1
|
Hayasaka M, Hamajima L, Yoshida Y, Mori R, Kato H, Suzuki H, Tsurigami R, Kojima T, Kato M, Shimizu M. Phenanthrene degradation by a flavoprotein monooxygenase from Phanerodontia chrysosporium. Appl Environ Microbiol 2025:e0157424. [PMID: 39898659 DOI: 10.1128/aem.01574-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/12/2025] [Indexed: 02/04/2025] Open
Abstract
Phenanthrene (PHEN), a polycyclic aromatic hydrocarbon (PAH), is degraded by white-rot fungi like Phanerochaete chrysosporium (the fungus has been renamed as Phanerodontia chrysosporium). PHEN is metabolized by P. chrysosporium and transformed into various monohydroxylated and dihydroxylated products. These intermediates are further degraded by cleavage of the aromatic ring. However, the enzymes involved in PHEN conversion in P. chrysosporium remain largely unidentified. We aimed to identify and characterize the P. chrysosporium enzymes involved in the degradation of PHEN and its intermediates. Recombinant P. chrysosporium flavoprotein monooxygenase 11 (FPMO11), a homolog of the salicylate 1-monooxygenase from the naphthalene-degrading bacterium Pseudomonas putida G7, was overexpressed in Escherichia coli. FPMO11 catalyzes the oxidative decarboxylation of 1-hydroxy-2-naphthoate (1H2N) and 2-hydroxy-1-naphthoate (2H1N) to 1,2-dihydroxynaphthalene (1,2DHN). To the best of our knowledge, this is the first study to identify and characterize enzymes with 1H2N and 2H1N monooxygenase activities in members of the FPMO superfamily. Additionally, our search for a dioxygenase with the ability to catalyze the aromatic ring cleavage of 1,2DHN led to the identification of intradiol dioxygenase (IDD) 1 and IDD2 from P. chrysosporium, which catalyzes the ring cleavage of 1,2DHN. Thus, this study also identified, for the first time, intradiol 1,2DHN dioxygenase activity in members of the IDD superfamily. The findings highlight the unique substrate spectra of FPMO11 and IDDs, rendering them attractive candidates for biotechnological applications, especially mitigation of environmental and health risks associated with PAH pollution.IMPORTANCEPhenanthrene (PHEN), a polycyclic aromatic hydrocarbon (PAH), is a widely studied pollutant in environmental science and toxicology due to its presence in fossil fuels, tobacco smoke, and as a byproduct of incomplete combustion processes. White-rot fungi like P. chrysosporium can degrade PHEN through the production of extracellular oxidative enzymes. We investigated the properties of PHEN-degrading enzymes in P. chrysosporium, specifically one flavoprotein monooxygenase (FPMO11) and two intradiol dioxygenases (IDD1 and IDD2). Our findings indicate that the enzymes catalyze the aromatic ring cleavage of PHEN, using the intermediates as substrates, transforming them into less harmful and more biodegradable compounds. This could help reduce environmental pollution and mitigate health risks associated with PAH exposure. The potential of these enzymes for biotechnological applications is also highlighted, emphasizing their critical role in understanding PAH degradation by white-rot fungi.
Collapse
Affiliation(s)
- Mika Hayasaka
- Faculty of Agriculture, Meijo University, Nagoya, Japan
| | - Link Hamajima
- Faculty of Agriculture, Meijo University, Nagoya, Japan
| | - Yuki Yoshida
- Faculty of Agriculture, Meijo University, Nagoya, Japan
| | - Reini Mori
- Faculty of Agriculture, Meijo University, Nagoya, Japan
| | - Hiroyuki Kato
- Faculty of Agriculture, Meijo University, Nagoya, Japan
| | | | | | | | - Masashi Kato
- Faculty of Agriculture, Meijo University, Nagoya, Japan
| | | |
Collapse
|
2
|
Jemli M, Karray F, Mansour L, Loukil S, Bouhdida R, Yadav KK, Sayadi S. Wastewater biotreatment and bioaugmentation for remediation of contaminated sites at an oil recycling plant. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2025; 91:139-159. [PMID: 39882919 DOI: 10.2166/wst.2024.364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/08/2024] [Indexed: 01/31/2025]
Abstract
This work focused on the biotreatment of wastewater and contaminated soil in a used oil recycling plant located in Bizerte. A continuous stirred tank reactor (CSTR) and a trickling filter (TF) were used to treat stripped and collected wastewater, respectively. The CSTR was started up and stabilized for 90 days. Over the following 170 days, the operational organic loading rates of the TF and the CSTR were around 1,200 and 3,000 g chemical oxygen demand (COD) m-3 day-1, respectively. The treatment efficiency was 94% for total petroleum hydrocarbons (TPHs), 89.5% for COD, 83.34% for biological oxygen demand (BOD5), and 91.25% for phenol. Treated industrial wastewater from the TF was used for bioaugmentation (BA) of contaminated soil. The assessment of the soil took 24 weeks to complete. The effectiveness of the soil BA strategy was confirmed by monitoring phenolic compounds, aliphatic and polycyclic aromatic hydrocarbons, heavy metals, and germination index. The biodegradation rate of contaminants was improved and the time required for their removal was reduced. The soil bacterial communities were dominated by species of the genera Mycobacterium, Proteiniphilum, Nocardioides, Luteimicrobium, and Azospirillum, which were identified as hydrocarbon and phenol-degrading bacteria.
Collapse
Affiliation(s)
- Meryem Jemli
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018 Sfax, Tunisia
| | - Fatma Karray
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018 Sfax, Tunisia
| | - Lamjed Mansour
- Department of Zoology, College of Science, King Saud University, PO Box 2455, 11451 Riyadh, Saudi Arabia E-mail:
| | - Slim Loukil
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018 Sfax, Tunisia
| | - Rihab Bouhdida
- The Tunisian Company of Lubricants SOTULUB, Industrial Zone, 7021 Zarzouna, Bizerte, Tunisia
| | - Krishna Kumar Yadav
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat 391760, India
| | - Sami Sayadi
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| |
Collapse
|
3
|
Silva Monteiro JP, da Silva AF, Delgado Duarte RT, José Giachini A. Exploring Novel Fungal-Bacterial Consortia for Enhanced Petroleum Hydrocarbon Degradation. TOXICS 2024; 12:913. [PMID: 39771128 PMCID: PMC11728489 DOI: 10.3390/toxics12120913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025]
Abstract
Bioremediation, involving the strategic use of microorganisms, has proven to be a cost-effective alternative for restoring areas impacted by persistent contaminants such as polycyclic aromatic hydrocarbons (PAHs). In this context, the aim of this study was to explore hydrocarbon-degrading microbial consortia by prospecting native species from soils contaminated with blends of diesel and biodiesel (20% biodiesel/80% diesel). After enrichment in a minimal medium containing diesel oil as the sole carbon source and based on 16S rRNA, Calmodulin and β-tubulin gene sequencing, seven fungi and 12 bacteria were identified. The drop collapse test indicated that all fungal and four bacterial strains were capable of producing biosurfactants with a surface tension reduction of ≥20%. Quantitative analysis of extracellular laccase production revealed superior enzyme activity among the bacterial strains, particularly for Stenotrophomonas maltophilia P05R11. Following antagonistic testing, four compatible consortia were formulated. The degradation analysis of PAHs and TPH (C5-C40) present in diesel oil revealed a significantly higher degradation capacity for the consortia compared to isolated strains. The best results were observed for a mixed bacterial-fungal consortium, composed of Trichoderma koningiopsis P05R2, Serratia marcescens P10R19 and Burkholderia cepacia P05R9, with a degradation spectrum of ≥91% for all eleven PAHs analyzed, removing 93.61% of total PAHs, and 93.52% of TPH (C5-C40). Furthermore, this study presents the first report of T. koningiopsis as a candidate for bioremediation of petroleum hydrocarbons.
Collapse
Affiliation(s)
- João Paulo Silva Monteiro
- Postgraduate Program in Biotechnology and Biosciences, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina—Campus Reitor João David Ferreira Lima, Florianópolis 88040-900, SC, Brazil; (R.T.D.D.); (A.J.G.)
| | - André Felipe da Silva
- Bioprocess and Biotechnology Engineering Undergraduate Program, Federal University of Tocantins, Gurupi 77402-970, TO, Brazil;
| | - Rubens Tadeu Delgado Duarte
- Postgraduate Program in Biotechnology and Biosciences, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina—Campus Reitor João David Ferreira Lima, Florianópolis 88040-900, SC, Brazil; (R.T.D.D.); (A.J.G.)
| | - Admir José Giachini
- Postgraduate Program in Biotechnology and Biosciences, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina—Campus Reitor João David Ferreira Lima, Florianópolis 88040-900, SC, Brazil; (R.T.D.D.); (A.J.G.)
| |
Collapse
|
4
|
Chen T, Fu B, Li H. Optimisation of PAHs biodegradation by Klebsiella pneumonia and Pseudomonas aeruginosa through response surface methodology. ENVIRONMENTAL TECHNOLOGY 2024; 45:5204-5217. [PMID: 37970911 DOI: 10.1080/09593330.2023.2283813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/14/2023] [Indexed: 11/19/2023]
Abstract
Response Surface Methodology (RSM) with Box-Behnken Design (BBD) is used to optimise the Phenanthrene (PHE) degradation process by Klebsiella pneumoniae (K bacteria) and Pseudomonas aeruginosa (P bacteria). Wherein substrate concentration, temperature, and pH at three levels are used as independent variables, and degradation rate of PHE as dependent variables (response). The statistical analysis, via ANOVA, shows coefficient of determination R2 as 0.9848 with significant P value 0.0001 fitting in second-order quadratic regression model for PAHs removal by Klebsiella pneumonia, and R2 as 0.9847 with significant P value 0.0001 by P bacteria. According to the model analysis, temperature (P < 0.0006) is the most influential factor for PHE degradation efficiency by K bacteria, while pH (P < 0.0001) is the most influential factor for PHE degradation by P bacteria. The predicted optimum parameters for K bacteria, namely, temperature, substrate concentration, and pH are found to be 34.00℃, 50.80 mg/L, and 7.50, respectively, and those for P bacteria are 33.30℃, 52.70 mg/L, and 7.20, respectively. At these optimum conditions, the observed PHE removal rates by two bacteria are found to be 83.36% ± 2.1% and 81.23% ± 1.6% in validation experiments, respectively. Thus RSM can optimise the biodegradation conditions of both bacteria for PHE.
Collapse
Affiliation(s)
- Tao Chen
- Beijing University of Civil Engineering and Architecture, Key Laboratory of Urban Stormwater System & Water Environment Beijing, Beijing, China
| | - Bo Fu
- Beijing University of Civil Engineering and Architecture, Key Laboratory of Urban Stormwater System & Water Environment Beijing, Beijing, China
| | - Haiyan Li
- Tianjin Municipal Engineering Design and Research Institute Co. Ltd, Tianjin
| |
Collapse
|
5
|
Bint-e-Zahira S, Khalid AN, Yousaf N, Iqbal M, Anwar T, Qureshi H, Salmen SH, Ansari MJ. Exploring Trichoderma Species in Industrial Wastewater: Morphological and Molecular Insights from Isolates. Life (Basel) 2024; 14:750. [PMID: 38929733 PMCID: PMC11204433 DOI: 10.3390/life14060750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
The genus Trichoderma holds economic significance due to its widespread distribution and diverse applications, including biological control, enzyme production, and various biotechnological uses. The accurate identification of Trichoderma species is crucial given their close association with human activities. Despite previous efforts in classification, a comprehensive analysis combining morphological and molecular approaches is necessary. This study focuses on the isolation of four Trichoderma species from industrial wastewater in Pakistan, expanding on the known diversity in the region; isolation involved collecting samples from industrial wastewater effluents at specific sites in Punjab, Pakistan. Trichoderma strains were cultured and purified on solid media, with subsequent biomass production for bisorptional activity. Morphological characterization included colony features and microscopic examinations. DNA extraction, polymerase chain reaction (PCR), and sequencing of the internal transcribed spacer (ITS) region were conducted for molecular analysis. Phylogenetic analysis was performed using the Maximum Likelihood Algorithm. The study identified three Trichoderma species, viz. T. citrinoviride, T. erinaceum, and T. longibrachiatum. Each species was characterized morphologically and supported by molecular-phylogenetic analysis. Illustrations of microscopic features and a phylogenetic tree based on the ITS-nrDNA region were recorded. T. citrinoviride and T. longibrachiatum, isolated from steel mill and tanneries wastewater, respectively, were differentiated based on morphological characteristics such as phialides and conidia. The combination of morphological and molecular techniques enhances the accuracy of species identification. The study highlights the significance of Trichoderma in industrial wastewater environments and underscores the need for continued research in this area. Future research should focus on exploring the ecological roles and potential applications of the newly identified Trichoderma species. Additionally, further investigations into the biotechnological potential of these species, including enzyme production and bioremediation capabilities, would contribute to their practical applications.
