1
|
Huntington VE, Coulon F, Wagland ST. Assessing metal extraction from metalliferous waste: A study using deep eutectic solvents and chelating agents vs. ethylenediaminetetraacetic acid. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 363:121350. [PMID: 38850901 DOI: 10.1016/j.jenvman.2024.121350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/03/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
Conventional methods of metal recovery involving solvents have raised environmental concerns. To address these concerns and promote sustainable resource recovery, we explored the use of deep eutectic solvents (DES) and chelating agents (CA) as more environmentally friendly alternatives. Goethite and blast oxide slag dust (BOS-D) from heap piles at their respective sites and characterised via ICP-MS. The greatest extraction of critical metals was from goethite, removing 38% of all metals compared to 21% from the blast oxide slag. Among the tested CA, nitrilotriacetic acid (NTA) was the most effective, while for DES, choline chloride ethylene glycol (ChCl-EG) demonstrated superior performance in extracting metals from both blast oxide slag dust and goethite. The study further highlighted the selectivity for transition metals and metalloids was influenced by the carboxyl groups of DES. Alkaline metals and rare earth lanthanides extractions were favoured with DES due to improved mass transfer and increased denticity, respectively. In comparison to ethylenediaminetetraacetic acid (EDTA), typically used for metal extraction, CA and DES showed comparable extraction efficiency for Fe, Cu, Pb, Li, Al, Mn, and Ni. Using these greener chelators and solvents for metal extraction show significant promise in enhancing the sustainability of solvometallurgy. Additional conditions e.g., temperature and agitation combined with a cascading leaching process could further enhance metal extraction potential.
Collapse
Affiliation(s)
| | - Frederic Coulon
- School of Water, Environment and Energy, Cranfield University, Cranfield, UK
| | - Stuart T Wagland
- School of Water, Environment and Energy, Cranfield University, Cranfield, UK.
| |
Collapse
|
2
|
Wang W, Xue J, Zhang L, He M, You J. Extraction of heavy metals from copper tailings by ryegrass (Lolium perenne L.) with the assistance of degradable chelating agents. Sci Rep 2024; 14:7663. [PMID: 38561404 PMCID: PMC10984975 DOI: 10.1038/s41598-024-58486-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024] Open
Abstract
Heavy metal contamination is an urgent ecological governance problem in mining areas. In order to seek for a green and environmentally friendly reagent with better plant restoration effect to solve the problem of low efficiency in plant restoration in heavy metal pollution soil. In this study, we evaluated the effects of three biodegradable chelating agents, namely citric acid (CA), fulvic acid (FA) and polyaspartic acid (PASP), on the physicochemical properties of copper tailings, growth of ryegrass (Lolium perenne L.) and heavy metal accumulation therein. The results showed that the chelating agent application improved the physicochemical properties of copper tailings, increased the biomass of ryegrass and enriched more Cu and Cd in copper tailings. In the control group, the main existing forms of Cu and Cd were oxidizable state, followed by residual, weak acid soluble and reducible states. After the CA, FA or PASP application, Cu and Cd were converted from the residual and oxidizable states to the reducible and weak acid soluble states, whose bioavailability in copper tailings were thus enhanced. Besides, the chelating agent incorporation improved the Cu and Cd extraction efficiencies of ryegrass from copper tailings, as manifested by increased root and stem contents of Cu and Cd by 30.29-103.42%, 11.43-74.29%, 2.98-110.98% and 11.11-111.11%, respectively, in comparison with the control group. In the presence of multiple heavy metals, CA, FA or PASP showed selectivity regarding the ryegrass extraction of heavy metals from copper tailings. PCA analysis revealed that the CA-4 and PASP-7 treatment had great remediation potentials against Cu and Cd in copper tailings, respectively, as manifested by increases in Cu and Cd contents in ryegrass by 90.98% and 74.29% compared to the CK group.
Collapse
Affiliation(s)
- Weiwei Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, China
| | - Jinchun Xue
- School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang, 330013, Jiangxi, China.
| | - Liping Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, China
| | - Min He
- School of Software Engineering, Jiangxi University of Science and Technology, Nanchang, 330013, China.
| | - Jiajia You
- School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang, 330013, Jiangxi, China
| |
Collapse
|
3
|
Hussain AA, Kamran K, Imran M, Akram A, Li L, Hina M, Naz MY, Mahr MS, Mahmood A, Mohammed AAA. Effect of experimental boundary conditions and treatment-time on the electro-desalination of soils. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:63. [PMID: 38302793 DOI: 10.1007/s10653-023-01830-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 12/05/2023] [Indexed: 02/03/2024]
Abstract
This study investigates the effect of boundary conditions and treatment-time on the electro-desalination of artificially-contaminated soil. The effect of ion exchange membranes (IEM), calcium chloride (CaCl2), and ethylenediaminetetraacetic acid (EDTA) on the removal of salt (i.e., Na+, Cl-, and Ca2+) and metal (i.e., Co2+ and Fe2+) ions from the soil by electrokinetic (EK) was studied. The outcomes demonstrate that an increase in treatment-time decreases the electroosmosis and ion removal rate, which might be attributed to the formation of acid-base fronts in soil, except in the IEM case. Because a high pH jump and electroosmotic flow (EOF) of water were not observed within the soil specimen due to the IEM, the removal of ions was only by diffusion and electromigration. The collision of acid-base fronts produced a large voltage gradient in a narrow soil region with a reduced electric field (EF) in its remaining parts, causing a decrease in EOF and ion transport by electromigration. The results showed that higher electroosmosis was observed by using CaCl2 and EDTA; thus, the removal rate of Co2+, Na+, and Ca2+ was greater than Cl- due to higher EOF. However, for relatively low EOF, the removal of Cl- exceeded that of Co2+, Na+, and Ca2+, possibly due to a lack of EOF. In addition, the adsorption of Fe2+ in soil increased with treatment-time due to the corrosion of the anode during all EK experiments except in the case of IEM, where an anion exchange membrane (AEM) was introduced at the anode-soil interface.
Collapse
Affiliation(s)
- Abdul Ahad Hussain
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan.
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, People's Republic of China.
| | - Kashif Kamran
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan.
| | - Muhammad Imran
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Aasma Akram
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Lin Li
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, People's Republic of China.
| | - Maryam Hina
- Institute of Physics, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Yasin Naz
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Muhammad Shabir Mahr
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Athar Mahmood
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Abdallah A A Mohammed
- Department of Chemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Mehrab N, Chorom M, Norouzi Masir M, Biswas JK, Fernandes de Souza M, Meers E. Impact of soil treatment with Nitrilo Triacetic Acid (NTA) on Cd fractionation and microbial biomass in cultivated and uncultivated calcareous soil. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2023; 21:319-332. [PMID: 37869606 PMCID: PMC10584783 DOI: 10.1007/s40201-023-00857-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/08/2023] [Indexed: 10/24/2023]
Abstract
Purpose The aim of this study was to evaluate the effectiveness of nitrilotriacetic acid (NTA) on cadmium (Cd) fractions and microbial biomass in a calcareous soil spiked with Cd under cultivated (Zea mays L.) and uncultivated regime subject to soil leaching condition. Expanding investigations related to soil-plant interactions on metal-contaminated soils with insights on microbial activity and associated soil toxicity perspective provides novel perspectives on using metal-chelating agents for soil remediation. Methods The experimental factors were three levels of Cd contamination (0, 25, and 50 mg kg-1 soil) and three levels of NTA (0, 15, and 30 mmol L-1) in loamy soil under maize-cultured and non-cultured conditions. During the experiment, the adding NTA and leaching processes were performed three times. Results The results showed that the amount of leached Cd decreased in cultivated soil compared to uncultivated soil due to partial uptake of soluble Cd by plant roots and changes in Cd fractions in soil, so that Cd leached in Cd50NTA30 was 9.2 and 6.1 mg L-1, respectively, in uncultivated and cultivated soils. Also, Cd leached in Cd25NTA30 was 5.7 and 3.1 mg L-1 respectively, in uncultivated and cultivated soils. The best treatment in terms of chemical and microbial characteristics of the soil with the high percentage of Cd removed from the soil was Cd25NTA30 in cultivated soil. In Cd25NTA30 compared to Cd25NTA0 in cultivated soil, pH (0.25 unit), microbial biomass carbon (MBC, 65.0 mg kg-1), and soil respiration (27.5 mg C-CO2 kg-1 24 h-1) decreased, while metabolic quotient (qCO2, 0.05) and dissolved organic carbon (DOC, 20.0 mg L-1) increased. Moreover, the changes of Cd fractions in Cd25NTA30 in cultivated soil compared to uncultivated soil were as follows; the exchangeable Cd (F1, 0.27 mg kg-1) and Fe/Mn-oxide-bounded Cd (F4, 0.15 mg kg-1) fractions increased, in contrast, carbonate-Cd (F2, 2.67 mg kg-1) and, organically bounded Cd (F3, 0.06 mg kg-1) fractions decreased. NTA had no significant effect on the residual fraction (F5). Conclusion The use of NTA, especially in calcareous soils, where most of the Cd is bound to calcium carbonate, was able to successfully convert insoluble fractions of Cd into soluble forms and increase the removal efficiency of Cd in the phytoremediation method. NTA is a non-toxic chelating agent to improve the accumulation of Cd in maize.
Collapse
Affiliation(s)
- Narges Mehrab
- Department of Soil Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Mostafa Chorom
- Department of Soil Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mojtaba Norouzi Masir
- Department of Soil Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Jayanta Kumar Biswas
- Department of Ecological Studies, and International Centre for Ecological Engineering, University of Kalyani, Kalyani, West Bengal India
| | - Marcella Fernandes de Souza
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Erik Meers
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
5
|
Kanbar HJ, Zein-Eddin A, Ammami MT, Benamar A. Electrokinetic remediation of estuarine sediments using a large reactor: spatial variation of physicochemical, mineral, and chemical properties. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:117688-117705. [PMID: 37867172 DOI: 10.1007/s11356-023-30271-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 10/01/2023] [Indexed: 10/24/2023]
Abstract
The treatment and beneficial use of polluted or contaminated environmental matrices have become major issues, especially as the world strives toward a zero-waste policy. In this regard, dredged sediments need to be treated before they can be used in an environmentally safe and sustainable manner. Therefore, this work aims to treat estuarine sediments and, more importantly, use physicochemical, mineral, organic, and chemical information to understand the reactions that occur upon treatment. Dredged estuarine sediments were collected from Tancarville (Seine River estuary, France) and subjected to electrokinetic (EK) remediation using a 128-L laboratory-scale reactor. The sediments were treated 8 h per day for 21 days. The electric (voltage and current) and physicochemical (pH and electric conductivity) parameters were monitored during treatment. Sediments were collected from various sections in the reactor at the end of the experiment (lengthwise, widthwise, and depthwise). The spatial variation was investigated in terms of organic, mineral, and metal contents. Statistical analyses proved that the variation occurred only in the lengthwise direction. Furthermore, three main phases described the treatment, which were mainly linked to carbonate dissolution and pH variation. The results also showed that the trace elements Ni and Zn were reduced by 21% and 19%, respectively, without a direct link to pH, while Ca and Mg were only redistributed. The buffering capacity of the anodic sediment was reduced due to carbonate dissolution. The treated sediments showed reduced contents in trace metals without affecting major elements that can be useful in agriculture (i.e., Ca and Mg).
