1
|
Parlayıcı Ş, Pehlivan E. Methylene blue removal using nano-TiO 2/MWCNT/Chitosan hydrogel composite beads in aqueous medium. CHEMOSPHERE 2024; 365:143244. [PMID: 39251160 DOI: 10.1016/j.chemosphere.2024.143244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/15/2024] [Accepted: 08/31/2024] [Indexed: 09/11/2024]
Abstract
Dyestuff, one of the most hazardous compounds in terms of threats to people and the environment, is found in wastewater from industrial usage. The removal of Methylene Blue (MB) from a water-based medium has been studied by numerous researchers using a variety of adsorbents. To remove MB from aqueous solution, nano-TiO2/MWCNT/Chitosan hydrogel composite beads (n-TiO2/MWCNT/Cht) were developed in this study using a sol-gel method. This research discusses the characterisation of a new adsorbent substance using Infrared Spectroscopy (FT-IR) analysis and scanning electron microscopy (SEM). The optimal pH, adsorbent dosage, duration, and starting concentration were ascertained by analyzing the removal efficiencies of MB using the batch adsorption method. Adsorption behaviour at the equilibrium state has been investigated using a variety of adsorption isotherms, including Freundlich, Langmuir, and Dubinin-Radushkevich. The Langmuir adsorption isotherm has been useful to clarify adsorption behaviors. nTiO2-Cht/MWCNT had an adsorption capacity of 80.65 mg/g for MB. The pseudo-second-order kinetic model offered the best agreement to the experimental data for the adsorption of MB. Kinetic models of pseudo-first-order and pseudo-second-order were employed to explore the adsorption processes of MB on the n-TiO2/MWCNT/Cht. This study demonstrated the efficiency of n-TiO2/MWCNT/Cht for the removal of MB from a water-based solution.
Collapse
Affiliation(s)
- Şerife Parlayıcı
- Department of Chemical Engineering, Konya Technical University, Campus, 42250, Konya, Turkey.
| | - Erol Pehlivan
- Department of Chemical Engineering, Konya Technical University, Campus, 42250, Konya, Turkey.
| |
Collapse
|
2
|
Kato S, Kansha Y. Comprehensive review of industrial wastewater treatment techniques. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51064-51097. [PMID: 39107648 PMCID: PMC11374848 DOI: 10.1007/s11356-024-34584-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/26/2024] [Indexed: 09/06/2024]
Abstract
Water is an indispensable resource for human activity and the environment. Industrial activities generate vast quantities of wastewater that may be heavily polluted or contain toxic contaminants, posing environmental and public health challenges. Different industries generate wastewater with widely varying characteristics, such as the quantity generated, concentration, and pollutant type. It is essential to understand these characteristics to select available treatment techniques for implementation in wastewater treatment facilities to promote sustainable water usage. This review article provides an overview of wastewaters generated by various industries and commonly applied treatment techniques. The characteristics, advantages, and disadvantages of physical, chemical, and biological treatment methods are presented.
Collapse
Affiliation(s)
- Shoma Kato
- Organization for Programs on Environmental Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-Ku, Tokyo, 153-8902, Japan
| | - Yasuki Kansha
- Organization for Programs on Environmental Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-Ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
3
|
Sagu ST, Ulbrich N, Morche JR, Nichani K, Özpinar H, Schwarz S, Henze A, Rohn S, Rawel HM. Formation of Cysteine Adducts with Chlorogenic Acid in Coffee Beans. Foods 2024; 13:1660. [PMID: 38890888 PMCID: PMC11171587 DOI: 10.3390/foods13111660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
The post-harvest processing of coffee beans leads to a wide range of reactions involving proteins. The formation of crosslinks between proteins and phenolic compounds present in high concentrations of coffee beans represents one of the most challenging and still not fully characterized reactions. The aim of this work was to assess the presence of products from such reactions in coffee samples, focusing on the adducts between cysteine and chlorogenic acids (CQAs). For this purpose, 19 green and 15 roasted coffee samples of the Coffea arabica, Coffea canephora, and Coffea liberica varieties were selected for this study and basically characterized. Then, targeted liquid chromatography mass spectrometry (LC-MS/MS) methods were developed to assess the formation of adducts between CQA and cysteine, glutathione, and N-acetylcysteine as the amino acid and peptide models, and quantified such adducts in coffee samples. The results of the characterization showed a heterogeneous distribution of the protein content (8.7-14.6%), caffeine (0.57-2.62 g/100 g), and antioxidant capacity (2-4.5 g ascorbic acid/100 g) in Arabica, Canephora, and Liberica samples. Glutamic acid, arginine, and proline were found to be the major amino acids, while 5-CQA (38-76%), 3-CQA (4-13%), and 4-CQA (4-13%) were the most abundant CQA derivatives of all coffee varieties. The model experiments for adduct formation demonstrated that cysteine binds to CQA via thiol groups and 5-CQA initially isomerizes to 3- and 4-CQA, depending on the conditions, allowing cysteine to bind to two different sites on 3-, 4- or 5-CQA molecules, thus, forming six different Cys-CQA adducts with m/z 476. The reaction was more favored at pH 9, and the adducts proved to be stable up to 90 °C for 10 min and up to 28 days at room temperature. The relative quantification of adducts showed peak area values ranging from 1100 to 3000 in green coffee bean samples, while no adducts were detected in roasted coffee beans. Overall, this work was the first attempt to demonstrate the presence of Cys-CQA adducts in coffee beans and paves the way for further investigations of such adduct formation at the protein level.
Collapse
Affiliation(s)
- Sorel Tchewonpi Sagu
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 2, 06120 Halle (Saale), Germany; (S.T.S.); (A.H.)
| | - Nina Ulbrich
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; (N.U.); (J.R.M.); (K.N.)
- Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany;
| | - Johanna Rebekka Morche
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; (N.U.); (J.R.M.); (K.N.)
| | - Kapil Nichani
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; (N.U.); (J.R.M.); (K.N.)
| | - Haydar Özpinar
- Department of Nutrition and Dietetics, Faculty of Health Sciences, İstanbul Aydın Üniversitesi, Mah. İnönü Cad. No: 38 Sefaköy, 34295 İstanbul, Turkey;
| | - Steffen Schwarz
- Coffee Consulate, Hans-Thoma-Strasse 20, 68163 Mannheim, Germany;
| | - Andrea Henze
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 2, 06120 Halle (Saale), Germany; (S.T.S.); (A.H.)
| | - Sascha Rohn
- Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany;
| | - Harshadrai M. Rawel
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; (N.U.); (J.R.M.); (K.N.)