Collapse
Affiliation(s)
| | | | - Nousheen Yousaf
- Department of Botany, Government College University, Lahore 54000, Pakistan
| | - Muhammad Iqbal
- Department of Botany, University of Chakwal, Chakwal 48800, Pakistan
| | - Tauseef Anwar
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Huma Qureshi
- Department of Botany, University of Chakwal, Chakwal 48800, Pakistan
| | - Saleh H. Salmen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad, Mahatma Jyotiba Phule Rohilkhand University Bareilly, Bareilly 244001, India;
| |
Collapse
|
6
|
Egbewale SO, Kumar A, Mokoena MP, Olaniran AO. Purification, characterization and three-dimensional structure prediction of multicopper oxidase Laccases from Trichoderma lixii FLU1 and Talaromyces pinophilus FLU12. Sci Rep 2024; 14:13371. [PMID: 38862560 PMCID: PMC11167041 DOI: 10.1038/s41598-024-63959-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
Broad-spectrum biocatalysts enzymes, Laccases, have been implicated in the complete degradation of harmful pollutants into less-toxic compounds. In this study, two extracellularly produced Laccases were purified to homogeneity from two different Ascomycetes spp. Trichoderma lixii FLU1 (TlFLU1) and Talaromyces pinophilus FLU12 (TpFLU12). The purified enzymes are monomeric units, with a molecular mass of 44 kDa and 68.7 kDa for TlFLU1 and TpFLU12, respectively, on SDS-PAGE and zymogram. It reveals distinct properties beyond classic protein absorption at 270-280 nm, with TlFLU1's peak at 270 nm aligning with this typical range of type II Cu site (white Laccase), while TpFLU12's unique 600 nm peak signifies a type I Cu2+ site (blue Laccase), highlighting the diverse spectral fingerprints within the Laccase family. The Km and kcat values revealed that ABTS is the most suitable substrate as compared to 2,6-dimethoxyphenol, caffeic acid and guaiacol for both Laccases. The bioinformatics analysis revealed critical His, Ile, and Arg residues for copper binding at active sites, deviating from the traditional two His and a Cys motif in some Laccases. The predicted biological functions of the Laccases include oxidation-reduction, lignin metabolism, cellular metal ion homeostasis, phenylpropanoid catabolism, aromatic compound metabolism, cellulose metabolism, and biological adhesion. Additionally, investigation of degradation of polycyclic aromatic hydrocarbons (PAHs) by purified Laccases show significant reductions in residual concentrations of fluoranthene and anthracene after a 96-h incubation period. TlFLU1 Laccase achieved 39.0% and 44.9% transformation of fluoranthene and anthracene, respectively, while TpFLU12 Laccase achieved 47.2% and 50.0% transformation, respectively. The enzyme structure-function relationship study provided insights into the catalytic mechanism of these Laccases for possible biotechnological and industrial applications.
Collapse
Affiliation(s)
- Samson O Egbewale
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Durban, 4001, South Africa
| | - Ajit Kumar
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Durban, 4001, South Africa
| | - Mduduzi P Mokoena
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Durban, 4001, South Africa
- Department of Pathology, School of Medicine, University of Limpopo, Private Bag X1106, Sovenga, 0727, South Africa
| | - Ademola O Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Durban, 4001, South Africa.
| |
Collapse
|
7
|
Reyes-Cervantes A, Robles-Morales DL, Tec-Caamal EN, Jiménez-González A, Medina-Moreno SA. Performance evaluation of Trichoderma reseei in tolerance and biodegradation of diuron herbicide in agar plate, liquid culture and solid-state fermentation. World J Microbiol Biotechnol 2024; 40:137. [PMID: 38504029 DOI: 10.1007/s11274-024-03931-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/18/2024] [Indexed: 03/21/2024]
Abstract
The present study evaluated the performance of the fungus Trichoderma reesei to tolerate and biodegrade the herbicide diuron in its agrochemical presentation in agar plates, liquid culture, and solid-state fermentation. The tolerance of T. reesei to diuron was characterized through a non-competitive inhibition model of the fungal radial growth on the PDA agar plate and growth in liquid culture with glucose and ammonium nitrate, showing a higher tolerance to diuron on the PDA agar plate (inhibition constant 98.63 mg L-1) than in liquid culture (inhibition constant 39.4 mg L-1). Diuron biodegradation by T. reesei was characterized through model inhibition by the substrate on agar plate and liquid culture. In liquid culture, the fungus biotransformed diuron into 3,4-dichloroaniline using the amide group from the diuron structure as a carbon and nitrogen source, yielding 0.154 mg of biomass per mg of diuron. A mixture of barley straw and agrolite was used as the support and substrate for solid-state fermentation. The diuron removal percentage in solid-state fermentation was fitted by non-multiple linear regression to a parabolic surface response model and reached the higher removal (97.26%) with a specific aeration rate of 1.0 vkgm and inoculum of 2.6 × 108 spores g-1. The diuron removal in solid-state fermentation by sorption on barley straw and agrolite was discarded compared to the removal magnitude of the biosorption and biodegradation mechanisms of Trichoderma reesei. The findings in this work about the tolerance and capability of Trichoderma reesei to remove diuron in liquid and solid culture media demonstrate the potential of the fungus to be implemented in bioremediation technologies of herbicide-polluted sites.
Collapse
Affiliation(s)
- Alejandro Reyes-Cervantes
- Posgrado en Biotecnología, Ex-Hacienda de Santa Bárbara, Universidad Politécnica de Pachuca, Mpio., Carretera Pachuca Cd. Sahagún Km. 20, C.P. 43830, Zempoala, Hgo, Mexico
| | - Diana Laura Robles-Morales
- Posgrado en Biotecnología, Ex-Hacienda de Santa Bárbara, Universidad Politécnica de Pachuca, Mpio., Carretera Pachuca Cd. Sahagún Km. 20, C.P. 43830, Zempoala, Hgo, Mexico
| | - Edgar Noé Tec-Caamal
- Centre of Bioengineering, School of Engineering and Sciences, Tecnologico de Monterrey, Campus Querétaro, Av. Epigmenio González 500, 76130, Santiago de Querétaro, Querétaro, Mexico
| | - Angélica Jiménez-González
- Posgrado en Biotecnología, Ex-Hacienda de Santa Bárbara, Universidad Politécnica de Pachuca, Mpio., Carretera Pachuca Cd. Sahagún Km. 20, C.P. 43830, Zempoala, Hgo, Mexico
| | - Sergio Alejandro Medina-Moreno
- Posgrado en Biotecnología, Ex-Hacienda de Santa Bárbara, Universidad Politécnica de Pachuca, Mpio., Carretera Pachuca Cd. Sahagún Km. 20, C.P. 43830, Zempoala, Hgo, Mexico.
- Centre of Bioengineering, School of Engineering and Sciences, Tecnologico de Monterrey, Campus Querétaro, Av. Epigmenio González 500, 76130, Santiago de Querétaro, Querétaro, Mexico.
| |
Collapse
|
8
|
Boukaew S, Petlamul W, Srinuanpan S, Nooprom K, Zhang Z. Heat stability of Trichoderma asperelloides SKRU-01 culture filtrates: Potential applications for controlling fungal spoilage and AFB 1 production in peanuts. Int J Food Microbiol 2024; 409:110477. [PMID: 37976618 DOI: 10.1016/j.ijfoodmicro.2023.110477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/25/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
This study aimed to examine the heat stability of culture filtrates of Trichoderma asperelloides SKRU-01 (culture filtrates SKRU-01) over a temperatures range (40-121 °C) and the effects on the antifungal activity against two aflatoxin-producing strains (Aspergillus parasiticus TISTR 3276 and A. flavus PSRDC-4), aflatoxin B1 (AFB1) degradation, and the role in mycotoxin control in peanuts. The impact of SKRU-01 culture age (2-12 day-old) on both pathogenic strains revealed that the culture age of 6-12 day-old cultures exhibited no significant difference (p > 0.05) of growth inhibition for strain TISTR 3276 (81.89-82.28 %) and 4-12 day-old cultures for strain PSRDC-4 (74.87-79.06 %). The heat-treated temperatures from 40 °C to 121 °C caused no significant (p > 0.05) reduction of mycelial growth for strain TISTR 3276 (82.61 % to 79.13 %) but significant (p < 0.05) deduction for strain PSRDC-4 (75.15 % to 59.17 %). Heat treatment of the culture filtrates SKRU-01 at 60-121 °C caused the reduction on spore germination inhibition (from about 68 % to 58.16 % for strain TISTR 3276 and 51.11 % for strain PSRDC-4). These results indicate that strain TISTR 3276 exhibited greater susceptibility to culture filtrates SKRU-01 compared to strain PSRDC-4. Furthermore, the culture filtrates SKRU-01 exhibited remarkable thermal stability at 121 °C, degrading AFB1 to 63.91 %. Application of heat-stable culture filtrates SKRU-01 in peanuts demonstrated that the reduction in fungal population and AFB1 production of both pathogenic strains depended significantly (p < 0.05) on the level of heat treatment. The non-treated and 40 °C treated culture filtrates SKRU-01 could reduce AFB1 production to lower than the Standard Aflatoxin Limitation (<20 μg/kg), ensuring food safety and mitigating the health risks associated with aflatoxin exposure.
Collapse
Affiliation(s)
- Sawai Boukaew
- Center of Excellence BCG for Sustainable Development, College of Innovation and Management, Songkhla Rajabhat University, Songkhla, 90000, Thailand.
| | - Wanida Petlamul
- Center of Excellence BCG for Sustainable Development, College of Innovation and Management, Songkhla Rajabhat University, Songkhla, 90000, Thailand
| | - Sirasit Srinuanpan
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Karistsapol Nooprom
- Faculty of Agricultural Technology, Songkhla Rajabhat University, Songkhla 90000, Thailand
| | - Zhiwei Zhang
- Institute of Materia Medica, Xinjiang University, Urumqi 830017, People's Republic of China
| |
Collapse
|
9
|
Oliveira LG, Kettner MG, Lima MLS, Leão MPC, da S Santos AC, Costa AF. Trichoderma Species from Soil of Pernambuco State, Brazil. Curr Microbiol 2023; 80:289. [PMID: 37462778 DOI: 10.1007/s00284-023-03401-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/04/2023] [Indexed: 07/21/2023]
Abstract
Trichoderma is an important fungal genus, known mainly for its potential for the biological control of phytopathogens. Accurate identification of these fungi is essential for research and applications involving them, to be addressed correctly. The objectives of this study were to isolate, identify, and report the species richness of Trichoderma species that occur in the soil of different regions of Pernambuco, Brazil. DNA sequences of portions of the translation elongation factor 1-α (TEF1) gene region were generated for 56 isolates of Trichoderma, obtained from the Zona da Mata, Agreste, and Sertão regions of Pernambuco. According to the phylogenetic analysis based on these sequences, these fungi belong to two Sections-Trichoderma (35 isolates) and Pachybasidium (21 isolates). These fungi have been resolved in nine species, including Trichoderma afroharzianum, Trichoderma asperelloides, Trichoderma asperellum, Trichoderma koningiopsis, and five possible new species to be confirmed in further studies. This study shows that the soils of Pernambuco host a diversity of Trichoderma species and consequently of biological resources with potential for application in agriculture.
Collapse
Affiliation(s)
- Luciana G Oliveira
- Instituto Agronômico de Pernambuco, Av. General San Martin, 1371, Bongi, Recife, Pernambuco, 50761-000, Brazil.
| | - Mayara G Kettner
- Departamento de Micologia, Universidade Federal de Pernambuco, Av. Professor Moraes Rego 1235, Cidade Universitária, Recife, Pernambuco, 50670-901, Brazil
| | - Maria Luiza S Lima
- Instituto Agronômico de Pernambuco, Av. General San Martin, 1371, Bongi, Recife, Pernambuco, 50761-000, Brazil
| | - Mariele P Carneiro Leão
- Instituto Agronômico de Pernambuco, Av. General San Martin, 1371, Bongi, Recife, Pernambuco, 50761-000, Brazil
| | - Ana Carla da S Santos
- Departamento de Micologia, Universidade Federal de Pernambuco, Av. Professor Moraes Rego 1235, Cidade Universitária, Recife, Pernambuco, 50670-901, Brazil
| | - Antonio F Costa
- Instituto Agronômico de Pernambuco, Av. General San Martin, 1371, Bongi, Recife, Pernambuco, 50761-000, Brazil
| |
Collapse
|
10
|
Cai Y, Yu H, Ren L, Ou Y, Jiang S, Chai Y, Chen A, Yan B, Zhang J, Yan Z. Treatment of amoxicillin-containing wastewater by Trichoderma strains selected from activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161565. [PMID: 36642266 DOI: 10.1016/j.scitotenv.2023.161565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/29/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
This study screened a Trichoderma strain (Trichoderma pubescens DAOM 166162) from activated sludge to solve the limitation of traditional biological processes in the treatment of amoxicillin (AMO) containing wastewater. The mechanism of the removal of AMO wastewater by T. pubescens DAOM 166162 (TPC) was studied. AMO resulted in a higher protein percentage in the extracellular polymeric substances (EPS) secreted by TPC, which facilitated the removal of AMO from the wastewater. Fourier transform infrared spectroscopy and excitation-emission matrix were used to characterize EPS produced by metabolizing different carbon sources. It was found that the hydroxyl group was the primary functional group in EPS. The life activity of TPC was the cause of the pH rise. The main pathway of degradation of AMO by TPC was the hydroxyl group uncoupling the lactam ring and the hydrolysis of AMO in an alkaline environment. The removal efficiency of AMO in wastewater by TPC was >98 % (24 h), of which the biodegradation efficiency was 70.01 ± 1.48 %, and the biosorption efficiency was 28.44 ± 2.97 %. In general, TPC is an effective strain for treating wastewater containing AMO. This research provides a new idea for AMO wastewater treatment.