Collapse
Affiliation(s)
- Hussein J Kanbar
- Laboratoire Ondes et Milieux Complexes (LOMC), UMR 6294 CNRS, University of Le Havre Normandy (ULHN), 76600, Le Havre, France.
| | - Ahmad Zein-Eddin
- Laboratoire Ondes et Milieux Complexes (LOMC), UMR 6294 CNRS, University of Le Havre Normandy (ULHN), 76600, Le Havre, France
| | - Mohamed-Tahar Ammami
- Laboratoire Ondes et Milieux Complexes (LOMC), UMR 6294 CNRS, University of Le Havre Normandy (ULHN), 76600, Le Havre, France
| | - Ahmed Benamar
- Laboratoire Ondes et Milieux Complexes (LOMC), UMR 6294 CNRS, University of Le Havre Normandy (ULHN), 76600, Le Havre, France
| |
Collapse
|
6
|
Sahito ZA, Zehra A, Yu S, Chen S, He Z, Yang X. Chinese sapindaceous tree species (Sapindus mukorosii) exhibits lead tolerance and long-term phytoremediation potential for moderately contaminated soils. CHEMOSPHERE 2023; 338:139376. [PMID: 37437621 DOI: 10.1016/j.chemosphere.2023.139376] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023]
Abstract
Heavy metal pollution in metropolitan soils poses significant risks to human health and the entire ecosystem. Effective mitigation strategies and technologies are crucial for addressing these environmental issues. Fast-growing trees are an essential part of phytoremediation projects all over the world and provide long-term ecological benefits to mankind. This study assessed the lead tolerance and phytoremediation potential of a fast-growing soapberry tree species (Sapindus mukorossi) in moderately contaminated soil. Two independent experiments were conducted to assess its tolerance at (i) germination level and (ii) prolonged growth stage. In the germination experiments, seeds were exposed to lead (II) nitrate Pb (NO₃)₂ at various concentrations (0, 5, 10, 20, 50, 100, 200, 300, 400 and 500 μM) for 120 days. Results showed significant differences in germination time, germination index, seedling vigor index, energy of germination, final germination, germination inhibition, seedling height and root/shoot weight compared to the control experiments. In the prolonged growth experiments, seedlings were grown for six months in soils amended/spiked with different Pb concentrations (T0 = 0, T1 = 20, T2 = 50, T3 = 100, T4 = 150 and T5 = 200 mg kg-1 soil) and their biomass was determined. The highest biomass achieved in six months (T0: 12.62 g plant-1), followed by (T1: 12.33 g plant-1), (T2: 12.42 g plant-1), (T3: 11.86 g plant-1), (T4: 10.86 g plant-1) and (T5: 10.06 g plant-1) respectively. S. mukorossi showed no visible signs of Pb toxicity over a six-month period. During six months of exposure, the total Pb content in S. mucrossi tissues were classified as roots > leaves > stems. The highest cumulative absorption of Pb occurred between the fourth and fifth months of exposure. Maximum transfer factor (TF) was detected during the fourth month ranging from 0.888 to 1.012 for the different Pb concentrations. Furthermore, the growth behavior, lead accumulation, bioconcentration factors (BCF) and tolerance index (TI) indicated that S. mucrossi may tolerate moderate Pb concentrations for longer periods. These findings suggest that S. mukorossi may be deployed for long-term phytoremediation coupled with urban forest applications in the future.
Collapse
Affiliation(s)
- Zulfiqar Ali Sahito
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Afsheen Zehra
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Song Yu
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Shaoning Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech, University, Hangzhou, 310018, China
| | - Zhenli He
- University of Florida, Institute of Food and Agricultural Sciences, Indian River Research and Education Center, Fort Pierce, Florida, 34945, United States
| | - Xiaoe Yang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
7
|
Chen F, Li Y, Zhu Y, Sun Y, Ma J, Wang L. Enhanced electrokinetic remediation by magnetic induction for the treatment of co-contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131264. [PMID: 36989789 DOI: 10.1016/j.jhazmat.2023.131264] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
The electroplating industry site is an important reservoir of per- and poly-fluoroalkyl substances (PFASs) and heavy metals. In this work, a novel electrokinetic in-situ chemical oxidation system was established to restore an actual soil co-contaminated with high concentrations of heavy metals (Cr, Cu, Zn and Ni) and PFASs. Potassium persulfate (PS, K2S2O8) and industrial waste steel slag were used as the oxidant and activator, respectively. The steel slag was evenly added in the soil, while PS was dosed in the cathode chamber. Citric acid fermentation broth produced by Aspergillus niger was added in the anode chamber to act as the metal chelator. A periodic alternating magnetic field was employed to enhance the catalytic performance of steel slag for PS. After 15-day treatment, 86.7% of PFASs and 87.2% of heavy metals were removed without PFASs accumulation in the electrolyte, with a defluorination percentage of 79.2%. The remediated soil had no phytotoxicity for wheat seed growth based on 7-day cultivation results. The quality of remediated soil could reach the national Class II criteria for residential use. Electron paramagnetic resonance spectroscopy analysis demonstrated that SO4•- and •OH were the major oxidative radicals responsible for PFASs degradation. Adding steel slag in the soil performed better than that in the cathode chamber based on pollutant removal and alleviating soil acidification. Magnetic induction could enhance PS activation by promote the corrosion of steel slag and thermal activation, thus increasing electrical current and electroosmotic flow, enhancing the transport of citric acid and PS, significantly improving the removal efficiency of heavy metals and PFASs.
Collapse
Affiliation(s)
- Fu Chen
- School of Public Administration, Hohai University, Nanjing 211100, China.
| | - Yuhang Li
- School of Public Administration, Hohai University, Nanjing 211100, China
| | - Yanfeng Zhu
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Yan Sun
- School of Public Administration, Hohai University, Nanjing 211100, China
| | - Jing Ma
- School of Public Administration, Hohai University, Nanjing 211100, China
| | - Liping Wang
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| |
Collapse
|
8
|
Molinas M, Meibom KL, Faizova R, Mazzanti M, Bernier-Latmani R. Mechanism of Reduction of Aqueous U(V)-dpaea and Solid-Phase U(VI)-dpaea Complexes: The Role of Multiheme c-Type Cytochromes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7537-7546. [PMID: 37133831 DOI: 10.1021/acs.est.3c00666] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The biological reduction of soluble U(VI) complexes to form immobile U(IV) species has been proposed to remediate contaminated sites. It is well established that multiheme c-type cytochromes (MHCs) are key mediators of electron transfer to aqueous phase U(VI) complexes for bacteria such as Shewanella oneidensis MR-1. Recent studies have confirmed that the reduction proceeds via a first electron transfer forming pentavalent U(V) species that readily disproportionate. However, in the presence of the stabilizing aminocarboxylate ligand, dpaea2- (dpaeaH2═bis(pyridyl-6-methyl-2-carboxylate)-ethylamine), biologically produced U(V) persisted in aqueous solution at pH 7. We aim to pinpoint the role of MHC in the reduction of U(V)-dpaea and to establish the mechanism of solid-phase U(VI)-dpaea reduction. To that end, we investigated U-dpaea reduction by two deletion mutants of S. oneidensis MR-1-one lacking outer membrane MHCs and the other lacking all outer membrane MHCs and a transmembrane MHC-and by the purified outer membrane MHC, MtrC. Our results suggest that solid-phase U(VI)-dpaea is reduced primarily by outer membrane MHCs. Additionally, MtrC can directly transfer electrons to U(V)-dpaea to form U(IV) species but is not strictly necessary, underscoring the primary involvement of outer membrane MHCs in the reduction of this pentavalent U species but not excluding that of periplasmic MHCs.
Collapse
Affiliation(s)
- Margaux Molinas
- Environmental Microbiology Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Karin Lederballe Meibom
- Environmental Microbiology Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Radmila Faizova
- Group of Coordination Chemistry, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Marinella Mazzanti
- Group of Coordination Chemistry, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Rizlan Bernier-Latmani
- Environmental Microbiology Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| |
Collapse
|
9
|
Wei X, Pan Y, Li M, Linghu W, Guo X. Mechanism of Eu(III), La(III), Nd(III), and Th(IV) removal by g-C3N4 based on spectroscopic analyses and DFT theoretical calculations. RESEARCH ON CHEMICAL INTERMEDIATES 2023. [DOI: 10.1007/s11164-023-04954-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
Tsui L, Paul A, Chen YT, Tz-Chi E. Potential mechanisms contributing to the high cadmium removal efficiency from contaminated soil by using effective microorganisms as novel electrolyte in electrokinetic remediation applications. ENVIRONMENTAL RESEARCH 2022; 215:114239. [PMID: 36184964 DOI: 10.1016/j.envres.2022.114239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 06/16/2023]
Abstract
In this study, we tested the ability of a solution of effective microorganisms (EM) to remove cadmium from soil. Experimental results revealed that EM had an overall cadmium removal efficiency of 90.5% after 7 days of electrokinetic (EK) treatment. During EK treatment, EM exhibited a low initial pH of 3.6 and a high conductivity of 7.0 mS/m; therefore, they reduced the pH of the anode after an electric field was applied. EM had a surface tension of 50.3 dyne/cm and exhibited biosurfactant property in the EK experiments. The cadmium removal efficiency of EM in soil was compared with that of tap water, citric acid, and ethylenediaminetetraacetic acid (EDTA). The results revealed that after 7 days of EK treatment, EM had a higher cadmium removal efficiency than did citric acid (72.3%), EDTA (75.4%), and tap water (21.7%). This result can be partly attributed to the biosurfactant property of EM, which enables them to penetrate deeply into the soil matrix and thus dissolve a high quantity of pollutants. Overall, the results of this study indicate that EM can serve as an economic and efficient biosurfactant for removing cadmium from soil in EK applications.
Collapse
Affiliation(s)
- Lo Tsui
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, 84 Gungjuan Rd., Taishan Dist., New Taipei City, 24301, Taiwan, ROC; Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, 84 Gungjuan Rd., Taishan Dist., New Taipei City, 24301, Taiwan, ROC.
| | - Aaneta Paul
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, 84 Gungjuan Rd., Taishan Dist., New Taipei City, 24301, Taiwan, ROC.
| | - Yi-Ting Chen
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, 84 Gungjuan Rd., Taishan Dist., New Taipei City, 24301, Taiwan, ROC.
| | - E Tz-Chi
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, 84 Gungjuan Rd., Taishan Dist., New Taipei City, 24301, Taiwan, ROC.
| |
Collapse
|
11
|
Ostovar M, Ghasemi A, Karimi F, Saberi N, Vriens B. Assessment of EDTA-enhanced electrokinetic removal of metal(loid)s from phosphate mine tailings. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2141650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mojtaba Ostovar
- Faculty of Civil Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Alireza Ghasemi
- School of Civil and Environmental Engineering & Earth Science (SCEEES), Clemson University, Clemson, SC, USA
| | - Farhad Karimi
- Faculty of Civil Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Nima Saberi
- Department of Geological Sciences and Geological Engineering, Queen’s University, Kingston, Canada
| | - Bas Vriens
- Department of Geological Sciences and Geological Engineering, Queen’s University, Kingston, Canada
| |
Collapse
|
12
|
Wang X, Cui X, Fang C, Yu F, Zhi J, Mašek O, Yan B, Chen G, Dan Z. Agent-assisted electrokinetic treatment of sewage sludge: Heavy metal removal effectiveness and nutrient content characteristics. WATER RESEARCH 2022; 224:119016. [PMID: 36113240 DOI: 10.1016/j.watres.2022.119016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/31/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Sewage sludge (SS) is rich in nutrient elements such as phosphorus (P), nitrogen (N), and potassium (K), and therefore a candidate material for use in agriculture. But high content of heavy metals (HMs) can be a major obstacle to its further utilization. Therefore, an appropriate HM removal technology is required before its land application. In this study, an innovative biodegradable agent (citric acid, FeCl3, ammonium hydroxide, tetrasodium iminodisuccinate (IDS), and tea saponin) assisted electrokinetic treatment (EK) was performed to investigate the HM removal efficiency (RHMs) and nutrient transportation. Citric acid, IDS, and FeCl3-assisted EK showed a preferable average RHMs (Rave) reduction of 52.74-59.23%, with low energy consumption. After treatment, the content of Hg (0.51 mg kg-1), Ni (13.23 mg kg-1), and Pb (26.45 mg kg-1) elements met the criteria of national risk control standard, in all cases. Following the treatment, most HMs in SS had a reduced potential to be absorbed by plants or be leached into water systems. Risk assessment indicated that the Geoaccumulation index (Igeo) value of HMs has decreased by 0.28-2.40, and the risk of Pb (Igeo=-0.74) reduced to unpolluted potential. Meanwhile, no excessive nutrient loss in SS occurred as a result of the treatment, on the contrary, there was a slight increase in P content (18.17 mg g-1). These results indicate that agent-assisted EK treatment could be an environmentally-friendly method for RHMs and nutrient element recovery from SS, opening new opportunities for sustainable SS recycling and its inclusion into circular economy concepts.
