genome and the transcriptome analyses were performed. Four key alkane hydroxylase genes (alkB, almA, ladA1, and ladA2) were identified in the genome. Transcriptomes of strain sw-1 grown in C20 or CH3COONa (NaAc) as the sole carbon source were compared. The transcriptional levels of alkB and almA, respectively, increased 78.28- and 3.51-fold in C20 compared with NaAc, while ladA1 and ladA2 did not show obvious change. The expression levels of other genes involved in the synthesis of unsaturated fatty acids, permeases, membrane proteins, and sulfur metabolism were also upregulated, and they might be involved in n-alkane uptake. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) confirmed that alkB expression was significantly induced by C20, C24, and C32, and almA induction extent by C24 and C32 was higher than that with C20. Furthermore, ladA2 expression was only induced by C32, and ladA1 expression was not induced by any of n-alkanes. In addition, A. pittii sw-1 could grow with 0%–3% NaCl or 8 out of 10 kinds of the tested heavy metals and degrade n-alkanes at 15 °C. Taken together, these results provide comprehensive insights into the degradation of long-chain n-alkanes by Acinetobacter isolated from the deep ocean environment.
Collapse
Affiliation(s)
- Weina Kong
- Key Laboratory of Resources Biology and Biotechnology in Western China, School of Life Sciences, Northwest University, Ministry of Education, Xi’an 710069, China; (W.K.); (C.Z.); (L.W.); (Q.T.); (Y.L.); (S.X.)
| | - Cheng Zhao
- Key Laboratory of Resources Biology and Biotechnology in Western China, School of Life Sciences, Northwest University, Ministry of Education, Xi’an 710069, China; (W.K.); (C.Z.); (L.W.); (Q.T.); (Y.L.); (S.X.)
| | - Xingwang Gao
- Hulangmao Oil Production Area in No.3 Oil Production Plant of Changqing Oilfield Company, Yan’an 717500, China;
| | - Liping Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, School of Life Sciences, Northwest University, Ministry of Education, Xi’an 710069, China; (W.K.); (C.Z.); (L.W.); (Q.T.); (Y.L.); (S.X.)
| | - Qianqian Tian
- Key Laboratory of Resources Biology and Biotechnology in Western China, School of Life Sciences, Northwest University, Ministry of Education, Xi’an 710069, China; (W.K.); (C.Z.); (L.W.); (Q.T.); (Y.L.); (S.X.)
| | - Yu Liu
- Key Laboratory of Resources Biology and Biotechnology in Western China, School of Life Sciences, Northwest University, Ministry of Education, Xi’an 710069, China; (W.K.); (C.Z.); (L.W.); (Q.T.); (Y.L.); (S.X.)
| | - Shuwen Xue
- Key Laboratory of Resources Biology and Biotechnology in Western China, School of Life Sciences, Northwest University, Ministry of Education, Xi’an 710069, China; (W.K.); (C.Z.); (L.W.); (Q.T.); (Y.L.); (S.X.)
| | - Zhuang Han
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China;
| | - Fulin Chen
- Key Laboratory of Resources Biology and Biotechnology in Western China, School of Life Sciences, Northwest University, Ministry of Education, Xi’an 710069, China; (W.K.); (C.Z.); (L.W.); (Q.T.); (Y.L.); (S.X.)
- Correspondence: (F.C.); (S.W.)
| | - Shiwei Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, School of Life Sciences, Northwest University, Ministry of Education, Xi’an 710069, China; (W.K.); (C.Z.); (L.W.); (Q.T.); (Y.L.); (S.X.)
- Correspondence: (F.C.); (S.W.)
| |
Collapse
|
8
|
Ahmad Z, Zhang X, Imran M, Zhong H, Andleeb S, Zulekha R, Liu G, Ahmad I, Coulon F. Production, functional stability, and effect of rhamnolipid biosurfactant from Klebsiella sp. on phenanthrene degradation in various medium systems. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111514. [PMID: 33254394 DOI: 10.1016/j.ecoenv.2020.111514] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 06/12/2023]
Abstract
The present study investigated the stability and efficacy of a biosurfactant produced by Klebsiella sp. KOD36 under extreme conditions and its potential for enhancing the solubilization and degradation of phenanthrene in various environmental matrices. Klebsiella sp. KOD36 produced a mono-rhamnolipids biosurfactant with a low critical micelle concentration (CMC) value. The biosurfactant was stable under extreme conditions (60 °C, pH 10 and 10% salinity) and could lower surface tension by 30% and maintained an emulsification index of > 40%. The emulsion index was also higher (17-43%) in the presence of petroleum hydrocarbons compared to synthetic surfactant Triton X-100. Investigation on phenanthrene degradation in three different environmental matrices (aqueous, soil-slurry and soil) confirmed that the biosurfactant enhanced the solubilization and biodegradation of phenanthrene in all matrices. The high functional stability and performance of the biosurfactant under extreme conditions on phenanthrene degradation show the great potential of the biosurfactant for remediation applications under harsh environmental conditions.
