1
|
Bilea F, Bradu C, Cicirma M, Medvedovici AV, Magureanu M. Plasma treatment of sulfamethoxazole contaminated water: Intermediate products, toxicity assessment and potential agricultural reuse. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168524. [PMID: 37972787 DOI: 10.1016/j.scitotenv.2023.168524] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/26/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
The increasing global water demand has prompted the reuse of treated wastewater. However, the persistence of organic micropollutants in inefficiently treated effluents can have detrimental effects depending on the scope of the reclaimed water usage. One example is the presence of sulfamethoxazole, a widely used antibiotic whose interference with the folate synthesis pathway negatively affects plants and microorganisms. The goal of this study is to assess the suitability of a non-thermal plasma-ozonation technique for the removal of the organic pollutant and reduction of its herbicidal effect. Fast sulfamethoxazole degradation was achieved with apparent reaction rate constants in the range 0.21-0.49 min-1, depending on the initial concentration. The highest energy yield (64.5 g/kWh at 50 % removal) exceeds the values reported thus far in plasma degradation experiments. During treatment, 38 degradation intermediates were detected and identified, of which only 9 are still present after 60 min. The main reactive species that contribute to the degradation of sulfamethoxazole and its intermediate products were hydroxyl radicals and ozone, which led to the formation of several hydroxylated compounds, ring opening and fragmentation. The herbicidal effect of the target compound was eliminated with its removal, showing that the remanent intermediates do not retain phytotoxic properties.
Collapse
Affiliation(s)
- Florin Bilea
- National Institute for Lasers, Plasma and Radiation Physics, Atomistilor Str. 409, 077125 Magurele, Romania; Faculty of Chemistry, University of Bucharest, Regina Elisabeta Bd. 4-12, 030018 Bucharest, Romania.
| | - Corina Bradu
- Faculty of Biology, University of Bucharest, Splaiul Independenței Str. 91-95, 050095 Bucharest, Romania
| | - Marius Cicirma
- National Institute for Lasers, Plasma and Radiation Physics, Atomistilor Str. 409, 077125 Magurele, Romania
| | | | - Monica Magureanu
- National Institute for Lasers, Plasma and Radiation Physics, Atomistilor Str. 409, 077125 Magurele, Romania.
| |
Collapse
|
2
|
Gao Y, Guo T, Niu X, Luo N, Chen J, Qiu J, Ji Y, Li G, An T. Remediation of preservative ethylparaben in water using natural sphalerite: Kinetics and mechanisms. J Environ Sci (China) 2022; 113:72-80. [PMID: 34963551 DOI: 10.1016/j.jes.2021.05.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 06/14/2023]
Abstract
As a typical class of emerging organic contaminants (EOCs), the environmental transformation and abatement of preservative parabens have raised certain environmental concerns. However, the remediation of parabens-contaminated water using natural matrixes (such as, naturally abundant minerals) is not reported extensively in literature. In this study, the transformation kinetics and the mechanism of ethylparaben using natural sphalerite (NS) were investigated. The results show that around 63% of ethylparaben could be absorbed onto NS within 38 hr, whereas the maximum adsorption capacity was 0.45 mg/g under room temperature. High temperature could improve the adsorption performance of ethylparaben using NS. In particular, for the temperature of 313 K, the adsorption turned spontaneous. The well-fitted adsorption kinetics indicated that both the surface adsorption and intra-particle diffusion contribute to the overall adsorption process. The monolayer adsorption on the surface of NS was primarily responsible for the elimination of ethylparaben. The adsorption mechanism showed that hydrophobic partitioning into organic matter could largely govern the adsorption process, rather than the ZnS that was the main component of NS. Furthermore, the ethylparaben adsorbed on the surface of NS was stable, as only less than 2% was desorbed and photochemically degraded under irradiation of simulated sunlight for 5 days. This study revealed that NS might serve as a potential natural remediation agent for some hydrophobic EOCs including parabens, and emphasized the significant role of naturally abundant minerals on the remediation of EOCs-contaminated water bodies.