| |
Collapse
|
4
|
Biratu G, Woldemariam HW, Gonfa G. Optimization of pectin yield extracted from coffee Arabica pulp using response surface methodology. Heliyon 2024; 10:e29636. [PMID: 38655316 PMCID: PMC11035037 DOI: 10.1016/j.heliyon.2024.e29636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 04/01/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024] Open
Abstract
Pectin was extracted from coffee pulp using 0.1 M H2SO4. The Box Behnken Design based Response surface methodology was applied to optimize pectin yield. The impact of extraction time (45-75 min), temperature (80-100 °C), solid to liquid ratio (SLR) (1:20, 1:27.5, and 1:35), and pH (1.5, 2, and 2.5) on pectin yield were studied. Under optimal extraction conditions (84 °C, 75 min, SLR of 1:20 and pH: 1.5), physical, chemical, structural and antioxidant properties of pectin were examined. The results of the physicochemical analysis are: acetyl value: 1.10 ± 0.05 %, equivalent weight: 1429 ± 54 g/mol, anhydrouronic acid: 57.1 ± 0.9 %, degree of esterification: 78.5 ± 1.8 %, moisture content: 8.5 ± 1.5 % and ash content: 4.3 ± 0.9 %. FTIR analysis indicated the (-OH) peak of pectin was lower and shifted left compared to treated and untreated coffee pulp powder. SEM analysis shows a smoother surface, whereas XRD shows a less amorphous structure of pectin. The total phenolic and flavonoid content of coffee pulp pectin was found to be 26.7 μg Gallic Acid Equivalent/mg and 0.8957 μg Quercetin Equivalent/mg, respectively. Antioxidant analysis showed significant antioxidant properties (IC50 = 642.31 ± 30.43 μg/mL). The predicted and actual pectin yields at the optimal extraction condition were 14.39 and 13.7 %, respectively, with R2 = 0.95 that indicate the model can represent the experiment. Therefore, achieving a maximum pectin yield with improved antioxidant and other physicochemical qualities ensures that coffee pulp can potentially serve as a viable commercial source of pectin.
Collapse
Affiliation(s)
- Girma Biratu
- Department of Chemical Engineering, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
| | - Henock Woldemichael Woldemariam
- Department of Chemical Engineering, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Biotechnology and Bioprocess Center of Excellence, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
| | - Girma Gonfa
- Department of Chemical Engineering, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Biotechnology and Bioprocess Center of Excellence, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
| |
Collapse
|
5
|
Kemsley EK. Graphical exploration of 600- and 60-MHz proton NMR spectral datasets from ground roast coffee extracts. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:236-251. [PMID: 37311710 DOI: 10.1002/mrc.5373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023]
Abstract
This article uses a variety of graphical and mathematical approaches to analyse 600- and 60-MHz ('benchtop') proton NMR spectra acquired from lipophilic and hydrophilic extracts of roasted coffee beans. The collection of 40 authenticated samples comprised various coffee species, cultivars and hybrids. The spectral datasets were analysed by a combination of metabolomics approaches, cross-correlation and whole spectrum methods, assisted by visualisation and mathematical techniques not conventionally employed to treat NMR data. A large amount of information content was shared between the 600-MHz and benchtop datasets, including in its magnitude spectral form, suggesting the potential for a lower cost, lower tech route to conducting informative metabolomics studies.
Collapse
Affiliation(s)
- E Kate Kemsley
- Core Science Resources Group, Quadram Institute Bioscience, Norwich, UK
| |
Collapse
|
6
|
Abd El-Aziz NM, Moharam ME, El-Gamal NN, Khalil BE. Enhancement of novel Endo-polygalacturonase expression in Rhodotorula mucilaginosa PY18: insights from mutagenesis and molecular docking. Microb Cell Fact 2023; 22:252. [PMID: 38066588 PMCID: PMC10709964 DOI: 10.1186/s12934-023-02253-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Pectinase is a particular type of enzyme that can break down pectin compounds and is extensively utilised in the agricultural field. In this study, twenty yeast isolates were isolated and assayed for pectinase activity. Molecular identification by PCR amplification and sequencing of internal transcribed spacer (ITS) regions of isolate no. 18 had the highest pectinase activity of 46.35 U/mg, was identified as Rhodotorula mucilaginosa PY18, and was submitted under accession no. (OM275426) in NCBI. Rhodotorula mucilaginosa PY18 was further enhanced through sequential mutagenesis, resulting in a mutant designated as Rhodotorula mucilaginosa E54 with a specific activity of 114.2 U/mg. Using Response Surface Methodology (RSM), the best culture conditions for the pectinase-producing yeast mutant Rhodotorula mucilaginosa E54 were pH 5, 72-h incubation, 2.5% xylose, and 2.5% malt extract, with a pectinase-specific activity of 156.55 U/mg. Then, the obtained sequences of the endo-polygalacturonase PGI gene from Rhodotorula mucilaginosa PY18 and mutant Rhodotorula mucilaginosa E54 were isolated for the first time, sequenced, and submitted to NCBI accession numbers OQ283005 and OQ283006, respectively. The modelled 3D structure of the endo-PGI enzyme (485 residues) was validated using Ramachandran's plot, which showed 87.71, 85.56, and 91.57% in the most favourable region for template Rhodotorula mucilaginosa KR, strain Rhodotorula mucilaginosa PY18, and mutant Rhodotorula mucilaginosa E54, respectively. In molecular docking studies, the results of template Rhodotorula mucilaginosa KR endo-PG1 showed an interaction with an affinity score of - 6.0, - 5.9, and - 5.6 kcal/mol for active sites 1, 2, and 3, respectively. Rhodotorula mucilaginosa PY18 endo-PG1 showed an interaction affinity with a score of - 5.8, - 6.0, and - 5.0 kcal/mol for active sites 1, 2, and 3, respectively. Mutant Rhodotorula mucilaginosa E54 endo-PG1 showed an interaction affinity of - 5.6, - 5.5, - 5.5 and - 5.4 kcal/mol for active sites 1, 2, and 3, respectively. The endo-PGI genes of both the yeast strain Rhodotorula mucilaginosa PY18 and mutant Rhodotorula mucilaginosa E54 were successfully cloned and expressed in E. coli DH5α, showing significantly higher endo-PG1 activity, which recorded 94.57 and 153.10 U/mg for recombinant Rhodotorula mucilaginosa pGEM-PGI-PY18 and recombinant mutant Rhotorula pGEM-PGI-E54, respectively.
Collapse
Affiliation(s)
- Nagwa M Abd El-Aziz
- Microbial Genetic Department, Biotechnology Research Institute, National Research Centre, 33 El Buhouth St, Dokki, Cairo, 12622, Egypt.