Collapse
Affiliation(s)
- Zulfiqar Ahmad
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei 430072, China; Key Laboratory for Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xuezhi Zhang
- Key Laboratory for Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Muhammad Imran
- Soil and Environmental Sciences Division, Nuclear Institute for Agriculture and Biology, Faisalabad 38000, Pakistan
| | - Hua Zhong
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei 430072, China.
| | - Shaista Andleeb
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Rabail Zulekha
- Key Laboratory for Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Guansheng Liu
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei 430072, China
| | - Iftikhar Ahmad
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari 61100, Pakistan
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK
| |
Collapse
|
9
|
Ferreira AR, Guedes P, Mateus EP, Ribeiro AB, Couto N. Emerging organic contaminants in soil irrigated with effluent: electrochemical technology as a remediation strategy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140544. [PMID: 32652356 DOI: 10.1016/j.scitotenv.2020.140544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/05/2020] [Accepted: 06/24/2020] [Indexed: 05/22/2023]
Abstract
The effluent reuse for soil irrigation is foreseen as a possible strategy to mitigate the pressure on water resources. However, there is the risk of potential accumulation in soil of emerging organic contaminants (EOCs). In the present work the electrokinetic remediation (EKR) technology, use of direct current, was applied for the removal of EOCs from a soil irrigated with effluent. For this, a soil collected from a rice field (located in Portugal) was mixed with spiked effluent to simulate flood irrigation in one time-period. The experiments were carried out for 6 days applying a low current intensity of 2.5 mA. Different current strategies were tested: continuous mode, reversed electrode polarization (REP), On/Off time periods, and the combination of the last two. The target EOCs comprises a list of six pharmaceuticals and personal care products widely detected in treated wastewater. This study showed that once introduced in soil through effluent irrigation, 20-100% of the EOCs were still present in the soil after 6 days. EKR enhanced up to 20% of the EOCs removal when comparing with control (without current). The EOC removals showed to be related to the microcosm location (anode, central or cathode sections) and dependent of EOCs characteristics. Soil characteristics did not change when On/Off system was combined with REP as a current strategy, and a more homogenous removal of the studied EOCs was achieved in the tested conditions. EKR showed to be a promising technology to be applied in EOCs contaminated soils, not only for removal purposes, but also to avoid possible dispersion in the environment.
Collapse
Affiliation(s)
- Ana Rita Ferreira
- CENSE, Center for Environmental and Sustainability Research, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Paula Guedes
- CENSE, Center for Environmental and Sustainability Research, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, NOVA University Lisbon, Av. da República, 2780-157 Oeiras, Portugal
| | - Eduardo P Mateus
- CENSE, Center for Environmental and Sustainability Research, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Alexandra B Ribeiro
- CENSE, Center for Environmental and Sustainability Research, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal.
| | - Nazaré Couto
- CENSE, Center for Environmental and Sustainability Research, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
10
|
Lin W, Jiang R, Xiao X, Wu J, Wei S, Liu Y, Muir DCG, Ouyang G. Joint effect of nanoplastics and humic acid on the uptake of PAHs for Daphnia magna: A model study. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122195. [PMID: 32044633 DOI: 10.1016/j.jhazmat.2020.122195] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/17/2020] [Accepted: 01/26/2020] [Indexed: 06/10/2023]
Abstract
Nanoplastics (NPs) are emerging pollutants which can adsorb large amounts of hydrophobic organic compounds (HOCs) and be ingested by aquatic organisms. NPs interact with dissolved organic matter (DOM) and result in significant impacts on the bioaccumulation of HOCs in the actual environment. For the first time, the joint effects of two complex matrices on the bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) to Daphnia magna (D. magna) were studied by modeling calculation. The complex matrices, nano-sized polystyrene (PS) and/or humic acid (HA), were under environmentally realistic concentrations. A biodynamic model was modified and the uptake fluxes from all exposure pathways were quantified using the experimental data. A flux estimation showed that the bioaccumulation amounts at equilibrium were mostly dependent on dermal uptake (≥99.3 % of the total). The PS matrix would retard the intestinal uptake process in D. magna, especially for the less hydrophobic PAHs; while the HA or the HA-PS matrix would facilitate the mass transfer of PAHs from the matrix to lipids in the gut. Moreover, the biota matrix accumulation factor (BMAF) were calculated to verify the biodynamic model. This work is helpful to clarify the bioaccumulation effects of PAHs in complex environmental systems.
Collapse
Affiliation(s)
- Wei Lin
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ruifen Jiang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China.
| | - Xiaoying Xiao
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jiayi Wu
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Songbo Wei
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yan Liu
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Derek C G Muir
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Gangfeng Ouyang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China; College of Chemistry & Molecular Engineering, Center of Advanced Analysis and Computational Science, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
11
|
Bianco F, Monteverde G, Race M, Papirio S, Esposito G. Comparing performances, costs and energy balance of ex situ remediation processes for PAH-contaminated marine sediments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:19363-19374. [PMID: 32212083 DOI: 10.1007/s11356-020-08379-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/09/2020] [Indexed: 06/10/2023]
Abstract
This study proposes a comparison of different ex situ technologies aimed at the removal of polycyclic aromatic hydrocarbons from marine sediments in terms of performances, costs and energy balance. In accordance with the principles of water-energy nexus, anaerobic bioremediation, soil washing and thermal desorption were investigated under low liquid phase and temperature conditions using phenanthrene (PHE) as model compound. After 42 days of anaerobic bioremediation, the highest PHE biodegradation of 68 and 64% was observed under denitrifying and methanogenic conditions, respectively, accompanied by N2 and CH4 production and volatile fatty acid accumulation. During soil washing, more than 97% of PHE was removed after 60 min using a solid-to-liquid ratio of 1:3. Along the same treatment time, low-temperature thermal desorption (LTTD) allowed a PHE removal of 88% at 200 °C. The economic analysis indicated that LTTD resulted in a higher cost (i.e. 1782 € m-3) than bioremediation and soil washing (228 and 371 € m-3, respectively). The energy balance also suggested that bioremediation and soil washing are more sustainable technologies as a lower required energy (i.e. 16 and 14 kWh m-3, respectively) than LTTD (i.e. 417 kWh m-3) is needed.