Collapse
Affiliation(s)
- Yixiang Cai
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha 410028, China
| | - Hong Yu
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha 410028, China
| | - Liheng Ren
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha 410028, China
| | - Yingjuan Ou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha 410028, China
| | - Shilin Jiang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha 410028, China
| | - Youzheng Chai
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha 410028, China
| | - Anwei Chen
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha 410028, China
| | - Binghua Yan
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha 410028, China
| | - Jiachao Zhang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha 410028, China.
| | - Zhiyong Yan
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha 410028, China.
| |
Collapse
|
11
|
Nagy VD, Zhumakayev A, Vörös M, Bordé Á, Szarvas A, Szűcs A, Kocsubé S, Jakab P, Monostori T, Škrbić BD, Mohai E, Hatvani L, Vágvölgyi C, Kredics L. Development of a Multicomponent Microbiological Soil Inoculant and Its Performance in Sweet Potato Cultivation. Microorganisms 2023; 11:microorganisms11040914. [PMID: 37110337 PMCID: PMC10143537 DOI: 10.3390/microorganisms11040914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
The cultivation and consumption of sweet potato (Ipomoea batatas) are increasing globally. As the usage of chemical fertilizers and pest control agents during its cultivation may lead to soil, water and air pollution, there is an emerging need for environment-friendly, biological solutions enabling increased amounts of healthy crop and efficient disease management. Microbiological agents for agricultural purposes gained increasing importance in the past few decades. Our goal was to develop an agricultural soil inoculant from multiple microorganisms and test its application potential in sweet potato cultivation. Two Trichoderma strains were selected: Trichoderma ghanense strain SZMC 25217 based on its extracellular enzyme activities for the biodegradation of plant residues, and Trichoderma afroharzianum strain SZMC 25231 for biocontrol purposes against fungal plant pathogens. The Bacillus velezensis strain SZMC 24986 proved to be the best growth inhibitor of most of the nine tested strains of fungal species known as plant pathogens, therefore it was also selected for biocontrol purposes against fungal plant pathogens. Arthrobacter globiformis strain SZMC 25081, showing the fastest growth on nitrogen-free medium, was selected as a component with possible nitrogen-fixing potential. A Pseudomonas resinovorans strain, SZMC 25872, was selected for its ability to produce indole-3-acetic acid, which is among the important traits of potential plant growth-promoting rhizobacteria (PGPR). A series of experiments were performed to test the selected strains for their tolerance to abiotic stress factors such as pH, temperature, water activity and fungicides, influencing the survivability in agricultural environments. The selected strains were used to treat sweet potato in two separate field experiments. Yield increase was observed for the plants treated with the selected microbial consortium (synthetic community) in comparison with the control group in both cases. Our results suggest that the developed microbial inoculant has the potential to be used in sweet potato plantations. To the best of our knowledge, this is the first report about the successful application of a fungal-bacterial consortium in sweet potato cultivation.
Collapse
Affiliation(s)
- Viktor Dávid Nagy
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - Anuar Zhumakayev
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - Mónika Vörös
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - Ádám Bordé
- Faculty of Agriculture, University of Szeged, Andrássy Street 15, 6800 Hódmezővásárhely, Hungary
| | - Adrienn Szarvas
- Faculty of Agriculture, University of Szeged, Andrássy Street 15, 6800 Hódmezővásárhely, Hungary
| | - Attila Szűcs
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - Sándor Kocsubé
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - Péter Jakab
- Faculty of Agriculture, University of Szeged, Andrássy Street 15, 6800 Hódmezővásárhely, Hungary
| | - Tamás Monostori
- Faculty of Agriculture, University of Szeged, Andrássy Street 15, 6800 Hódmezővásárhely, Hungary
| | - Biljana D. Škrbić
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Edina Mohai
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - Lóránt Hatvani
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| |
Collapse
|
12
|
Bárcenas-Moreno G, Jiménez-Compán E, San Emeterio LM, Jiménez-Morillo NT, González-Pérez JA. Soil pH and Soluble Organic Matter Shifts Exerted by Heating Affect Microbial Response. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15751. [PMID: 36497826 PMCID: PMC9735712 DOI: 10.3390/ijerph192315751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Fire-induced alterations to soil pH and organic matter play an important role in the post-fire microbial response. However, the magnitude of which each parameter affects this response is still unclear. The main objective of this work was to determine the magnitude in which soil pH and organic matter fire-induced alterations condition the response of viable and cultivable micro-organisms using laboratory heating, mimicking a range of fire intensities. Four heating treatments were applied to unaltered forest soil: unheated, 300, 450, and 500 °C. In order to isolate the effect of nutrient or pH heating-induced changes, different culture media were prepared using soil:water extracts from the different heated soils, nutrient, and pH amendments. Each medium was inoculated with different dilutions of a microbial suspension from the same original, unaltered soil, and microbial abundance was estimated. Concurrently, freeze-dry aliquots from each soil:water extract were analyzed by pyrolysis-gas chromatography/mass spectrometry. The microbial abundance in media prepared with heated soil was lower than that in media prepared with unheated soil. Nutrient addition and pH compensation appear to promote microbial proliferation in unaltered and low-intensity heated treatments, but not in those heated at the highest temperatures. Soil organic matter characterization showed a reduction in the number of organic compounds in soil-heated treatments and a marked increase in aromatic compounds, which could be related to the observed low microbial proliferation.
Collapse
Affiliation(s)
- Gael Bárcenas-Moreno
- MED Soil Research Group, Departmento de Cristalografía, Mineralogía y Química Agrícola, Facultad de Química, Universidad de Sevilla, C/Prof Garcia Gonzalez 1, 41012 Sevilla, Spain
| | - Elizabeth Jiménez-Compán
- MED Soil Research Group, Departmento de Cristalografía, Mineralogía y Química Agrícola, Facultad de Química, Universidad de Sevilla, C/Prof Garcia Gonzalez 1, 41012 Sevilla, Spain
| | - Layla M. San Emeterio
- MED Soil Research Group, Departmento de Cristalografía, Mineralogía y Química Agrícola, Facultad de Química, Universidad de Sevilla, C/Prof Garcia Gonzalez 1, 41012 Sevilla, Spain
- Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas (IRNAS-CSIC), Av. Reina Mercedes 10, 41012 Sevilla, Spain
| | - Nicasio T. Jiménez-Morillo
- Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas (IRNAS-CSIC), Av. Reina Mercedes 10, 41012 Sevilla, Spain
- Instituto Mediterrâneo para a Agricultura, Ambiente e Desenvolvimento (MED), University of Évora, Núcleo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - José A. González-Pérez
- Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas (IRNAS-CSIC), Av. Reina Mercedes 10, 41012 Sevilla, Spain
| |
Collapse
|
13
|
Liu L, Xu Y, Cao H, Fan Y, Du K, Bu X, Gao D. Effects of Trichoderma harzianum biofertilizer on growth, yield, and quality of Bupleurum chinense. PLANT DIRECT 2022; 6:e461. [PMID: 36405510 PMCID: PMC9669496 DOI: 10.1002/pld3.461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 06/03/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
The use of chemical fertilizers and pesticides led to a decline in the quality and yield of Bupleurum chinense. The aim of this study was to determine the effects of Trichoderma harzianum biofertilizer on the growth, yield, and quality of radix bupleuri and microbial responses. The results showed that T. harzianum biofertilizer promoted the growth of B. chinense and increased the yield and quality of radix bupleuri. In addition, it increased the contents of NH4 +-N, NO3 --N, available K, and available P and increased the activities of sucrase and catalase in the rhizosphere soil. High-throughput analysis showed that the dominant bacteria in the rhizosphere were Proteobacteria (28%), Acidobacteria (23%), and Actinobacteria (17%), whereas the dominant fungi were Ascomycota (49%), Zygomycota (30%), and Basidiomycota (6%). After the application of T. harzianum biofertilizer, the abundance of Proteobacteria and Actinobacteria (relative to total bacteria) and Ascomycota and Basidiomycota (relative to total fungi) increased, but the relative abundance of Acidobacteria decreased. Canonical correlation analysis (CCA) showed that the relative abundance of Pseudarthrobacter, Streptomyces, Rhizobium, Nocardioides, Minimedusa, and Chaetomium were positively correlated with NO3 --N, NH4 +-N, available K, available P, sucrase, and catalase in microbial communities, whereas Aeromicrobium and Mortierella were positively correlated with soil organic matter and urease. These results suggest that T. harzianum biofertilizer could significantly improve the yield and quality of radix bupleuri by changing the structure of soil microbial flora and soil enzyme activity. Therefore, it could be recommended for commercial scale production of Bupleurum.
Collapse
Affiliation(s)
- Li Liu
- School of PharmacyShandong University of Traditional Chinese Medicine (TCM)JinanChina
| | - Yuansong Xu
- Department of Rehabilitation MedicineCentral District People Hospital of JinanJinanChina
| | - Hailu Cao
- Hengde Bencao (Beijing) Agricultural Technology Co., LTDBeijingChina
| | - Ya Fan
- School of PharmacyShandong University of Traditional Chinese Medicine (TCM)JinanChina
| | - Kan Du
- School of PharmacyShandong University of Traditional Chinese Medicine (TCM)JinanChina
| | - Xun Bu
- Research Center of BiotechnologyShandong Academy of Agricultural SciencesJinanChina
| | - Demin Gao
- School of PharmacyShandong University of Traditional Chinese Medicine (TCM)JinanChina
| |
Collapse
|
14
|
Yue X, Ren X, Fu J, Wei N, Altomare C, Haidukowski M, Logrieco AF, Zhang Q, Li P. Characterization and mechanism of aflatoxin degradation by a novel strain of Trichoderma reesei CGMCC3.5218. Front Microbiol 2022; 13:1003039. [PMID: 36312918 PMCID: PMC9611206 DOI: 10.3389/fmicb.2022.1003039] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/21/2022] [Indexed: 11/27/2022] Open
Abstract
Aflatoxins, which are produced mainly by Aspergillus flavus and A. parasiticus, are recognized as the most toxic mycotoxins, which are strongly carcinogenic and pose a serious threat to human and animal health. Therefore, strategies to degrade or eliminate aflatoxins in agro-products are urgently needed. We investigated 65 Trichoderma isolates belonging to 23 species for their aflatoxin B1 (AFB1)-degrading capabilities. Trichoderma reesei CGMCC3.5218 had the best performance, and degraded 100% of 50 ng/kg AFB1 within 3 days and 87.6% of 10 μg/kg AFB1 within 5 days in a liquid-medium system. CGMCC3.5218 degraded more than 85.0% of total aflatoxins (aflatoxin B1, B2, G1, and G2) at 108.2–2323.5 ng/kg in artificially and naturally contaminated peanut, maize, and feed within 7 days. Box–Behnken design and response surface methodology showed that the optimal degradation conditions for CGMCC3.5218 were pH 6.7 and 31.3°C for 5.1 days in liquid medium. Possible functional detoxification components were analyzed, indicating that the culture supernatant of CGMCC3.5218 could efficiently degrade AFB1 (500 ng/kg) with a ratio of 91.8%, compared with 19.5 and 8.9% by intracellular components and mycelial adsorption, respectively. The aflatoxin-degrading activity of the fermentation supernatant was sensitive to proteinase K and proteinase K plus sodium dodecyl sulfonate, but was stable at high temperatures, suggesting that thermostable enzymes or proteins in the fermentation supernatant played a major role in AFB1 degradation. Furthermore, toxicological experiments by a micronucleus assay in mouse bone marrow erythrocytes and by intraperitoneal injection and skin irritation tests in mice proved that the degradation products by CGMCC3.5218 were nontoxic. To the best of our knowledge, this is the first comprehensive study on Trichoderma aflatoxin detoxification, and the candidate strain T. reesei CGMCC3.5218 has high efficient and environment-friendly characteristics, and qualifies as a potential biological detoxifier for application in aflatoxin removal from contaminated feeds.