| | - Maysa E Moharam
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, 33 El Buhouth St, Dokki, Cairo, 12622, Egypt
| | - Nora N El-Gamal
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, 33 El Buhouth St, Dokki, Cairo, 12622, Egypt
| | - Bigad E Khalil
- Microbial Genetic Department, Biotechnology Research Institute, National Research Centre, 33 El Buhouth St, Dokki, Cairo, 12622, Egypt
| |
Collapse
|
7
|
Cavanagh Q, Brooks MSL, Rupasinghe H. Innovative technologies used to convert spent coffee grounds into new food ingredients: Opportunities, challenges, and prospects. FUTURE FOODS 2023; 8:100255. [DOI: 10.1016/j.fufo.2023.100255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
8
|
Deivasigamani P, Senthil Kumar P, Sundaraman S, Soosai MR, Renita AA, M K, Bektenov N, Baigenzhenov O, D V, Kumar J A. Deep insights into kinetics, optimization and thermodynamic estimates of methylene blue adsorption from aqueous solution onto coffee husk (Coffee arabica) activated carbon. ENVIRONMENTAL RESEARCH 2023; 236:116735. [PMID: 37517489 DOI: 10.1016/j.envres.2023.116735] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023]
Abstract
In the current study, an attempt was made to synthesize coffee husk (CH) activated carbon by chemical modification approach (sulphuric acid-activated CH (SACH) activated carbon) and was used as a valuable and economical sorbent for plausible remediation of Methylene blue (MB) dye. Batch mode trials were carried out by carefully varying the batch experimental variables: SACH activated carbon (SACH AC) dosage, pH, initial dye concentration, temperature, and contact time. The optimum equilibrium time for adsorption by SACH activated carbon was obtained as 60 min, and the maximum adsorption took place at 30 °C. Morphological and elemental composition, crystallinity behaviour, functional groups, and thermal stability were examined using SEM with EDX, XRD, FTIR, BET, TGA, and DTA and these tests showed successful production of activated carbon. The outcomes showed that chemical activation enhanced the number of pores and roughness which possibly maximized the adsorptive potential of coffee husk. The Box-Benken design (BBD) was used to optimize the MB dye adsorption studies and 99.48% MB dye removed at SACH AC dosage of 4.83 g/L at 30 °C for 60 min and pH 8.12, and the maximum adsorption was yielded for sulphuric acid-activated coffee husk carbon carbon with 88.1 mg/g maximum MB adsorption capacity. Langmuir- Freundlich model deliberately provided a better fit to the equilibrium data. The SACH AC-MB dye system kinetics showed a high goodness-of-fit with pseudo second order model, compared to other studied models. Change in Gibbs's free energy (ΔGo) of the system indicated spontaneity whereas low entropy value (ΔSo) suggested that the removal of MB dye on the SACH activated carbon was an enthalpy-driven process. The exothermic nature of the sorption cycle was affirmed by the negative enthalpy value (ΔHo). The adsorptive-desorptive studies reveal that SACH AC could be restored with the maximum adsorption efficiency being conserved after the fifth cycles. Overall, the outcomes revealed that sulphuric acid-activated coffee husk activated carbon (SACH AC) can be used as prompt alternative for low-cost sorbent for treating dye-laden synthetic wastewaters.
Collapse
Affiliation(s)
- Prabu Deivasigamani
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, 600119, India.
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, Tamilnadu, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; School of Engineering, Lebanese American University, Byblos, Lebanon; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India
| | - Sathish Sundaraman
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, 600119, India
| | - Michael Rahul Soosai
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, 600119, India
| | - A Annam Renita
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, 600119, India
| | - Karthikeyan M
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, 600119, India
| | - Nessipkhan Bektenov
- Institute of Natural Sciences and Geography, Abai University, Almaty, 050010, Kazakhstan; JSC «Institute of Chemical Sciences named after A.B. Bekturov», Almaty, 050010, Kazakhstan
| | | | - Venkatesan D
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, 600119, India
| | - Aravind Kumar J
- Department of Energy and Environmental Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamilnadu, 602105, India.
| |
Collapse
|
9
|
Mousavi Khaneghah A, Mahmudiono T, Javanmardi F, Tajdar-Oranj B, Nematollahi A, Pirhadi M, Fakhri Y. The concentration of potentially toxic elements (PTEs) in the coffee products: a systematic review and meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:78152-78164. [PMID: 36178656 DOI: 10.1007/s11356-022-23110-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Coffee is one of the most consumed products globally, and its contamination with potentially toxic elements (PTEs) occurs throughout the production chain and production. Therefore, the current meta-analysis study aimed to estimate the concentration of essential elements (Cu and Co) and the contamination of PTEs (Ni, Cr, Pb, As, and Cd) in coffee. The recommended databases, including PubMed, Scopus, and ScienceDirect, were investigated to collect data regarding the contamination of PTEs in coffee products from 2010 to 2021. Among 644 retrieved citations in the identification step, 34 articles were included in the meta-analysis. The pooled mean concentration of essential elements in coffee products is much higher than that of toxic elements (Co (447.106 µg/kg, 95% CI: 445.695-448.518 µg/kg) > Ni (324.175 µg/kg, 95% CI: 322.072-326.278 µg/kg) > Cu (136.171 µg/kg, 95% CI: 134.840-137.503 µg/kg) > Cr (106.865 µg/kg, 95% CI: 105.309-108.421 µg/kg) > Pb (21.027 µg/kg, 95% CI: 20.824-21.231 µg/kg) > As (3.158 µg/kg, 95% CI: 3.097-3.219 µg/kg) > Cd (0.308 µg/kg; 95% CI: 0.284-0.332 µg/kg)). Results showed high differences between pooled concentrations of all PTEs in coffee products of different countries.
Collapse
Affiliation(s)
- Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, Warsaw, Poland.
| | - Trias Mahmudiono
- Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia
| | - Fardin Javanmardi
- Department of Food Science and Technology, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behrouz Tajdar-Oranj
- Food and Drug Administration, Iran Ministry of Health and Medical Education, Tehran, Iran
| | - Amene Nematollahi
- Department of Food Safety and Hygiene, School of Health, Fasa University of Medical Sciences, Fasa, Iran
| | - Mohadeseh Pirhadi
- Department of Environmental Health Engineering, Division of Food Safety & Hygiene, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Yadolah Fakhri
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
10
|
Macías-Garbett R, Sosa-Hernández JE, Iqbal HMN, Contreras-Esquivel JC, Chen WN, Melchor-Martínez EM, Parra-Saldívar R. Combined Pulsed Electric Field and Microwave-Assisted Extraction as a Green Method for the Recovery of Antioxidant Compounds with Electroactive Potential from Coffee Agro-Waste. PLANTS 2022; 11:plants11182362. [PMID: 36145763 PMCID: PMC9505628 DOI: 10.3390/plants11182362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 12/03/2022]
Abstract
Coffee agro-waste is a potential source of polyphenols with antioxidant activity and application in the food and cosmetic trades. The usage of these byproducts persists as a challenge in the industrial landscape due to their high content of purported toxic substances hindering management. This study presents a green extractive process using pulsed electric field (PEF) and microwave assisted extraction (MAE) to recover polyphenols from coffee parchment and two varieties of pulp, posing quick processing times and the use of water as the only solvent. The performance of this process with regard to the bioactivity was assessed through the Folin-Ciocalteu assay, total flavonoid content, DPPH, ABTS and FRAP antioxidant tests. The phenolic composition of the extracts was also determined through HPLC-MS and quantified through HPLC-DAD. When compared to treatment controls, PEF + MAE treated samples presented enhanced yields of total phenolic content and radical scavenging activity in all analyzed residues (Tukey test significance: 95%). The chromatographic studies reveal the presence of caffeic acid on the three analyzed by-products. The HPLC-DAD caffeic acid quantification validated that a combination of MAE + PEF treatment in yellow coffee pulp had the highest caffeic acid concentration of all studied extraction methods.
Collapse
Affiliation(s)
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | | | - Wei Ning Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Elda M. Melchor-Martínez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
- Correspondence: (E.M.M.-M.); (R.P.-S.)