Collapse
Affiliation(s)
- Francesco Bianco
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043, Cassino, Italy.
| | - Gelsomino Monteverde
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, Via Claudio 21, 80125, Napoli, Italy
| | - Marco Race
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043, Cassino, Italy
| | - Stefano Papirio
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, Via Claudio 21, 80125, Napoli, Italy
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, Via Claudio 21, 80125, Napoli, Italy
| |
Collapse
|
12
|
Li S, Hou X, Shi Y, Huang T, Yang H, Huang C. Rapid photodegradation of terrestrial soil dissolved organic matter (DOM) with abundant humic-like substances under simulated ultraviolet radiation. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:103. [PMID: 31915995 DOI: 10.1007/s10661-019-7945-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
Solar ultraviolet (UV) radiation exhibits a significant degradation for dissolved organic matter (DOM) in natural water ecosystems. However, research on photodegradation process of terrestrial components (e.g., humic-like substances) of DOM are limited due to drastic water dilution and rapid degradation. Here, photochemical degradation of terrestrial soil DOM with abundant humic-like substances from different land use were investigated by utilizing spectral technologies. Simulated UV radiation caused obvious losses on concentration, component structures, and fluorescence characteristic of soil DOM samples. The correlations between absorption specific parameters (a280, SUVA254, and SR) and dissolved organic carbon (DOC) were especially pronounced (p < 0.05), which could be used as valid indicators to determine changes in DOM composition and molecular size during photobleaching process. The decreases of DOM fluorescence intensity were corresponded to first-order kinetic and half-life reactions. The greatest reduction on fluorescence intensity (31.56-81.97%) belonged to peak C (i.e., humic-like substances). Overall, DOM from forest and grass soil ecosystems was more easily photochemical degraded than anthropogenic soil DOM. Enhancive contribution of fresh DOM formed by photodegradation increased autochthonous characteristic and bioavailable nutrition by increasing biological index (BIX) values and ammonia nitrogen (NH4+-N) concentration. The slight microbial decomposition effects on DOM happened in unsterilized dark condition. Our findings provided insights for understanding the rapid photodegradation processes of composition and structure of terrestrial DOM. Graphical abstract.
Collapse
Affiliation(s)
- Shuaidong Li
- School of Geography Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Xue Hou
- School of Geography Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Yu Shi
- School of Geography Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Tao Huang
- School of Geography Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing, 210023, People's Republic of China
- Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing, 210023, People's Republic of China
- State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing, 210023, People's Republic of China
| | - Hao Yang
- School of Geography Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing, 210023, People's Republic of China
- Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing, 210023, People's Republic of China
- State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing, 210023, People's Republic of China
| | - Changchun Huang
- School of Geography Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China.
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing, 210023, People's Republic of China.
- Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing, 210023, People's Republic of China.
- State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing, 210023, People's Republic of China.
| |
Collapse
|
13
|
Kim CH, Lee DW, Heo YM, Lee H, Yoo Y, Kim GH, Kim JJ. Desorption and solubilization of anthracene by a rhamnolipid biosurfactant from Rhodococcus fascians. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:739-747. [PMID: 30874337 DOI: 10.1002/wer.1103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/28/2019] [Accepted: 03/11/2019] [Indexed: 05/05/2023]
Abstract
The rhamnolipid biosurfactant-producing bacterium, strain SDRB-G7, was isolated from the sediment of Sindu-ri beach and identified as Rhodococcus fascians based on a phylogenetic analysis. Optimal activity, with the highest yield (2.441 g/L) and surface tension-reducing activity (24.38 mN/m), was observed when the cells were grown on olive oil as their sole source of carbon at pH 8.0. The rhamnolipid biosurfactant showed environmental stability at a variety of NaCl concentrations (2-20%) and pH values (2-12) even under acidic conditions. Of the initial anthracene, 66% was solubilized by 100% crude biosurfactant. Furthermore, 100% crude biosurfactant desorbed 81% of the anthracene in sediment into the aqueous phase. These results suggest that the rhamnolipid biosurfactant produced from R. fascians SDRB-G7 is a promising candidate for polycyclic aromatic hydrocarbon (PAH) removal from the sediment and can be an effective agent for processes that bioremediate PAHs such as surfactant-enhanced remediation. PRACTITIONER POINTS: Biosurfactants can accelerate desorption of PAHs and improve their solubility. BS-producing R. fascians SDRB-G7 was selected by screening of biochemical tests. Solubility of anthracene was enhanced by rhamnolipid produced by strain SDRB-G7. Microbial surfactant is a promising alternative for bioremediation of PAH-polluted sites.