Collapse
Affiliation(s)
- Yanpeng Gao
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - Teng Guo
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaolin Niu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Na Luo
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jia Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Junlang Qiu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - Yuemeng Ji
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
3
|
Magureanu M, Bilea F, Bradu C, Hong D. A review on non-thermal plasma treatment of water contaminated with antibiotics. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125481. [PMID: 33992019 DOI: 10.1016/j.jhazmat.2021.125481] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/05/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Large amounts of antibiotics are produced and consumed worldwide, while wastewater treatment is still rather inefficient, leading to considerable water contamination. Concentrations of antibiotics in the environment are often sufficiently high to exert a selective pressure on bacteria of clinical importance that increases the prevalence of resistance. Since the drastic reduction in the use of antibiotics is not envisaged, efforts to reduce their input into the environment by improving treatment of contaminated wastewater is essential to limit uncontrollable spread of antibiotic resistance. This paper reviews recent progress on the use of non-thermal plasma for the degradation of antibiotics in water. The target compounds removal, the energy efficiency and the mineralization are analyzed as a function of discharge configuration and the most important experimental parameters. Various ways to improve the plasma process efficiency are addressed. Based on the identified reaction intermediates, degradation pathways are proposed for various classes of antibiotics and the degradation mechanisms of these chemicals under plasma conditions are discussed.
Collapse
Affiliation(s)
- M Magureanu
- National Institute for Lasers, Plasma and Radiation Physics, Department of Plasma Physics and, Nuclear Fusion, Atomistilor Str. 409, P.O. Box MG-36, Magurele, 077125 Bucharest, Romania.
| | - F Bilea
- National Institute for Lasers, Plasma and Radiation Physics, Department of Plasma Physics and, Nuclear Fusion, Atomistilor Str. 409, P.O. Box MG-36, Magurele, 077125 Bucharest, Romania; University of Bucharest, Faculty of Chemistry, Department of Analytical Chemistry, Panduri Avenue 90, 050663 Bucharest, Romania
| | - C Bradu
- University of Bucharest, Faculty of Biology, Department of Systems Ecology and Sustainability, Splaiul Independentei 91-95, 050095 Bucharest, Romania
| | - D Hong
- GREMI, UMR 7344, Université d'Orléans, CNRS, Orléans, France
| |
Collapse
|
4
|
Komarov S, Yamamoto T, Fang Y, Hariu D. Combined effect of acoustic cavitation and pulsed discharge plasma on wastewater treatment efficiency in a circulating reactor: A case study of Rhodamine B. ULTRASONICS SONOCHEMISTRY 2020; 68:105236. [PMID: 32615405 DOI: 10.1016/j.ultsonch.2020.105236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/03/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
The present study investigates the wastewater treatment performance of an acoustic cavitation assisted plasma (ACAP) process in a circulating reactor using Rhodamine B (RhB) as a model water pollution. The concept of this process was proposed by the authors recently for a batch type rector. The measurements revealed that combining the ultrasound irradiation with pulsed discharge plasma allows the RhB degradation efficiency to be drastically increased as compared with the plasma-alone case. This effect is especially significant at higher values of solution electrical conductivity examined in a range of 20 ~ 400 μS/cm. Acidic conditions and larger flow rates of solution were found to be favorable for the degradation efficiency. The effect of flow rate was also analyzed through numerical simulation. The results indicated that the mass transfer of RhB to the plasma-cavitation zone is one of the controlling parameters influencing the degradation performance. Behavior of bubbles and pulse discharge frequency were examined using a high-speed video camera. Relatively large bubbles were found to favor the plasma pulse generation and propagation when move near the high-voltage electrode. On the whole, the results of this study suggest that the ACAP process has the potential to synergistically extend the application area of underwater plasma in both research and industry.
Collapse
Affiliation(s)
- Sergey Komarov
- Department of Frontier Science for Advanced Environment, Tohoku University, 980-8579, Japan.