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
- Correspondence: (E.M.M.-M.); (R.P.-S.)
| |
Collapse
|
11
|
Effects of Caffeine and COD from Coffee Wastewater on Anaerobic Ammonium Oxidation (Anammox) Activities. WATER 2022. [DOI: 10.3390/w14142238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
An anaerobic ammonium oxidation (anammox) process was employed to remove nitrogen from wastewater generated from a coffee brewing facility. The effects of caffeine and chemical oxygen demand (COD) in coffee wastewater on anammox activity were investigated. The anammox activity was inhibited in synthetic wastewater with a caffeine concentration greater than 350 mg/L. Daily additions of caffeine at 2.5 mg/L for 28 days to the same substrate did not inhibit anammox activity. However, daily additions of coffee wastewater with COD of ≥387 mg/L and caffeine at 2.5 mg/L significantly inhibited anammox activity. Because the pH was increased in the system, resulting in an increase in free ammonia (FA) concentration, one could postulate that FA is an inhibitor of anammox activity. Quantitative polymerase chain reaction (qPCR) analysis was employed to determine the populations of anammox and denitrifying bacteria. Coffee wastewater with bacterial COD to total nitrogen (bCOD:TN) ratios of 0.3–0.6:1 did not have any effect on the abundances of anammox and denitrifying bacteria. The results from this work suggest that biodegradable COD (bCOD) rather than total COD (TCOD) should be used for calculating the COD:TN ratio during the study of the effects of nitrogen removal from real wastewaters using the anammox process. A not-competitive model could fit the anammox inhibition with caffeine concentrations at 50–500 mg/L with maximum specific anammox activity (SAAmax) of 0.594 mg-N/mg-volatile suspended solids (VSS)/d and inhibitory constant (Ki) of 480.97 mg/L.
Collapse
|
12
|
Valorization of Spent Coffee Grounds as a Natural Source of Bioactive Compounds for Several Industrial Applications-A Volatilomic Approach. Foods 2022; 11:foods11121731. [PMID: 35741929 PMCID: PMC9222233 DOI: 10.3390/foods11121731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 01/25/2023] Open
Abstract
Coffee is one of the most popular beverages worldwide, whose production and consumption result in large amounts of waste, namely spent coffee grounds, constituting an important source of compounds for several industrial applications. This work focused on the establishment of the volatile fingerprint of five spent coffee grounds from different geographical origins using headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME/GC-MS), as a strategy to identify volatile organic metabolites (VOMs) with potential application in the food industry as antioxidant, anti-inflammatory, and antiproliferative agents. One hundred eleven VOMs belonging to different chemical families were identified, of which 60 were found in all spent coffee grounds analyzed. Furanic compounds (34%), nitrogen compounds (30%), and esters (19%) contributed significant to the total volatile fingerprint. The data obtained suggest that spent coffee grounds have great potential to be used as raw material for different approaches in the food industry towards the development of new food ingredients or products for human consumption, in addition to pharmaceutical and cosmetic applications, namely as antioxidant (e.g., limonene, carvacrol), antimicrobial (e.g., pyrrole-2-carboxaldehyde, β-myrcene) and anti-inflammatory (e.g., furfural, 2-furanmethanol) agents, promoting their integral valorization within the circular bioeconomy concept.
Collapse
|
13
|
Fabrication of Biochar Materials from Biowaste Coffee Grounds and Assessment of Its Adsorbent Efficiency for Remediation of Water-Soluble Pharmaceuticals. SUSTAINABILITY 2022. [DOI: 10.3390/su14052931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Biowaste coffee grounds have been recognized as an effective and relatively low-cost adsorbent to complement conventional treatment techniques for removing emerging contaminants (ECs) from the waste stream through modification to useful biochar. The purpose of this study was to make biochar from biowaste coffee grounds through the pyrolysis process and investigate its potential capacity for the removal of pharmaceuticals from water. The biochar was prepared by pyrolysis process under argon gas conditions, and its adsorption capacity for pharmaceuticals was evaluated. The as-prepared biochar shows a surface area of 232 m2 g−1. The adsorption of salicylic acid, diclofenac, and caffeine onto the biochar show adsorption capacities of 40.47 mg g−1, 38.52 mg g−1, and 75.46 mg g−1, respectively. The morphology, functional groups, crystallinity, and specific surface area were determined by SEM, FTIR, XRD, and BET techniques, respectively. Kinetic results reveal that the experimental data fit the pseudo-second-order model and the Temkin isotherm model. In conclusion, these results illustrate the potential of biochar produced from biowaste coffee grounds could play an important role in environmental pollution mitigation by enhancing removal of pharmaceuticals from conventional wastewater treatment effluent, thereby minimizing their potential risks in the environment.
Collapse
|
14
|
Rodrigues da Silva M, Sanchez Bragagnolo F, Lajarim Carneiro R, de Oliveira Carvalho Pereira I, Aquino Ribeiro JA, Martins Rodrigues C, Jelley RE, Fedrizzi B, Soleo Funari C. Metabolite characterization of fifteen by-products of the coffee production chain: From farm to factory. Food Chem 2022; 369:130753. [PMID: 34488135 DOI: 10.1016/j.foodchem.2021.130753] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/03/2021] [Accepted: 07/30/2021] [Indexed: 11/18/2022]
Abstract
Approximately 11.4 million tonnes of solid by-products and an increased amount of waste water will be generated during the 2020/21 coffee harvest. There are currently no truly value-adding uses for these potentially environmentally threatening species. This work presents the most wide-ranging chemical investigation of coffee by-products collected from farms to factories, including eight never previously investigated. Twenty compounds were found for the first time in coffee by-products including the bioactive neomangiferin, kaempferol-3-O-rutinoside, lup-20(29)-en-3-one and 3,4-dimethoxy cinnamic acid. Five by-products generated inside a factory showed caffeine (53.0-17.0 mg.g-1) and/or chlorogenic acid (72.9-10.1 mg.g-1) content comparable to coffee beans, while mature leaf from plant pruning presented not only high contents of both compounds (16.4 and 38.9 mg.g-1, respectively), but also of mangiferin (19.4 mg.g-1) besides a variety of flavonoids. Such by-products are a source of a range of bioactive compounds and could be explored with potential economic and certainly environmental benefits.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rebecca E Jelley
- The University of Auckland, School of Chemical Sciences, Auckland, New Zealand
| | - Bruno Fedrizzi
- The University of Auckland, School of Chemical Sciences, Auckland, New Zealand; Centre for Green Chemical Sciences, School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Cristiano Soleo Funari
- São Paulo State University (UNESP), Faculty of Agricultural Sciences, Botucatu, SP, Brazil.
| |
Collapse
|
15
|
Effect of the Post-Harvest Processing on Protein Modification in Green Coffee Beans by Phenolic Compounds. Foods 2022; 11:foods11020159. [PMID: 35053890 PMCID: PMC8775169 DOI: 10.3390/foods11020159] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 02/04/2023] Open
Abstract
The protein fraction, important for coffee cup quality, is modified during post-harvest treatment prior to roasting. Proteins may interact with phenolic compounds, which constitute the major metabolites of coffee, where the processing affects these interactions. This allows the hypothesis that the proteins are denatured and modified via enzymatic and/or redox activation steps. The present study was initiated to encompass changes in the protein fraction. The investigations were limited to major storage protein of green coffee beans. Fourteen Coffea arabica samples from various processing methods and countries were used. Different extraction protocols were compared to maintain the status quo of the protein modification. The extracts contained about 4–8 µg of chlorogenic acid derivatives per mg of extracted protein. High-resolution chromatography with multiple reaction monitoring was used to detect lysine modifications in the coffee protein. Marker peptides were allocated for the storage protein of the coffee beans. Among these, the modified peptides K.FFLANGPQQGGK.E and R.LGGK.T of the α-chain and R.ITTVNSQK.I and K.VFDDEVK.Q of β-chain were detected. Results showed a significant increase (p < 0.05) of modified peptides from wet processed green beans as compared to the dry ones. The present study contributes to a better understanding of the influence of the different processing methods on protein quality and its role in the scope of coffee cup quality and aroma.