Collapse
Affiliation(s)
- Chul-Hwan Kim
- Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul, Korea
| | - Dong Wan Lee
- Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul, Korea
| | - Young Mok Heo
- Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul, Korea
| | - Hanbyul Lee
- Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul, Korea
| | - Yeonjae Yoo
- Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul, Korea
| | - Gyu-Hyeok Kim
- Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul, Korea
| | - Jae-Jin Kim
- Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul, Korea
| |
Collapse
|
14
|
Lee YK, Lee MH, Hur J. A new molecular weight (MW) descriptor of dissolved organic matter to represent the MW-dependent distribution of aromatic condensation: Insights from biodegradation and pyrene binding experiments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:169-176. [PMID: 30640085 DOI: 10.1016/j.scitotenv.2019.01.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/31/2018] [Accepted: 01/05/2019] [Indexed: 06/09/2023]
Abstract
In this study, we utilized a size exclusion chromatography (SEC) system that was equipped with a fluorescence emission scanning mode to explore the heterogeneous distribution of the humification index (HIX) values within bulk dissolved organic matter (DOM). The HIX-based SEC chromatograms showed that the molecular weight (MW)-dependent distribution of aromatic condensation was heavily affected by the DOM sources and the progress of biodegradation. The HIX heterogeneity across different MW was more pronounced for terrestrial versus aquatic DOM sources. Microbial incubation of leaf litter DOM led to the initial enhancement of the HIX at a relatively low MW, followed by a gradual increase at larger MW values. The dynamic changes of the HIX can be attributed to (1) the preferential removal of non-aromatic or less-aromatic molecules by microorganisms, (2) the production of microbial metabolites, (3) microbial humification, and (4) self-assemblage of humic-like molecules. From the SEC chromatograms, the HIX-based average molecular weight (or MWHIX) was proposed as a unifying surrogate to represent an MW that was highly associated with aromatic condensation. The MWHIX discriminated four different DOM sources and described well the biodegradation-induced changes. The MWHIX also presented a good positive correlation with pyrene organic carbon-normalized binding coefficients (Koc). The prediction capability of the MWHIX for pyrene Koc was higher than those based on the single descriptors of bulk DOM, such as HIX and MW, which revealed its superior linkage with the DOM reactivity related to both MW and HIX.
Collapse
Affiliation(s)
- Yun Kyung Lee
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, South Korea
| | - Mi-Hee Lee
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, South Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, South Korea.
| |
Collapse
|
15
|
Marchut-Mikołajczyk O, Drożdżyński P, Januszewicz B, Domański J, Wrześniewska-Tosik K. Degradation of ozonized tire rubber by aniline - Degrading Candida methanosorbosa BP6 strain. JOURNAL OF HAZARDOUS MATERIALS 2019; 367:8-14. [PMID: 30583113 DOI: 10.1016/j.jhazmat.2018.12.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 05/26/2023]
Abstract
Aniline-degrading yeast strain - Candida methanosorbosa BP-6 was tested for its ability to degrade ground tire rubber, treated and non-treated with ozone. The protein content, respiratory activity, critical oxygen concentration (COC) and emulsifying activity of the yeast strain were monitored during 21 day degradation process. The effects of biodegradation were evaluated using aldehyde detection, Scanning Electrone Microscope (SEM) and Fourier-transform infrared spectroscopy (FTIR) analysis. Pre-treatment of ground tire rubber with ozone resulted in lower microbial growth. However, metabolic condition of the C. methanosorbosa BP-6 yeast strain was higher in sample with ozonized tire rubber. Furthermore, the COC values in the last days of the process were about 30% lower regarding non-ozonized polymer. Also, the ozonization of tire rubber resulted in higher biosurfactant production of the yeast strain. The roughness and visible gaps in rubber matrix (SEM analysis) confirmed the ability of Candida methanosorbosa BP-6 yeast strain for tire rubber biodegradation.
Collapse
Affiliation(s)
- Olga Marchut-Mikołajczyk
- Faculty of Biotechnology and Food Sciences, Institute of Technical Biochemistry, Lodz University of Technology, Lodz, Poland.
| | - Piotr Drożdżyński
- Faculty of Biotechnology and Food Sciences, Institute of Technical Biochemistry, Lodz University of Technology, Lodz, Poland
| | - Bartłomiej Januszewicz
- Faculty of Mechanical Engineering, Institute of Material Science and Engineering, Lodz University of Technology, Lodz, Poland
| | | | - Krystyna Wrześniewska-Tosik
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
16
|
n-Hexadecane and pyrene biodegradation and metabolization by Rhodococcus sp. T1 isolated from oil contaminated soil. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2018.03.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Wolf DC, Gan J. Influence of rhamnolipid biosurfactant and Brij-35 synthetic surfactant on 14C-Pyrene mineralization in soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1846-1853. [PMID: 30408872 DOI: 10.1016/j.envpol.2018.10.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/04/2018] [Accepted: 10/04/2018] [Indexed: 06/08/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous contaminants in soil and are considered priority pollutants due to their carcinogenicity. Bioremediation of PAH-contaminated soils is often limited by the low solubility and strong sorption of PAHs in soil. Synthetic surfactants and biosurfactants have been used to enhance the bioavailability of PAHs and to accelerate microbial degradation. However, few studies have compared synthetic and biosurfactants in their efficiency in promoting PAH biodegradation in either native or bioaugmented soils. In this study, we evaluated mineralization of 14C-pyrene in soils with or without the augmentation of Mycobacterium vanbaalenii PYR-1, and characterized the effect of Brij-35 (synthetic) and rhamnolipid biosurfactant at different amendment rates. Treatment of rhamnolipid biosurfactant at 140 or 1400 μg surfactant g-dry soil-1 rates resulted in a significantly longer lag period in 14C-pyrene mineralization in both native and bioaugmented soils. In contrast, amendment of Brij-35 generally increased 14C-pyrene degradation, and the greatest enhancement occurred at 21.6 or 216 μg surfactant g-dry soil-1 rates, which may be attributed to increased bioavailability. Brij-35 and rhamnolipid biosurfactant were found to be non-toxic to M. vanbaalenii PYR-1 at 10X CMC, thus indicating rhamnolipid biosurfactant likely served as a preferential carbon source to the degrading bacteria in place of 14C-pyrene, leading to delayed and inhibited 14C-pyrene degradation. Mineralization of 14C-pyrene by M. vanbaalenii PYR-1 was rapid in the unamended soils, and up to 60% of pyrene was mineralized to 14CO2 after 10 d in the unamended or Brij-35 surfactant-amended soils. Findings of this study suggest that application of surfactants may not always lead to enhanced PAH biodegradation or removal. If the surfactant is preferentially used as an easier carbon substrate than PAHs for soil microorganisms, it may actually inhibit PAH biodegradation. Selection of surfactant types is therefore crucial for the effectiveness of surfactant-aided bioremediation of PAH-contaminated soils.