| | - Takuya Yamamoto
- Department of Frontier Science for Advanced Environment, Tohoku University, 980-8579, Japan
| | - Yu Fang
- Department of Frontier Science for Advanced Environment, Tohoku University, 980-8579, Japan
| | - Daiki Hariu
- Department of Frontier Science for Advanced Environment, Tohoku University, 980-8579, Japan
| |
Collapse
|
5
|
Separation of Methylparaben by emulsion liquid membrane: Optimization, characterization, stability and multiple cycles studies. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124761] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Sun Y, Cheng S, Lin Z, Yang J, Li C, Gu R. Combination of plasma oxidation process with microbial fuel cell for mineralizing methylene blue with high energy efficiency. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121307. [PMID: 31629597 DOI: 10.1016/j.jhazmat.2019.121307] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/07/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Plasma advanced oxidation process (PAOP) has great ability to break recalcitrant pollutants into small molecular compounds but suffers from poor performance and low energy efficiency for mineralizing dyeing pollutants. Combining advanced oxidation process with biodegradation process is an effective strategy to improve mineralization performance and reduce cost. In this study, a combined process using PAOP as pre-treatment followed by microbial fuel cell (MFC) treatment was investigated to mineralize methylene blue (MB). The PAOP could degrade MB by 97.7%, but only mineralize MB by 23.2% under the discharge power of 35 W for 10 min. Besides, BOD5/COD ratio of MB solution raised from 0.04 to 0.38 while inhibition on E. coli growth decreased from 85.5% to 28.3%. The following MFC process increased MB mineralization percentage to 63.0% with a maximum output power density of 519 mW m-2. The combined process achieved a mineralization energy consumption of 0.143 KWh gTOC-1 which was only 41.8% of that of PAOP. FT-IR, UV-vis and pH variation demonstrated that PAOP could break the aromatic and heterocyclic structures in MB molecule to form organic acids. Possible degradation pathways of MB were accordingly proposed based on LC-MS, GC-MS, and density functional theory calculation.
Collapse
Affiliation(s)
- Yi Sun
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Shaoan Cheng
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, PR China.
| | - Zhufan Lin
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Jiawei Yang
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Chaochao Li
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Ruonan Gu
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, PR China
| |
Collapse
|
7
|
Effect of the electrolyte on the electrolysis and photoelectrolysis of synthetic methyl paraben polluted wastewater. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.03.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Ren J, Jiang N, Li J, Shang K, Lu N, Wu Y. Synergistic degradation of trans-ferulic acid in aqueous solution by dielectric barrier discharge plasma combined with ozone. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:35479-35491. [PMID: 30350145 DOI: 10.1007/s11356-018-3276-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
Trans-ferulic acid (FA), extensively used in pharmaceutical and olive oil industries, causes huge risks to ecological environment due to its biotoxicity and phytotoxicity, leading to the difficulty of biochemical processes in treating FA wastewater. In this study, synergistic degradation of FA via dielectric barrier discharge (DBD) plasma and O3 (plasma-ozone) was studied. The results showed that FA degradation efficiency reached 96.9% after a 40-min treatment by plasma-ozone process, and the energy efficiency of FA degradation was increased by 62.5 and 24.5% compared to single DBD plasma and ozonation treatment. Moreover, FA degradation rate constant in plasma-ozone process was 41% higher compared with the sum of single DBD plasma and ozonation, indicating a significant synergistic effect. Radical diagnosis experiments reveal that a profound increase of ·OH yield through peroxone (H2O2/O3) and UV/O3 pathways is the important mechanism of synergistic degradation of FA in plasma-ozone process, while eaq- played little role in FA degradation. A degradation pathway of FA by plasma-ozone was also proposed according to the detected intermediates from EEM and LC-MS. This work revealed that plasma-ozone process is an alternative process for FA treatment, and the findings are helpful for understanding FA degradation characteristics and synergistic mechanisms in plasma-ozone process.
Collapse
Affiliation(s)
- Jingyu Ren
- School of Environmental Science & Technology, Dalian University of Technology, Dalian, 116024, China
- Key Laboratory of Industrial Ecology and Environmental Engineering, MOE, Dalian University of Technology, Dalian, 116024, China
| | - Nan Jiang
- School of Environmental Science & Technology, Dalian University of Technology, Dalian, 116024, China.
- Key Laboratory of Industrial Ecology and Environmental Engineering, MOE, Dalian University of Technology, Dalian, 116024, China.