Collapse
|
16
|
Said NSM, Kurniawan SB, Abdullah SRS, Hasan HA, Othman AR, Ismail N'I. Competence of Lepironia articulata in eradicating chemical oxygen demand and ammoniacal nitrogen in coffee processing mill effluent and its potential as green straw. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149315. [PMID: 34388879 DOI: 10.1016/j.scitotenv.2021.149315] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/12/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Phytoremediation is an environmentally friendly technique in wastewater treatment because of its sustainability, cost-effectiveness, and simplicity. This study was conducted to examine the feasibility of use of Lepironia articulata, a potential phytoremediation plant that is native to Malaysia, in remediating coffee processing mill effluent (CPME). The aim was to determine effluent concentration or contaminant load that the plant can resist, while simultaneously results in the good removal of pollutants during phytoremediation. Four brushes of L. articulata were planted individually in a pail/reactor (mentioned as reactor afterward) containing 3 kg of sand and exposed to five different concentrations of CPME (0%, 30%, 50%, 75%, and 100%). The initial chemical oxygen demand (COD) values were 510, 3100, 4200, 7290, and 8470 mg/L, respectively, and ammoniacal nitrogen (AN) concentrations were 26, 128, 225, 376, and 509 mg/L, respectively. The height, appearance, and efficiency in removing COD and AN of each plant was observed throughout the 35-day exposure period. Results showed that plants exposed to 75% CPME demonstrated better growth than those exposed to other concentrations and exhibited the highest COD and AN removal rates (85.0% and 84.0%, respectively), providing evidence that L. articulata can be used as a phytoremediation agent of CPME with an initial COD concentration of 7290 mg/L and AN concentration of 376 mg/L. This study highlights its support to the Sustainable Development Goals adopted by the United Nations, particularly the reclamation of plant biomass used as a treatment agent and conversion into biodegradable straws. Moreover, this study adds an attractive additional point of transforming waste into resource with the proposed wastewater treatment technology.
Collapse
Affiliation(s)
- Nor Sakinah Mohd Said
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Setyo Budi Kurniawan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Hassimi Abu Hasan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Ahmad Razi Othman
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Nur 'Izzati Ismail
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| |
Collapse
|
17
|
New sustainable perspectives for “Coffee Wastewater” and other by-products: A critical review. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
18
|
Montoya ACV, da Silva Mazareli RC, Delforno TP, Centurion VB, de Oliveira VM, Silva EL, Varesche MBA. New Insights into Controlling Homoacetogenesis in the Co-digestion of Coffee Waste: Effect of Operational Conditions and Characterization of Microbial Communities. Appl Biochem Biotechnol 2021; 194:1458-1478. [PMID: 34739703 DOI: 10.1007/s12010-021-03725-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 10/08/2021] [Indexed: 11/29/2022]
Abstract
In this research batch reactors were operated with coffee processing waste and autochthonous microbial consortium, and a taxonomic and functional analysis was performed for phase I of stabilization of maximum H2 production and for phase II of maximum H2 consumption. During phase I, the reactor's operating conditions were pH 4.84 to 8.18, headspace 33.18% to 66.82%, and pulp and husk from 6.95 to 17.05 g/L. These assays continued for phase II, with initial pH conditions of 5.8-8.1, headspace of 33.18-66.82%, and pulp and husk remaining from phase I. The highest homoacetogenesis was observed in assay 5 with pH 7.7, 40% headspace, and 15 g/L of pulp and husk (initial concentrations of phase I). A relative abundance of Clostridium 41%, Lactobacillus 20% and Acetobacter 14% was observed in phase I. In phase II, there was a change in relative abundance of 21%, 63%, and 1%, respectively, and functional genes involved with autotrophic (formyltetrahydrofolate synthase) and heterotrophic (enolase) homoacetogenesis, butanol (3-hydroxybutyryl-CoA dehydrogenase), and propionic acid (propionate CoA-transferase) were identified. This study provides a new and amplified insight into the physicochemical and microbiological factors, which can be used to propose adequate operational conditions to maximize the bioenergy production and reduce homoacetogenesis in biological reactors.
Collapse
Affiliation(s)
- Alejandra Carolina Villa Montoya
- Laboratory of Biological Processes, Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Campus II, São Carlos, SP, CEP 13563-120, Brazil.
| | - Raissa Cristina da Silva Mazareli
- Laboratory of Biological Processes, Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Campus II, São Carlos, SP, CEP 13563-120, Brazil
| | | | - Victor Borin Centurion
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), State University of Campinas, Campinas, SP, CEP 13081-970, Brazil
| | - Valéria Maia de Oliveira
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), State University of Campinas, Campinas, SP, CEP 13081-970, Brazil
| | - Edson Luiz Silva
- Center of Exact Sciences and Technology, Department of Chemical Engineering, Federal University of São Carlos, São Carlos, SP, CEP 13565-905, Brazil
| | - Maria Bernadete Amâncio Varesche
- Laboratory of Biological Processes, Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Campus II, São Carlos, SP, CEP 13563-120, Brazil.
| |
Collapse
|
19
|
Preparation of Activated Carbons from Spent Coffee Grounds and Coffee Parchment and Assessment of Their Adsorbent Efficiency. Processes (Basel) 2021. [DOI: 10.3390/pr9081396] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The valorization of coffee wastes through modification to activated carbon has been considered as a low-cost adsorbent with prospective to compete with commercial carbons. So far, very few studies have referred to the valorization of coffee parchment into activated carbon. Moreover, low-cost and efficient activation methods need to be more investigated. The aim of this work was to prepare activated carbon from spent coffee grounds and parchment, and to assess their adsorption performance. The co-calcination processing with calcium carbonate was used to prepare the activated carbons, and their adsorption capacity for organic acids, phenolic compounds and proteins was evaluated. Both spent coffee grounds and parchment showed yields after the calcination and washing treatments of around 9.0%. The adsorption of lactic acid was found to be optimal at pH 2. The maximum adsorption capacity of lactic acid with standard commercial granular activated carbon was 73.78 mg/g, while the values of 32.33 and 14.73 mg/g were registered for the parchment and spent coffee grounds activated carbons, respectively. The Langmuir isotherm showed that lactic acid was adsorbed as a monolayer and distributed homogeneously on the surface. Around 50% of total phenols and protein content from coffee wastewater were adsorbed after treatment with the prepared activated carbons, while 44, 43, and up to 84% of hydrophobic compounds were removed using parchment, spent coffee grounds and commercial activated carbon, respectively; the adsorption efficiencies of hydrophilic compounds ranged between 13 and 48%. Finally, these results illustrate the potential valorization of coffee by-products parchment and spent coffee grounds into activated carbon and their use as low-cost adsorbent for the removal of organic compounds from aqueous solutions.