Collapse
Affiliation(s)
- D C Wolf
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA, 92521, USA.
| | - J Gan
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA, 92521, USA
| |
Collapse
|
18
|
Hou N, Zhang N, Jia T, Sun Y, Dai Y, Wang Q, Li D, Luo Z, Li C. Biodegradation of phenanthrene by biodemulsifier-producing strain Achromobacter sp. LH-1 and the study on its metabolisms and fermentation kinetics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 163:205-214. [PMID: 30055385 DOI: 10.1016/j.ecoenv.2018.07.064] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/21/2018] [Accepted: 07/17/2018] [Indexed: 06/08/2023]
Abstract
Despite many reports of the use of biodegradation to remove contaminants, the biodegradation of polycyclic aromatic hydrocarbons (PAHs) is challenging because of the hydrophobicities and low aqueous solubilities of most PAHs. In this study, phenanthrene (PHE) was used as a sole carbon and energy source to screen and identify Achromobacter sp. LH-1 for the production of biodemulsifiers that enhance the bioavailability and solubilization of PAHs. LH-1 achieved a 94% degradation rate and a 40% mineralization rate with 100 mg/L PHE. Additionally, LH-1 degraded various PAHs, and the factors that influenced the growth and PAHs degradation activity of LH-1 were not only the toxicities and structures of the substances but also the acclimation of LH-1 to these substances. Three kinetic models were used to describe the fermentation processes of cell growth, product formation and substrate degradation over time. Finally, multiple PHE degradation pathways were proposed to be utilized by strain LH-1.
Collapse
Affiliation(s)
- Ning Hou
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Nannan Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Tingting Jia
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Yang Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Yanfei Dai
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Qiquan Wang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Dapeng Li
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Zhengkai Luo
- Heilongjiang University of Traditional Chinese Medicine, Harbin 150030, Heilongjiang, PR China
| | - Chunyan Li
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China.
| |
Collapse
|
19
|
Qian H, Cheng Y, Yang C, Wu S, Zeng G, Xi J. Performance and biofilm characteristics of biotrickling filters for ethylbenzene removal in the presence of saponins. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:30021-30030. [PMID: 29177780 DOI: 10.1007/s11356-017-0776-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/15/2017] [Indexed: 06/07/2023]
Abstract
Saponins were applied to enhance ethylbenzene removal in biotrickling filters (BTFs), and comparison experiments were carried out to evaluate the effects of saponins on ethylbenzene removal and biofilm characteristics at various saponin concentrations. Results showed that the optimum concentration of saponins was 40 mg/L and a maximum removal efficiency (RE) of ethylbenzene reached 84.3%. When the inlet ethylbenzene concentration increased, ranging from 750 to 2300 mg/m3, the RE decreased from 92.1 to 60.8% and from 69.4 to 44.2% for BTF1 and BTF2 in which saponin was and was not added, respectively. The corresponding RE declined from 91.1 to 40.8% and from 71.5 to 35.8% with a decreased empty bed residence time ranging from 45 to 7.5 s. Additionally, significant differences existed between both BTFs not only in the contents of polysaccharide and proteins but also in the surface charge of biofilms, and the ratio of protein to polysaccharide increased with the increase of saponin concentration, which indicated the presumable effect of saponins on liquid-biofilm transfer rates of ethylbenzene. Mechanisms for the enhanced removal of hydrophobic volatile organic compounds at the presence of surfactants were also discussed.