- School of Electrical Engineering, Dalian University of Technology, Dalian, 116024, China.
| | - Jie Li
- School of Environmental Science & Technology, Dalian University of Technology, Dalian, 116024, China
- Key Laboratory of Industrial Ecology and Environmental Engineering, MOE, Dalian University of Technology, Dalian, 116024, China
- School of Electrical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Kefeng Shang
- School of Environmental Science & Technology, Dalian University of Technology, Dalian, 116024, China
- Key Laboratory of Industrial Ecology and Environmental Engineering, MOE, Dalian University of Technology, Dalian, 116024, China
- School of Electrical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Na Lu
- School of Environmental Science & Technology, Dalian University of Technology, Dalian, 116024, China
- Key Laboratory of Industrial Ecology and Environmental Engineering, MOE, Dalian University of Technology, Dalian, 116024, China
- School of Electrical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yan Wu
- School of Environmental Science & Technology, Dalian University of Technology, Dalian, 116024, China
- Key Laboratory of Industrial Ecology and Environmental Engineering, MOE, Dalian University of Technology, Dalian, 116024, China
- School of Electrical Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
9
|
Ngigi EM, Nomngongo PN, Ngila JC. Synthesis and Application of Fe-Doped WO3 Nanoparticles for Photocatalytic Degradation of Methylparaben Using Visible–Light Radiation and H2O2. Catal Letters 2018. [DOI: 10.1007/s10562-018-2594-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Doná G, Dagostin JLA, Takashina TA, de Castilhos F, Igarashi-Mafra L. A comparative approach of methylparaben photocatalytic degradation assisted by UV-C, UV-A and Vis radiations. ENVIRONMENTAL TECHNOLOGY 2018; 39:1238-1249. [PMID: 28464729 DOI: 10.1080/09593330.2017.1326528] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 04/29/2017] [Indexed: 05/22/2023]
Abstract
Due to the widespread use of methylparaben (MEP) and its high chemical stability, it can be found in wastewater treatment plants and can act as an endocrine disrupting compound. In this study, the photocatalytic degradation and mineralization of MEP solutions were evaluated under UV-A, UV-C and Vis radiations in the presence of the photocatalyst TiO2. In this sense, the effects of the catalyst load, pH and MEP initial concentration were studied. Remarkably higher reaction rates and total photodegradation were achieved in systems assisted by UV-C radiation. The complete degradation was achieved after 60 min of reaction using the MEP concentration of 30 mg L-1 at pH 9 and 500 mg L-1 TiO2. The experimental data apparently followed a Langmuir-Hinshelwood kinetic model, which could predict 88-98% of the reaction behavior. For the best photodegradation condition, the model predicted an apparent reaction rate constant (kapp) equal to 0.0505 min-1 and an initial reaction rate of 1.5641 mg (L min)-1. Mineralization analyses showed high removal for MEP and derived compounds from the initial solution when using UV-C after 90 min of reaction. The lower toxicity was also confirmed by in vivo tests using MEP solutions previously treated by photocatalysis.
Collapse
Affiliation(s)
- Giovanna Doná
- a Department of Chemical Engineering , Federal University of Parana , Curitiba-PR , Brazil
| | | | | | - Fernanda de Castilhos
- b Department of Chemical Engineering , Santa Maria Federal University , Santa Maria-RS , Brazil
| | - Luciana Igarashi-Mafra
- a Department of Chemical Engineering , Federal University of Parana , Curitiba-PR , Brazil
| |
Collapse
|
11
|
Singh RK, Philip L, Ramanujam S. Removal of 2,4-dichlorophenoxyacetic acid in aqueous solution by pulsed corona discharge treatment: Effect of different water constituents, degradation pathway and toxicity assay. CHEMOSPHERE 2017; 184:207-214. [PMID: 28595146 DOI: 10.1016/j.chemosphere.2017.05.134] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 05/20/2017] [Accepted: 05/22/2017] [Indexed: 06/07/2023]
Abstract
A multiple pin-plane corona discharge reactor was used to generate plasma for the degradation of 2,4 dichlorophenoxyacetic acid (2,4-D) from the aqueous solution. The 2,4-D of concentration 1 mg/L was completely removed within 6 min of plasma treatment. Almost complete mineralization was achieved after the treatment time of 14 min for a 2,4-D concentration of 10 mg/L. Effects of different water constituents such as carbonates, nitrate, sulphate, chloride ions, natural organic matter (humic acids) and pH on 2,4-D degradation was studied. A significant antagonistic effect of carbonate and humic acid was observed, whereas, the effects of other ions were insignificant. A higher first order rate constant of 1.73 min-1 was observed, which was significantly decreased in the presence of carbonate ions and humic acids. Also, a higher degradation of 2,4-D was observed in acidic pH conditions. Different 2,4-D intermediates were detected and the degradation pathway of 2,4-D in plasma treatment process was suggested. The toxicity of 10 mg/L 2,4-D was completely eradicated after 10 min of plasma treatment.