Collapse
Affiliation(s)
- Xiaofeng Yue
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Xianfeng Ren
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jiayun Fu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Na Wei
- Institutions of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Claudio Altomare
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
- *Correspondence: Claudio Altomare,
| | - Miriam Haidukowski
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | - Antonio F. Logrieco
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | - Qi Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
- Hubei Hongshan Lab, Wuhan, China
- Qi Zhang,
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
- Peiwu Li,
| |
Collapse
|
15
|
Schalamun M, Schmoll M. Trichoderma - genomes and genomics as treasure troves for research towards biology, biotechnology and agriculture. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:1002161. [PMID: 37746224 PMCID: PMC10512326 DOI: 10.3389/ffunb.2022.1002161] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/25/2022] [Indexed: 09/26/2023]
Abstract
The genus Trichoderma is among the best studied groups of filamentous fungi, largely because of its high relevance in applications from agriculture to enzyme biosynthesis to biofuel production. However, the physiological competences of these fungi, that led to these beneficial applications are intriguing also from a scientific and ecological point of view. This review therefore summarizes recent developments in studies of fungal genomes, updates on previously started genome annotation efforts and novel discoveries as well as efforts towards bioprospecting for enzymes and bioactive compounds such as cellulases, enzymes degrading xenobiotics and metabolites with potential pharmaceutical value. Thereby insights are provided into genomes, mitochondrial genomes and genomes of mycoviruses of Trichoderma strains relevant for enzyme production, biocontrol and mycoremediation. In several cases, production of bioactive compounds could be associated with responsible genes or clusters and bioremediation capabilities could be supported or predicted using genome information. Insights into evolution of the genus Trichoderma revealed large scale horizontal gene transfer, predominantly of CAZyme genes, but also secondary metabolite clusters. Investigation of sexual development showed that Trichoderma species are competent of repeat induced point mutation (RIP) and in some cases, segmental aneuploidy was observed. Some random mutants finally gave away their crucial mutations like T. reesei QM9978 and QM9136 and the fertility defect of QM6a was traced back to its gene defect. The Trichoderma core genome was narrowed down to 7000 genes and gene clustering was investigated in the genomes of multiple species. Finally, recent developments in application of CRISPR/Cas9 in Trichoderma, cloning and expression strategies for the workhorse T. reesei as well as the use genome mining tools for bioprospecting Trichoderma are highlighted. The intriguing new findings on evolution, genomics and physiology highlight emerging trends and illustrate worthwhile perspectives in diverse fields of research with Trichoderma.
Collapse
Affiliation(s)
- Miriam Schalamun
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Monika Schmoll
- Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Gong K, Zhang Y, Guo H, Huang Z, Urynowicz M, Ali MI. Enhancing Biomethane Production From Lignite by an Anaerobic Polycyclic Aromatic Hydrocarbon Degrading Fungal Flora Enriched From Produced Water. Front Microbiol 2022; 13:899863. [PMID: 35711763 PMCID: PMC9197214 DOI: 10.3389/fmicb.2022.899863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/19/2022] [Indexed: 12/03/2022] Open
Abstract
The coal-degrading ability of microorganisms is essential for the formation of biogenic coalbed methane. The ability to degrade the aromatic compound of coal is more important because it is perceived as the main refractory component for bioconversion. In this paper, a polycyclic aromatic hydrocarbon (PAH) degrading fungal community (PF) was enriched from produced water using phenanthrene as sole carbon source. The goal was to improve both the microbial structure of the methanogenic microflora and its coal-degrading ability. Two strategies were pursued. The first used coal pretreatment with PF (PP), followed by methane production by methanogenic microflora; the second used methane production directly from coal by mixed culture of PF and methanogenic microflora (PM). The results showed that methane productions of PP and PM increased by 29.40 and 39.52%, respectively. After 7 days of cultivation, the fungal community has been altered in PP and PM, especially for Penicillium the proportions of which were 67.37 and 89.81% higher than that in methanogenic microflora, respectively. Furthermore, volatile fatty acid accumulations increased by 64.21 and 58.15%, respectively. The 13C-NMR results showed that PF addition promoted the transformation of aromatic carbons in coal to carboxyl and carbonyl carbons, which contributed greatly to the production of methane together with oxygen-containing functional groups. These results suggest that methane production can be increased by indigenous PAH-degrading fungi by improving the fermentation of aromatics in coal and the generation of volatile fatty acids. This provided a feasible method for enhancing biomethane generation in the coal seam.
Collapse
Affiliation(s)
- Kaiyi Gong
- College of Safety and Emergency Management and Engineering, Taiyuan University of Technology, Taiyuan, China
- Key Lab of In-situ Property-improving Mining of Ministry of Education, Taiyuan University of Technology, Taiyuan, China
| | - Yixuan Zhang
- College of Safety and Emergency Management and Engineering, Taiyuan University of Technology, Taiyuan, China
- Key Lab of In-situ Property-improving Mining of Ministry of Education, Taiyuan University of Technology, Taiyuan, China
| | - Hongguang Guo
- College of Safety and Emergency Management and Engineering, Taiyuan University of Technology, Taiyuan, China
- Key Lab of In-situ Property-improving Mining of Ministry of Education, Taiyuan University of Technology, Taiyuan, China
- *Correspondence: Hongguang Guo
| | - Zaixing Huang
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, China
- Department of Civil and Architectural Engineering, University of Wyoming, Laramie, WY, United States
| | - Michael Urynowicz
- Department of Civil and Architectural Engineering, University of Wyoming, Laramie, WY, United States
| | - Muhammad Ishtiaq Ali
- Environmental Microbiology Lab, Department of Microbiology, Quaid-I-Azam University, Islamabad, Pakistan
| |
Collapse
|
17
|
Gréau L, Blaudez D, Heintz D, Zumsteg J, Billet D, Cébron A. Response of Poplar and Associated Fungal Endophytic Communities to a PAH Contamination Gradient. Int J Mol Sci 2022; 23:ijms23115909. [PMID: 35682588 PMCID: PMC9180295 DOI: 10.3390/ijms23115909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023] Open
Abstract
Microbial populations associated to poplar are well described in non-contaminated and metal-contaminated environments but more poorly in the context of polycyclic aromatic hydrocarbon (PAH) contamination. This study aimed to understand how a gradient of phenanthrene (PHE) contamination affects poplar growth and the fungal microbiome in both soil and plant endosphere (roots, stems and leaves). Plant growth and fitness parameters indicated that the growth of Populus canadensis was impaired when PHE concentration increased above 400 mg kg-1. Values of alpha-diversity indicators of fungal diversity and richness were not affected by the PHE gradient. The PHE contamination had a stronger impact on the fungal community composition in the soil and root compartments compared to that of the aboveground organs. Most of the indicator species whose relative abundance was correlated with PHE contamination decreased along the gradient indicating a toxic effect of PHE on these fungal OTUs (Operational Taxonomic Units). However, the relative abundance of some OTUs such as Cadophora, Alternaria and Aspergillus, potentially linked to PHE degradation or being plant-beneficial taxa, increased along the gradient. Finally, this study allowed a deeper understanding of the dual response of plant and fungal communities in the case of a soil PAH contamination gradient leading to new perspectives on fungal assisted phytoremediation.
Collapse
Affiliation(s)
- Lilian Gréau
- Université de Lorraine, CNRS, LIEC, 54000 Nancy, France; (L.G.); (D.B.); (D.B.)
| | - Damien Blaudez
- Université de Lorraine, CNRS, LIEC, 54000 Nancy, France; (L.G.); (D.B.); (D.B.)
| | - Dimitri Heintz
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France; (D.H.); (J.Z.)
| | - Julie Zumsteg
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France; (D.H.); (J.Z.)
| | - David Billet
- Université de Lorraine, CNRS, LIEC, 54000 Nancy, France; (L.G.); (D.B.); (D.B.)
- Pôle de Compétences en Biologie Environnementale, Université de Lorraine, CNRS, LIEC, 54000 Nancy, France
| | - Aurélie Cébron
- Université de Lorraine, CNRS, LIEC, 54000 Nancy, France; (L.G.); (D.B.); (D.B.)
- Correspondence:
| |
Collapse
|
18
|
Novotný Č, Fojtík J, Mucha M, Malachová K. Biodeterioration of Compost-Pretreated Polyvinyl Chloride Films by Microorganisms Isolated From Weathered Plastics. Front Bioeng Biotechnol 2022; 10:832413. [PMID: 35223795 PMCID: PMC8867010 DOI: 10.3389/fbioe.2022.832413] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/21/2022] [Indexed: 11/29/2022] Open
Abstract
Polyvinyl chloride (PVC) is a petroleum-based plastic used in various applications, polluting the environment because of its recalcitrance, large content of additives, and the presence of halogen. In our case study, a new, two-stage biodegradation technology that combined composting process used for PVC pretreatment with a subsequent PVC attack by newly-isolated fungal and bacterial strains under SSF conditions was used for biodegradation of commercial PVC films. The novelty consisted in a combined effect of the two biodegradation processes and the use for augmentation of microbial strains isolated from plastic-polluted environments. First, the ability of the newly-isolated strains to deteriorate PVC was tested in individual, liquid-medium- and SSF cultures. Higher mass-reductions of PVC films were obtained in the former cultures, probably due to a better mass transfer in liquid phase. Using the two-stage biodegradation technology the highest cumulative mass-reductions of 29.3 and 33.2% of PVC films were obtained after 110 days with Trichoderma hamatum and Bacillus amyloliquefaciens applied in the second stage in the SSF culture, respectively. However, FTIR analysis showed that the mass-reductions obtained represented removal of significant amounts of additives but the PVC polymer chain was not degraded.
Collapse
Affiliation(s)
- Čenek Novotný
- Laboratory of Environmental Biotechnology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.,Department of Horticulture, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic.,Institute of Environmental Technology, CEET, VSB-Technical University of Ostrava, Ostrava, Czech Republic
| | - Jindřich Fojtík
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Martin Mucha
- Department of Chemistry, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Kateřina Malachová
- Institute of Environmental Technology, CEET, VSB-Technical University of Ostrava, Ostrava, Czech Republic.,Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
19
|
Microbial Depolymerization of Epoxy Resins: A Novel Approach to a Complex Challenge. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12010466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The objective of this project is evaluating the potential of microbes (fungi and bacteria) for the depolymerization of epoxy, aiming at the development of a circular management of natural resources for epoxy in a long-term prospective. For depolymerization, epoxy samples were incubated for 1, 3, 6 and 9 months in soil microcosms inoculated with Ganoderma adspersum. Contact angle data revealed a reduction in the hydrophobicity induced by the fungus. Environmental scanning electron microscopy on epoxy samples incubated for more than 3 years in microbiological water revealed abundant microbiota. This comprised microbes of different sizes and shapes. The fungi Trichoderma harzianum and Aspergillus calidoustus, as well as the bacteria Variovorax sp. and Methyloversatilis discipulorum, were isolated from this environment. Altogether, these results suggest that microbes are able to colonize epoxy surfaces and, most probably, also partially depolymerize them. This could open promising opportunities for the study of new metabolisms potentially able depolymerize epoxy materials.
Collapse
|
20
|
Davolos D, Russo F, Canfora L, Malusà E, Tartanus M, Furmanczyk EM, Ceci A, Maggi O, Persiani AM. A Genomic and Transcriptomic Study on the DDT-Resistant Trichoderma hamatum FBL 587: First Genetic Data into Mycoremediation Strategies for DDT-Polluted Sites. Microorganisms 2021; 9:microorganisms9081680. [PMID: 34442757 PMCID: PMC8401308 DOI: 10.3390/microorganisms9081680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/01/2021] [Accepted: 08/04/2021] [Indexed: 01/09/2023] Open
Abstract
Trichoderma hamatum FBL 587 isolated from DDT-contaminated agricultural soils stands out as a remarkable strain with DDT-resistance and the ability to enhance DDT degradation process in soil. Here, whole genome sequencing and RNA-Seq studies for T. hamatum FBL 587 under exposure to DDT were performed. In the 38.9 Mb-genome of T. hamatum FBL 587, 10,944 protein-coding genes were predicted and annotated, including those of relevance to mycoremediation such as production of secondary metabolites and siderophores. The genome-scale transcriptional responses of T. hamatum FBL 587 to DDT exposure showed 1706 upregulated genes, some of which were putatively involved in the cellular translocation and degradation of DDT. With regards to DDT removal capacity, it was found upregulation of metabolizing enzymes such as P450s, and potentially of downstream DDT-transforming enzymes such as epoxide hydrolases, FAD-dependent monooxygenases, glycosyl- and glutathione-transferases. Based on transcriptional responses, the DDT degradation pathway could include transmembrane transporters of DDT, antioxidant enzymes for oxidative stress due to DDT exposure, as well as lipases and biosurfactants for the enhanced solubility of DDT. Our study provides the first genomic and transcriptomic data on T. hamatum FBL 587 under exposure to DDT, which are a base for a better understanding of mycoremediation strategies for DDT-polluted sites.