Collapse
Affiliation(s)
- Hui Qian
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Yan Cheng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang, China.
| | - Shaohua Wu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Jinying Xi
- School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
20
|
Ma Z, Liu J, Dick RP, Li H, Shen D, Gao Y, Waigi MG, Ling W. Rhamnolipid influences biosorption and biodegradation of phenanthrene by phenanthrene-degrading strain Pseudomonas sp. Ph6. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 240:359-367. [PMID: 29751332 DOI: 10.1016/j.envpol.2018.04.125] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/04/2018] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
Given the sub-lethal risks of synthetic surfactants, rhamnolipid is a promising class of biosurfactants with the potential to promote the bioavailability of polycyclic aromatic hydrocarbons (PAHs), to provide a favorable substitute for synthetic surfactants. However, few previous studies have integrated the behavior and mechanism behind rhamnolipid-influenced PAH biosorption and biodegradation. This is, to our knowledge, the first report of a bacterial envelope regulated link between phenanthrene (PHE) biosorption and biodegradation by rhamnolipid-induced PHE-degrading strain Pseudomonas sp. Ph6. Rhamnolipid (0─400 mg L-1) can change the cell-surface zeta potential, cell surface hydrophobicity (CSH), cell ultra-microstructure and functional groups, and then alter PHE biosorption and biodegradation of Ph6. Greater amounts of PHE sorbed on cell envelopes results in more PHE diffusing into cytochylema, thus favoring PHE intracellular biodegradation of Ph6. Rhamnolipid (≤100 mg L-1) could change the microstructures and functional groups of cell envelopes of Ph6, enhance the cell-surface zeta potential and CSH, thus consequently favor PHE biosorption and biodegradation by strain Ph6. By contrast, rhamnolipid at higher concentrations (≥200 mg L-1) hindered PHE biosorption and biodegradation. Rhamnolipid, as a biosurfactant, can be successfully utilized as an additive to improve the microbial biodegradation of PAHs in the environments.
Collapse
Affiliation(s)
- Zhao Ma
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Juan Liu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Richard P Dick
- School of Environment & Natural Resources, Ohio State University, Columbus, OH 43210, United States
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States
| | - Di Shen
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
21
|
The Impact of Biosurfactants on Microbial Cell Properties Leading to Hydrocarbon Bioavailability Increase. COLLOIDS AND INTERFACES 2018. [DOI: 10.3390/colloids2030035] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The environment pollution with hydrophobic hydrocarbons is a serious problem that requires development of efficient strategies that would lead to bioremediation of contaminated areas. One of the common methods used for enhancement of biodegradation of pollutants is the addition of biosurfactants. Several mechanisms have been postulated as responsible for hydrocarbons bioavailability enhancement with biosurfactants. They include solubilization and desorption of pollutants as well as modification of bacteria cell surface properties. The presented review contains a wide discussion of these mechanisms in the context of alteration of bioremediation efficiency with biosurfactants. It brings new light to such a complex and important issue.
Collapse
|
22
|
Lamichhane S, Bal Krishna KC, Sarukkalige R. Surfactant-enhanced remediation of polycyclic aromatic hydrocarbons: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 199:46-61. [PMID: 28527375 DOI: 10.1016/j.jenvman.2017.05.037] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 05/04/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are toxic, mutagenic and carcinogenic organic compounds that are widely present in the environment. The bioremediation of PAHs is an economical and environmentally friendly remediation technique, but it is limited because PAHs have low water solubility and fewer bioavailable properties. The solubility and bioavailability of PAHs can be increased by using surfactants to reduce surface tension and interfacial tension; this method is called surfactant-enhanced remediation (SER). The SER of PAHs is influenced by many factors such as the type and concentration of surfactants, PAH hydrophobicity, temperature, pH, salinity, dissolved organic matter and microbial community. Furthermore, as mixed micelles have a synergistic effect on PAH solubilisation, selecting the optimum ratio of mixed surfactants leads to effective PAH remediation. Although the use of surfactants inhibits microbial activities in some cases, this could be avoided by choosing an optimum combination of surfactants and a proper microbial community for the targeted PAH(s), resulting in up to 99.99% PAH removal. This article reviews the literature on SER of PAHs, including surfactant types, the synergistic effect of mixed micelles on PAH removal, the impact of surfactants on the PAH biodegradation process, factors affecting the SER process, and the mechanisms of surfactant-enhanced solubilisation of PAHs.
Collapse
Affiliation(s)
- Shanti Lamichhane
- Department of Civil Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - K C Bal Krishna
- School of Computing Engineering and Mathematics, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | - Ranjan Sarukkalige
- Department of Civil Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| |
Collapse
|
23
|
Wei K, Yin H, Peng H, Liu Z, Lu G, Dang Z. Characteristics and proteomic analysis of pyrene degradation by Brevibacillus brevis in liquid medium. CHEMOSPHERE 2017; 178:80-87. [PMID: 28319745 DOI: 10.1016/j.chemosphere.2017.03.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/07/2017] [Accepted: 03/11/2017] [Indexed: 06/06/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widely spread in various ecosystems and are of great concern due to their potential toxicity, mutagenicity and carcinogenicity. Bioremediation has been proposed as an effective approach to remove PAHs. In this study, the physiological responses and proteome of Brevibacillus brevis under exposure to pyrene, a four-ring compound from PAHs family, were investigated. The changes of cell viability of B. brevis were observed during the degradation of pyrene by means of flow cytometry. The results indicated that pyrene stimulated superoxide dismutase (SOD) activity from 93.9 to 100.6 U mg-1 prot, whereas inhibited catalase (CAT) activity from 29.1 to 20.3 U mg-1 prot. The main compositions of B. brevis changed during pyrene degradation, with the proportion of unsaturated fatty acids increased by 13.4%. In addition, we performed a proteomic approach (two-dimensional gel electrophoresis and MALDI-TOF/TOF-MS) in order to explore how B. brevis survived upon treatment with pyrene. It was showed that the expression of 13 proteins increased whereas 10 other decreased after pyrene-treatment. The differentially expressed proteins were identified and the results indicated that they were involved in multiple biological processes including energy metabolism, biosynthesis, transmembrane transport and oxidative stress. Overall, these findings offered a new insights into the cellular response strategy developed by B. brevis to overcome the pyrene stress.