Collapse
Affiliation(s)
- Xutong Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; UK Biochar Research Centre, School of Geosciences, University of Edinburgh, Crew Building, Alexander Crum Brown Road, Edinburgh EH9 3FF, UK
| | - Xiaoqiang Cui
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Cheng Fang
- School of Science, Tibet University, Lhasa, Tibet Autonomous Region 850012, China
| | - Fan Yu
- Institute of Energy and Power Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Jun'ao Zhi
- School of Science, Tibet University, Lhasa, Tibet Autonomous Region 850012, China
| | - Ondřej Mašek
- UK Biochar Research Centre, School of Geosciences, University of Edinburgh, Crew Building, Alexander Crum Brown Road, Edinburgh EH9 3FF, UK.
| | - Beibei Yan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Guanyi Chen
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China.
| | - Zeng Dan
- School of Science, Tibet University, Lhasa, Tibet Autonomous Region 850012, China
| |
Collapse
|
13
|
Fazal T, Iqbal S, Shah M, Ismail B, Shaheen N, Alrbyawi H, Al-Anazy MM, Elkaeed EB, Somaily HH, Pashameah RA, Alzahrani E, Farouk AE. Improvement in Optoelectronic Properties of Bismuth Sulphide Thin Films by Chromium Incorporation at the Orthorhombic Crystal Lattice for Photovoltaic Applications. Molecules 2022; 27:molecules27196419. [PMID: 36234955 PMCID: PMC9570543 DOI: 10.3390/molecules27196419] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/23/2022] Open
Abstract
By using the chemical bath deposition approach, binary bismuth sulphides (Bi2S3) and chromium-doped ternary bismuth sulphides (Bi2−xCrxS3) thin films were effectively produced, and their potential for photovoltaic applications was examined. Structural elucidation revealed that Bi2S3 deposited by this simple and cost-effective method retained its orthorhombic crystal lattice by doping up to 3 at.%. The morphological analysis confirmed the crack-free deposition, hence making them suitable for solar cell applications. Optical analysis showed that deposited thin films have a bandgap in the range of 1.30 to 1.17 eV, values of refractive index (n) from 2.9 to 1.3, and an extinction coefficient (k) from 1.03 to 0.3. From the Hall measurements, it followed that the dominant carriers in all doped and undoped samples are electrons, and the carrier density in doped samples is almost two orders of magnitude larger than in Bi2S3. Hence, this suggests that doping is an effective tool to improve the optoelectronic behavior of Bi2S3 thin films by engineering the compositional, structural, and morphological properties.
Collapse
Affiliation(s)
- Tanzeela Fazal
- Department of Chemistry, Abbottabad University of Science and Technology (AUST), Abbottabad 22500, Pakistan
- Correspondence: (T.F.); (S.I.); (B.I.)
| | - Shahid Iqbal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Science and Technology (NUST), H-12, Islamabad 46000, Pakistan
- Correspondence: (T.F.); (S.I.); (B.I.)
| | - Mazloom Shah
- Department of Chemistry, Abbottabad University of Science and Technology (AUST), Abbottabad 22500, Pakistan
| | - Bushra Ismail
- Department of Chemistry, COMSATS University Islamabad (CUI), Abbottabad Campus, Islamabad 22060, Pakistan
- Correspondence: (T.F.); (S.I.); (B.I.)
| | - Nusrat Shaheen
- Department of Chemistry, Abbottabad University of Science and Technology (AUST), Abbottabad 22500, Pakistan
| | - Hamad Alrbyawi
- Pharmaceutics and Pharmaceutical Technology Department, College of Pharmacy, Taibah University, Medina 42353, Saudi Arabia
| | - Murefah Mana Al-Anazy
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia
| | - H. H. Somaily
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Rami Adel Pashameah
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia
| | - Eman Alzahrani
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Abd-ElAziem Farouk
- Department of Biotechnology College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
14
|
Enhanced Electroremediation of Metals from Dredged Marine Sediment under Periodic Voltage Using EDDS and Citric Acid. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10040553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The electrokinetic remediation (EKR) method has been extensively considered for the removal of inorganic pollutants from contaminated dredged sediment. In addition, the use of chelating agents as electrolyte solutions has been beneficial in increasing the mobility of metals. This study investigated the metals’ (Cd, Cr, Cu, Pb, and Zn) mobilities by assessing the effect of two environmentally friendly chelating agents, ethylenediaminedisuccinic acid (EDDS) and citric acid (CA), in enhancing the EKR efficiency under a periodic voltage gradient. The results showed that, for the same concentration (0.1 mol L−1), CA is more suitable for enhancing the removal of Cr (67.83%), Cu (59.77%), and Pb (32.05%) by chelating and desorbing them from the sediment matrix and concentrating them in the electrode compartments. EDDS provided efficiency to improve the Cd extraction percentage (45.87%), whereas CA and EDDS had comparable improvement removal impacts on Zn EKR (39.32% and 41.37%, respectively). From the comparison with previous results obtained with a continuous voltage, applying a periodic voltage gradient associated with a low concentration of chelating agents led to a promising result.
Collapse
|
15
|
Gao S, Wang Y, Wang Z, Tong X, Sun R. Removal behavior and mechanisms of cadmium and lead by coupled ethylenediaminetetraacetic acid washing and electrochemical reduction: influence of current conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:29818-29829. [PMID: 34994933 DOI: 10.1007/s11356-021-18480-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Ethylenediaminetetraacetic acid (EDTA) washing has been used extensively to remediate heavy metal-contaminated soils. Electrochemical reduction treatment of spent washing solution is an effective method of EDTA regeneration. However, at present, these two technologies are usually regarded as two independent treatment processes. This research raised a new heavy metal-contaminated soil treatment strategy-a combination technique of coupled EDTA washing and electrochemical reduction. We speculated that the combination of EDTA washing and electroreduction treatment could improve the efficiency of Cd and Pb removal from contaminated soil. In this study, the removal performance and mechanisms of Cd and Pb under different current conditions were investigated based on a coupling of EDTA washing and electrochemical reduction. The combination technique can increase Cd and Pb removal efficiencies by 13.37-15.24% and 14.91-27.05%, respectively, compared with EDTA washing alone. Sequential extraction analysis showed that the reducible fraction improved metal removal efficiency. The percentage of metal removed increased with an increased current value and EDTA concentration. In addition, pulse current mode removed more Cd and Pb than continuous current, although the difference was not significant (p > 0.05). However, pulse current could effectively eliminate the cathodic hydrogen evolution reaction, resulting in a further heavy metal deposition at the cathode. The combination technique exhibited enhanced removal efficiency due to EDTA regeneration in the suspension and the cathodic reduction reaction. The most cost-effective treatment in 48 h was a pulse current mode of 32 min on/16 min off-32 mA-EDTA-10 mM, where 47.56% of Cd and 77.00% of Pb were removed from the soil with an electric energy consumption of 8.24 Wh.
Collapse
Affiliation(s)
- Song Gao
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Yun Wang
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Zhuoqun Wang
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Xinyuan Tong
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Ruilian Sun
- Environment Research Institute, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
16
|
Zhou M, Li Q, Wang X, Huang Q, Cang L. Electrokinetic combined peroxymonosulfate (PMS) remediation of PAH contaminated soil under different enhance methods. CHEMOSPHERE 2022; 286:131595. [PMID: 34293572 DOI: 10.1016/j.chemosphere.2021.131595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/06/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Because of the high hydrophobicity, low volatility, and high sorption capacity of PAHs, their remediation in contaminated soil is challenging. Electrokinetic (EK) enhanced chemical remediation is an emerging dual technology employed in this study, using a new oxidant peroxymonosulfate (PMS) to remediate PAHs contaminated soil. Here, PMS migration under electric field and the remediation efficiency for the PAHs polluted soil were assessed. We observed that the PMS removal efficiencies (59.7%-82.8%) were higher than those with persulfate (PS) (53.9%-78.5%), indicating PMS's superior oxidation capacity for PAHs. Although oxidant PMS can decontaminate PAHs in polluted soils, its removal of PAHs was only 11.0% without the enhanced methods. The enhancements increased the removal efficiency for PAHs from 0.33 to 2.10 times. At fixed catholyte pH of 4, the highest removal efficiency (34.1%) was achieved because it enhanced PMS migration from cathode to anode. These findings suggested that PMS was a potential oxidant for EK remediation, and some enhancements must be applied in EK combined PMS remediation PAHs polluted soil.
Collapse
Affiliation(s)
- Mingzhu Zhou
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang, 550001, China
| | - Qiuhua Li
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang, 550001, China.
| | - Xia Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qiao Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Long Cang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
17
|
Yu F, Yang Z, Cheng Y, Xing S, Wang Y, Ma J. A comprehensive review on flow-electrode capacitive deionization: Design, active material and environmental application. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119870] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
18
|
Wang Y, Li A, Ren B, Han Z, Lin J, Zhang Q, Cao T, Cui C. Mechanistic insights into soil heavy metals desorption by biodegradable polyelectrolyte under electric field. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118277. [PMID: 34610413 DOI: 10.1016/j.envpol.2021.118277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
In this study, we firstly used alginate to enhance an electrokinetic technology to remediate soil contaminated with divalent heavy metals (Pb2+, Cu2+, Zn2+). The mechanisms of alginate-associated migration of metal ions in electric field were confirmed. Alginate resulted in a high electrical current during electrokinetic process, and soil conductivity also increased after remediation. Obvious changes in both electroosmotic flow and soil pH were observed. Moreover, these factors were affected by increasing alginate dosage. The highest Cu (95.82%) and Zn (97.33%) removal efficiencies were obtained by introducing 1 wt% alginate. Alginate can desorb Cu2+ and Zn2+ ions from soil by forming unstable gels, which could be dissociated through electrolysis. However, Pb2+ ions did not easily migrate out of the contaminated soil. The density functional theory (DFT) calculations show Pb2+ ions could form a more stable coordination sphere in metal complexes than Cu2+ and Zn2+ ions. The metal removal efficiency was decreased by increasing alginate dosage at a high level. More alginate could provide more carboxyl ligands for divalent metal ions to stabilize gels, which were difficult to dissociate by electrolysis. In summary, the results indicate it is potential for introducing alginate into an electrokinetic system to remediate Cu- and Zn- contaminated soil.