Collapse
|
20
|
Hejna A. Potential applications of by-products from the coffee industry in polymer technology - Current state and perspectives. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 121:296-330. [PMID: 33406477 DOI: 10.1016/j.wasman.2020.12.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
Coffee is one of the most popular beverages in the world, and its popularity is continuously growing, which can be expressed by almost doubling production over the last three decades. Cultivation, processing, roasting, and brewing coffee are known for many years. These processes generate significant amounts of by-products since coffee bean stands for around 50% of the coffee cherry. Therefore, considering the current pro-ecological trends, it is essential to develop the utilization methods for the other 50% of the coffee cherry. Among the possibilities, much attention is drawn to polymer chemistry and technology. This industry branch may efficiently consume different types of lignocellulosic materials to use them as fillers for polymer composites or as intermediate sources of particular chemical compounds. Moreover, due to their chemical composition, coffee industry by-products may be used as additives modifying the oxidation resistance, antimicrobial, or antifungal properties of polymeric materials. These issues should be considered especially important in the case of biodegradable polymers, whose popularity is growing over the last years. This paper summarizes the literature reports related to the generation and composition of the coffee industry by-products, as well as the attempts of their incorporation into polymer technology. Moreover, potential directions of research based on the possibilities offered by the coffee industry by-products are presented.
Collapse
Affiliation(s)
- Aleksander Hejna
- Department of Polymer Technology, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| |
Collapse
|
21
|
Comparison of Batch and Continuous Wet-Processing of Coffee: Changes in the Main Compounds in Beans, By-Products and Wastewater. Foods 2020; 9:foods9081135. [PMID: 32824690 PMCID: PMC7466179 DOI: 10.3390/foods9081135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022] Open
Abstract
Many technical challenges still need to be overcome to improve the quality of the green coffee beans. In this work, the wet Arabica coffee processing in batch and continuous modus were investigated. Coffee beans samples as well as by-products and wastewaters collected at different production steps were analyzed in terms of their content in total phenols, antioxidant capacity, caffeine content, organic acids, reducing sugars, free amino group and protein content. The results showed that 40% of caffeine was removed with pulp. Green coffee beans showed highest concentration of organic acids and sucrose (4.96 ± 0.25 and 5.07 ± 0.39 g/100 g DW for the batch and continuous processing). Batch green coffee beans contained higher amount of phenols. 5-caffeoylquinic Acid (5-CQA) was the main constituent (67.1 and 66.0% for the batch and continuous processing, respectively). Protein content was 15 and 13% in the green coffee bean in batch and continuous processing, respectively. A decrease of 50 to 64% for free amino groups during processing was observed resulting in final amounts of 0.8 to 1.4% in the processed beans. Finally, the batch processing still revealed by-products and wastewater with high nutrient content encouraging a better concept for valorization.
Collapse
|
22
|
de Sousa e Silva A, Sales Morais NW, Maciel Holanda Coelho M, Lopes Pereira E, Bezerra dos Santos A. Potentialities of biotechnological recovery of methane, hydrogen and carboxylic acids from agro-industrial wastewaters. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100406] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Vakalis S, Moustakas K, Benedetti V, Cordioli E, Patuzzi F, Loizidou M, Baratieri M. The "COFFEE BIN" concept: centralized collection and torrefaction of spent coffee grounds. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:35473-35481. [PMID: 31065982 DOI: 10.1007/s11356-019-04919-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
Spent coffee grounds are the moist solid residues of coffee brewing and in most cases, the disposal is done without any intermediate valorization actions for materials and energy recovery. State-of-the-art applications include extraction of the liquids and application of high-temperature pyrolysis. Both strategies have significant potential but have also some disadvantages (extensive pre-treatment, high costs) when applied on a large scale. This study highlights the lack of mild pyrolysis valorization strategies and presents the idea of the "COFFEE BIN." Separated spent coffee grounds are collected, dried, and thermally treated. The optimal pyrolysis conditions were identified and product characteristics and the mass balances were assessed. Elemental analysis, thermogravimetric analysis, physisorption analysis and higher heating value (HHV) determination was performed for the characterization of the carbonaceous products. The torrefied coffee grounds returned solid yields from 78 to 83%, which are significantly higher than in other cases of conventional biomass and heating values of 24-25 MJ/kg. Higher temperature pyrolysis did not sustain the advantage of increased returned mass yields and the adsorbance potential of all the carbonaceous products was lower than 25 cm3/g. The study highlighted that spent coffee grounds-due to the nature of their production process via roasting-can be suitable for torrefaction because of the high recovered solid yield and the high energy density. The results will be used for the development of a collection scheme for spent coffee grounds in a big municipality of Athens (Greece).
Collapse
Affiliation(s)
- Stergios Vakalis
- Faculty of Science and Technology, Technical Physics Group/Bioenergy and Biofuels Laboratory, Free University of Bozen-Bolzano, Piazza Università 5, IT-39100, Bolzano, Italy.
- School of Chemical Engineering, Unit of Environmental Science and Technology, National Technical University of Athens, 9 Iroon Polytechniou Str, GR-15780, Athens, Greece.
| | - Konstantinos Moustakas
- School of Chemical Engineering, Unit of Environmental Science and Technology, National Technical University of Athens, 9 Iroon Polytechniou Str, GR-15780, Athens, Greece
| | - Vittoria Benedetti
- Faculty of Science and Technology, Technical Physics Group/Bioenergy and Biofuels Laboratory, Free University of Bozen-Bolzano, Piazza Università 5, IT-39100, Bolzano, Italy
| | - Eleonora Cordioli
- Faculty of Science and Technology, Technical Physics Group/Bioenergy and Biofuels Laboratory, Free University of Bozen-Bolzano, Piazza Università 5, IT-39100, Bolzano, Italy
| | - Francesco Patuzzi
- Faculty of Science and Technology, Technical Physics Group/Bioenergy and Biofuels Laboratory, Free University of Bozen-Bolzano, Piazza Università 5, IT-39100, Bolzano, Italy
| | - Maria Loizidou
- School of Chemical Engineering, Unit of Environmental Science and Technology, National Technical University of Athens, 9 Iroon Polytechniou Str, GR-15780, Athens, Greece
| | - Marco Baratieri
- Faculty of Science and Technology, Technical Physics Group/Bioenergy and Biofuels Laboratory, Free University of Bozen-Bolzano, Piazza Università 5, IT-39100, Bolzano, Italy
| |
Collapse
|
24
|
Torres-Valenzuela LS, Sanín-Villarrea A, Arango-Ramírez A, Serna-Jiménez JA. Caracterización fisicoquímica y microbiológica de aguas mieles del beneficio del café. REVISTA ION 2019. [DOI: 10.18273/revion.v32n2-2019006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
En el procesamiento del café, sólo se aprovecha el 5 % del producto fresco y se generan residuos como aguas mieles (AM), que pueden llegar hasta 40 L/kg de café pergamino seco y al ser vertidas pueden provocar contaminación de alto impacto ambiental. Consecuentemente, el objetivo fue caracterizar fisicoquímica y microbiológicamente dos muestras de AM (M1, M2) con el fin de evaluar el potencial en la extracción de biocomponentes. Los parámetros medidos a las dos muestras de agua fueron Demanda Química de Oxígeno (DQO), nitrógeno, amonio, cromo, oxígeno disuelto (OD), pH, conductividad, acidez volátil, fósforo, cloruros, sólidos, color y, adicionalmente se cuantificaron mesófilos, coliformes totales y estafilococos. Se identificaron diferencias significativas entre las muestras y un efecto del procesamiento del café, sobre las características evaluadas. M2 mostró mayor concentración de OD, conductividad y cambio de color respecto al control, mientras que M1 tuvo mayor concentración para los demás parámetros evaluados. Cromo y amonio estuvieron por debajo del límite de detección de la prueba empleada, por el contrario, la DQO fue superior a lo reglamentado para aguas domésticas. En el análisis microbiológico, se encontraron mesófilos en ambas muestras, y M2 presentó coliformes y estafilococos. Con lo anterior se evidencia que el método de procesamiento de café afecta los parámetros de calidad de las aguas residuales y por ende se deben implementar metodologías de tratamiento y/o aprovechamiento acordes a las características intrínsecas de cada proceso.