Collapse
Affiliation(s)
- Raj Kamal Singh
- Department of Civil Engineering, Indian Institute of Technology Madras, 600036, India
| | - Ligy Philip
- Department of Civil Engineering, Indian Institute of Technology Madras, 600036, India.
| | - Sarathi Ramanujam
- Department of Electrical Engineering, Indian Institute of Technology Madras, 600036, India
| |
Collapse
|
12
|
Zhang Y, Wei H, Xin Q, Wang M, Wang Q, Wang Q, Cong Y. Process optimization for microcystin-LR degradation by Response Surface Methodology and mechanism analysis in gas-liquid hybrid discharge system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 183:726-732. [PMID: 27641651 DOI: 10.1016/j.jenvman.2016.09.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 09/07/2016] [Accepted: 09/08/2016] [Indexed: 06/06/2023]
Abstract
A gas-liquid hybrid discharge system was applied to microcystin-LR (MC-LR) degradation. MC-LR degradation was completed after 1 min under a pulsed high voltage of 16 kV, gas-liquid interface gap of 10 mm and oxygen flow rate of 160 L/h. The Box-Behnken Design was proposed in Response Surface Methodology to evaluate the influence of pulsed high voltage, electrode distance and oxygen flow rate on MC-LR removal efficiency. Multiple regression analysis, focused on multivariable factors, was employed and a reduced cubic model was developed. The ANOVA analysis shows that the model is significant and the model prediction on MC-LR removal was also validated with experimental data. The optimum conditions for the process are obtained at pulsed voltage of 16 kV, gas-liquid interface gap of 10 mm and oxygen flow rate of 120 L/h with ta removal efficiency of MC-LR of 96.6%. The addition of catalysts (TiO2 or Fe2+) in the gas-liquid hybrid discharge system was found to enhance the removal of MC-LR. The intermediates of MC-LR degradation were analyzed by liquid chromatography/mass spectrometry. The degradation pathway proposed envisaged the oxidation of hydroxyl radicals and ozone, and attack of high-energy electrons on the unsaturated double bonds of Adda and Mdha, with MC-LR finally decomposing into small molecular products.
Collapse
Affiliation(s)
- Yi Zhang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang, PR China
| | - Hanyu Wei
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang, PR China
| | - Qing Xin
- College of Electronic Information, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Mingang Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang, PR China
| | - Qi Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang, PR China
| | - Qiang Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang, PR China
| | - Yanqing Cong
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang, PR China.
| |
Collapse
|
13
|
Magureanu M, Dobrin D, Bradu C, Gherendi F, Mandache NB, Parvulescu VI. New evidence on the formation of oxidizing species in corona discharge in contact with liquid and their reactions with organic compounds. CHEMOSPHERE 2016; 165:507-514. [PMID: 27681106 DOI: 10.1016/j.chemosphere.2016.09.073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/24/2016] [Accepted: 09/17/2016] [Indexed: 06/06/2023]
Abstract
The objective of these investigations is to understand in more detail how organic compounds in water are degraded during plasma treatment. The formation of oxidizing species (ozone (O3), hydrogen peroxide (H2O2) and hydroxyl radicals (OH)) in a pulsed corona discharge in contact with liquid is investigated. The degradation of a target organic compound (methylparaben) in aqueous solution was increased when combining plasma treatment with ozonation, using the O3 generated in the discharge. Enhanced mass transfer of O3 obtained in this plasma+O3 configuration leads to a six fold increase of MeP oxidation rate. The evolution of oxidants concentration during treatment of MeP solutions provides information on their consumption in reactions with MeP and its oxidation products. The correlation of MeP degradation results (MeP removal and mineralization) with O3 consumption and the identified reaction products confirms that although O3 plays an important role in the degradation, for the mineralization OH radicals have an essential contribution. The concentration of OH radicals is diminished in the solutions containing MeP as compared to plasma-treated water, indicating OH consumption in reactions with the target compound and its degradation products. The concentration of H2O2 in the liquid can be either increased or reduced in the presence of MeP, depending on its initial concentration. On the one hand, decomposition of H2O2 by OH or O3 is suppressed in the presence of MeP, but on the other hand less OH radicals are available for its formation.