Collapse
Affiliation(s)
- Kun Wei
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China.
| | - Hui Peng
- Department of Chemistry, Jinan University, Guangzhou 510632, Guangdong, China
| | - Zehua Liu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Guining Lu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| |
Collapse
|
24
|
Guo Q, Yan J, Wen J, Hu Y, Chen Y, Wu W. Rhamnolipid-enhanced aerobic biodegradation of triclosan (TCS) by indigenous microorganisms in water-sediment systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 571:1304-1311. [PMID: 27476727 DOI: 10.1016/j.scitotenv.2016.07.171] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 07/23/2016] [Accepted: 07/23/2016] [Indexed: 06/06/2023]
Abstract
Bioremediation of triclosan (TCS) is a challenge because of its low bioavailability, persistence in the environment and recalcitrance to remediation efforts. Rhamnolipid (RL) was used to enhance TCS biodegradation by indigenous microbes in an aerobic water-sediment system. However, knowledge of the effects of TCS on the bacterial community and environmental factors in an RL-enhanced, TCS-degrading system are lacking. Therefore, in this study, the influence of environmental factors on RL-enhanced biodegradation of TCS was investigated by single factor experiments, and shifts in aerobic TCS-degrading bacterial populations, with and without RL, were analyzed by high-throughput sequencing technology. The results showed that aerobic biodegradation of TCS was significantly promoted by the addition of RL. Environmental conditions, which included RL addition (0.125-0.5g/L), medium concentrations of TCS (<90μg/g), water disturbance, elevated temperature, ionic strength (0.001-0.1mol/L NaCl) and weak alkaline environments (pH8-9), were monitored. High concentrations of TCS had a remarkable influence on the bacterial community structure, and this influence on the distribution proportion of the main microorganisms was strengthened by RL addition. Alpha-proteobacteria (e.g., Sphingomonadaceae and Caulobacteraceae) might be resistant to TCS or even capable of TCS biodegradation, while Sphingobacteria, Beta- and Delta-proteobacteria were sensitive to TCS toxicity. This research provides ecological information on the degradation efficiency and bacterial community stability in RL-enhanced bioremediation of TCS-polluted aquatic environments.
Collapse
Affiliation(s)
- Qian Guo
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China.
| | - Jia Yan
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China.
| | - Junjie Wen
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, PR China.
| | - Yongyou Hu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, PR China.
| | - Yuanbo Chen
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China.
| | - Wenjin Wu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
25
|
Jia H, Wang H, Lu H, Jiang S, Dai M, Liu J, Yan C. Rhizodegradation potential and tolerance of Avicennia marina (Forsk.) Vierh in phenanthrene and pyrene contaminated sediments. MARINE POLLUTION BULLETIN 2016; 110:112-118. [PMID: 27373941 DOI: 10.1016/j.marpolbul.2016.06.075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 06/13/2016] [Accepted: 06/22/2016] [Indexed: 06/06/2023]
Abstract
A pot experiment was conducted to investigate the dissipation of phenanthrene and pyrene in spiked sediments with presence of Avicennia marina (Forsk.) Vierh. The rhizosphere environment was set up using a self-design nylon rhizo-bag which divided the sediment into the rhizosphere and non-rhizosphere. Results showed that the dissipation of phenanthrene and pyrene were significantly enhanced in the rhizosphere compared with non-rhizosphere sediments. Plant roots promoted dissipation significantly greater than the contribution of direct plant uptake and accumulation of phenanthrene and pyrene. The activities of antioxidant and detoxification enzymes in roots and leaves significantly increased against oxidative stress with increasing PAH concentrations. Furthermore, a significant relationship (R(2)>0.91) between dissolved organic carbon (DOC) concentrations and the residual of PAHs in rhizosphere and non-rhizosphere sediments was observed after 120days planting. Results indicated that rhizome mediation with A. marina is a useful approach to promote the depletion of PAHs in contaminated mangrove sediments.
Collapse
Affiliation(s)
- Hui Jia
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - He Wang
- Xuzhou Medical University, Affiliated Hospital, Xuzhou 221009, PR China
| | - Haoliang Lu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Shan Jiang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China; Biogeochemistry Research Group, Geography Department, Trinity College, University of Dublin, Ireland
| | - Minyue Dai
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Jingchun Liu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Chongling Yan
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China.
| |
Collapse
|
26
|
Fernández EL, Merlo EM, Mayor LR, Camacho JV. Kinetic modelling of a diesel-polluted clayey soil bioremediation process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 557-558:276-284. [PMID: 27016675 DOI: 10.1016/j.scitotenv.2016.03.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 02/20/2016] [Accepted: 03/11/2016] [Indexed: 06/05/2023]
Abstract
A mathematical model is proposed to describe a diesel-polluted clayey soil bioremediation process. The reaction system under study was considered a completely mixed closed batch reactor, which initially contacted a soil matrix polluted with diesel hydrocarbons, an aqueous liquid-specific culture medium and a microbial inoculation. The model coupled the mass transfer phenomena and the distribution of hydrocarbons among four phases (solid, S; water, A; non-aqueous liquid, NAPL; and air, V) with Monod kinetics. In the first step, the model simulating abiotic conditions was used to estimate only the mass transfer coefficients. In the second step, the model including both mass transfer and biodegradation phenomena was used to estimate the biological kinetic and stoichiometric parameters. In both situations, the model predictions were validated with experimental data that corresponded to previous research by the same authors. A correct fit between the model predictions and the experimental data was observed because the modelling curves captured the major trends for the diesel distribution in each phase. The model parameters were compared to different previously reported values found in the literature. Pearson correlation coefficients were used to show the reproducibility level of the model.