Collapse
Affiliation(s)
- Yuchen Wang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Ang Li
- School of Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Binqiao Ren
- School of Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Zijian Han
- School of Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Junhao Lin
- School of Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Qiwei Zhang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Tingting Cao
- School of Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Chongwei Cui
- School of Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China.
| |
Collapse
|
19
|
Phytoremediation of Toxic Metals: A Sustainable Green Solution for Clean Environment. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112110348] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Contamination of aquatic ecosystems by various sources has become a major worry all over the world. Pollutants can enter the human body through the food chain from aquatic and soil habitats. These pollutants can cause various chronic diseases in humans and mortality if they collect in the body over an extended period. Although the phytoremediation technique cannot completely remove harmful materials, it is an environmentally benign, cost-effective, and natural process that has no negative effects on the environment. The main types of phytoremediation, their mechanisms, and strategies to raise the remediation rate and the use of genetically altered plants, phytoremediation plant prospects, economics, and usable plants are reviewed in this review. Several factors influence the phytoremediation process, including types of contaminants, pollutant characteristics, and plant species selection, climate considerations, flooding and aging, the effect of salt, soil parameters, and redox potential. Phytoremediation’s environmental and economic efficiency, use, and relevance are depicted in our work. Multiple recent breakthroughs in phytoremediation technologies are also mentioned in this review.
Collapse
|
20
|
Boughalleb F, Maaloul S, Mahmoudi M, Mabrouk M, Bakhshandeh E, Abdellaoui R. Limoniastrum guyonianum behavior under seasonal conditions fluctuations of Sabkha Aïn Maïder (Tunisia). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:305-320. [PMID: 34673320 DOI: 10.1016/j.plaphy.2021.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
In Sabkha biotope, several environmental factors (i.e., salinity, drought, temperature, etc.) especially during dry season affect halophytes developments. To cope with these harmful conditions, halophytes use multiple mechanisms of adaptations. In this study, we focused on the effect of environmental condition changes over a year in the Sabkha of Aïn Maïder (Medenine - Tunisia) on the physiological and biochemical behavior of Limoniastrum guyonianum using a modeling approach. Our study showed that the model depicted well (R2 > 0.75) the monthly fluctuations of the studied parameters in this habitat. During the dry period (June to September), the salinity of the soil increased remarkably (high level of EC and Na+ content), resulting in high Na+ content in the aerial parts followed by a nutrient deficiency in K+, Ca2+, and Mg2+. As a result of this disruption, L. guyonianum decreased its water potential to more negative values to maintain osmotic potential using inorganic osmolytes (i.e., Na+) and organic osmolytes (i.e., sugars: sucrose, fructose, glucose, and xylitol, and organic acids: citric and malic acids). In addition, CO2 assimilation rate, stomatal conductance, transpiration rate, and photosynthetic pigments decreased significantly with increasing salinity. The phenolic compounds contents and the antioxidant activity increased significantly in the dry period as a result of increased levels of H2O2 and lipid peroxidation. This increase was highly correlated with soil salinity and air temperature. The maintenance of tissue hydration (i.e., moderate decrease of relative water content), the accumulation of sugars and organic acids, the enhancement of phenolic compounds amounts, and the increase of antioxidant activity during the dry period suggest that L. guyonianum possesses an efficient tolerance mechanism that allows the plant to withstand the seasonal fluctuations of climatic conditions in its natural biotope.
Collapse
Affiliation(s)
- Fayçal Boughalleb
- University of Gabes, Arid Regions Institute, LR16IRA03 Laboratory of Rangeland Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms, El Fjé, Medenine, Tunisia.
| | - Sameh Maaloul
- University of Gabes, Arid Regions Institute, LR16IRA03 Laboratory of Rangeland Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms, El Fjé, Medenine, Tunisia
| | - Maher Mahmoudi
- University of Gabes, Faculty of Sciences of Gabes, Tunisia
| | - Mahmoud Mabrouk
- University of Gabes, Platform Advances Analysis, Institute of Arid Regions, Medenine, Tunisia
| | - Esmaeil Bakhshandeh
- Genetics and Agricultural Biotechnology Institute of Tabarestan and Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Raoudha Abdellaoui
- University of Gabes, Arid Regions Institute, LR16IRA03 Laboratory of Rangeland Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms, El Fjé, Medenine, Tunisia
| |
Collapse
|
21
|
Zhang Y, Labianca C, Chen L, De Gisi S, Notarnicola M, Guo B, Sun J, Ding S, Wang L. Sustainable ex-situ remediation of contaminated sediment: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117333. [PMID: 34000670 DOI: 10.1016/j.envpol.2021.117333] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/14/2021] [Accepted: 05/06/2021] [Indexed: 05/09/2023]
Abstract
Routine waterway dredging activities generate huge volumes of dredged sediment. The remediation of dredged contaminated sediment is a worldwide challenge. Novel and sustainable ex-situ remediation technologies for contaminated sediment have been developed and adopted in recent years. In this review paper, the state-of-art ex-situ treatment technologies and resource utilisation methods for contaminated sediment were critically reviewed. By applying different techniques, sediment could been successfully transformed into sustainable construction materials, such as ceramsite, supplementary cementitious materials, fill materials, paving blocks, partition blocks, ready-mixed concrete, and foamed concrete. We highlighted that proper remediation technologies should be cleverly selected and designed according to the physical and chemical characteristics of sediment, without neglecting important aspects, such as cost, safety, environmental impacts, readiness level of the technology and social acceptability. The combination of different assessment methods (e.g., environmental impact assessment, cost-benefit analysis, multi-criteria decision analysis and life cycle assessment) should be employed to comprehensively evaluate the feasibility of different sustainable remediation technologies. We call on the scientific community in a multidisciplinary fashion to evaluate the sustainability of various remediation technologies for contaminated sediment.
Collapse
Affiliation(s)
- Yuying Zhang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Claudia Labianca
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via E. Orabona N. 4, 70125, Bari, Italy
| | - Liang Chen
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Sabino De Gisi
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via E. Orabona N. 4, 70125, Bari, Italy
| | - Michele Notarnicola
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via E. Orabona N. 4, 70125, Bari, Italy
| | - Binglin Guo
- Department of Earth Resources Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Jian Sun
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shiming Ding
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Lei Wang
- Institute of Construction Materials, Technische Universität Dresden, 01062, Dresden, Germany.
| |
Collapse
|
22
|
Wu J, Wei B, Lv Z, Fu Y. To improve the performance of focusing phenomenon related to energy consumption and removal efficiency in electrokinetic remediation of Cr-contaminated soil. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118882] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Huang R, Cui X, Luo X, Mao P, Zhuang P, Li Y, Li Y, Li Z. Effects of plant growth regulator and chelating agent on the phytoextraction of heavy metals by Pfaffia glomerata and on the soil microbial community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117159. [PMID: 33878683 DOI: 10.1016/j.envpol.2021.117159] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/12/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Pfaffia glomerata is a candidate for the remediation of heavy metal-contaminated soil, but phytoremediation efficiency requires enhancement. In this study, we evaluated how application of DA-6, EDTA, or CA affected the growth and heavy metal accumulation of P. glomerata and soil microorganisms. We found that P. glomerata removed more Cd and Zn than Pb or Cu from contaminated soil. When compared to the control, application of DA-6, CA, or CA + DA-6 increased plant biomass and increased stem Cd concentration by 1.28-, 1.20-, and 1.31-fold respectively; increased leaf Cd concentration by 1.25-, 1.28-, and 1.20-fold, respectively; and increased the total quantity of Cd extracted by 1.37-, 1.37-, and 1.38-fold, respectively. When compared to the control, application EDTA or EDTA + DA-6 significantly increased the soil available metal and Na concentrations, which harmed plant growth. Application of EDTA or EDTA + DA-6 also significantly decreased the Cd concentration in roots and stems. 16S rRNA high-throughput sequencing analysis revealed that application of EDTA or CA alone to soil significantly reduced the richness and diversity of soil bacteria, while foliar spraying of DA-6 combined with EDTA or CA slightly alleviated this reduction. EDTA or CA addition significantly changed the proportion of Actinobacteria and Proteobacteria. In addition, EDTA or CA addition caused changes in soil properties (e.g. heavy metal availability, K concentration, Na concentration, soil pH, soil CEC, and soil DOC concentration) that were associated with changes in the bacterial community. EDTA addition mainly affected the soil bacterial community by changing soil DOC concentration, the soil available Pb and Na concentration, and CA addition mainly affected the soil bacterial community by changing the soil available Ca concentration.
Collapse
Affiliation(s)
- Rong Huang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoying Cui
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianzhen Luo
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Peng Mao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Ping Zhuang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Yongxing Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Yingwen Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Zhian Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
24
|
Wang Y, Han Z, Li A, Cui C. Enhanced electrokinetic remediation of heavy metals contaminated soil by biodegradable complexing agents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117111. [PMID: 33857881 DOI: 10.1016/j.envpol.2021.117111] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/02/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
In this study, an electrokinetic technique for remediation of Pb2+, Zn2+ and Cu2+ contaminated soil was explored using sodium alginate (SA) and chitosan (CTS) as promising biodegradable complexing agents. The highest Cu2+ (95.69%) and Zn2+ (95.05%) removal rates were obtained at a 2 wt% SA dosage, which demonstrated that SA significantly improved the Cu2+ and Zn2+ removal efficiency during electrokinetic process. The abundant functional groups of SA allowed metal ions desorption from soil via ion-exchange, complexation, and electrolysis. Pb2+ ions were difficult to remove from soil by SA due to the higher gelation affinity with Pb2+ than Cu2+ and Zn2+, despite the Pb2+ exchangeable fraction partially transforming to the reducible and oxidizable fractions. CTS could complex metal ions and migrate into the catholyte under the electric field to form crosslinked CTS gelations. Consequently, this study proved the suitability of biodegradable complexing agents for treating soil contaminated with heavy metals using electrokinetic remediation.
Collapse
Affiliation(s)
- Yuchen Wang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Zijian Han
- School of Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Ang Li
- School of Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Chongwei Cui
- School of Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China.
| |
Collapse
|
25
|
Chen G, Han K, Liu C, Yan B. Quantitative research on heavy metal removal of flue gas desulfurization-derived wastewater sludge by electrokinetic treatment. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125561. [PMID: 34030412 DOI: 10.1016/j.jhazmat.2021.125561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/27/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
Flue gas desulfurization-derived wastewater sludge (FGD-WWS) has been produced increasingly in China and India etc., and its content of heavy metals (HMs) including Cd, Cr, Cu, Hg, Ni and Zn seriously exceeds the limits allowed. Developing the suitable disposal of FGD-WWS is therefore significantly important and necessary. The novel process of electrokinetic treatment combined with chemical pretreatment of HMs in FGD-WWS were proposed here to improve the removal efficiency. Results indicate that the effects of different pretreatment agents (citric acid (CA), ammonia, tetrasodium of N, N-bis (carboxymethyl) glutamic acid (GLDA), and rhamnolipid) on the ET of HMs were different. To investigate the mechanism of combined process, the transformation potential (TP), exchange potential (EP) and removal potential (RP) were calculated. Correlation analysis shows the correlation between TP and RP was higher than that between EP and RP, indicating that the removal efficiency is mainly affected by the fraction transformation of HMs. Electric field, pH and pretreatment agents are main factors causing fraction transformation and affecting TP. Focusing on fraction transformation is an efficient way to improve further the removal efficiency. The work is promisingly valuable for developing the technology of treating FGD-WWS.