Collapse
Affiliation(s)
- M Magureanu
- National Institute for Lasers, Plasma and Radiation Physics, Department of Plasma Physics and Nuclear Fusion, Atomistilor Str. 409, P.O. Box MG-36, 077125, Magurele, Bucharest, Romania.
| | - D Dobrin
- National Institute for Lasers, Plasma and Radiation Physics, Department of Plasma Physics and Nuclear Fusion, Atomistilor Str. 409, P.O. Box MG-36, 077125, Magurele, Bucharest, Romania
| | - C Bradu
- University of Bucharest, Faculty of Biology, Department of Systems Ecology and Sustainability, Splaiul Independentei 91-95, 050095, Bucharest, Romania
| | - F Gherendi
- National Institute for Lasers, Plasma and Radiation Physics, Department of Plasma Physics and Nuclear Fusion, Atomistilor Str. 409, P.O. Box MG-36, 077125, Magurele, Bucharest, Romania
| | - N B Mandache
- National Institute for Lasers, Plasma and Radiation Physics, Department of Plasma Physics and Nuclear Fusion, Atomistilor Str. 409, P.O. Box MG-36, 077125, Magurele, Bucharest, Romania
| | - V I Parvulescu
- University of Bucharest, Faculty of Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, Bd. Regina Elisabeta 4-12, 030016, Bucharest, Romania
| |
Collapse
|
14
|
Papadopoulos C, Frontistis Z, Antonopoulou M, Venieri D, Konstantinou I, Mantzavinos D. Sonochemical degradation of ethyl paraben in environmental samples: Statistically important parameters determining kinetics, by-products and pathways. ULTRASONICS SONOCHEMISTRY 2016; 31:62-70. [PMID: 26964924 DOI: 10.1016/j.ultsonch.2015.12.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/03/2015] [Accepted: 12/04/2015] [Indexed: 05/22/2023]
Abstract
The sonochemical degradation of ethyl paraben (EP), a representative of the parabens family, was investigated. Experiments were conducted at constant ultrasound frequency of 20 kHz and liquid bulk temperature of 30 °C in the following range of experimental conditions: EP concentration 250-1250 μg/L, ultrasound (US) density 20-60 W/L, reaction time up to 120 min, initial pH 3-8 and sodium persulfate 0-100mg/L, either in ultrapure water or secondary treated wastewater. A factorial design methodology was adopted to elucidate the statistically important effects and their interactions and a full empirical model comprising seventeen terms was originally developed. Omitting several terms of lower significance, a reduced model that can reliably simulate the process was finally proposed; this includes EP concentration, reaction time, power density and initial pH, as well as the interactions (EP concentration)×(US density), (EP concentration)×(pHo) and (EP concentration)×(time). Experiments at an increased EP concentration of 3.5mg/L were also performed to identify degradation by-products. LC-TOF-MS analysis revealed that EP sonochemical degradation occurs through dealkylation of the ethyl chain to form methyl paraben, while successive hydroxylation of the aromatic ring yields 4-hydroxybenzoic, 2,4-dihydroxybenzoic and 3,4-dihydroxybenzoic acids. By-products are less toxic to bacterium V. fischeri than the parent compound.
Collapse
Affiliation(s)
- Costas Papadopoulos
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece
| | - Zacharias Frontistis
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece
| | - Maria Antonopoulou
- Department of Environmental & Natural Resources Management, University of Patras, 2 Seferi St., GR-30100 Agrinio, Greece
| | - Danae Venieri
- School of Environmental Engineering, Technical University of Crete, Polytechneioupolis, GR-73100 Chania, Greece
| | - Ioannis Konstantinou
- Department of Environmental & Natural Resources Management, University of Patras, 2 Seferi St., GR-30100 Agrinio, Greece
| | - Dionissios Mantzavinos
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece.