Collapse
Affiliation(s)
- Engracia Lacasa Fernández
- Chemical Engineering Department, Research Institute for Chemical and Environmental Technology (ITQUIMA), University of Castilla La Mancha, 13071 Ciudad Real, Spain
| | - Elena Moliterni Merlo
- Chemical Engineering Department, Research Institute for Chemical and Environmental Technology (ITQUIMA), University of Castilla La Mancha, 13071 Ciudad Real, Spain
| | | | - José Villaseñor Camacho
- Chemical Engineering Department, Research Institute for Chemical and Environmental Technology (ITQUIMA), University of Castilla La Mancha, 13071 Ciudad Real, Spain.
| |
Collapse
|
27
|
Wang S, Guo S, Li F, Yang X, Teng F, Wang J. Effect of alternating bioremediation and electrokinetics on the remediation of n-hexadecane-contaminated soil. Sci Rep 2016; 6:23833. [PMID: 27032838 PMCID: PMC4817206 DOI: 10.1038/srep23833] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 03/15/2016] [Indexed: 12/02/2022] Open
Abstract
This study demonstrated the highly efficient degradation of n-hexadecane in soil, realized by alternating bioremediation and electrokinetic technologies. Using an alternating technology instead of simultaneous application prevented competition between the processes that would lower their efficiency. For the consumption of the soil dissolved organic matter (DOM) necessary for bioremediation by electrokinetics, bioremediation was performed first. Because of the utilization and loss of the DOM and water-soluble ions by the microbial and electrokinetic processes, respectively, both of them were supplemented to provide a basic carbon resource, maintain a high electrical conductivity and produce a uniform distribution of ions. The moisture and bacteria were also supplemented. The optimal DOM supplement (20.5 mg·kg−1 glucose; 80–90% of the total natural DOM content in the soil) was calculated to avoid competitive effects (between the DOM and n-hexadecane) and to prevent nutritional deficiency. The replenishment of the water-soluble ions maintained their content equal to their initial concentrations. The degradation rate of n-hexadecane was only 167.0 mg·kg−1·d−1 (1.9%, w/w) for the first 9 days in the treatments with bioremediation or electrokinetics alone, but this rate was realized throughout the whole process when the two technologies were alternated, with a degradation of 78.5% ± 2.0% for the n-hexadecane after 45 days of treatment.
Collapse
Affiliation(s)
- Sa Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuhai Guo
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Fengmei Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | | | - Fei Teng
- Shenyang University, Shenyang 110014, China
| | - Jianing Wang
- Institute of Biology, Shandong Academy of Sciences, Jinan 250014, China
| |
Collapse
|
28
|
Wu W, Hu Y, Guo Q, Yan J, Chen Y, Cheng J. Sorption/desorption behavior of triclosan in sediment-water-rhamnolipid systems: Effects of pH, ionic strength, and DOM. JOURNAL OF HAZARDOUS MATERIALS 2015; 297:59-65. [PMID: 25938643 DOI: 10.1016/j.jhazmat.2015.04.078] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 03/19/2015] [Accepted: 04/28/2015] [Indexed: 06/04/2023]
Abstract
Effects of pH, ionic strength and DOM on the sorption and desorption of triclosan (TCS) in sediment-water-rhamnolipid systems were systematically investigated through controlled batch experiments. Results showed that solubilization enhancement of TCS by rhamnolipid was higher in acid pH range than in alkaline pH range and was the highest at the ionic strength of 5×10(-2) M. Sorption of rhamnolipid onto sediment decreased with the increase of pH while the result was contrary to ionic strength. Moreover, the apparent distribution coefficients of TCS (Kd(*)) decreased from 73.35 to 32.30 L/kg with an increase of solution pH, as varying pH had significant influence on sorption of RL onto sediment and degree of ionization of TCS. Rhamnolipid presented the largest distribution capacity of TCS into the aqueous phase at moderate ionic strength (5×10(-2) M) with the Kd(*) of 17.26 L/kg. Further results also indicated that the presence of humic acid in aqueous phase could increase the desorption of TCS from contaminated sediment. The desorption enhancement was much higher in the system containing both rhamnolipid and DOM than in the single system. These findings provide meaningful information for enhanced migration of TCS from sediment to water by rhamnolipid.
Collapse
Affiliation(s)
- Wenjin Wu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Yongyou Hu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; State Key Lab of Pulp and Paper Engineering, College of Light Industry and Food Science, South China University of Technology, Guangzhou 510640, PR China.
| | - Qian Guo
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Jia Yan
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Yuancai Chen
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; State Key Lab of Pulp and Paper Engineering, College of Light Industry and Food Science, South China University of Technology, Guangzhou 510640, PR China
| | - Jianhua Cheng
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; State Key Lab of Pulp and Paper Engineering, College of Light Industry and Food Science, South China University of Technology, Guangzhou 510640, PR China
| |
Collapse
|