Collapse
Affiliation(s)
- Domenico Davolos
- Department of Technological Innovations and Safety of Plants, Products and Anthropic Settlements (DIT), INAIL, Research Area, Via R. Ferruzzi 38/40, 00143 Rome, Italy
- Correspondence: ; Tel.: +39-0654876328
| | - Fabiana Russo
- Department of Environmental Biology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (F.R.); (A.C.); (O.M.); (A.M.P.)
| | - Loredana Canfora
- Council of Agricultural Research and Economics, Centre for Agriculture and Environment, Via Della Navicella 2/4, 00184 Rome, Italy;
| | - Eligio Malusà
- The National Institute of Horticultural Research, ul. Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland; (E.M.); (M.T.); (E.M.F.)
| | - Małgorzata Tartanus
- The National Institute of Horticultural Research, ul. Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland; (E.M.); (M.T.); (E.M.F.)
| | - Ewa Maria Furmanczyk
- The National Institute of Horticultural Research, ul. Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland; (E.M.); (M.T.); (E.M.F.)
| | - Andrea Ceci
- Department of Environmental Biology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (F.R.); (A.C.); (O.M.); (A.M.P.)
| | - Oriana Maggi
- Department of Environmental Biology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (F.R.); (A.C.); (O.M.); (A.M.P.)
| | - Anna Maria Persiani
- Department of Environmental Biology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (F.R.); (A.C.); (O.M.); (A.M.P.)
| |
Collapse
|
21
|
De Padua JC, dela Cruz TEE. Isolation and Characterization of Nickel-Tolerant Trichoderma Strains from Marine and Terrestrial Environments. J Fungi (Basel) 2021; 7:jof7080591. [PMID: 34436130 PMCID: PMC8396999 DOI: 10.3390/jof7080591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 11/19/2022] Open
Abstract
Nickel contamination is a serious environmental issue that requires immediate action. In this study, 23 strains of Trichoderma were isolated from terrestrial and marine environments and identified using a polyphasic approach of morphological characterization and ITS gene sequence analysis. The Trichoderma strains were tested for their tolerance and biosorption of nickel. Our results showed the growth of all Trichoderma strains on Trichoderma Selective Medium (TSM) with 50–1200-ppm nickel, indicating their tolerance of this heavy metal even at a relatively high concentration. Six Trichoderma strains (three isolated from terrestrial substrates and three from marine substates) had the highest radial growth on TSM with 50-ppm Ni. Among these fungal isolates, Trichoderma asperellum (S03) isolated from soil exhibited the best growth after 2 days of incubation. For the biosorption of nickel, the accumulation or uptake efficiency by the six selected Trichoderma was determined in Potato Dextrose Broth (PDB) supplemented with 50-ppm Ni using a Flame Atomic Absorption Spectrophotometer (AAS). The percent uptake efficiency of the three strains of T. asperellum (S03, S08, and LL14) was computed to be up to 66%, while Trichoderma virens (SG18 and SF22) and Trichoderma inhamatum (MW25) achieved up to 68% uptake efficiency. Observation of the Trichoderma strains with Scanning Electron Microscopy (SEM) before and after the absorption of nickel showed very minimal damage on the hyphal and conidial surface morphology, but changes in the colonial characteristics were observed. Our study highlighted the potential of terrestrial and marine strains of Trichoderma for the bioremediation of nickel pollution.
Collapse
Affiliation(s)
- Jewel C. De Padua
- The Graduate School, University of Santo Tomas, España Blvd., Manila 1008, Philippines;
- Research Center for the Natural and Applied Sciences, Fungal Biodiversity, Ecogenomics and Systematics (FBeS) Group, University of Santo Tomas, España Blvd., Manila 1008, Philippines
| | - Thomas Edison E. dela Cruz
- The Graduate School, University of Santo Tomas, España Blvd., Manila 1008, Philippines;
- Research Center for the Natural and Applied Sciences, Fungal Biodiversity, Ecogenomics and Systematics (FBeS) Group, University of Santo Tomas, España Blvd., Manila 1008, Philippines
- Department of Biological Sciences, College of Science, University of Santo Tomas, España Blvd., Manila 1008, Philippines
- Correspondence: ; Tel.: +632-3406-1611 local 8297
| |
Collapse
|
22
|
Harman G, Khadka R, Doni F, Uphoff N. Benefits to Plant Health and Productivity From Enhancing Plant Microbial Symbionts. FRONTIERS IN PLANT SCIENCE 2021; 11:610065. [PMID: 33912198 PMCID: PMC8072474 DOI: 10.3389/fpls.2020.610065] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/20/2020] [Indexed: 05/24/2023]
Abstract
Plants exist in close association with uncountable numbers of microorganisms around, on, and within them. Some of these endophytically colonize plant roots. The colonization of roots by certain symbiotic strains of plant-associated bacteria and fungi results in these plants performing better than plants whose roots are colonized by only the wild populations of microbes. We consider here crop plants whose roots are inhabited by introduced organisms, referring to them as Enhanced Plant Holobionts (EPHs). EPHs frequently exhibit resistance to specific plant diseases and pests (biotic stresses); resistance to abiotic stresses such as drought, cold, salinity, and flooding; enhanced nutrient acquisition and nutrient use efficiency; increased photosynthetic capability; and enhanced ability to maintain efficient internal cellular functioning. The microbes described here generate effects in part through their production of Symbiont-Associated Molecular Patterns (SAMPs) that interact with receptors in plant cell membranes. Such interaction results in the transduction of systemic signals that cause plant-wide changes in the plants' gene expression and physiology. EPH effects arise not only from plant-microbe interactions, but also from microbe-microbe interactions like competition, mycoparasitism, and antibiotic production. When root and shoot growth are enhanced as a consequence of these root endophytes, this increases the yield from EPH plants. An additional benefit from growing larger root systems and having greater photosynthetic capability is greater sequestration of atmospheric CO2. This is transferred to roots where sequestered C, through exudation or root decomposition, becomes part of the total soil carbon, which reduces global warming potential in the atmosphere. Forming EPHs requires selection and introduction of appropriate strains of microorganisms, with EPH performance affected also by the delivery and management practices.
Collapse
Affiliation(s)
- Gary Harman
- Department of Plant Pathology, Cornell University, Geneva, NY, United States
| | - Ram Khadka
- Department of Plant Pathology, The Ohio State University, Columbus, OH, United States
- Nepal Agricultural Research Council, Directorate of Agricultural Research, Banke, Nepal
| | - Febri Doni
- Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Norman Uphoff
- CALS International Agriculture Programs, Cornell University, Ithaca, NY, United States
| |
Collapse
|
23
|
Li Q, Li J, Jiang L, Sun Y, Luo C, Zhang G. Diversity and structure of phenanthrene degrading bacterial communities associated with fungal bioremediation in petroleum contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123895. [PMID: 33264959 DOI: 10.1016/j.jhazmat.2020.123895] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/14/2020] [Accepted: 08/29/2020] [Indexed: 06/12/2023]
Abstract
Fungal bioremediation is a promising technique for the cleanup of sites contaminated with polycyclic aromatic hydrocarbons (PAHs). However, due to limited understanding of the composition and dynamics of the native PAH-degrading microorganisms in contaminated sites, its application has been difficult. In the present study, DNA stable-isotope probing was performed to identify indigenous phenanthrene (PHE)-degrading bacteria and determine their diversity during the fungal bioremediation process. The results showed a total of 14 operational taxonomic units (OTUs) enriched in the heavy DNA fractions, which were related to seven genera (Sphingomonas, Sphingobacterium, Acidovorax, Massilia, Flavobacterium, Cupriavidus, Aeromicrobium, and unclassified Chitinophagaceae). Along with enhanced efficiency of PHE removal, the number and diversity of indigenous PHE-degrading bacteria in soil bioaugmented with fungi were significantly increased. Furthermore, based on the results of linear model analysis, we found that PHE degraders affiliated with the genus Sphingomonas were significantly enriched during fungal bioremediation. Moreover, fungal bioaugmentation promoted indigenous functional Proteobacteria involved in PAH degradation through co-metabolism, suggesting that PAH biodegradation was attributable to cooperative metabolism by fungi and indigenous bacteria. Our findings provide new insights into the diversity of PHE-degrading communities and support a more comprehensive view of the fungal bioremediation process.
Collapse
Affiliation(s)
- Qiqian Li
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; College of Chemical and Biological Engineering, Hechi University, Yizhou, 546300, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Jibing Li
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Longfei Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Yingtao Sun
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
24
|
Goh YK, Ting ASY. Microbial Biocontrol Agents for Agricultural Soil Remediation: Prospects and Application. Fungal Biol 2021. [DOI: 10.1007/978-3-030-54422-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Peidro-Guzmán H, Pérez-Llano Y, González-Abradelo D, Fernández-López MG, Dávila-Ramos S, Aranda E, Hernández DRO, García AO, Lira-Ruan V, Pliego OR, Santana MA, Schnabel D, Jiménez-Gómez I, Mouriño-Pérez RR, Aréchiga-Carvajal ET, Del Rayo Sánchez-Carbente M, Folch-Mallol JL, Sánchez-Reyes A, Vaidyanathan VK, Cabana H, Gunde-Cimerman N, Batista-García RA. Transcriptomic analysis of polyaromatic hydrocarbon degradation by the halophilic fungus Aspergillus sydowii at hypersaline conditions. Environ Microbiol 2020; 23:3435-3459. [PMID: 32666586 DOI: 10.1111/1462-2920.15166] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/11/2020] [Accepted: 07/12/2020] [Indexed: 01/22/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are among the most persistent xenobiotic compounds, with high toxicity effects. Mycoremediation with halophilic Aspergillus sydowii was used for their removal from a hypersaline medium (1 M NaCl). A. sydowii metabolized PAHs as sole carbon sources, resulting in the removal of up to 90% for both PAHs [benzo [a] pyrene (BaP) and phenanthrene (Phe)] after 10 days. Elimination of Phe and BaP was almost exclusively due to biotransformation and not adsorption by dead mycelium and did not correlate with the activity of lignin modifying enzymes (LME). Transcriptomes of A. sydowii grown on PAHs, or on glucose as control, both at hypersaline conditions, revealed 170 upregulated and 76 downregulated genes. Upregulated genes were related to starvation, cell wall remodelling, degradation and metabolism of xenobiotics, DNA/RNA metabolism, energy generation, signalling and general stress responses. Changes of LME expression levels were not detected, while the chloroperoxidase gene, possibly related to detoxification processes in fungi, was strongly upregulated. We propose that two parallel metabolic pathways (mitochondrial and cytosolic) are involved in degradation and detoxification of PAHs in A. sydowii resulting in intracellular oxidation of PAHs. To the best of our knowledge, this is the most comprehensive transcriptomic analysis on fungal degradation of PAHs.
Collapse
Affiliation(s)
- Heidy Peidro-Guzmán
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Yordanis Pérez-Llano
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Deborah González-Abradelo
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Maikel Gilberto Fernández-López
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Sonia Dávila-Ramos
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Elisabet Aranda
- Instituto Universitario de Investigación del Agua, Universidad de Granada, Granada, Spain
| | | | - Angélica Ortega García
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Verónica Lira-Ruan
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Oscar Ramírez Pliego
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - María Angélica Santana
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Denhi Schnabel
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Irina Jiménez-Gómez
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Rosa R Mouriño-Pérez
- Centro de Investigación Cientifica y Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Elva T Aréchiga-Carvajal
- Facultad de Ciencias Biológicas, Unidad de Manipulación Genética, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | | | - Jorge Luis Folch-Mallol
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Ayixon Sánchez-Reyes
- Cátedras Conacyt - Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | | | - Hubert Cabana
- Faculté de Genié, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Nina Gunde-Cimerman
- Departament of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| |
Collapse
|
26
|
Venice F, Davolos D, Spina F, Poli A, Prigione VP, Varese GC, Ghignone S. Genome Sequence of Trichoderma lixii MUT3171, A Promising Strain for Mycoremediation of PAH-Contaminated Sites. Microorganisms 2020; 8:E1258. [PMID: 32825267 PMCID: PMC7570066 DOI: 10.3390/microorganisms8091258] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/06/2020] [Accepted: 08/17/2020] [Indexed: 12/28/2022] Open
Abstract
Mono- and polycyclic aromatic hydrocarbons (PAHs) are widespread and recalcitrant pollutants that threaten both environmental and human health. By exploiting the powerful enzymatic machinery of fungi, mycoremediation in contaminated sites aims at removing a wide range of pollutants in a cost-efficient and environmentally friendly manner. Next-generation sequencing (NGS) techniques are powerful tools for understanding the molecular basis of biotransformation of PAHs by selected fungal strains, allowing genome mining to identify genetic features of biotechnological value. Trichoderma lixii MUT3171, isolated from a historically PAH-contaminated soil in Italy, can grow on phenanthrene, as a sole carbon source. Here, we report the draft genome sequence of T. lixii MUT3171 obtained with high-throughput sequencing method. The genome of T. lixii MUT3171 was compared with other 14 Trichoderma genomes, highlighting both shared and unique features that can shed a light on the biotransformation of PAHs. Moreover, the genes potentially involved in the production of important biosurfactants and bioactive molecules have been investigated. The gene repertoire of T. lixii MUT3171 indicates a high degrading potential and provides hints on putative survival strategies in a polluted environment.