| |
Collapse
|
15
|
Petala A, Frontistis Z, Antonopoulou M, Konstantinou I, Kondarides DI, Mantzavinos D. Kinetics of ethyl paraben degradation by simulated solar radiation in the presence of N-doped TiO2 catalysts. WATER RESEARCH 2015; 81:157-66. [PMID: 26057263 DOI: 10.1016/j.watres.2015.05.056] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/20/2015] [Accepted: 05/28/2015] [Indexed: 05/22/2023]
Abstract
Ethyl paraben (EP), an emerging micro-pollutant representative of the parabens family, has been subject to photocatalytic degradation under simulated solar radiation at a photon flux of 1.3·10(-4) E/(m(2) s). Six nitrogen-doped titania catalysts synthesized by annealing a sol-gel derived TiO2 powder under ammonia flow and their un-doped counterparts, calcined in air at different temperatures in the range 450-800 °C, were compared under solar and visible light and the most active one (N-doped TiO2 calcined at 600 °C) was used for further tests. Experiments were performed at EP concentrations between 150 and 900 μg/L, catalyst loadings between 100 and 1000 mg/L, pH between 3 and 9, different matrices (ultrapure water, water spiked with humic acids or bicarbonates, drinking water and secondary treated wastewater) and hydrogen peroxide between 10 and 100 mg/L. For EP concentrations up to 300 μg/L, the degradation rate can be approached by first order kinetics but then shifts to lower order as the concentration increases. The rate increases linearly with catalyst loading up to 750 mg/L and hydrogen peroxide up to 100 mg/L. Near-neutral (pH = 6.5-7.5) and alkaline conditions (pH = 9) do not affect degradation, which is reduced at acidic pH. The presence of humic acids at 10-20 mg/L impedes degradation due to the competition with EP for the oxidizing species and this is more pronounced in actual wastewater matrices. UPLC-ESI-HRMS and HPLC-DAD were employed to follow EP concentration changes, as well as identify and quantify transformation by-products during the early stages of the reaction. Five such products were successfully detected and, based on their concentration-time profiles, a reaction network for the degradation of EP is proposed. Hydroxyl radical reactions appear to prevail during the initial steps as evidenced by the rapid formation of hydroxylated and dealkylated intermediates.
Collapse
Affiliation(s)
- Athanasia Petala
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece
| | - Zacharias Frontistis
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece
| | - Maria Antonopoulou
- Department of Environmental & Natural Resources Management, University of Patras, 2 Seferi St., GR-30100 Agrinio, Greece
| | - Ioannis Konstantinou
- Department of Environmental & Natural Resources Management, University of Patras, 2 Seferi St., GR-30100 Agrinio, Greece
| | - Dimitris I Kondarides
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece
| | - Dionissios Mantzavinos
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece.
| |
Collapse
|
16
|
Magureanu M, Mandache NB, Parvulescu VI. Degradation of pharmaceutical compounds in water by non-thermal plasma treatment. WATER RESEARCH 2015; 81:124-136. [PMID: 26057260 DOI: 10.1016/j.watres.2015.05.037] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/08/2015] [Accepted: 05/19/2015] [Indexed: 06/04/2023]
Abstract
Pharmaceutical compounds became an important class of water pollutants due to their increasing consumption over the last years, as well as due to their persistence in the environment. Since conventional waste water treatment plants are unable to remove certain non-biodegradable pharmaceuticals, advanced oxidation processes was extensively studied for this purpose. Among them, non-thermal plasma was also recently investigated and promising results were obtained. This work reviews the recent research on the oxidative degradation of pharmaceuticals using non-thermal plasma in contact with liquid. As target compounds, several drugs belonging to different therapeutic groups were selected: antibiotics, anticonvulsants, anxiolytics, lipid regulators, vasodilatators, contrast media, antihypertensives and analgesics. It was found that these compounds were removed from water relatively fast, partly degraded, and partly even mineralized. In order to ensure the effluent is environmentally safe it is important to identify the degradation intermediates and to follow their evolution during treatment, which requires complex chemical analysis of the solutions. Based on this analysis, degradation pathways of the investigated pharmaceuticals under plasma conditions were suggested. After sufficient plasma treatment the final organic by-products present in the solutions were mainly small molecules in an advanced oxidation state.
Collapse
Affiliation(s)
- Monica Magureanu
- National Institute for Lasers, Plasma and Radiation Physics, Department of Plasma Physics and Nuclear Fusion, Atomistilor Str. 409, P.O. Box MG-36, 077125 Magurele-Bucharest, Romania.
| | - Nicolae Bogdan Mandache
- National Institute for Lasers, Plasma and Radiation Physics, Department of Plasma Physics and Nuclear Fusion, Atomistilor Str. 409, P.O. Box MG-36, 077125 Magurele-Bucharest, Romania
| | - Vasile I Parvulescu
- University of Bucharest, Faculty of Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, Bd. Regina Elisabeta 4-12, 030016 Bucharest, Romania
| |
Collapse
|