Collapse
Affiliation(s)
- Guanyi Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; School of Mechanical Engineering, Tianjin University of Commerce, Lhasa 850012, China; School of Science, Tibet University, Lhasa 850012, China; Tianjin Engineering Research Center for Organic Wastes Safe Disposal and Energy Utilization, Tianjin 300072, China
| | - Kexuan Han
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Caixia Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; Tianjin Engineering Research Center for Organic Wastes Safe Disposal and Energy Utilization, Tianjin 300072, China.
| | - Beibei Yan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; Tianjin Key Lab of Biomass/waste Utilization, Tianjin 300072, China; Tianjin Engineering Research Center for Organic Wastes Safe Disposal and Energy Utilization, Tianjin 300072, China
| |
Collapse
|
26
|
Betremieux M, Mamindy-Pajany Y. Investigation of a biosurfactant-enhanced electrokinetic method and its effect on the potentially toxic trace elements in waterways sediments. ENVIRONMENTAL TECHNOLOGY 2021; 43:1-18. [PMID: 34044748 DOI: 10.1080/09593330.2021.1936202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
In this study, the biosurfactant-enhanced electrokinetic method was investigated for the removal of potentially toxic trace elements (As, Ba, Cd, Cr, Cu, Mo, Ni, Pb, Sb, Se and Zn) in waterways sediments. The effect of this method was compared to the removal capacities of deionized water in the same conditions in order to assess its efficiency. After treatment, batch leaching tests have shown that almost toxic elements (As: 81.3%; Ba: 80%; Cr: 97.3%; Cu: 82%; Zn: 94.5%; Mo: 13.8%; Ni: 62.7%; Se: 66.8% and Sb: 9.3%) were less released in waters. On the whole sediment samples, Ba and Cd displayed the highest removal rates (Ba: 71.2% and Cd: 77.5%). The use of biosurfactant enhanced the electrokinetic method by improving the trace elements migration and altering pH and Eh locally generated by the system. Overall, the application of this new approach dredged sediments seems to be promising but needed further investigations for industrial applications.
Collapse
Affiliation(s)
- Mathilde Betremieux
- Univ. Lille, Univ. Artois, IMT Lille Douai, JUNIA, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement Lille, France
| | - Yannick Mamindy-Pajany
- Univ. Lille, Univ. Artois, IMT Lille Douai, JUNIA, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement Lille, France
| |
Collapse
|
27
|
Zhou M, Zhu S, Wei X. Effects of electrolyte on the removal of fluorine from red mud by electrokinetic remediation. ENVIRONMENTAL TECHNOLOGY 2021; 42:2313-2324. [PMID: 31795921 DOI: 10.1080/09593330.2019.1701563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
Red mud contains high levels of fluorine compounds. Once these fluorides were released, which led to adverse effects on human health and environment. The aim of this study was to investigate the possible use-electrokinetic remediation (EKR) for the removal of fluorine from red mud and explore the effects of different electrolytes on the remediation process. Three runs of EKR experiments were chosen using distilled water (run A), 0.1 mol/L HCl (run B) and 0.1 mol/L NaOH (run C), respectively. Related parameters for EKR, such as electric current, electro-osmotic flow (EOF) and energy consumption, were analysed. Characterisations of red mud were studied by SEM, XRD and FTIR. Experimental results showed that EKR could effectively remove fluorine pollutants from red mud. Electrolyte can obviously affect fluorine removal in EKR. The removal efficiency of run A, B and C was 57.69%, 66.75%, 60.04%, respectively, and run B (adding 0.1 mol HCl) had the best removal efficiency and the lowest residual fluorine in treated red mud after EKR, because of the highest electric current and EOF in all runs. Energy consumption per kilogram dry red mud of run A, B and C was 0.370, 0.726, and 0.506 kWh/kg, respectively. Experimental results showed that electro-osmosis and electromigration were both important removal mechanisms in EKR of fluorine from red mud. After EKR, the proportion of RESF (the residual fraction of fluorine) increased significantly, now fluorine of treated red mud had a good chemical inertness and had a smaller influence on environment.
Collapse
Affiliation(s)
- Ming Zhou
- School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Shufa Zhu
- School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Xuefeng Wei
- School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang, People's Republic of China
| |
Collapse
|
28
|
Ayyanar A, Thatikonda S. Experimental and Numerical studies on remediation of mixed metal-contaminated sediments by electrokinetics focusing on fractionation changes. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:316. [PMID: 33931801 DOI: 10.1007/s10661-021-09064-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
Electrokinetic remediation technique is widely applied for the removal of heavy metal from contaminated soil, but the soil buffering capacity and fractionation of heavy metals mainly affect the cost and duration of the treatment. This study aims to treat heavy metal-contaminated sediments by electrokinetic remediation (EKR) technique by using various enhancing agents such as EDTA, [Formula: see text], HCI, [Formula: see text], acetic acid and citric acid for optimizing the cost and treatment duration. The optimum molar concentration of enhancing agent for treatment was estimated by batch experiments to maximize the dissolution of target heavy metals and reduce the dissolution of earth metals (Fe, Al and Ca) to maintain soil health. The EKR experiments were performed up to 15 days with the above enhancing agents to reduce the risk associated with heavy metals and the selection of enhancing agents based on removal efficiency was found to be in an order of EDTA > citric acid > acetic acid > [Formula: see text] > HCl [Formula: see text] [Formula: see text]. Also, a numerical model has been developed by incorporating main electrokinetic transport phenomena (electromigration and electroosmosis) and geochemical processes for the prediction of treatment duration and to scale up the EKR process. The model predicts well with experimental heavy metal removal with a MAPD of [Formula: see text] 2-18 %. The parametric study on electrode distance for full-scale EKR treatment was found in this study as [Formula: see text] 0.5 m.
Collapse
Affiliation(s)
- Arulpoomalai Ayyanar
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| | - Shashidhar Thatikonda
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India.
| |
Collapse
|
29
|
Guo K, Xiang W, Zhou W, Zhao Y, Cheng Y, He M. In situ plant bionic remediation of cadmium-contaminated soil caused by a high geological background in Kaihua, Zhejiang Province, China. CHEMOSPHERE 2021; 269:128693. [PMID: 33121804 DOI: 10.1016/j.chemosphere.2020.128693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/03/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
A plant bionic in situ soil remediation system was designed to rehabilitate acidic cadmium (Cd)-contaminated soil in a high geological background area, Kaihua County of Zhejiang Province in China. In this system, citric acid, an environmental-friendly organic compound, was adopted to activate soil Cd. The soil solution was driven into the plant bionic root using a solar powered simulated transpiration system. Activated Cd in the soil solution was adsorbed by the modified polyurethane foam (DTC-LPEI-PUF) in the bionic root. Under the acidic conditions caused by citric acid (pH = 4.5), DTC-LPEI-PUF could effectively adsorb Cd, and the adsorption rate reached equilibrium after 5 h. Theoretical calculations suggested that the absorption behavior followed pseudo -second order kinetics, and the saturated adsorption capacity of Cd by DTC-LPEI-PUF was 89.05 mg/g, obeying Langmuir isothermal adsorption models. In addition, the main ions in soil, such as calcium (Ca) and magnesium (Mg), had little effect on the adsorption by DTC-LPEI-PUF. However, iron ions (Fe3+) significantly influenced the adsorption of Cd by DTC-LPEI-PUF. After 28 d of an in situ remediation, the total contents of Cd in contaminated soil declined from 3.63 mg/kg to 2.69 mg/kg, i.e., 26% of the total Cd was removed. In addition, after remediation, the removal of available Cd reached 47%. Our results demonstrate that the proposed plant bionic in situ remediation system has a promising prospect for application to rehabilitate Cd-contaminated soil in a high geological background area, although the technology needs further improvement.
Collapse
Affiliation(s)
- Kegan Guo
- School of Earth Sciences, China University of Geosciences, 430074, Wuhan, 430074, China
| | - Wu Xiang
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan, 430074, China.
| | - Wenda Zhou
- Non-Ferrous Metals Geological Exploration Bureau of Zhejiang Province, Shaoxing, 312000, China
| | - Yunyun Zhao
- School of Earth Sciences, China University of Geosciences, 430074, Wuhan, 430074, China
| | - Yunhui Cheng
- School of Earth Sciences, China University of Geosciences, 430074, Wuhan, 430074, China
| | - Maohui He
- School of Earth Sciences, China University of Geosciences, 430074, Wuhan, 430074, China
| |
Collapse
|
30
|
Tang J, Qiu Z, Tang H, Wang H, Sima W, Liang C, Liao Y, Li Z, Wan S, Dong J. Coupled with EDDS and approaching anode technique enhanced electrokinetic remediation removal heavy metal from sludge. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:115975. [PMID: 33168374 DOI: 10.1016/j.envpol.2020.115975] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
In this work, the novel technology was used to remove heavy metal from sludge. The coupled with biodegradable ethylenediamine disuccinic acid (EDDS) and approaching anode electrokinetic (AA-EK) technique was used to enhance heavy metal removing from sludge. Electric current, sludge and electrolyte characteristics, heavy metal removal efficiency and residual content distribution, and heavy metal fractions percentage of variation were evaluated during the electrokinetic remediation process. Results demonstrated that the coupled with EDDS and AA-EK technique obtain a predominant heavy metal removal efficiency, and promote electric current increasing during the enhanced electrokinetic remediation process. The catholyte electrical conductivity was higher than the anolyte, and electrical conductivity of near the cathode sludge achieved a higher value than anode sludge during the coupled with EDDS and AA-EK remediation process. AA-EK technique can produce a great number of H+, which caused the sludge acidification and pH decrease. Cu, Zn, Cr, Pb, Ni and Mn obtain the highest extraction efficiency after the coupled with EDDS and AA-EK remediation, which were 52.2 ± 2.57%, 56.8 ± 3.62%, 60.4 ± 3.62%, 47.2 ± 2.35%, 53.0 ± 3.48%, 54.2 ± 3.43%, respectively. Also, heavy metal fractions analysis demonstrated that the oxidizable fraction percentage decreased slowly after the coupled with EDDS and AA-EK remediation.
Collapse
Affiliation(s)
- Jian Tang
- School of Civil Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China.
| | - Zhongping Qiu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Hengjun Tang
- School of Civil Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Haiyue Wang
- Students of Affairs Division, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Weiping Sima
- School of Civil Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Chao Liang
- School of Civil Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Yi Liao
- School of Civil Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Zhihua Li
- School of Civil Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Shan Wan
- School of Civil Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Jianwei Dong
- School of Civil Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China
| |
Collapse
|
31
|
Xu L, Yu C, Mao Y, Zong Y, Zhang B, Chu H, Wu D. Can flow-electrode capacitive deionization become a new in-situ soil remediation technology for heavy metal removal? JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123568. [PMID: 32763769 DOI: 10.1016/j.jhazmat.2020.123568] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/04/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
In this study, we present a novel soil electrochemical remediation technology (called S-FCDI), which is based on flow-electrode capacitive deionization (FCDI), for Cd removal from kaolin while under continuous operation mode. The results demonstrated that Cd can be effectively removed from kaolin with reasonable energy consumption and minimal macroelement loss. The carboxylic (OOH) functional groups on the surface of activated carbon (AC) facilitated the transfer of Cd from kaolin onto carbon surface. A stable acidic environment, which is advantageous for continuous Cd desorption, was achieved as a result of the balance between H+ generation and transmembrane migration. Once these net negative charges on the particle were eliminated or reversed, the adsorbed Cd could be released easily and driven in concentrated stream by electrostatic repulsion. Under the optimal operating conditions (i.e., carbon =50 g/L, j = 3.47 A/m2, pHi = 3.2, [NaCl]a =8.6 mmol/L), more than 80 % Cd was removed from (200 g) kaolin after continuous 19 h operation at a relatively low electricity consumption of 22.7 kW h/kg Cd and a limited Al loss of 0.06 wt‰. These results from this work demonstrated that S-FCDI could be an alternative soil electrochemical remediation technology for heavy metal removal with low soil damage.