Collapse
|
25
|
B SG, Havare D, K B, Murthy PS. Coffee starter microbiome and in-silico approach to improve Arabica coffee. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Haile M, Kang WH. Isolation, Identification, and Characterization of Pectinolytic Yeasts for Starter Culture in Coffee Fermentation. Microorganisms 2019; 7:microorganisms7100401. [PMID: 31569406 PMCID: PMC6843319 DOI: 10.3390/microorganisms7100401] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 02/03/2023] Open
Abstract
This experiment was carried out to identify and select pectinolytic yeasts that have potential use as a starter culture for coffee fermentation during wet processing. The coffee fruit was fermented for 48 h at 28 °C and a sample was taken from the fermented solution and spread onto yeast extract-peptone-dextrose agar (YPDA) media and incubated at 28 °C. A total of 28 yeasts were isolated, eight of which had the ability to produce pectinase enzymes. The species of those eight yeasts were molecularly identified and confirmed. These yeasts are Wickerhamomyces anomalus (strain KNU18Y3), Saccharomycopsis fibuligera (strain KNU18Y4), Papiliotrema flavescens (strain KNU18Y5 and KNU18Y6), Pichia kudriavzevii (strain KNU18Y7 and KNU18Y8), and Saccharomyces cerevisiae (strain KNU18Y12 and KNU18Y13). The pectin degradation index of S. fibuligera (strain KNU18Y4), W. anomalus (strain KNU18Y3), and P. flavescens (strain KNU18Y6) were higher compared to the others, at 178%, 160%, and 152%, respectively. The pectinase enzyme assays were made on two growth media: coffee pulp media (CPM) and synthetic pectin media (SPM). S. fibuligera (strain KNU18Y4) and W. anomalus (strain KNU18Y3) had great potential in producing polygalacturonase (PG) and pectin lyase (PL) compared to others in both media. However, S. cerevisiae strains (KNU18Y12 and KNU18Y13) produced higher pectin methylesterase (PME). Using MEGA 6 software, the phylogenetic trees were constructed to determine the evolutionary relationship of newly identified yeasts from our experiment and previously published yeast species. The sequences of the yeasts were deposited in the National Center for Biotechnology Information (NCBI) database.
Collapse
Affiliation(s)
- Mesfin Haile
- Department of Horticulture, Kangwon National University, Chuncheon 24341, Korea.
| | - Won Hee Kang
- Department of Horticulture, Kangwon National University, Chuncheon 24341, Korea.
| |
Collapse
|
27
|
Nguyen DDD, Nguyen CNT, Huynh KA, Nguyen TP. Optimization of electro-Fenton process for the removal of non-biodegradable organic compounds in instant coffee production wastewater using composite Fe3O4–Mn3O4 nanoparticle catalyst. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03973-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
28
|
Pires JF, Schwan RF, Silva CF. Assessing the efficiency in assisted depuration of coffee processing wastewater from mixed wild microbial selected inoculum. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:284. [PMID: 30997565 DOI: 10.1007/s10661-019-7398-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 03/17/2019] [Indexed: 06/09/2023]
Abstract
This work evaluated the efficiency of bacterial bio-augmentation to the biological treatment of coffee processing wastewater (CPWW) in a pilot wastewater treatment plant (WTP). Biochemical oxygen demand (BOD) and chemical oxygen demand (COD) values were the basis for the treatment efficiency. Serratia marcescens CCMA 1010 and CCMA 1013, Corynebacterium flavescens CCMA 1006 and Acetobacter indonesiensis CCMA 1002 were previously selected. The microbial cocktail was inoculated and persisted in CPWW during all treatments. The richness of wild species was a little altered over time and up to nine species were found in each sampled season. The microbiota composition presented variation of a total of 13 species, despite the inoculation of the microbial inoculum. The biodegradability index of effluent, close to 0.5, was favourable to biological treatment. The pollution parameters of CPWW were decreased in function of the variation of community composition and microbial activity. The greatest reduction of BOD (~ 33%) and COD (~ 25%) was observed between 72 h and 8 days of the biological treatment. The CPWW toxicity in Allium cepa seeds was lower by up to 60%, and the germination index (GI) exceeded 100% in the treated CPWW. The results of the CPWW biological treatment by bio-augmentation from native micro-organisms in the pilot-scale WTP indicated the greatest efficiency relating to the spontaneous biological treatment of CPWW. After this treatment, the discharge of effluent in the environment would not have toxic effects on the plants.
Collapse
Affiliation(s)
- Josiane Ferreira Pires
- Department of Biology, Universidade Federal de Lavras. Campus Universitário, CEP: 37.200-000, Lavras, MG, Brazil
| | - Rosane Freitas Schwan
- Department of Biology, Universidade Federal de Lavras. Campus Universitário, CEP: 37.200-000, Lavras, MG, Brazil
| | - Cristina Ferreira Silva
- Department of Biology, Universidade Federal de Lavras. Campus Universitário, CEP: 37.200-000, Lavras, MG, Brazil.
| |
Collapse
|
29
|
Botello Suárez WA, da Silva Vantini J, Duda RM, Giachetto PF, Cintra LC, Tiraboschi Ferro MI, de Oliveira RA. Predominance of syntrophic bacteria, Methanosaeta and Methanoculleus in a two-stage up-flow anaerobic sludge blanket reactor treating coffee processing wastewater at high organic loading rate. BIORESOURCE TECHNOLOGY 2018; 268:158-168. [PMID: 30077172 DOI: 10.1016/j.biortech.2018.06.091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 06/08/2023]
Abstract
The effect of the organic loading rate (OLR) on the performance and microbial composition of a two-stage UASB system treating coffee processing wastewater was assessed. The system was operated with OLR up to 18.2 g COD (L d)-1 and effluent recirculation. Methane production and effluent characteristics were monitored. The microbial composition was examined through next-generation sequencing and qPCR from the anaerobic sludge of the first reactor (R1) operated at low and high OLR. The system showed operational stability, obtaining a maximum methane production of 2.2 L CH4 (L d)-1, with a removal efficiency of COD and phenolic compounds of 84 and 73%, respectively. The performance of R1 at high OLR in steady conditions was associated with an appropriate proportion of nutrients (particularly Fe) and a marked increase of the syntrophic bacteria Syntrophus and Candidatus Cloacimonas, and acetoclastic and hydrogenotrophic methanogens, mainly Methanosaeta, Methanoculleus, Methanobacterium and Methanomassiliicoccus.