Collapse
Affiliation(s)
- Francesco Venice
- Institute for Sustainable Plant Protection (IPSP)-SS Turin-National Research Council (CNR), Viale Mattioli 25, 10125 Turin, Italy
| | - Domenico Davolos
- Department of Technological Innovations and Safety of Plants, Products and Anthropic Settlements (DIT), INAIL, Research Area, Via R. Ferruzzi 38/40, 00143 Rome, Italy
| | - Federica Spina
- Department of Life Sciences and System Biology, University of Turin, Viale Mattioli 25, 10125 Turin, Italy
| | - Anna Poli
- Department of Life Sciences and System Biology, University of Turin, Viale Mattioli 25, 10125 Turin, Italy
| | - Valeria Paola Prigione
- Department of Life Sciences and System Biology, University of Turin, Viale Mattioli 25, 10125 Turin, Italy
| | - Giovanna Cristina Varese
- Department of Life Sciences and System Biology, University of Turin, Viale Mattioli 25, 10125 Turin, Italy
| | - Stefano Ghignone
- Institute for Sustainable Plant Protection (IPSP)-SS Turin-National Research Council (CNR), Viale Mattioli 25, 10125 Turin, Italy
| |
Collapse
|
27
|
Cristaldi A, Oliveri Conti G, Cosentino SL, Mauromicale G, Copat C, Grasso A, Zuccarello P, Fiore M, Restuccia C, Ferrante M. Phytoremediation potential of Arundo donax (Giant Reed) in contaminated soil by heavy metals. ENVIRONMENTAL RESEARCH 2020; 185:109427. [PMID: 32247150 DOI: 10.1016/j.envres.2020.109427] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/15/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Soil pollution from heavy metals poses a serious risk for environment and public health. Phytoremediation is an eco-friendly and cheaper alternative compared to chemical-physical techniques. We carried out in vitro tests where three microorganisms Trichoderma harzianum, Saccharomyces cerevisiae and Wickerhamomyces anomalus were exposed to eight different heavy metals (one metal at a time) in order to evaluate resistance, growth and bioaccumulation capability for each metal (Ni, Cd, Cu, V, Zn, As, Pb, Hg). Taking into account the natural characteristics of T. harzianum, (resistance to environmental stress, resistance to pathogenic fungi, ability to establish symbiotic relationships with superior green plants) and the good bioaccumulation capacity for V, As, Cd, Hg, Pb shown after in vitro tests, it was chosen as a microorganism to be used in greenhouse tests. Controlled exposure tests were performed in greenhouse, where Arundo donax and mycorrhized Arundo donax with T. harzianum were exposed for 7 months at two different doses (L1 and L2) of a heavy metal mix, so as to assess whether the symbiotic association could improve the bioaccumulation capability of the superior green plant A. donax. Heavy metals were determined with ICP-MS. The average bioaccumulation percentage values of A. donax for L1 and L2 were, respectively: Ni (31%, 26%); Cd (35%, 50%); Cu (30%, 35%); As (19%, 27%); Pb (18%, 14%); Hg (42%, 45%); V (39%, 26%); Zn (23%, 9%). The average bioaccumulation percentage values of mycorrhized A. donax with T. harzianum for L1 and L2 were, respectively: Ni (27%, 38%); Cd (44%, 42%); Cu (36%, 29%); As (17%, 23%); Pb (37%, 54%); Hg (44%, 60%); V (16%, 20%); Zn (14%, 7%). A. donax showed the highest BAF (bioaccumulation factor) for Cd (0.50), Cu (0.35), As (0.27) and Hg (0.45) after exposure to L2; mycorrhized A. donax with T. harzianum showed the highest BAF for Ni (0.38), Cd (0.42), Pb (0.54) and Hg (0.60) after exposure to L2. A. donax showed the highest TF (translocation factor) values for Cd (0.28) and Hg (0.26) after exposition at L1 and L2 respectively; A. donax mycorrhized with T. harzianum showed the highest TF values for Cd (0.70), As (0.56), V (0.24), Pb (0.18) after exposition at L2, and Zn (0.30) after exposition at L1. Our study showed a good growth capability in contaminated soils and a good bioaccumulation capability of heavy metals, both for A. donax and mycorrhized A. donax with T. harzianum. Furthermore, for three metals (Ni, Pb and Hg) the bioaccumulation capability was improved by the symbiosis of T. harzianum with A. donax. So, these results proved the suitability both for A. donax and mycorrhized A. donax with T. harzianum for phytoremediation processes.
Collapse
Affiliation(s)
- Antonio Cristaldi
- Environmental and Food Laboratories (LIAA), Department of Medical Science, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy
| | - Gea Oliveri Conti
- Environmental and Food Laboratories (LIAA), Department of Medical Science, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy.
| | | | - Giovanni Mauromicale
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Italy
| | - Chiara Copat
- Environmental and Food Laboratories (LIAA), Department of Medical Science, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy
| | - Alfina Grasso
- Environmental and Food Laboratories (LIAA), Department of Medical Science, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy
| | - Pietro Zuccarello
- Environmental and Food Laboratories (LIAA), Department of Medical Science, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy
| | - Maria Fiore
- Environmental and Food Laboratories (LIAA), Department of Medical Science, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy
| | - Cristina Restuccia
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Italy
| | - Margherita Ferrante
- Environmental and Food Laboratories (LIAA), Department of Medical Science, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy
| |
Collapse
|
28
|
Bioremediation of PAH-Contaminated Soils: Process Enhancement through Composting/Compost. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10113684] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Bioremediation of contaminated soils has gained increasing interest in recent years as a low-cost and environmentally friendly technology to clean soils polluted with anthropogenic contaminants. However, some organic pollutants in soil have a low biodegradability or are not bioavailable, which hampers the use of bioremediation for their removal. This is the case of polycyclic aromatic hydrocarbons (PAHs), which normally are stable and hydrophobic chemical structures. In this review, several approaches for the decontamination of PAH-polluted soil are presented and discussed in detail. The use of compost as biostimulation- and bioaugmentation-coupled technologies are described in detail, and some parameters, such as the stability of compost, deserve special attention to obtain better results. Composting as an ex situ technology, with the use of some specific products like surfactants, is also discussed. In summary, the use of compost and composting are promising technologies (in all the approaches presented) for the bioremediation of PAH-contaminated soils.
Collapse
|
29
|
Diversity of Soil Filamentous Fungi Influenced by Marine Environment in São Luís, Maranhão, Brazil. ScientificWorldJournal 2020; 2020:3727453. [PMID: 32410905 PMCID: PMC7211247 DOI: 10.1155/2020/3727453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/01/2020] [Accepted: 04/03/2020] [Indexed: 11/17/2022] Open
Abstract
Introduction In recent decades, there has been an intensification of environmental problems, which are becoming increasingly critical and frequent due to population growth. Microorganisms, including soilborne fungi, play an essential role in maintaining and balancing the environment. One of the most impacted ecosystems in São Luís, Maranhão, Brazil, is the Jansen Lagoon State Park, an important tourist spot, which has suffered anthropogenic actions such as the dumping of household waste (sewage) in its body of water. As a consequence, these pollutants can accumulate in the adjacent soil, since the body of water is near this substrate. The objectives were to isolate and identify filamentous fungi from the soil of the Jansen Lagoon State Park. Methods Monthly soil samples were collected and later processed using the modified suspension technique according to Clark (1965). Results The isolated genera were Aspergillus, Penicillium, Trichoderma, Absidia, and Fusarium. Aspergillus is the fungal genus of greater dominance in the soil of the Jansen Lagoon State Park. Aspergillus niger was the dominant species (37%), followed by A. tamarii (21.6%). Conclusion The main isolated fungi from the Jansen Lagoon State Park were Aspergillus niger and Aspergillus tamrii. These fungi can be used as biological markers of pollution and as biodegraders and/or bioremediators to improve the area studied.
Collapse
|
30
|
Sun ZB, Li SD, Ren Q, Xu JL, Lu X, Sun MH. Biology and applications of Clonostachys rosea. J Appl Microbiol 2020; 129:486-495. [PMID: 32115828 DOI: 10.1111/jam.14625] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 01/07/2023]
Abstract
Clonostachys rosea is a promising saprophytic filamentous fungus that belongs to phylum Ascomycota. Clonostachys rosea is widespread around the world and exists in many kinds of habitats, with the highest frequency in soil. As an excellent mycoparasite, C. rosea exhibits strong biological control ability against numerous fungal plant pathogens, nematodes and insects. These behaviours are based on the activation of multiple mechanisms such as secreted cell-wall-degrading enzymes, production of antifungal secondary metabolites and induction of plant defence systems. Besides having significant biocontrol activity, C. rosea also functions in the biodegradation of plastic waste, biotransformation of bioactive compounds, as a bioenergy sources and in fermentation. This mini review summarizes information about the biology and various applications of C. rosea and expands on its possible uses.
Collapse
Affiliation(s)
- Z-B Sun
- School of Light Industry, Beijing Technology and Business University, Beijing, China.,Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - S-D Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Q Ren
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - J-L Xu
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - X Lu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - M-H Sun
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
31
|
Al-Hawash AB, Al-Qurnawi WS, Abbood HA, Hillo NA, Ghalib HB, Zhang X, Ma F. Pyrene-Degrading Fungus Ceriporia lacerata RF-7 from Contaminated Soil in Iraq. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1713183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Adnan B. Al-Hawash
- Department of Marine Chemistry and Environmental Pollution, Marine Science Center, University of Basrah, Basra, Iraq
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | | | - Hayder A. Abbood
- Material Engineering, College of Engineering, University of Basrah, Basrah, Iraq
| | | | | | - Xiaoyu Zhang
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Fuying Ma
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Velez P, Gasca-Pineda J, Riquelme M. Cultivable fungi from deep-sea oil reserves in the Gulf of Mexico: Genetic signatures in response to hydrocarbons. MARINE ENVIRONMENTAL RESEARCH 2020; 153:104816. [PMID: 31679790 DOI: 10.1016/j.marenvres.2019.104816] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/25/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
The estimation of oil spill effects on marine ecosystems is limited to the extent of our knowledge on the autochthonous biota. Fungi are involved in key ecological marine processes, representing a major component of post-spill communities. However, information on their functional capacities remains lacking. Herein we analyzed cultivable fungi from sediments in two oil-drilling regions of the Gulf of Mexico for their ability to tolerate and use hexadecane and 1-hexadecene as the sole carbon sources; and to evaluate gene expression profiles of key hydrocarbonoclastic taxa during utilization of these hydrocarbons. The isolated fungi showed differential sensitivity patterns towards the tested hydrocarbons under three different concentrations. Remarkably, six OTUs (Aureobasidium sp., Penicillium brevicompactum, Penicillium sp., Phialocephala sp., Cladosporium sp. 1 and 2) metabolized the tested alkane and alkene as the sole carbon sources, confirming that deep-sea fungal taxa are valuable genetic resources with potential use in bioremediation. RNA-seq results revealed distinctive gene expression profiles in the hydrocarbonoclastic fungus Penicillium sp. when using hexadecane and 1-hexadecene as the sole carbon sources, with up-regulation of genes involved in transmembrane transport, metabolism of six-carbons carbohydrates, and nitric oxide pathways.
Collapse
Affiliation(s)
- Patricia Velez
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, 22860, Mexico.
| | - Jaime Gasca-Pineda
- Departamento de Biología de la Conservación, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, 22860, Mexico
| | - Meritxell Riquelme
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, 22860, Mexico.
| |
Collapse
|
33
|
Xian HQ, Liu L, Li YH, Yang YN, Yang S. Molecular tagging of biocontrol fungus Trichoderma asperellum and its colonization in soil. J Appl Microbiol 2019; 128:255-264. [PMID: 31541488 DOI: 10.1111/jam.14457] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 09/02/2019] [Accepted: 09/16/2019] [Indexed: 11/30/2022]
Abstract
AIMS To conduct molecular tagging of the biocontrol fungus Trichoderma asperellum strain T4 and elucidate its colonization patterns in soil. METHODS AND RESULTS We constructed an expression vector harbouring a hygromycin B-resistant gene (hph) and an efficient green fluorescent protein (egfp) gene. By applying Agrobacterium AGL-1-mediated genetic transformation technology, we conducted molecular tagging of T. asperellum and monitored the colonization dynamics of T. asperellum in soil. The results of tracking five independent transformants of T. asperellum indicated that its expansion rates ranged from 4·7 to 6·8 cm week-1 . After inoculation in soil, the quantities of T. asperellum could be maintained at over 10 × 104 CFU per gram soil in the first year. In the third year after inoculation, the quantities of T. asperellum in soil were still higher than 1 × 103 CFU per gram soil. In addition, molecularly tagged T. asperellum in soil in the second year (i.e. 12 months) after inoculation could still reach the biocontrol effect on cucumber Rhizoctonia rot by more than 74%. CONCLUSION Trichoderma asperellum strain T4 is capable of effectively colonizing in soil and surviving for more than 1 year. SIGNIFICANCE AND IMPACT OF THE STUDY This study has provided the scientific basis for applying T. asperellum as the biocontrol fungus for prevention and control of plant diseases.