Collapse
Affiliation(s)
- Longqian Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, 200092, PR China.
| | - Chao Yu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, 200092, PR China.
| | - Yunfeng Mao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, 200092, PR China.
| | - Yang Zong
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, 200092, PR China.
| | - Bing Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, 200092, PR China.
| | - Huaqiang Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
32
|
Abbar B, Alem A, Pantet A, Ahfir ND, Marcotte S, Wang H, Duchemin B. Effect of natural geotextile on the cotransport of heavy metals (Cu 2+, Pb 2+, and Zn 2+) and kaolinite particles. ENVIRONMENTAL TECHNOLOGY 2021; 42:558-570. [PMID: 31264954 DOI: 10.1080/09593330.2019.1637463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/24/2019] [Indexed: 06/09/2023]
Abstract
A cotransport study of heavy metals and kaolinite particles in sand column with and without flax geotextiles was carried out. The objectives were to evaluate the potential role of kaolinite in heavy metals transfer and to analyse the influence of flax geotextiles on the transfer of these pollutants. The adsorption rates of heavy metals on the kaolinite particles were, respectively, 53%, 65% and 25% for copper, lead, and zinc. The injection of kaolinite with heavy metals resulted in a significant decrease in the retention efficiency of copper and lead in the filter. The presence of kaolinite in the injected solution has virtually no influence on the effectiveness of zinc fixation in the filter. The retention of heavy metals is in the order of Zn > Cu > Pb with a significant drop of retention efficiency of 34% for copper, 67% for lead, and less than 1% for zinc. The presence of kaolinite in the injected solution reversed the retention order of heavy metals when metals solution was injected alone. Flax geotextiles increase the ability of the filter to retain soluble and attached heavy metals. It improves the sand retention capacity and it retains soluble and attached metals in its structure.
Collapse
|
33
|
Ayyanar A, Thatikonda S. Enhanced electrokinetic remediation (EKR) for heavy metal-contaminated sediments focusing on treatment of generated effluents from EKR and recovery of EDTA. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:136-147. [PMID: 32495995 DOI: 10.1002/wer.1369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/17/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
Electrokinetic remediation (EKR) is one of the most successful remediation techniques to treat the sediments contaminated with heavy metals. EDTA is the most widely used enhancing agent to improve the transport process in EKR. But often the generated effluents from EKR contains a high concentration of heavy metals, which cannot be disposed of without treatment. The major objective of this study includes the estimation of optimal concentration of chelating agent EDTA, followed by treatment of contaminated sediments by EKR technique for heavy metal removal. The effluents generated from EKR were further studied for recovery and reuse of EDTA and for safe discharge of heavy metals. The optimum concentration of EDTA was found as 0.05 M with a solid-to-liquid ratio as 1:10. When fresh EDTA was used as enhancing agent the average removal of heavy metals obtained as 74.8% with EKR, whereas the application of recovered EDTA in treatment process in first, second, and third cycle showed the slight reduction of heavy metals of about 71.1%, 63.5%, and 52.1%, respectively. The heavy metal removal by recovered EDTA was effective in reduction of heavy metals up to three cycles of re-use while reducing the ecological risk in sediments. PRACTITIONER POINTS: Treatment of contaminated sediments with heavy metals achieved by electrokinetic remediation (EKR) technique enhanced with EDTA. The recovery of EDTA and heavy metal reduction from the generated effluents during EKR treatment were performed by the addition of FeCl3 and Na2 PO4, and optimized concentration was evaluated. This study found that the use of recovered EDTA in EKR treatment has effectively reduced the risk associated with heavy metals.
Collapse
Affiliation(s)
- Arulpoomalai Ayyanar
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | - Shashidhar Thatikonda
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| |
Collapse
|
34
|
Gao M, Zeng F, Tang F, Wang K, Xu X, Tian G. An increasing Cr recovery from soil with catholyte-enhanced electrokinetic remediation: Effects on voltage redistribution throughout soil sections. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117553] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Nasiri A, Jamshidi-Zanjani A, Khodadadi Darban A. Application of enhanced electrokinetic approach to remediate Cr-contaminated soil: Effect of chelating agents and permeable reactive barrier. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115197. [PMID: 32663675 DOI: 10.1016/j.envpol.2020.115197] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 06/26/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
Enhanced electrokinetic (EK) technique was employed to remediate Cr-contaminated soil using a permeable reactive barrier (PRB) and chelating agents. Synthesized nanomagnetic Fe3O4 was used as a reactive material in PRB. Moreover, EDTA and citric acid (CA) were used as chelating agents. Sequential extraction method (SEM) was employed to determine Cr-elimination mechanism during the EK process. The results revealed that EDTA (78% Cr removal) was more effective than CA (54% Cr removal) in eliminating Cr from the contaminated soil during the EK process. The application of PRB in combination with EDTA was able to reduce the Cr removal rate to 70 and 66% by locating PRB in the middle section and near the anode/cathode reservoir, respectively. The use of PRB coupled with EDTA near the anode and cathode led to a more uniform Cr removal from the soil during the EK process. The highest energy consumption was 0.12 KWh during the EK remediation using PRB. Traditional EK remediation could only remove exchangeable and carbonate fractions of Cr. The use of chelating agents led to a significant (more than 90%) increase in Cr removal from the following fractions: exchangeable phase, carbonate phase, and bond to Fe-Mn oxides. In addition to electromigration (EM) mechanism, electroosmotic flow (EOF) played an important role in Cr removal during the EK process, especially when coupled with PRB.
Collapse
Affiliation(s)
- Afshin Nasiri
- Master Student of Mining Engineering, Mining and Environment, Tarbiat Modares University, Tehran, Iran
| | | | | |
Collapse
|
36
|
Kanbar HJ, Matar Z, Safa GAA, Kazpard V. Selective metal leaching from technosols based on synthetic root exudate composition. J Environ Sci (China) 2020; 96:85-92. [PMID: 32819702 DOI: 10.1016/j.jes.2020.04.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/13/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
This study focused on metal release from technosols induced by synthetic root exudate (SRE). The effect of SRE composition on metal release was studied using six technosols. This was done by treating the technosols with SRE solutions having varying concentrations of low molecular weight organic acids (LMWOAs), namely oxalic, citric, and malic acids. Consequently, the physico-chemical parameters (pH and electric conductivity), Ca, Mg, Fe, Zn, and Cu release (by atomic absorption spectroscopy, AAS), chemical changes (by Fourier transform infrared, FT-IR), and organic parameters (by fluorescence) were investigated. Metal release showed to be dependent on the SRE composition and technosol characteristics. Citric acid selectively released Ca, Mg, Zn, and Cu from technosols in a concentration-dependent manner; oxalic acid showed a significant role in the release of Mg and Fe. Under relatively high LMWOA concentrations, particulate organo-mineral complexes precipitated. Additionally, technosol weathering was seen by the dissolution of humic substances and ferriallophanes, which in turn caused metal release. However, re-precipitation of these phases showed to re-sorb metals, thus underestimating the role of LMWOAs in metal release. Therefore, the selective metal leaching was highly dependent on the SRE composition and LMWOA concentrations on one hand, and on the mineral, organic, and organo-mineral components of the technosols on the other. The understanding of such processes is crucial for proposing and implementing environmental management strategies to reduce metal leaching or for the beneficial re-usage of metals (e.g., for agromining) from technosols.
Collapse
Affiliation(s)
- Hussein Jaafar Kanbar
- Research and Analysis Platform for Environmental Sciences (PRASE), Doctoral School of Sciences and Technology (EDST), The Lebanese University, P.O. 5, Rafic Hariri Campus, Hadat, Lebanon; Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden.
| | - Zeinab Matar
- Research and Analysis Platform for Environmental Sciences (PRASE), Doctoral School of Sciences and Technology (EDST), The Lebanese University, P.O. 5, Rafic Hariri Campus, Hadat, Lebanon; Department of Earth and Life Sciences, Faculty of Sciences, The Lebanese University, Rafic Hariri Campus, Hadat, Lebanon; Laboratory of Georesources, Geosciences and Environment (L2GE), Faculty of Sciences, The Lebanese University, Fanar, Lebanon.
| | - Ghina Abed-AlHadi Safa
- Research and Analysis Platform for Environmental Sciences (PRASE), Doctoral School of Sciences and Technology (EDST), The Lebanese University, P.O. 5, Rafic Hariri Campus, Hadat, Lebanon; Department of Earth and Life Sciences, Faculty of Sciences, The Lebanese University, Rafic Hariri Campus, Hadat, Lebanon
| | - Veronique Kazpard
- Research and Analysis Platform for Environmental Sciences (PRASE), Doctoral School of Sciences and Technology (EDST), The Lebanese University, P.O. 5, Rafic Hariri Campus, Hadat, Lebanon; Department of Earth and Life Sciences, Faculty of Sciences, The Lebanese University, Rafic Hariri Campus, Hadat, Lebanon; Laboratory of Georesources, Geosciences and Environment (L2GE), Faculty of Sciences, The Lebanese University, Fanar, Lebanon
| |
Collapse
|
37
|
Fraiese A, Cesaro A, Belgiorno V, Sanromán MA, Pazos M, Naddeo V. Ultrasonic processes for the advanced remediation of contaminated sediments. ULTRASONICS SONOCHEMISTRY 2020; 67:105171. [PMID: 32446202 DOI: 10.1016/j.ultsonch.2020.105171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
Sediments play a fundamental role in the aquatic environment, so that the presence of contaminants poses severe concern for the possible negative effects on both environmental and human health. Sediment remediation is thus necessary to reduce pollutant concentrations and several techniques have been studied so far. A novel approach for sediment remediation is the use of Advanced Oxidation Processes, which include ultrasound (US). This paper focuses on the study of the ultrasonic effects for the simultaneous reduction of both organic and inorganic contaminants from sediments. To this end, the US technology was investigated as a stand-alone treatment as well as in combination with an electro-kinetic (EK) process, known to be effective in the removal of heavy metals from soil and sediments. The US remediation resulted in higher organic compound degradation, with an average 88% removal, but promising desorption yields (47-84%) were achieved for heavy metals as well. The combined EK/US process was found to be particularly effective for lead. Experimental outcomes highlighted the potential of the ultrasonic technology for the remediation of contaminated sediments and addressed some considerations for the possible scale-up.