Collapse
Affiliation(s)
- Wilmar Alirio Botello Suárez
- Post-Graduate Program in Agricultural and Livestock Microbiology, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil; Laboratory of Environmental Sanitation, Department of Rural Engineering, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | - Juliana da Silva Vantini
- Post-Graduate Program in Agricultural and Livestock Microbiology, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil; Laboratory of Biochemistry and Molecular Biology, Department of Technology, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | | | | | | | - Maria Inês Tiraboschi Ferro
- Post-Graduate Program in Agricultural and Livestock Microbiology, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil; Laboratory of Biochemistry and Molecular Biology, Department of Technology, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | - Roberto Alves de Oliveira
- Post-Graduate Program in Agricultural and Livestock Microbiology, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil; Laboratory of Environmental Sanitation, Department of Rural Engineering, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil.
| |
Collapse
|
30
|
Rojas-Sossa JP, Murillo-Roos M, Uribe L, Uribe-Lorio L, Marsh T, Larsen N, Chen R, Miranda A, Solís K, Rodriguez W, Kirk D, Liao W. Effects of coffee processing residues on anaerobic microorganisms and corresponding digestion performance. BIORESOURCE TECHNOLOGY 2017; 245:714-723. [PMID: 28917107 DOI: 10.1016/j.biortech.2017.08.098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 06/07/2023]
Abstract
The objective of this study was to delineate the effects of different coffee processing residues on the anaerobic microbes and corresponding digestion performance. The results elucidated that mucilage-rich feed enhanced the accumulation of methanogens, which consequently led to better digestion performance of biogas production. Fifty percent more methane and up to 3 times more net energy (heat and electricity) output were achieved by the digestion of the mucilage-rich feed (M3). The microbial community and statistical analyses further elucidated that different residues in the feed had significant impact on microbial distribution and correspondingly influenced the digestion performance.
Collapse
Affiliation(s)
- Juan Pablo Rojas-Sossa
- Agricultural Engineering, University of Costa Rica, San José, Costa Rica; Anaerobic Digestion Research and Education Center, Biosystems and Agricultural Engineering, Michigan State University, MI, USA
| | - Mariana Murillo-Roos
- Agronomy Research Center, University of Costa Rica, San José, Costa Rica; National Institute for Innovation and Transfer of Agricultural Technology, Ministry of Agriculture, San José, Costa Rica
| | - Lidieth Uribe
- Agronomy Research Center, University of Costa Rica, San José, Costa Rica
| | - Lorena Uribe-Lorio
- Cellular and Molecular Biology Research Center, University of Costa Rica, San José, Costa Rica
| | - Terence Marsh
- Microbiology and Molecular Genetics, Michigan State University, MI, USA
| | | | - Rui Chen
- Anaerobic Digestion Research and Education Center, Biosystems and Agricultural Engineering, Michigan State University, MI, USA
| | - Alberto Miranda
- Fabio Baudrit Experimental Station, University of Costa Rica, San José, Costa Rica
| | - Kattia Solís
- Agricultural Engineering, University of Costa Rica, San José, Costa Rica
| | - Werner Rodriguez
- Fabio Baudrit Experimental Station, University of Costa Rica, San José, Costa Rica
| | - Dana Kirk
- Anaerobic Digestion Research and Education Center, Biosystems and Agricultural Engineering, Michigan State University, MI, USA
| | - Wei Liao
- Anaerobic Digestion Research and Education Center, Biosystems and Agricultural Engineering, Michigan State University, MI, USA.
| |
Collapse
|
31
|
Diversity of microbiota found in coffee processing wastewater treatment plant. World J Microbiol Biotechnol 2017; 33:211. [PMID: 29134289 DOI: 10.1007/s11274-017-2372-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 10/20/2017] [Indexed: 10/18/2022]
Abstract
Cultivable microbiota presents in a coffee semi-dry processing wastewater treatment plant (WTP) was identified. Thirty-two operational taxonomic units (OTUs) were detected, these being 16 bacteria, 11 yeasts and 4 filamentous fungi. Bacteria dominated the microbial population (11.61 log CFU mL- 1), and presented the highest total diversity index when observed in the WTP aerobic stage (Shannon = 1.94 and Simpson = 0.81). The most frequent bacterial species were Enterobacter asburiae, Sphingobacterium griseoflavum, Chryseobacterium bovis, Serratia marcescens, Corynebacterium flavescens, Acetobacter orientalis and Acetobacter indonesiensis; these showed the largest total bacteria populations in the WTP, with approximately 10 log CFU mL- 1. Yeasts were present at 7 log CFU mL- 1 of viable cells, with Hanseniaspora uvarum, Wickerhamomyces anomalus, Torulaspora delbrueckii, Saturnispora gosingensis, and Kazachstania gamospora being the prevalent species. Filamentous fungi were found at 6 log CFU mL- 1, with Fusarium oxysporum the most populous species. The identified species have the potential to act as a biological treatment in the WTP, and the application of them for this purpose must be better studied.
Collapse
|
32
|
Aguiar LL, Andrade-Vieira LF, de Oliveira David JA. Evaluation of the toxic potential of coffee wastewater on seeds, roots and meristematic cells of Lactuca sativa L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 133:366-72. [PMID: 27497783 DOI: 10.1016/j.ecoenv.2016.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/14/2016] [Accepted: 07/13/2016] [Indexed: 06/06/2023]
Abstract
Coffee wastewater (CWW) is an effluent produced through wet processing of coffee containing high concentration of organic matter, nutrients, salts and also agrochemicals. It is released directly into the argillaceous soil or into decantation tanks for later disposal into soils, by fertigation, subsurface infiltration or superficial draining. However, this practice is not followed by the monitoring the toxicity potential of this effluent. In this sense, the present work aimed to evaluate the phytotoxic, cytogenotoxic and mutagenic potential of CWW on seed germination, root elongation and cell cycle alterations in the plant model Lactuca sativa L. The effluent (CWW) collected was diluted in distilled water into six concentrations solutions (1.25%, 1.66%, 2.5%, 5.0%, 10%, 20%). A solution of raw CWW (100%) was also applied. Distilled water was used as negative control), and the DNA alkylating agent, metilmetano sulfonate (4×10(-4)M) as positive control. Physico-chemical parameters of the CWW was accessed and it was found that the effluent contained total phenols and inorganic matter in amounts within the limits established by the National Environment Council (CONAMA). Nevertheless, the biologicals assays performed demonstrated the phytotoxicity and cytogenotoxicty of CWW. Seed germination was totally inhibited after exposure of raw CWW. In addition, a decrease in seed germination speed as well as in root growth dose-dependently manner was noticed. Moreover, nuclear and chromosomal alterations were observed in the cell cycle, mostly arising from aneugenic action.
Collapse
Affiliation(s)
- Luara Louzada Aguiar
- Departamento de Biologia, Centro de Ciências Agrárias (CCA), Universidade Federal do Espírito Santo (UFES), Campus Universitário, 28.360-000 Alegre, Espírito Santo, Brazil
| | - Larissa Fonseca Andrade-Vieira
- Departamento de Biologia, Universidade Federal de Lavras (UFLA), Campus Universitário, 37.200-000 Lavras, Minas Gerais, Brazil.
| | - José Augusto de Oliveira David
- Departamento de Biologia, Centro de Ciências Agrárias (CCA), Universidade Federal do Espírito Santo (UFES), Campus Universitário, 28.360-000 Alegre, Espírito Santo, Brazil
| |
Collapse
|