Collapse
Affiliation(s)
- H-Q Xian
- School of Life Sciences, Qingdao Agricultural University, Shandong Province, China.,Shandong Province Key Laboratory of Applied Mycology, Shandong Province, China
| | - L Liu
- School of Life Sciences, Qingdao Agricultural University, Shandong Province, China
| | - Y-H Li
- School of Life Sciences, Qingdao Agricultural University, Shandong Province, China
| | - Y-N Yang
- School of Life Sciences, Qingdao Agricultural University, Shandong Province, China
| | - S Yang
- School of Life Sciences, Qingdao Agricultural University, Shandong Province, China.,Shandong Province Key Laboratory of Applied Mycology, Shandong Province, China.,Qingdao International Center on Microbes Utilizing Biogas, Qingdao, Shandong Province, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| |
Collapse
|
34
|
|
35
|
González-Abradelo D, Pérez-Llano Y, Peidro-Guzmán H, Sánchez-Carbente MDR, Folch-Mallol JL, Aranda E, Vaidyanathan VK, Cabana H, Gunde-Cimerman N, Batista-García RA. First demonstration that ascomycetous halophilic fungi (Aspergillus sydowii and Aspergillus destruens) are useful in xenobiotic mycoremediation under high salinity conditions. BIORESOURCE TECHNOLOGY 2019; 279:287-296. [PMID: 30738355 DOI: 10.1016/j.biortech.2019.02.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/30/2019] [Accepted: 02/01/2019] [Indexed: 06/09/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAH) and pharmaceutical compounds (PhC) are xenobiotics present in many saline wastewaters. Although fungi are known for their ability to remove xenobiotics, the potential of halophilic fungi to degrade highly persistent pollutants was not yet investigated. The use of two halophilic fungi, Aspergillus sydowii and Aspergillus destruens, for the elimination of PAH and PhC at saline conditions was studied. In saline synthetic medium both fungi used benzo-α-pyrene and phenanthrene as sole carbon source and removed over 90% of both PAH, A. sydowii due to biodegradation and A. destruens to bioadsorption. They removed 100% of a mixture of fifteen PAH in saline biorefinery wastewater. Test using Cucumis sativus demonstrated that wastewater treated with the two fungi lowered considerably the phytotoxicity. This study is the first demonstration that ascomycetous halophilic fungi, in contrast to other fungi (and in particular basidiomycetes) can be used for mycotreatments under salinity conditions.
Collapse
Affiliation(s)
- Deborah González-Abradelo
- Centro de Investigación en Dinámica Celular, Instituto de Investigaciones en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos (UAEM), Ave. Universidad 1001, Col. Chamilpa, CP. 62209 Cuernavaca, Morelos, Mexico
| | - Yordanis Pérez-Llano
- Centro de Investigación en Dinámica Celular, Instituto de Investigaciones en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos (UAEM), Ave. Universidad 1001, Col. Chamilpa, CP. 62209 Cuernavaca, Morelos, Mexico
| | - Heidy Peidro-Guzmán
- Centro de Investigación en Dinámica Celular, Instituto de Investigaciones en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos (UAEM), Ave. Universidad 1001, Col. Chamilpa, CP. 62209 Cuernavaca, Morelos, Mexico
| | - María Del Rayo Sánchez-Carbente
- Centro de Investigaciones en Biotecnología, UAEM, Ave. Universidad 1001, Col. Chamilpa, CP. 62209 Cuernavaca, Morelos, Mexico
| | - Jorge Luis Folch-Mallol
- Centro de Investigaciones en Biotecnología, UAEM, Ave. Universidad 1001, Col. Chamilpa, CP. 62209 Cuernavaca, Morelos, Mexico
| | - Elisabet Aranda
- Instituto Universitario de Investigación del Agua, Universidad de Granada, Calle Núñez Blanca 1, CP. 18003 Granada, Spain
| | - Vinoth Kumar Vaidyanathan
- Department of Biotechnology, SRM Institute of Science and Technology, Mahatma Gandhi Rd, Potheri, SRM Nagar, Kattankulathur 603203, Tamil Nadu, India
| | - Hubert Cabana
- Faculté de Genié, Université de Sherbrooke, Sherbrooke, 2500 Boulevard de l Université, J1K 2R1 Sherbrooke, Quebec, Canada
| | - Nina Gunde-Cimerman
- Faculty of Biology, University of Ljubljana, Kongresni trg 12, 1000 Ljubljana, Slovenia
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, Instituto de Investigaciones en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos (UAEM), Ave. Universidad 1001, Col. Chamilpa, CP. 62209 Cuernavaca, Morelos, Mexico; Faculty of Biology, University of Ljubljana, Kongresni trg 12, 1000 Ljubljana, Slovenia.
| |
Collapse
|
36
|
de Oliveira GS, Adriani PP, Ribeiro JA, Morisseau C, Hammock BD, Dias MVB, Chambergo FS. The molecular structure of an epoxide hydrolase from Trichoderma reesei in complex with urea or amide-based inhibitors. Int J Biol Macromol 2019; 129:653-658. [PMID: 30771398 DOI: 10.1016/j.ijbiomac.2019.02.070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/01/2019] [Accepted: 02/12/2019] [Indexed: 02/01/2023]
Abstract
Epoxide hydrolases (EHs) are enzymes involved in the metabolism of endogenous and exogenous epoxides, and the development of EH inhibitors has important applications in the medicine. In humans, EH inhibitors are being tested in the treatment of cardiovascular diseases and show potent anti-inflammatory effects. EH inhibitors are also considerate promising molecules against infectious diseases. EHs are functionally very well studied, but only a few members have its three-dimensional structures characterized. Recently, a new EH from the filamentous fungi Trichoderma reseei (TrEH) was reported, and a series of urea or amide-based inhibitors were identified. In this study, we describe the crystallographic structures of TrEH in complex with five different urea or amide-based inhibitors with resolutions ranging from 2.6 to 1.7 Å. The analysis of these structures reveals the molecular basis of the inhibition of these compounds. We could also observe that these inhibitors occupy the whole extension of the active site groove and only a few conformational changes are involved. Understanding the structural basis EH interactions with different inhibitors might substantially contribute for the study of fungal metabolism and in the development of novel and more efficient antifungal drugs against pathogenic Trichoderma species.
Collapse
Affiliation(s)
- Gabriel S de Oliveira
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, 1000 Arlindo Bettio Avenue, 03828-000 São Paulo, Brazil
| | - Patricia P Adriani
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, 1000 Arlindo Bettio Avenue, 03828-000 São Paulo, Brazil
| | - João Augusto Ribeiro
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 1374 Avenida Prof. Lineu Prestes, 05508-900 São Paulo, Brasil
| | - Christophe Morisseau
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, One Shields Avenue, Davis, CA, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, One Shields Avenue, Davis, CA, USA
| | - Marcio Vinicius B Dias
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 1374 Avenida Prof. Lineu Prestes, 05508-900 São Paulo, Brasil
| | - Felipe S Chambergo
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, 1000 Arlindo Bettio Avenue, 03828-000 São Paulo, Brazil.
| |
Collapse
|
37
|
Adnan M, Islam W, Shabbir A, Khan KA, Ghramh HA, Huang Z, Chen HYH, Lu GD. Plant defense against fungal pathogens by antagonistic fungi with Trichoderma in focus. Microb Pathog 2019; 129:7-18. [PMID: 30710672 DOI: 10.1016/j.micpath.2019.01.042] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/17/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023]
Abstract
Fungal diseases cause considerable damage to the economically important crops worldwide thus posing continuous threat to global food security. Management of these diseases is normally done via utilization of chemicals that have severe negative impact upon human health and surrounding ecosystems. Finding eco-friendly alternatives has led the researchers to focus towards biological control of fungal diseases through biocontrol agents such as antagonistic fungi (AF) and other microorganisms. AF include various genera of fungi that cure the fungal diseases on plants effectively. Furthermore, they play a regulatory role in various plant physiological pathways and interactions. AF are highly host specific having negligible effects on non-target organisms and have fast mass production capability. However, understanding the mechanisms of the effects of AF on plant diseases is a prerequisite for their effective utilization as biocontrol agent. Trichoderma is one of the most important fungal genera known for its antagonistic activity against disease causing fungal pathogens. Therefore, in this review, we have focused upon Trichoderma-mediated fungal diseases management via illustrating its taxonomy, important strains, biodiversity and mode of action. Furthermore, we have assessed the criteria to be followed for selection of AF and the factors influencing their efficiency. Finally, we evaluated the advantages and limitations of Trichoderma as AF. We conclude that effective AF utilization against fungal pathogens can serve as a safe strategy for our Planet.
Collapse
Affiliation(s)
- Muhammad Adnan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Waqar Islam
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350007, China; Institute of Geography, Fujian Normal University, Fuzhou, 350007, China; Govt. of Punjab, Agriculture Department, Lahore, Pakistan
| | - Asad Shabbir
- The University of Sydney, School of Life and Environmental Sciences, Narrabri, 2390, Australia; University of the Punjab, Department of Botany, Lahore, 54590, Pakistan
| | - Khalid Ali Khan
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Unit of Bee Research and Honey Production, Research Center for Advanced Materials Science (RCAMS), Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Hamed A Ghramh
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Unit of Bee Research and Honey Production, Research Center for Advanced Materials Science (RCAMS), Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Zhiqun Huang
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350007, China; Institute of Geography, Fujian Normal University, Fuzhou, 350007, China.
| | - Han Y H Chen
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350007, China; Institute of Geography, Fujian Normal University, Fuzhou, 350007, China; Faculty of Forestry and the Forest Environment, Lakehead University, 955 Oliver Rd., Thunder Bay, Ontario, P7B 5E1, Canada.
| | - Guo-Dong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
38
|
Substrate and inhibitor selectivity, and biological activity of an epoxide hydrolase from Trichoderma reesei. Mol Biol Rep 2018; 46:371-379. [PMID: 30426381 DOI: 10.1007/s11033-018-4481-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 11/07/2018] [Indexed: 12/12/2022]
Abstract
Epoxide hydrolases (EHs) are present in all living organisms and catalyze the hydrolysis of epoxides to the corresponding vicinal diols. EH are involved in the metabolism of endogenous and exogenous epoxides, and thus have application in pharmacology and biotechnology. In this work, we describe the substrates and inhibitors selectivity of an epoxide hydrolase recently cloned from the filamentous fungus Trichoderma reesei QM9414 (TrEH). We also studied the TrEH urea-based inhibitors effects in the fungal growth. TrEH showed high activity on radioative and fluorescent surrogate and natural substrates, especially epoxides from docosahexaenoic acid. Using a fluorescent surrogate substrate, potent inhibitors of TrEH were identified. Interestingly, one of the best compounds inhibit up to 60% of T. reesei growth, indicating an endogenous role for TrEH. These data make TrEH very attractive for future studies about fungal metabolism of fatty acids and possible development of novel drugs for human diseases.
Collapse
|
39
|
Wang Q, Ding L, Zhu C. Characterization of laccase from a novel isolated white-rot fungi Trametes sp. MA-X01 and its potential application in dye decolorization. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1517028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Qian Wang
- Department of Biotechnology, College of Life and Health Sciences, Anhui Science and Technology University, Fengyang, Anhui, PR China
| | - Lei Ding
- Department of Biotechnology, College of Life and Health Sciences, Anhui Science and Technology University, Fengyang, Anhui, PR China
| | - Changwei Zhu
- Department of Biotechnology, College of Life and Health Sciences, Anhui Science and Technology University, Fengyang, Anhui, PR China
| |
Collapse
|
40
|
Chen L, Du JL, Zhan YJ, Li JA, Zuo RR, Tian S. Consolidated bioprocessing for cellulosic ethanol conversion by cellulase-xylanase cell-surfaced yeast consortium. Prep Biochem Biotechnol 2018; 48:653-661. [PMID: 29995567 DOI: 10.1080/10826068.2018.1487846] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Consolidated bioprocessing (CBP) strategy was developed to construct a cell-surface displayed consortium for heterologously expressing functional lignocellulytic enzymes. The reaction system composed of two engineered yeast strains: Y5/XynII-XylA (co-displaying two types of xylanases) and Y5/EG-CBH-BGL (co-displaying three types of cellulases). The immobilization of recombinant fusion proteins and their cell-surface accessibility of were analyzed by flow cytometry and immunofluorescence. The feasibility of consolidated bioprocessing by using pretreated corn stover (CS) as substrate for direct bioconversion was further investigated, and the synergistic activity and proximity effect between cellulases and xylanases on lignocelluloses degradation were also discussed in this work. Without any commercial enzyme addition, the combined yeast consortium produced 1.61 g/L ethanol which achieved 64.7% of the theoretical ethanol yield during 144 h from steam-exploded CS. The results indicated that the assembly of cellulases and xylanases using a synthetic consortium capable of combined displaying lignocellulytic enzymes is a promising approach for simultaneous saccharification and fermentation to ethanol from lignocellulosic biomass.