Collapse
Affiliation(s)
- A Fraiese
- Sanitary and Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II, 132 - 84084 Fisciano, SA, Italy
| | - A Cesaro
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, via Claudio 21, 80125 Napoli, Italy
| | - V Belgiorno
- Sanitary and Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II, 132 - 84084 Fisciano, SA, Italy
| | - M A Sanromán
- CINTEX - Universidade de Vigo, Campus As Lagoas-Marcosende, University of Vigo, 36310 Vigo, Spain
| | - M Pazos
- CINTEX - Universidade de Vigo, Campus As Lagoas-Marcosende, University of Vigo, 36310 Vigo, Spain
| | - V Naddeo
- Sanitary and Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II, 132 - 84084 Fisciano, SA, Italy.
| |
Collapse
|
38
|
Forogo BW, Stoltz G, Touze N, Bonelli S. Electrokinetic Propagation of Acid and Base Fronts in Clayey Soil: An Experimental and Numerical Study. Transp Porous Media 2020. [DOI: 10.1007/s11242-020-01457-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
39
|
Chillè D, Aiello D, Grasso GI, Giuffrè O, Napoli A, Sgarlata C, Foti C. Complexation of As(III) by phosphonate ligands in aqueous fluids: Thermodynamic behavior, chemical binding forms and sequestering abilities. J Environ Sci (China) 2020; 94:100-110. [PMID: 32563473 DOI: 10.1016/j.jes.2020.03.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
In recent years, the contamination of water by arsenic reached alarming levels in many countries of the world, attracting the interest of many researchers engaged in testing methodologies able to remove this harmful pollutant. An important aspect that must be taken into consideration is the possibility to find arsenic in different chemical forms which could require different approaches for its removal. At this aim, a speciation analysis appears to be crucial for better understanding the behavior of arsenic species in aqueous solutions, especially in presence of compounds with marked chelating properties. Phosphonates can be identified as good sequestering agents and, at this purpose, this manuscript intends to investigate the interaction of As(III) with three phosphonic acids derived from nitrilotriacetic acid (NTA) by replacements of one (N-(Phosphonomethyl) iminodiacetic acid, NTAP), two (N,N-Bis-(phosphonomethyl) glycine, NTA2P) and three (Nitrilotri(methylphosphonic acid), NTA3P) carboxylic groups with the same number of phosphonate groups. An in-depth potentiometric and calorimetric investigation allowed to determine speciation models featured by simple ML, MLHi and ML(OH) species. A complete thermodynamic characterization of the systems is reported together with the definition of coordination mode by mass spectrometry measurements. On the light of the speciation models, the possibility of using these ligands in arsenic removal techniques was assessed by determining the pL0.5 (the concentration of ligand able to remove the 50% of metal ion present in trace). All ligands show a good sequestering ability, in particular under the conditions of fresh water, following the trend NTA3P > NTA2P > NTAP.
Collapse
Affiliation(s)
- Donatella Chillè
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Donatella Aiello
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy
| | - Giuseppa Ida Grasso
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Ottavia Giuffrè
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Anna Napoli
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy
| | - Carmelo Sgarlata
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Claudia Foti
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| |
Collapse
|
40
|
|
41
|
Abbar B, Alem A, Pantet A, Marcotte S, Ahfir ND, Wang H, Ouahbi T, Duchemin B, Duriatti D. Nonwoven flax fibres geotextiles effects on solute heavy metals transport in porous media. ENVIRONMENTAL TECHNOLOGY 2020; 41:2061-2072. [PMID: 30521415 DOI: 10.1080/09593330.2018.1555284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
Filtration tests were carried out in laboratory columns filled with crushed sand with and without flax geotextiles to study the transfer and retention of soluble heavy metals. Divalent cations of copper, zinc and lead were simultaneously and continuously injected in filtration columns. Results show that, when geotextiles discs are present the retention of metals in sand is favoured and retention profiles are modified. In addition, and unlike synthetic geotextiles, flax fibres geotextiles contribute to the retention of a significant fraction of the cationic metal pollutants in their own structure. The overall metals retention efficiency of the filter is improved. Competition between cationic metals for adsorption on retention sites occurs in the column in the order Pb > Cu > Zn. Most of the lead is retained in the inlet of the column while copper and even more zinc migrate deeper in the column.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Davy Duriatti
- Depestele, Teillage Vandecandelaère, Bourguebus, France
| |
Collapse
|
42
|
Song Y, Cang L, Zuo Y, Yang J, Zhou D, Duan T, Wang R. EDTA-enhanced electrokinetic remediation of aged electroplating contaminated soil assisted by combining dual cation-exchange membranes and circulation methods. CHEMOSPHERE 2020; 243:125439. [PMID: 31995887 DOI: 10.1016/j.chemosphere.2019.125439] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
This paper introduces a novel method for ethylenediaminetetraacetic acid (EDTA)-enhanced electrokinetic (EK) remediation by combining dual cation-exchange membranes and circulation methods for an aged electroplating soil contaminated by chrome (Cr), copper (Cu), and nickel (Ni). Three laboratory-scale EK experiments were carried out, including T1, the traditional EK process; T2, the traditional EDTA-enhanced EK process; and T3, the assisted EDTA-enhanced EK process. The results obtained show that removal of Cu and Ni in T3 was 3-10 times higher than after T1 and T2. However, the removal of Cr (total) was small in all experiments because of the high content of Cr(III). T3 eliminated the metal accumulation problem that existed for T1 and T2. Simultaneously, the highly acidified area (pH < 4) was reduced from 80% in T1 and T2 to only 20% in T3. The results obtained in T3 indicate that the chelating effect of EDTA has a greater ability to dissolve oxidizable Cu and Ni in the soil than the acidification effect. Toxicity evaluation confirmed that the soil treated by T3 presented a lower effect on a luminescent bacterium (Photobacterium phosphoreum T3) because soil pH tended to be more neutral after this treatment. This research provides a novel method for removing heavy metals from soil in a more environmentally friendly way and clarifies the cause of the existing problems of low removal efficiency and high accumulation in the traditional EK process.
Collapse
Affiliation(s)
- Yue Song
- Institute of Ecology and Biodiversity, College of Life Sciences, Shandong University, Qingdao, 266237, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Long Cang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Yilin Zuo
- School of Earth and Environmental Sciences, University of Manchester, M13 9PL Manchester, United Kingdom
| | - Jiangli Yang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Dongmei Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Tigang Duan
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao, 266237, China
| | - Renqing Wang
- Institute of Ecology and Biodiversity, College of Life Sciences, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
43
|
Xiao J, Zhou S, Chu L, Liu Y, Li J, Zhang J, Tian L. Electrokinetic remediation of uranium(VI)-contaminated red soil using composite electrolyte of citric acid and ferric chloride. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:4478-4488. [PMID: 31832950 DOI: 10.1007/s11356-019-06990-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
In the process of electrokinetic (EK) remediation of uranium-contaminated soil, the existence form of uranium in soil pore fluid will affect on its migration behavior. In this paper, a novel type of electrolyte (citric acid + ferric chloride, CA+ FeCl3) has been investigated for the EK remediation of uranium-contaminated red soil. The effects of different electrolyte and the concentrations of FeCl3 on migration behavior of U(VI) and environmental risks were investigated after EK remediation. The result showed that the optimum concentration was 0.1 mol/L CA mixed with 0.03 mol/L FeCl3 in this study. At this time, the removal efficiency of uranium was about 61.55 ± 0.41%, and the cumulative energy consumption was 0.2559 kWh. Compared with deionized water and single CA, combined CA with FeCl3 has the advantages of high removal efficiency, low leaching toxicity, and less damage to the soil after the electrokinetic remediation treatment.
Collapse
Affiliation(s)
- Jiang Xiao
- School of Civil Engineering, University of South China, Hengyang, 421001, China
| | - Shukui Zhou
- School of Civil Engineering, University of South China, Hengyang, 421001, China.
| | - Luping Chu
- School of Civil Engineering, University of South China, Hengyang, 421001, China
| | - Yinjiu Liu
- School of Civil Engineering, University of South China, Hengyang, 421001, China
| | - Jiali Li
- School of Civil Engineering, University of South China, Hengyang, 421001, China
| | - Jian Zhang
- School of Civil Engineering, University of South China, Hengyang, 421001, China
| | - Linyu Tian
- School of Civil Engineering, University of South China, Hengyang, 421001, China
| |
Collapse
|
44
|
Wang J, Wu L, Yang T, Yan X, Pei X, Huang X, Long G, Xue R. Laboratory experiments on HMC coupling mechanisms in innovative clean foundation treatments for Zn-contaminated dredger fills. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 702:134939. [PMID: 31733561 DOI: 10.1016/j.scitotenv.2019.134939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Large-scale contaminated dredger fills have comprehensively resulted from human activities and geological deposition processes, and their disposal is a worldwide challenge. Innovative soil remediation coupling foundation treatment methods, namely, clean foundation treatment methods (CFTMs), were proposed and verified using a hydraulic-mechanical-chemical coupling triaxial testing system. The CFTM exploration triaxial tests on undisturbed clayey, silty, and sandy dredger fills showed that the critical injection significantly dilated soil volume even after the soil was vacuum pumped. Critical injection-vacuum soil flushing (CIVF), critical injection soil flushing (CIF), and vacuum soil flushing (VF) were proposed to perform clean foundation treatment for clayey silt, sandy silt, and silty sand of 1900-2300 ppm Zn. EDDS, HCl + CaCl2, and HCl were selected as the three chelating agents. Orthogonal tests on three factors (CFTM, soil type, and eluent) showed that CIF with 5:1 EDDS aq. of pH 3.8 was the best CFTM scheme for the three soil types at a depth of 2.5-10 m. CIF with HCl aq. of pH 3.8 also reached a high comprehensive clean foundation treatment efficiency for silty sand at a depth of 2.5 m. The deep depth and heterogeneous texture resulted in low Zn contamination extraction efficiency.
Collapse
Affiliation(s)
- Jianxiu Wang
- College of Civil Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China.
| | - Linbo Wu
- College of Civil Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China.
| | - Tianliang Yang
- Key Laboratory of Land Subsidence Monitoring and Prevention, Ministry of Land and Resources, Shanghai 201204, China; Shanghai Institute of Geological Survey, Shanghai 200072, China
| | - Xuexin Yan
- Key Laboratory of Land Subsidence Monitoring and Prevention, Ministry of Land and Resources, Shanghai 201204, China; Shanghai Institute of Geological Survey, Shanghai 200072, China
| | - Xiangjun Pei
- State Key Laboratory of Geohazard Prevention and Geo-environmental Protection, Chengdu University of Technology, Chengdu 610059, China.
| | - Xinlei Huang
- Key Laboratory of Land Subsidence Monitoring and Prevention, Ministry of Land and Resources, Shanghai 201204, China; Shanghai Institute of Geological Survey, Shanghai 200072, China
| | - Guanhong Long
- College of Civil Engineering, Tongji University, Shanghai 200092, China
| | - Rui Xue
- College of Civil Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
45
|
Sun C, Ding D, Chen T, Huang Q, Lu S, Yan J. Ecological risk analysis of the solid residues collected from the thermal disposal process of hyperaccumulator Pteris vittata including heavy metals and environmentally persistent free radicals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:29234-29245. [PMID: 31396866 DOI: 10.1007/s11356-019-06115-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 07/29/2019] [Indexed: 05/28/2023]
Abstract
To conduct a comprehensive ecological analysis on the solid residues derived from the thermal disposal of hyperaccumulator Pteris vittata, this study focused on the behaviors of As and Pb and the characteristics of environmentally persistent free radicals (EPFRs) in the solid residues under different thermal treatment conditions. The analysis results revealed that the concentrations of As in the biochars and bio-slag were approximately 350 and 1100 mg/kg, respectively. Moreover, the concentrations of Pb in the solid residues varied from 34 to 1050 mg/kg. According to the results of the modified BCR sequential extractions, As is more stable in the biochar while Pb is more stable in the combustion slags. In addition, As showed a higher volatilization temperature compared with Pb. The ecological risk assessment indicated that the correlation index between the contamination factor (Cf) of As and the risk index (R2 = 0.995) is considerably larger than the correlation index between the contamination factor of Pb and the risk index (R2 = 0.117), which implies that the pyrolysis method should be selected at priority. Moreover, the EPFR concentrations of the biochar declined by approximately 75 times when the pyrolysis temperature increased from 500 to 600 °C. This behavior indicated that high-temperature pyrolysis (> 600 °C) could simultaneously control both the heavy metal behavior and EPFR concentrations.
Collapse
Affiliation(s)
- Chen Sun
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| | - Dongdong Ding
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| | - Tong Chen
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China.
| | - Qunxing Huang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| | - Shengyong Lu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| | - Jianhua Yan
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
46
|
Ma Q, Li J, Lee CCC, Long X, Liu Y, Wu QT. Combining potassium chloride leaching with vertical electrokinetics to remediate cadmium-contaminated soils. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:2081-2091. [PMID: 30838487 DOI: 10.1007/s10653-019-00259-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
This study evaluated the feasibility of combining potassium chloride (KCl) leaching and electrokinetic (EK) treatment for the remediation of cadmium (Cd) and other metals from contaminated soils. KCl leaching was compared at three concentrations (0.2%, 0.5%, and 1% KCl). EK treatment was conducted separately to migrate the metals in the topsoil to the subsoil. The combined approach using KCl leaching before or after EK treatment was compared. For the single vertical EK treatment, the removal of Cd, lead (Pb), copper (Cu) and zinc (Zn) from the topsoil (0-20 cm) was 9.38%, 4.80%, 0.95%, and 10.81%, respectively. KCl leaching at 1% KCl removed 84.06% Cd, 9.95% Pb, 4.34% Cu, and 19.93% Zn from the topsoil, with higher removal efficiency than that of the 0.2% and 0.5% KCl leaching treatments. By combining the KCl leaching and EK treatment, the removal efficiency of heavy metals improved, in particular for the 1% KCl + EK treatment, where the removal rate of Cd, Pb, Cu, and Zn from the upper surface soil reached 97.79%, 17.69%, 14.37%, and 41.96%, respectively. Correspondingly, the soil Cd content decreased from 4 to 0.21 mg/kg, and was below the Chinese standard limit of 0.3 mg/kg soil. These results indicate that 1% KCl + EK treatment is a good combination technique to mitigate Cd pollution from contaminated soils used for growing rice and leafy vegetables.
Collapse
Affiliation(s)
- Qiang Ma
- Key Laboratory on Soil Environment and Waste Reuse in Agriculture of Guangdong Higher Education Institutes, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Jun Li
- Key Laboratory on Soil Environment and Waste Reuse in Agriculture of Guangdong Higher Education Institutes, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Charles C C Lee
- School of Environmental and Life Sciences, University of Newcastle (Australia) Singapore, 6 Temasek Blvd, Singapore, 038986, Singapore
| | - Xinxian Long
- Key Laboratory on Soil Environment and Waste Reuse in Agriculture of Guangdong Higher Education Institutes, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Yongmao Liu
- Inner Mongolia Research Institute of Metallurgy, Hohhot, 010010, China
| | - Qi-Tang Wu
- Key Laboratory on Soil Environment and Waste Reuse in Agriculture of Guangdong Higher Education Institutes, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
47
|
Song Y, Cang L, Xu H, Wu S, Zhou D. Migration and decomplexation of metal-chelate complexes causing metal accumulation phenomenon after chelate-enhanced electrokinetic remediation. JOURNAL OF HAZARDOUS MATERIALS 2019; 377:106-112. [PMID: 31154197 DOI: 10.1016/j.jhazmat.2019.05.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 04/04/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
This study investigates the migration and decomplexation effects of metal-ethylenediaminetetraacetic acid (EDTA) complexes during an electrokinetic (EK) remediation process and the resulting metal accumulation phenomena. Six EK tests with control of the electrolyte pH and using ion-exchange membranes were performed to treat Pb-EDTA and Cd-EDTA co-contaminated red soil. The obtained results showed that a portion of free metal cations could be decomplexed from the metal-EDTA complexes due to the low pH and electrochemical degradation at the anode. These cations went back into the soil by electromigration and accumulated in separate locations according to their hydrolysis ability and the distribution of soil pH in different sections. Totals of 61% Cd and 83% Pb were removed from the soil after a 7-day treatment under the condition of controlling the electrolyte pH at 10. The removal efficiencies of metals under the anion-exchange membrane-assisted treatment were higher than those of the cation-exchange membrane-assisted treatment. Based on the mechanisms of metal accumulation phenomena, the migration of decomplexed free metal cations back to the soil is limited by using an anion-exchange membrane or pre-precipitation with alkaline conditions was confirmed to effectively reduce the effect of metal accumulation.
Collapse
Affiliation(s)
- Yue Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Long Cang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Hongting Xu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Song Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongmei Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
48
|
Liang Y, Zhou C, Guo Z, Huang Z, Peng C, Zeng P, Xiao X, Xian Z. Removal of cadmium, lead, and zinc from multi-metal-contaminated soil using chelate-assisted Sedum alfredii Hance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:28319-28327. [PMID: 31372951 DOI: 10.1007/s11356-019-06041-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Biodegradable chelator-assisted phytoextraction is an effective method to enhance remediation efficiency of heavy metals. A greenhouse experiment was conducted to investigate the effects of S,S-ethylenediamine disuccinic acid (EDDS), citric acid (CA), and oxalic acid (OA) application before planting on the biomass and physiological characteristics of hyperaccumulator Sedum alfredii Hance, and its cadmium (Cd), lead (Pb), and zinc (Zn) uptake. The results showed that EDDS and CA slightly inhibited the plant growth, while the 1.0 mmol kg-1 (OA-1) and 2.5 mmol kg-1 OA (OA-2.5) addition produced 55.3% and 35.2% greater shoot biomass compared with the control, which may be related to that OA can produce higher leaf chlorophyll and soluble protein contents, as well as lower concentrations of malondialdehyde. At the same time, the concentrations of Pb and Zn in leaf after OA-2.5 treatment significantly increased by 127% and 28.4%, and the Cd, Pb, and Zn uptake by shoot was obviously enhanced by 21.5%, 117%, and 44.9% for OA-1 addition and by 39.1%, 80.0%, and 58.3% for OA-2.5 addition, respectively, in comparison with the control (P < 0.05). The reductions in available contents of Cd, Pb, and Zn in soil were observed after phytoextraction by Sedum alfredii Hance when OA was treated. These findings imply that OA was suitable for facilitating Sedum alfredii Hance to remove Cd, Pb, and Zn in co-contaminated soil.
Collapse
Affiliation(s)
- Yuqin Liang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Cong Zhou
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Zhaohui Guo
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Zhongting Huang
- Hunan Province Environmental Monitoring Centre, Changsha, 410004, China
| | - Chi Peng
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Peng Zeng
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Xiyuan Xiao
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China.
| | - Zhenfen Xian
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| |
Collapse
|
49
|
Benamar A, Tian Y, Portet-Koltalo F, Ammami MT, Giusti-Petrucciani N, Song Y, Boulangé-Lecomte C. Enhanced electrokinetic remediation of multi-contaminated dredged sediments and induced effect on their toxicity. CHEMOSPHERE 2019; 228:744-755. [PMID: 31071561 DOI: 10.1016/j.chemosphere.2019.04.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 03/07/2019] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
Electrokinetic (EK) remediation is often developed for metal decontamination but shows limitations for polycyclic aromatic hydrocarbons (PAHs) and polychlorobiphenyls (PCBs) which are nonionic and involve low aqueous solubility. This paper reports many laboratory studies devoted to the investigations of EK efficiency on the mobility and the removal of metals, PAHs and PCBs from dredged sediments, using a mixture of chelating agent and surfactants. The results showed that increasing chelating agent concentration was favorable for both metal and PAH removal. Applying a periodic voltage gradient associated to a low concentration of additives provided the best removal of Zn, Cd and Pb and also the 16 priority PAHs. The tested fresh harbor sediment was highly resistant to metals and organics mobilization and transport because of an aged contamination, a high buffering capacity, a very low hydraulic permeability and a high organic matter content. However, experiments performed on a former sediment which was deposited many years ago provided better removal results, involving low organic matter and carbonates content. The efficiency of the EK process was also assessed by measuring the acute toxicity of the EK-treated sediment on the copepod Eurytemora affinis exposed to sediment elutriates.
Collapse
Affiliation(s)
- A Benamar
- Normandie University, ULHN, LOMC UMR CNRS 6294, FR CNRS 3730 SCALE, Le Havre, France.
| | - Y Tian
- Normandie University, ULHN, LOMC UMR CNRS 6294, FR CNRS 3730 SCALE, Le Havre, France.
| | - F Portet-Koltalo
- Normandie University, URN, COBRA UMR CNRS 6014, FR CNRS 3730 SCALE, Evreux, France.
| | - M T Ammami
- CESI, Engineering School, Civil Engineering Department, Nanterre, Paris, France.
| | - N Giusti-Petrucciani
- Normandie University, ULHN, SEBIO UMR-I 02, FR CNRS 3730 SCALE, Le Havre, France.
| | - Y Song
- Institute of Ecology and Biodiversity, College of Life Sciences, Shandong University, Qingdao, 266000, China.
| | - C Boulangé-Lecomte
- Normandie University, ULHN, SEBIO UMR-I 02, FR CNRS 3730 SCALE, Le Havre, France.
| |
Collapse
|
50
|
Mai X, Luo D, Wei L, Liu Y, Huang X, Wu Q, Yao G, Liu G, Liu L. Evaluation method for the measuring comprehensive suitability of chelating agents: a study of the temporal dynamics of heavy metal activation. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:1415-1422. [PMID: 31272190 DOI: 10.1080/15226514.2019.1633262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The effects of chelating agents on heavy metal activation in Cd- and Pb-contaminated soils were studied through a dynamic activation experiment. An evaluation method for the measuring comprehensive suitability of chelating agent was established by calculating indexes for the degree of activation effect suitability and activated heavy metals' half-life suitability. The following results were obtained: in Cd- and Pb-contaminated soils, heavy metal activation effects reached or approached maximum activating effects within 1 d and subsequently showed different levels of decline in all chelating agent treatment conditions. Declines in activation effects similarly subjected to the law of exponents over time and to the goodness of fit in DTPA, NTA, and GLDA ranged from 0.80 to 0.98. For Cd- and Pb-contaminated soils, chelating agents' levels of comprehensive suitability (H) were recorded as follows: NTA(1.40) > GLDA(1.31) > DTPA(1.14) > EDTA(1.00) > EDDS(0.14) > CA(0.06) and GLDA(1.56) > DTPA(1.48) > EDTA(1.00) > NTA(0.78) > EDDS(0.26) > CA (0.02). GLDA and DTPA are both suitable for Cd and Pb phytoextraction. Moreover, NTA and GLDA are optimal chelating agents for Cd and Pb phytoextraction, respectively.
Collapse
Affiliation(s)
- Xiaotao Mai
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| | - Dinggui Luo
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
- Linköping University - Guangzhou University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou, PR China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, PR China
| | - Lezhang Wei
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
- Linköping University - Guangzhou University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou, PR China
| | - Yu Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
- Linköping University - Guangzhou University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou, PR China
| | - Xuexia Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, PR China
| | - Qihang Wu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, PR China
| | - Guangchao Yao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| | - Guowei Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| | - Lirong Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| |
Collapse
|