Collapse
Affiliation(s)
- Le Chen
- a College of Life Science , Capital Normal University , Beijing , China
| | - Ji-Liang Du
- a College of Life Science , Capital Normal University , Beijing , China
| | - Yong-Jia Zhan
- a College of Life Science , Capital Normal University , Beijing , China
| | - Jian-An Li
- a College of Life Science , Capital Normal University , Beijing , China
| | - Ran-Ran Zuo
- a College of Life Science , Capital Normal University , Beijing , China
| | - Shen Tian
- a College of Life Science , Capital Normal University , Beijing , China
| |
Collapse
|
41
|
Hao DC, Zhang CR, Xiao PG. The first Taxus rhizosphere microbiome revealed by shotgun metagenomic sequencing. J Basic Microbiol 2018; 58:501-512. [PMID: 29676472 DOI: 10.1002/jobm.201700663] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/12/2018] [Accepted: 04/07/2018] [Indexed: 12/13/2022]
Abstract
In the present study, the shotgun high throughput metagenomic sequencing was implemented to globally capture the features of Taxus rhizosphere microbiome. Total reads could be assigned to 6925 species belonging to 113 bacteria phyla and 301 species of nine fungi phyla. For archaea and virus, 263 and 134 species were for the first time identified, respectively. More than 720,000 Unigenes were identified by clean reads assembly. The top five assigned phyla were Actinobacteria (363,941 Unigenes), Proteobacteria (182,053), Acidobacteria (44,527), Ascomycota (fungi; 18,267), and Chloroflexi (15,539). KEGG analysis predicted numerous functional genes; 7101 Unigenes belong to "Xenobiotics biodegradation and metabolism." A total of 12,040 Unigenes involved in defense mechanisms (e.g., xenobiotic metabolism) were annotated by eggNOG. Talaromyces addition could influence not only the diversity and structure of microbial communities of Taxus rhizosphere, but also the relative abundance of functional genes, including metabolic genes, antibiotic resistant genes, and genes involved in pathogen-host interaction, bacterial virulence, and bacterial secretion system. The structure and function of rhizosphere microbiome could be sensitive to non-native microbe addition, which could impact on the pollutant degradation. This study, complementary to the amplicon sequencing, more objectively reflects the native microbiome of Taxus rhizosphere and its response to environmental pressure, and lays a foundation for potential combination of phytoremediation and bioaugmentation.
Collapse
Affiliation(s)
- Da-Cheng Hao
- Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian, China
| | - Cai-Rong Zhang
- Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian, China
| | - Pei-Gen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
42
|
Birolli WG, de A Santos D, Alvarenga N, Garcia ACFS, Romão LPC, Porto ALM. Biodegradation of anthracene and several PAHs by the marine-derived fungus Cladosporium sp. CBMAI 1237. MARINE POLLUTION BULLETIN 2018; 129:525-533. [PMID: 29055563 DOI: 10.1016/j.marpolbul.2017.10.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/27/2017] [Accepted: 10/09/2017] [Indexed: 06/07/2023]
Abstract
The biodegradation of polycyclic aromatic hydrocarbons (PAHs) by marine-derived fungi was reported in this work. Marine-derived fungi (Trichoderma harzianum CBMAI 1677, Cladosporium sp. CBMAI 1237, Aspergillus sydowii CBMAI 935, Penicillium citrinum CBMAI 1186 and Mucor racemosus CBMAI 847) biodegraded anthracene (14days, 130rpm, 50mgmL-1 initial concentration in malt 2% medium). Cladosporium sp. CBMAI 1237 was the most efficient strain and biodegraded more anthracene in the presence (42% biodegradation) than in the absence (26%) of artificial seawater, suggesting that the biodegradation of PAHs may be faster in seawater than in non-saline environment. After 21days, Cladosporium sp. CBMAI 1237 biodegraded anthracene (71% biodegradation), anthrone (100%), anthraquinone (32%), acenaphthene (78%), fluorene (70%), phenanthrene (47%), fluoranthene (52%), pyrene (62%) and nitropyrene (64%). Previous undocumented metabolites were identified and, anthraquinone was a common product of different PAHs biodegradation. The marine-derived fungus Cladosporium sp. CBMAI 1237 showed potential for bioremediation of PAHs.
Collapse
Affiliation(s)
- Willian G Birolli
- Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, Av. João Dagnone, 1100, Ed. Química Ambiental, J. Santa Angelina, 13563-120, São Carlos, SP, Brazil
| | - Darlisson de A Santos
- Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, Av. João Dagnone, 1100, Ed. Química Ambiental, J. Santa Angelina, 13563-120, São Carlos, SP, Brazil
| | - Natália Alvarenga
- Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, Av. João Dagnone, 1100, Ed. Química Ambiental, J. Santa Angelina, 13563-120, São Carlos, SP, Brazil
| | - Anuska C F S Garcia
- Laboratório de Matéria Orgânica Natural, Departamento de Química, Universidade Federal de Sergipe, 49100-000, São Cristovão, SE, Brazil
| | - Luciane P C Romão
- Laboratório de Matéria Orgânica Natural, Departamento de Química, Universidade Federal de Sergipe, 49100-000, São Cristovão, SE, Brazil
| | - André L M Porto
- Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, Av. João Dagnone, 1100, Ed. Química Ambiental, J. Santa Angelina, 13563-120, São Carlos, SP, Brazil.
| |
Collapse
|
43
|
Repas TS, Gillis DM, Boubakir Z, Bao X, Samuels GJ, Kaminskyj SGW. Growing plants on oily, nutrient-poor soil using a native symbiotic fungus. PLoS One 2017; 12:e0186704. [PMID: 29049338 PMCID: PMC5648232 DOI: 10.1371/journal.pone.0186704] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/05/2017] [Indexed: 12/24/2022] Open
Abstract
The roots of land plants associate with microbes, including fungal symbionts that can confer abiotic stress tolerance. Bitumen extraction following oil-sand surface mining in the Athabasca region of Alberta, Canada removes plant nutrients but leaves a petrochemical residue, making the coarse tailings (CT) hostile to both plants and microbes. We isolated an endophyte strain of the Ascomycete Trichoderma harzianum we call TSTh20-1 (hereafter, TSTh) from a dandelion that was naturally growing on CT. TSTh colonization allowed tomato, wheat, and remediation seed mixtures to germinate and their seedlings to flourish on CT without the use of fertilizer. Compared to control plants, TSTh increased germination speed, percent germination, and biomass accumulation. TSTh also improved plant water use efficiency and drought recovery. TSTh-colonized plants secreted twice the level of peroxidase into CT as did plants alone. Over two months, plants colonized with TSTh doubled the petrochemical mobilization from CT over plants alone, suggesting a peroxide-mediated mechanism for petrochemical degradation. TSTh grew on autoclaved CT, bitumen, and other petrochemicals as sole carbon sources. Further, TSTh is a micro-aerobe that could metabolize 13C-phenanthrene to 13CO2 in 0.5% oxygen. TSTh has excellent potential for contributing to revegetating and remediating petrochemical contamination.
Collapse
Affiliation(s)
- Timothy S. Repas
- Biology Dept, University of Saskatchewan, Science Place, Saskatoon, SK, Canada
- Roy Northern Environmental, Fort St John, BC, Canada
| | - D. Michael Gillis
- Biology Dept, University of Saskatchewan, Science Place, Saskatoon, SK, Canada
| | - Zakia Boubakir
- Biology Dept, University of Saskatchewan, Science Place, Saskatoon, SK, Canada
| | - Xiaohui Bao
- Biology Dept, University of Saskatchewan, Science Place, Saskatoon, SK, Canada
| | - Gary J. Samuels
- USDA-ARS, Systematic Mycology and Microbiology Lab, Beltsville, MD, United States of America
| | | |
Collapse
|
44
|
Davie-Martin CL, Stratton KG, Teeguarden JG, Waters KM, Simonich SLM. Implications of Bioremediation of Polycyclic Aromatic Hydrocarbon-Contaminated Soils for Human Health and Cancer Risk. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:9458-9468. [PMID: 28836766 DOI: 10.1021/acs.est.7b02956] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Bioremediation uses soil microorganisms to degrade polycyclic aromatic hydrocarbons (PAHs) into less toxic compounds and can be performed in situ, without the need for expensive infrastructure or amendments. This review provides insights into the cancer risks associated with PAH-contaminated soils and places bioremediation outcomes in a context relevant to human health. We evaluated which bioremediation strategies were most effective for degrading PAHs and estimated the cancer risks associated with PAH-contaminated soils. Cancer risk was statistically reduced in 89% of treated soils following bioremediation, with a mean degradation of 44% across the B2 group PAHs. However, all 180 treated soils had postbioremediation cancer risk values that exceeded the U.S. Environmental Protection Agency (USEPA) health-based acceptable risk level (by at least a factor of 2), with 32% of treated soils exceeding recommended levels by greater than 2 orders of magnitude. Composting treatments were most effective at biodegrading PAHs in soils (70% average reduction compared with 28-53% for the other treatment types), which was likely due to the combined influence of the rich source of nutrients and microflora introduced with organic compost amendments. Ultimately, bioremediation strategies, in the studies reviewed, were unable to successfully remove carcinogenic PAHs from contaminated soils to concentrations below the target cancer risk levels recommended by the USEPA.
Collapse
Affiliation(s)
- Cleo L Davie-Martin
- Department of Environmental and Molecular Toxicology, Oregon State University , Corvallis, Oregon 97331, United States
- Department of Microbiology, Oregon State University , Corvallis, Oregon 97331, United States
| | - Kelly G Stratton
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Justin G Teeguarden
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Katrina M Waters
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Staci L Massey Simonich
- Department of Environmental and Molecular Toxicology, Oregon State University , Corvallis, Oregon 97331, United States
- Department of Chemistry, Oregon State University , Corvallis, Oregon 97331, United States
| |
Collapse
|
45
|
Zafra G, Absalón ÁE, Anducho-Reyes MÁ, Fernandez FJ, Cortés-Espinosa DV. Construction of PAH-degrading mixed microbial consortia by induced selection in soil. CHEMOSPHERE 2017; 172:120-126. [PMID: 28063314 DOI: 10.1016/j.chemosphere.2016.12.038] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 05/22/2023]
Abstract
Bioremediation of polycyclic aromatic hydrocarbons (PAHs)-contaminated soils through the biostimulation and bioaugmentation processes can be a strategy for the clean-up of oil spills and environmental accidents. In this work, an induced microbial selection method using PAH-polluted soils was successfully used to construct two microbial consortia exhibiting high degradation levels of low and high molecular weight PAHs. Six fungal and seven bacterial native strains were used to construct mixed consortia with the ability to tolerate high amounts of phenanthrene (Phe), pyrene (Pyr) and benzo(a)pyrene (BaP) and utilize these compounds as a sole carbon source. In addition, we used two engineered PAH-degrading fungal strains producing heterologous ligninolytic enzymes. After a previous selection using microbial antagonism tests, the selection was performed in microcosm systems and monitored using PCR-DGGE, CO2 evolution and PAH quantitation. The resulting consortia (i.e., C1 and C2) were able to degrade up to 92% of Phe, 64% of Pyr and 65% of BaP out of 1000 mg kg-1 of a mixture of Phe, Pyr and BaP (1:1:1) after a two-week incubation. The results indicate that constructed microbial consortia have high potential for soil bioremediation by bioaugmentation and biostimulation and may be effective for the treatment of sites polluted with PAHs due to their elevated tolerance to aromatic compounds, their capacity to utilize them as energy source.
Collapse
Affiliation(s)
- German Zafra
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Carretera Estatal San Inés Tecuexcomac-Tepetitla Km 1.5, C.P. 90700, Tepetitla de Lardizabal, Tlaxcala, Mexico
| | - Ángel E Absalón
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Carretera Estatal San Inés Tecuexcomac-Tepetitla Km 1.5, C.P. 90700, Tepetitla de Lardizabal, Tlaxcala, Mexico
| | - Miguel Ángel Anducho-Reyes
- Universidad Politécnica de Pachuca, Laboratorio de Microbiología Molecular, Carretera Pachuca-Cd, Sahagún, Km 20, Ex-Hacienda de Santa Bárbara, Zempoala, Hidalgo, Mexico
| | - Francisco J Fernandez
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Vicentina, C.P. 09340, México, D.F., Mexico
| | - Diana V Cortés-Espinosa
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Carretera Estatal San Inés Tecuexcomac-Tepetitla Km 1.5, C.P. 90700, Tepetitla de Lardizabal, Tlaxcala, Mexico.
| |
Collapse
|
46
|
Tang X, Dong S, Shi W, Gao N, Zuo L, Xu H. Fates of nickel and fluoranthene during the bioremediation byPleurotus eryngiiin three different soils. J Basic Microbiol 2016; 56:1194-1202. [DOI: 10.1002/jobm.201600171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/15/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Xia Tang
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education); College of Life Science; Sichuan University; Chengdu Sichuan P. R. China
| | - Shunwen Dong
- Industrial Crop Research Institute of Sichuan Academy of Agricultural Sciences; Chengdu Sichuan P. R. China
| | - Wenjin Shi
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education); College of Life Science; Sichuan University; Chengdu Sichuan P. R. China
| | - Ni Gao
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education); College of Life Science; Sichuan University; Chengdu Sichuan P. R. China
| | - Lei Zuo
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education); College of Life Science; Sichuan University; Chengdu Sichuan P. R. China
| | - Heng Xu
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education); College of Life Science; Sichuan University; Chengdu Sichuan P. R. China
| |
Collapse
|